1
|
Iban-Arias R, Portela ASD, Masieri S, Radu A, Yang EJ, Chen LC, Gordon T, Pasinetti GM. Role of acute exposure to environmental stressors in the gut-brain-periphery axis in the presence of cognitive resilience. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167760. [PMID: 40037471 DOI: 10.1016/j.bbadis.2025.167760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Climate change-induced environmental stressors, including ambient particulate matter (PM2.5) and extreme heat stress (HS), pose serious health risks, particularly for neurodegenerative diseases. PM2.5 exacerbates cardiovascular and neurodegenerative conditions, while HS increases mortality and worsens air pollution. Combined exposure may amplify these effects, especially in vulnerable populations at risk for Alzheimer's disease (AD). In our experimental study using a mouse model of early-onset Alzheimer's disease (EOAD), we explored the combined effects of extreme weather conditions, particularly exposure to ambient PM2.5 and HS. Our research indicated that even short, repeated exposure to these environmental stressors disrupts brain energy metabolism and mitochondrial respiratory functions, which we found to be associated with altered hippocampal synaptic functions. Additionally, we find that key mechanisms associated with impaired intestinal permeability and gut dysbiosis are affected, supporting the hypothesis that exposure to climate change communication may also disrupt the gut-brain axis, as in part evidenced in our study by peripheral changes in immune and inflammatory signaling. Moreover, despite significant disruptions in metabolic and immune-inflammatory pathways, we observed no acceleration of cognitive decline in the young asymptomatic EOAD mice subjected to short, repeated exposure to extreme heat and environmental PM2.5. These findings highlight the potential role of climate change in promoting risk factors like neuroinflammation and gut-brain axis dysfunction due to gut microbiome dysbiosis in the onset and progression of AD, particularly in asymptomatic individuals at risk for developing the condition.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Ariana Soares Dias Portela
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Aurelian Radu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Lung-Chi Chen
- Department of Medicine, NYU Langone School of Medicine, New York, NY, 10010, United States of America
| | - Terry Gordon
- Department of Medicine, NYU Langone School of Medicine, New York, NY, 10010, United States of America
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America; Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, United States of America.
| |
Collapse
|
2
|
Liu N, Oshan R, Blanco M, Sheppard L, Seto E, Larson T, Austin E. Mapping Source-Specific Air Pollution Exposures Using Positive Matrix Factorization Applied to Multipollutant Mobile Monitoring in Seattle, WA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3443-3458. [PMID: 39937719 DOI: 10.1021/acs.est.4c13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Mobile monitoring strategies are increasingly used to provide fine spatial estimates of multiple air pollutant concentrations. This study demonstrates a novel approach using positive matrix factorization (PMF) applied to multipollutant mobile monitoring data to assess source-specific air pollution exposures and to estimate associated emission factors. Data were collected from one-year mobile monitoring, with an average of 26 repeated measures of size-resolved particle number counts (PNC), PM2.5, BC, NO2, and CO2 at 309 sites in Seattle from 2019 to 2020. PMF was used to characterize underlying source-related factors. The sources associated with these six factors included emissions from aviation, diesel trucks, gasoline/hybrid vehicles, oil combustion, wood combustion, and accumulation mode aerosols. Fuel-based emission factors for three transportation-related sources were also estimated. This study reveals that PNC of ultrafine particles with size <18, 18-42, and 42-178 nm was dominated by features associated with aircraft, diesel trucks, and both oil and wood combustion. Gasoline and hybrid vehicles contributed the most to CO2 and NO2 concentrations. This approach can also be extended to other metropolitan areas, enhancing the exposure assessment in epidemiology studies.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Rajni Oshan
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Magali Blanco
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, United States
| | - Edmund Seto
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Timothy Larson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elena Austin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Steinmetz-Wood S, Kennedy AG, Hitt JR, Barrett K, Gilbert MP. Perceptions of Endocrine Clinicians Regarding Climate Change and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:139. [PMID: 40003365 PMCID: PMC11855314 DOI: 10.3390/ijerph22020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The effects of climate change on the endocrine system are increasingly recognized. We aimed to evaluate endocrine clinicians' perspectives on climate change awareness and knowledge, motivation for action, and the need for climate health curricula. We designed an online questionnaire with endocrine-specific questions about climate change, which was shared through social media and email. Study data were collected between 9/2022 and 11/2022. Analyses were primarily descriptive. There were 164 responses; 98% were physicians, with a median age of 41 years. The majority (95%) reported that climate change is happening; 52% reported that they are very worried. Knowledge about climate change and health was variable (6.7% very, 40% moderately, 35% modestly, 17.7% not at all), with variable concerns regarding patient effects. The top endocrine climate-health concerns were reduced exercise, malnutrition, and weather-related disruptions. Most respondents agreed that climate change and health topics should be integrated into medical education (72.8% strongly agree or agree). The three resources perceived as most helpful were continuing medical education, patient resources, and policy statements. Endocrine clinicians are aware of and worried about climate change, with varying levels of knowledge and concern about climate change and health effects. We also exposed an untapped interest in developing endocrine-specific climate and health curricula.
Collapse
Affiliation(s)
- Samantha Steinmetz-Wood
- Division of Endocrinology, Diabetes & Osteoporosis, The University of Vermont Larner College of Medicine, Burlington, VT 05401, USA; (K.B.); (M.P.G.)
| | - Amanda G. Kennedy
- Department of Medicine Quality Program, The University of Vermont Larner College of Medicine, Burlington, VT 05401, USA; (A.G.K.)
| | - Juvena R. Hitt
- Department of Medicine Quality Program, The University of Vermont Larner College of Medicine, Burlington, VT 05401, USA; (A.G.K.)
| | - Kaitlyn Barrett
- Division of Endocrinology, Diabetes & Osteoporosis, The University of Vermont Larner College of Medicine, Burlington, VT 05401, USA; (K.B.); (M.P.G.)
| | - Matthew P. Gilbert
- Division of Endocrinology, Diabetes & Osteoporosis, The University of Vermont Larner College of Medicine, Burlington, VT 05401, USA; (K.B.); (M.P.G.)
| |
Collapse
|
4
|
Liu H, Lin X, Qiao L, Liu M, Bai Z, Han J. Secular trends in type 2 diabetes mellitus attributable to PM 2.5 exposure in China from 1990 to 2019: an age-period-cohort analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3659-3671. [PMID: 38323408 DOI: 10.1080/09603123.2024.2314639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Secular trends of mortality and disability-adjusted life years (DALY) in type 2 diabetes mellitus (T2DM) attributable to PM2.5 exposure in China remain unclear. This study applied the joinpoint regression analysis and age-period-cohort model to assess the secular trends. There was a slight alternation in age-standardized rate of mortality and DALY in the total population, while the changes were increased in males and decreased in females from 1990 to 2019. Meanwhile, the changes attributable to ambient particular matter pollution exposure (APE) increased significantly and reduced household air pollution from solid fuels exposure (HPE). Longitudinal age curves showed that T2DM mortality and DALY increased with age. Period rate ratios (RR) attributable to APE increased but fell to HPE. Similar trends were observed in the cohort RR. PM2.5 exposure is more harmful to males and older people. The type of air pollution responsible for T2DM has changed from HPE to APE.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mian Liu
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhenbo Bai
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Azizi S, Hadi Dehghani M, Nabizadeh R. Ambient air fine particulate matter (PM10 and PM2.5) and risk of type 2 diabetes mellitus and mechanisms of effects: a global systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-20. [PMID: 39267465 DOI: 10.1080/09603123.2024.2391993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Type 2 diabetes causes early mortality worldwide. Air pollution's relationship with T2DM has been studied. The association between them is unclear because of inconsistent outcomes. Studies on this topic have been published since 2019, but not thoroughly evaluated. We conducted a systematic review and meta-analysis using relevant data. The study protocol was registered in PROSPIRO and conducted according to MOOSE guidelines. In total, 4510 manuscripts were found. After screening, 46 studies were assessed using the OHAT tool. This meta-analysis evaluated fine particles with T2DM using OR and HR effect estimates. Evaluation of publication bias was conducted by Egger's test, Begg's test, and funnel plot analysis. A sensitivity analysis was conducted to evaluate the influence of several studies on the total estimations. Results show a significant association between PM2.5 and PM10 exposure and T2DM. Long-term exposure to fine air particles may increase the prevalence and incidence of T2DM. Fine air pollution increases the chance of developing T2DM mainly via systemic inflammation, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Salah Azizi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhao J, Mei Y, Li A, Zhou Q, Zhao M, Xu J, Li Y, Li K, Yang M, Xu Q. Association between PM 2.5 constituents and cardiometabolic risk factors: Exploring individual and combined effects, and mediating inflammation. CHEMOSPHERE 2024; 359:142251. [PMID: 38710413 DOI: 10.1016/j.chemosphere.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
7
|
Zhang B, Mendes de Leon CF, Langa KM, Weuve J, Szpiro A, Faul J, D’Souza J, Kaufman JD, Hirth RA, Lisabeth LD, Gao J, Adar SD. Source-Specific Air Pollution and Loss of Independence in Older Adults Across the US. JAMA Netw Open 2024; 7:e2418460. [PMID: 38941096 PMCID: PMC11214115 DOI: 10.1001/jamanetworkopen.2024.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Importance Air pollution is a recognized risk factor associated with chronic diseases, including respiratory and cardiovascular conditions, which can lead to physical and cognitive impairments in later life. Although these losses of function, individually or in combination, reduce individuals' likelihood of living independently, little is known about the association of air pollution with this critical outcome. Objective To investigate associations between air pollution and loss of independence in later life. Design, Setting, and Participants This cohort study was conducted as part of the Environmental Predictors Of Cognitive Health and Aging study and used 1998 to 2016 data from the Health and Retirement Study. Participants included respondents from this nationally representative, population-based cohort who were older than 50 years and had not previously reported a loss of independence. Analyses were performed from August 31 to October 15, 2023. Exposures Mean 10-year pollutant concentrations (particulate matter less than 2.5 μm in diameter [PM2.5] or ranging from 2.5 μm to 10 μm in diameter [PM10-2.5], nitrogen dioxide [NO2], and ozone [O3]) were estimated at respondent addresses using spatiotemporal models along with PM2.5 levels from 9 emission sources. Main Outcomes and Measures Loss of independence was defined as newly receiving care for at least 1 activity of daily living or instrumental activity of daily living due to health and memory problems or moving to a nursing home. Associations were estimated with generalized estimating equation regression adjusting for potential confounders. Results Among 25 314 respondents older than 50 years (mean [SD] baseline age, 61.1 [9.4] years; 11 208 male [44.3%]), 9985 individuals (39.4%) experienced lost independence during a mean (SD) follow-up of 10.2 (5.5) years. Higher exposure levels of mean concentration were associated with increased risks of lost independence for total PM2.5 levels (risk ratio [RR] per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.10), PM2.5 levels from road traffic (RR per 1-IQR of 10-year mean, 1.09; 95% CI, 1.03-1.16) and nonroad traffic (RR per 1-IQR of 10-year mean, 1.13; 95% CI, 1.03-1.24), and NO2 levels (RR per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.08). Compared with other sources, traffic-generated pollutants were most consistently and robustly associated with loss of independence; only road traffic-related PM2.5 levels remained associated with increased risk after adjustment for PM2.5 from other sources (RR per 1-IQR increase in 10-year mean concentration, 1.10; 95% CI, 1.00-1.21). Other pollutant-outcome associations were null, except for O3 levels, which were associated with lower risks of lost independence (RR per 1-IQR increase in 10-year mean concentration, 0.94; 95% CI, 0.92-0.97). Conclusions and Relevance This study found that long-term exposure to air pollution was associated with the need for help for lost independence in later life, with especially large and consistent increases in risk for pollution generated by traffic-related sources. These findings suggest that controlling air pollution could be associated with diversion or delay of the need for care and prolonged ability to live independently.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | | | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Richard A. Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Lynda D. Lisabeth
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Jiaqi Gao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
8
|
Oshidari Y, Salehi M, Kermani M, Jonidi Jafari A. Associations between long-term exposure to air pollution, diabetes, and hypertension in metropolitan Iran: an ecologic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2476-2490. [PMID: 37674318 DOI: 10.1080/09603123.2023.2254713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiological studies on air pollution, diabetes, and hypertension conflict. This study examined air pollution, diabetes, and hypertension in adults in 11 metropolitan areas of Iran (2012-2016). Local environment departments and the Tehran Air Quality Control Company provided air quality data. The VIZIT website and Stepwise Approach to Chronic Disease Risk Factor Surveillance study delivered chronic disease data. Multiple logistic regression and generalized estimating equations evaluated air pollution-related diabetes and hypertension. In Isfahan, Ahvaz, and Tehran, PM2.5 was linked to diabetes. In all cities except Urmia, Yasuj, and Yazd, PM2.5 was statistically related to hypertension. O3 was connected to hypertension in Ahvaz, Tehran, and Shiraz, whereas NO2 was not. BMI and gender predict hypertension and diabetes. Diabetes, SBP, and total cholesterol were correlated. Iran's largest cities' poor air quality may promote diabetes and hypertension. PM2.5 impacts many cities' outcomes. Therefore, politicians and specialists have to control air pollution.
Collapse
Affiliation(s)
- Yasaman Oshidari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Song L, Gao Y, Tian J, Liu N, Nasier H, Wang C, Zhen H, Guan L, Niu Z, Shi D, Zhang H, Zhao L, Zhang Z. The mediation effect of asprosin on the association between ambient air pollution and diabetes mellitus in the elderly population in Taiyuan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19674-19686. [PMID: 38363509 DOI: 10.1007/s11356-024-32255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic β-cell function index (HOMA-β), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-β in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.
Collapse
Affiliation(s)
- Lulu Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yuhui Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Halimaimaiti Nasier
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Huiqiu Zhen
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
10
|
Li Y, Wu J, Tang H, Jia X, Wang J, Meng C, Wang W, Liu S, Yuan H, Cai J, Wang J, Lu Y. Long-term PM 2.5 exposure and early-onset diabetes: Does BMI link this risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169791. [PMID: 38176550 DOI: 10.1016/j.scitotenv.2023.169791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Limited studies investigated the association between high-level fine particulate matter (PM2.5) pollution and early-onset diabetes, leaving the possible metabolic mechanisms unclear. We assessed the association of cumulative PM2.5 exposure with diabetes, including early-onset, in high-pollution areas of China and explored whether metabolic factors mediated this association. METHODS 124,204 participants (≥18 years) from 121 counties in Hunan province, China, were enrolled between 2005 and 2020, with follow-up until 2021. The ground-level air pollution concentrations at each participant's residence were calculated using a high-quality dataset in China. The independent association of PM2.5 with incident diabetes and early-onset diabetes was assessed by Cox proportional hazards models. Restricted cubic splines were utilized to establish the exposure-response relationships. The role of metabolism-related mediators was estimated by mediation analysis. RESULTS During a median follow-up of 8.47 (IQR, 6.65-9.82) years, there were 3650 patients with new-onset diabetes. Each 1 μg/m3 increase in the level of cumulative PM2.5 exposure was positively related to an increased incidence of diabetes (HR 1.177, 95 % CI 1.172-1.181) among individuals in the PM2.5 > 50 μg/m3 group after adjusting for multiple variables. The relationship of the PM2.5 dose-response curve for diabetes was non-linear. Significant associations between PM2.5 exposure and early-onset diabetes risk were observed, with this risk showing an increase with the earlier age of early diabetes onset. Males, young individuals (≤45 years), and those with a lower body mass index (BMI <24 kg/m2) appeared to be more susceptible to diabetes. Moreover, change in BMI significantly mediated 31.06 % of the PM2.5-diabetes relationship. CONCLUSIONS Long-term cumulative PM2.5 exposure increased the risk of early-onset diabetes, which is partially mediated by BMI. Sustained air pollution control measures, priority protection of vulnerable individuals, and effective management of BMI should be taken to reduce the burden of diabetes.
Collapse
Affiliation(s)
- Yalan Li
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Wu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haibo Tang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Metabolic and Bariatric Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinru Jia
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjiang Meng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiqi Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
11
|
Vogli M, Peters A, Wolf K, Thorand B, Herder C, Koenig W, Cyrys J, Maestri E, Marmiroli N, Karrasch S, Zhang S, Pickford R. Long-term exposure to ambient air pollution and inflammatory response in the KORA study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169416. [PMID: 38123091 DOI: 10.1016/j.scitotenv.2023.169416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Previous studies consistently showed an association between fine atmospheric particulate matter (PM2.5) and cardiovascular diseases. Concerns about adverse health effects of ultrafine particles (UFP) are growing but long-term studies are still scarce. In this study, we examined the association between long-term exposure to ambient air pollutants and blood biomarkers of inflammation and coagulation, including fibrinogen, high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA) adiponectin and interleukin-6 (IL-6), measured in the German KORA-S4 cohort study (1999-2001). IL-6 was available for older participants only, who were therefore considered as a subsample. Annual mean concentrations of UFP (as particle number concentration), particulate matter in different particles sizes (PM10, PMcoarse, PM2.5, PM2.5 absorbance), ozone (O3), and nitrogen oxides (NO2, NOX) were estimated by land-use regression models and assigned to participants' home addresses. We performed a multiple linear regression between each pollutant and each biomarker with adjustment for confounders. Per 1 interquartile range (IQR, 1945 particles/cm3) increase of UFP, fibrinogen increased by 0.70 % (0.04; 1.37) and hs-CRP increased by 3.16 % (-0.52; 6.98). Adiponectin decreased by -2.53 % (-4.78; -0.24) per 1 IQR (1.4 μg/m3) increase of PM2.5. Besides, PM2.5 was associated with increased IL-6 in the subsample. In conclusion, we observed that long-term exposure to air pollutants, including both fine and ultrafine particles, was associated with higher concentrations of pro-inflammatory and lower concentrations of an anti-inflammatory blood biomarkers, which is consistent with an increased risk for cardiovascular disease observed for long-term exposure to air pollutants.
Collapse
Affiliation(s)
- Megi Vogli
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Koenig
- German Research Center for Cardiovascular Disease, Partner Site of Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
12
|
Brieger L, Schramm S, Schmidt B, Roggenbuck U, Erbel R, Stang A, Kowall B. Aggregation of type-2 diabetes, prediabetes, and metabolic syndrome in German couples. Sci Rep 2024; 14:2984. [PMID: 38316913 PMCID: PMC10844497 DOI: 10.1038/s41598-024-53417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
We aimed to examine the concordance of type-2 diabetes, prediabetes and the metabolic syndrome in couples. In cross-sectional analyses, we used data from 1173 couples with index persons from the Heinz Nixdorf Recall Study (2011-2015), a population-based cohort study in Western Germany, and partners from the associated Heinz Nixdorf Multigeneration Study (2013-2016). Mean age (standard deviation) was 67.2 (6.6) years in index persons, and 67.8 (7.7) years in partners. The exposure was the presence of diabetes, prediabetes or metabolic syndrome in index persons, the outcome was the presence of the same health status in partners. Diabetes was defined by either self-reported diagnosis, intake of antidiabetic drugs or insulin, or HbA1c ≥ 6.5%. If the index person had prediabetes or diabetes, the partner was 1.46 (95% CI 1.07-2.00) times more likely to have diabetes than partners of index persons without the condition in the crude model (adjusted model: 1.33 (0.97-1.83)). For self-reported diabetes and for the metabolic syndrome, the corresponding prevalence ratios were 1.33 (0.90-1.97) and 1.17 (1.03-1.32), respectively (adjusted models: 1.23 (0.77-1.94), 1.04 (0.91-1.18)). In German couples, there was weak to moderate concordance of type-2 diabetes, prediabetes and the metabolic syndrome in crude, but poor concordance in adjusted models.
Collapse
Affiliation(s)
- Lara Brieger
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany
- School of Public Health, Department of Epidemiology Boston University, 715 Albany Street, Talbot Building, Boston, MA, 02118, USA
| | - Bernd Kowall
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
14
|
Chung CY, Wu SY, Chiu HH, Wu TN, Wang YT, Lin MY. Associations of air pollutant concentrations with longitudinal kidney function changes in patients with chronic kidney disease. Sci Rep 2023; 13:9609. [PMID: 37311921 DOI: 10.1038/s41598-023-36682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
This longitudinal cohort study investigated the associations of air pollutant exposures, including CO, NO, NO2, NOx, O3, PM10, PM2.5, and SO2, with long-term kidney function changes in patients with chronic kidney disease (CKD). We enrolled 447 CKD patients who took part in a universal hospital pre-ESRD care program during 2011-2015. The daily average air pollutant exposures and temperature were estimated for each patient, with different levels of air pollutant concentrations defined by 5-knot and restricted cubic spline function. Predicted annual estimated glomerular filtration (eGFR) slope values by one mixed model were considered as the study outcome. The average age of the study population was 77.1 ± 12.6 years, and the median annual eGFR decreased by 2.1 ml/min/1.73 m2 per year from 30 ml/min/1.73 m2 at baseline during a mean follow-up time of 3.4 years. The univariable and multivariable analyses revealed no significant linear and non-linear associations between 5-knot air pollutant concentrations and annual eGFR slope. In addition, the visualized spline effect plots show insignificant variation patterns in annual eGFR slope values with increased air pollutant concentrations. These results encourage more extensive studies to clarify the causal relationships and mechanisms of long-term specific air pollutant exposures and longitudinal kidney function change, especially in CKD populations.
Collapse
Affiliation(s)
- Cheng-Yin Chung
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Shang-Yu Wu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Huei-Hsuan Chiu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Tzu-Ning Wu
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Your-Tong Wang
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan.
- Department of Kidney Care, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
15
|
Ratter-Rieck JM, Roden M, Herder C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 2023; 66:1003-1015. [PMID: 36964771 PMCID: PMC10039694 DOI: 10.1007/s00125-023-05901-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Climate change will be a major challenge for the world's health systems in the coming decades. Elevated temperatures and increasing frequencies of heat waves, wildfires, heavy precipitation and other weather extremes can affect health in many ways, especially if chronic diseases are already present. Impaired responses to heat stress, including compromised vasodilation and sweating, diabetes-related comorbidities, insulin resistance and chronic low-grade inflammation make people with diabetes particularly vulnerable to environmental risk factors, such as extreme weather events and air pollution. Additionally, multiple pathogens show an increased rate of transmission under conditions of climate change and people with diabetes have an altered immune system, which increases the risk for a worse course of infectious diseases. In this review, we summarise recent studies on the impact of climate-change-associated risk for people with diabetes and discuss which individuals may be specifically prone to these risk conditions due to their clinical features. Knowledge of such high-risk groups will help to develop and implement tailored prevention and management strategies to mitigate the detrimental effect of climate change on the health of people with diabetes.
Collapse
Affiliation(s)
- Jacqueline M Ratter-Rieck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, Brook J, Chang H, Haddad P, Hoek G, Kappeler R, Sagiv S, Smargiassi A, Szpiro A, Vienneau D, Weuve J, Lurmann F, Forastiere F, Hoffmann BH. Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1605718. [PMID: 37325174 PMCID: PMC10266340 DOI: 10.3389/ijph.2023.1605718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.
Collapse
Affiliation(s)
- Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Richard Atkinson
- Population Health Research Institute, St. George’s University of London, London, United Kingdom
| | - Jeff Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pascale Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron Kappeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health, Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Francesco Forastiere
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Barbara H. Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Hu X, Yang T, Xu Z, Jin J, Wang J, Rao S, Li G, Cai YS, Huang J. Mediation of metabolic syndrome in the association between long-term co-exposure to road traffic noise, air pollution and incident type 2 diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114992. [PMID: 37167735 DOI: 10.1016/j.ecoenv.2023.114992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Recent studies have linked exposure to road traffic noise or air pollution with incident type 2 diabetes (T2D), but investigation on their co-exposure was limited and underlying mechanisms remain unclear. We hypothesized that long-term co-exposure to road traffic noise and air pollution increases the risk of incident T2D via the development of metabolic syndrome (MetS). METHODS This prospective study included 390,834 participants in UK Biobank. Cumulative risk index (CRI), the health-based weighted levels of multiple exposures, was applied to characterize the co-exposure to 24-hour road traffic noise (Lden), particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5), and nitrogen dioxide (NO2). Lden was modeled by the Common Noise Assessment Methods in Europe and air pollutant levels were measured by the Land Use Regression model at participants' residential addresses. Incident T2D was ascertained through linkages to inpatient hospital records. MetS was defined by five (central obesity, triglycerides, HDL cholesterol, glucose, and blood pressure) or six factors (C-reactive protein additionally). Cox proportional hazard models were used to assess the association between environmental exposures and incident T2D, and mediation analyses were applied to investigate the role of MetS. RESULTS After a median of 10.9 years of follow-up, 13,214 (3.4%) incident T2D cases were ascertained. The exposure to Lden, PM2.5, and NO2, as well as their co-exposure, were significantly associated with an elevated risk of incident T2D, with HRs of 1.03 (95%CI: 1.00, 1.05) per 3.5 dB(A) increase in Lden, 1.05 (95%CI: 1.01, 1.10) per 1.3 μg/m3 increase in PM2.5, 1.07 (95%CI: 1.02, 1.11) per 9.8 μg/m3 increase in NO2, and 1.06 (95%CI: 1.02, 1.09) per interquartile range increase in CRI. MetS significantly mediated 43.5%- 54.7% of the CRI-T2D relationship. CONCLUSIONS Long-term co-exposure to road traffic noise and air pollution is associated with an elevated risk of incident T2D, which may partly be mediated by MetS.
Collapse
Affiliation(s)
- Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shishir Rao
- Deep Medicine, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2BQ, UK
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Environmental Research Group, Faculty of Medicine, School of Public Health, Imperial College London, UK
| | - Yutong Samuel Cai
- Centre for Environmental Health and Sustainability, University of Leicester, University Road, Leicester LE1 7RH, UK; National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health at the University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Peking University Institute of Global Health and Development, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.
| |
Collapse
|
18
|
Weiss MC, Adusumilli S, Jagai JS, Sargis RM. Transportation-related Environmental Mixtures and Diabetes Prevalence and Control in Urban/Metropolitan Counties in the United States. J Endocr Soc 2023; 7:bvad062. [PMID: 37260779 PMCID: PMC10227866 DOI: 10.1210/jendso/bvad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
Diabetes rates in the United States are staggering and climbing. Importantly, traditional risk factors fail to completely account for the magnitude of the diabetes epidemic. Environmental exposures, including urban and metropolitan transportation quality, are implicated as contributors to disease. Using data from the county-level Environmental Quality Index (EQI) developed for the United States, we analyzed associations between transportation and air quality environmental metrics with overall diabetes prevalence and control within urban/metropolitan counties in the United States from 2006 to 2012. Additionally, we examined effect modification by race/ethnicity through stratification based on the county-level proportion of minority residents. Last, we applied mixture methods to evaluate the effect of simultaneous poor transportation factors and worse air quality on the same outcomes. We found that increased county-level particulate matter air pollution and nitrogen dioxide along with reduced public transportation usage and lower walkability were all associated with increased diabetes prevalence. The minority proportion of the population influences some of these relationships as some of the effects of air pollution and the transportation-related environment are worse among counties with more minority residents. Furthermore, the transportation and air quality mixtures were found to be associated with increased diabetes prevalence and reduced diabetes control. These data further support the burgeoning evidence that poor environments amplify diabetes risk. Future cohort studies should explore the utility of environmental policies and urban planning as tools for improving metabolic health.
Collapse
Affiliation(s)
- Margaret C Weiss
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sneha Adusumilli
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jyotsna S Jagai
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Chicago Center for Health and Environment, Chicago, IL 60612, USA
- Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Sommar JN, Segersson D, Flanagan E, Oudin A. Long-term residential exposure to source-specific particulate matter and incidence of diabetes mellitus - A cohort study in northern Sweden. ENVIRONMENTAL RESEARCH 2023; 217:114833. [PMID: 36402182 DOI: 10.1016/j.envres.2022.114833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Diabetes mellitus (DM) incidence have been assessed in connection with air pollution exposure in several studies; however, few have investigated associations with source-specific local emissions. This study aims to estimate the risk of DM incidence associated with source-specific air pollution in a Swedish cohort with relatively low exposure. Individuals in the Västerbotten intervention programme cohort were followed until either a DM diagnosis or initiation of treatment with glucose-lowering medication occurred. Dispersion models with high spatial resolution were used to estimate annual mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5) at individual addresses. Hazard ratios were estimated using Cox regression models in relation to moving averages 1-5 years preceding the outcome. During the study period, 1479 incident cases of DM were observed during 261,703 person-years of follow-up. Increased incidence of DM was observed in association with PM10 (4% [95% CI: -54-137%] per 10 μg/m3), PM10-traffic (2% [95% CI: -6-11%] per 1 μg/m3) and PM2.5-exhaust (11% [95% CI: -39-103%] per 1 μg/m3). A negative association was found for both PM2.5 (-18% [95% CI: -99-66%] per 5 μg/m3), but only in the 2nd exposure tertile (-10% [95% CI: -25-9%] compared to the first tertile), and PM2.5-woodburning (-30% [95% CI: -49-4%] per 1 μg/m3). In two-pollutant models including PM2.5-woodburning, there was an 11% [95% CI: -11-38%], 6% [95% CI: -16-34%], 13% [95% CI: -7-36%] and 17% [95% CI: 4-41%] higher risk in the 3rd tertile of PM10, PM2.5, PM10-traffic and PM2.5-exhaust, respectively, compared to the 1st. Although the results lacked in precision they are generally in line with the current evidence detailing particulate matter air pollution from traffic as an environmental risk factor for DM.
Collapse
Affiliation(s)
- Johan N Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Erin Flanagan
- Division for Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; Division for Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Mei Y, Li A, Zhao J, Zhou Q, Zhao M, Xu J, Li R, Li Y, Li K, Ge X, Guo C, Wei Y, Xu Q. Association of long-term air pollution exposure with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway to preventive strategies. ENVIRONMENTAL RESEARCH 2023; 216:114472. [PMID: 36209785 DOI: 10.1016/j.envres.2022.114472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Limited evidence suggests the association of air pollutants with a series of diabetic cascades including inflammatory pathways, glucose homeostasis disorder, and prediabetes and diabetes. Subclinical strategies for preventing such pollutants-induced effects remain unknown. METHODS We conducted a cross-sectional study in two typically air-polluted Chinese cities in 2018-2020. One-year average PM1, PM2.5, PM10, SO2, NO2, and O3 were calculated according to participants' residence. GAM multinomial logistic regression was performed to investigate the association of air pollutants with diabetes status. GAM and quantile g-computation were respectively performed to investigate individual and joint effects of air pollutants on glucose homeostasis markers (glucose, insulin, HbA1c, HOMA-IR, HOMA-B and HOMA-S). Complement C3 and hsCRP were analyzed as potential mediators. The ABCS criteria and hemoglobin glycation index (HGI) were examined for their potential in preventive strategy. RESULTS Long-term air pollutants exposure was associated with the risk of prediabetes [Prevalence ratio for O3 (PR_O3) = 1.96 (95% CI: 1.24, 3.03)] and diabetes [PR_PM1 = 1.18 (95% CI: 1.05, 1.32); PR_PM2.5 = 1.08 (95% CI: 1.00, 1.16); PR_O3 = 1.35 (95% CI: 1.03, 1.74)]. PM1, PM10, SO2 or O3 exposure was associated with glucose-homeostasis disorder. For example, O3 exposure was associated with increased levels of glucose [7.67% (95% CI: 1.75, 13.92)], insulin [19.98% (95% CI: 4.53, 37.72)], HOMA-IR [34.88% (95% CI: 13.81, 59.84)], and decreased levels of HOMA-S [-25.88% (95% CI: -37.46, -12.16)]. Complement C3 and hsCRP played mediating roles in these relationships with proportion mediated ranging from 6.95% to 60.64%. Participants with HGI ≤ -0.53 were protected from the adverse effects of air pollutants. CONCLUSION Our study provides comprehensive insights into air pollutant-associated diabetic cascade and suggests subclinical preventive strategies.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
21
|
Bai L, Benmarhnia T, Chen C, Kwong JC, Burnett RT, van Donkelaar A, Martin RV, Kim J, Kaufman JS, Chen H. Chronic Exposure to Fine Particulate Matter Increases Mortality Through Pathways of Metabolic and Cardiovascular Disease: Insights From a Large Mediation Analysis. J Am Heart Assoc 2022; 11:e026660. [PMID: 36346052 PMCID: PMC9750078 DOI: 10.1161/jaha.122.026660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Background Long-term exposure to outdoor fine particulate matter (PM2.5) is the leading environmental risk factor for premature mortality worldwide. Characterizing important pathways through which PM2.5 increases individuals' mortality risk can clarify the PM2.5-mortality relationship and identify possible points of interventions. Recent evidence has linked PM2.5 to the onset of diabetes and cardiovascular disease, but to what extent these associations contribute to the effect of PM2.5 on mortality remains poorly understood. Methods and Results We conducted a population-based cohort study to investigate how the effect of PM2.5 on nonaccidental mortality is mediated by its impacts on incident diabetes, acute myocardial infarction, and stroke. Our study population comprised ≈200 000 individuals aged 20 to 90 years who participated in population-based health surveys in Ontario, Canada, from 1996 to 2014. Follow-up extended until December 2017. Using causal mediation analyses with Aalen additive hazards models, we decomposed the total effect of PM2.5 on mortality into a direct effect and several path-specific indirect effects mediated by diabetes, each cardiovascular event, or both combined. A series of sensitivity analyses were also conducted. After adjusting for various individual- and neighborhood-level covariates, we estimated that for every 1000 adults, each 10 μg/m3 increase in PM2.5 was associated with ≈2 incident cases of diabetes, ≈1 major cardiovascular event (acute myocardial infarction and stroke combined), and ≈2 deaths annually. Among PM2.5-related deaths, 31.7% (95% CI, 17.2%-53.2%) were attributable to diabetes and major cardiovascular events in relation to PM2.5. Specifically, 4.5% were explained by PM2.5-induced diabetes, 22.8% by PM2.5-induced major cardiovascular events, and 4.5% through their interaction. Conclusions This study suggests that a significant portion of the estimated effect of long-term exposure to PM2.5 on deaths can be attributed to its effect on diabetes and cardiovascular diseases, highlighting the significance of PM2.5 on deteriorating cardiovascular health. Our findings should raise awareness among professionals that improving metabolic and cardiovascular health may reduce mortality burden in areas with higher exposure to air pollution.
Collapse
Affiliation(s)
| | - Tarik Benmarhnia
- Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaCA
- Department of Family Medicine and Public HealthUniversity of CaliforniaSan Diego, La JollaCA
| | - Chen Chen
- Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaCA
| | - Jeffrey C. Kwong
- ICESTorontoOntarioCanada
- Public Health OntarioTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoOntarioCanada
- Department of Family and Community MedicineUniversity of TorontoOntarioCanada
| | - Richard T. Burnett
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Aaron van Donkelaar
- Department of Energy, Environment and Chemical EngineeringWashington UniversitySt LouisMOUSA
| | - Randall V. Martin
- Department of Energy, Environment and Chemical EngineeringWashington UniversitySt LouisMOUSA
| | - JinHee Kim
- Public Health OntarioTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoOntarioCanada
| | - Jay S. Kaufman
- Department of Epidemiology and BiostatisticsMcGill UniversityMontrealQuebecCanada
- Institute for Health and Social PolicyMcGill UniversityMontrealQuebecCanada
| | - Hong Chen
- ICESTorontoOntarioCanada
- Public Health OntarioTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoOntarioCanada
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| |
Collapse
|
22
|
Wang X, Guo B, Yang X, Li J, Baima Y, Yin J, Yu J, Xu H, Zeng C, Feng S, Wei J, Hong F, Zhao X. Role of Liver Enzymes in the Relationship Between Particulate Matter Exposure and Diabetes Risk: A Longitudinal Cohort Study. J Clin Endocrinol Metab 2022; 107:e4086-e4097. [PMID: 35861878 DOI: 10.1210/clinem/dgac438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Particulate matter (PM) is an important risk factor for diabetes. However, its underlying mechanisms remain poorly understood. Although liver-derived biological intermediates may play irreplaceable roles in the pathophysiology of diabetes, few studies have explored this in the association between PM and diabetes. OBJECTIVE We investigated the role of liver enzymes in mediating the relationship between PM exposure and diabetes. METHODS We included a total of 7963 participants from the China Multi-Ethnic Cohort. Residential exposure to PM was assessed using a validated spatial-temporal assessment method. Diabetes was diagnosed according to the criteria from American Diabetes Association. Associations between PM, liver enzyme [including alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase (GGT)], and diabetes were estimated using multivariable regression models. The function of liver enzymes in the relationship between PM and diabetes was assessed using mediation analysis. RESULTS PM exposure was positively associated with the odds of diabetes, with odds ratios of 1.32 (95% CI 0.83, 2.09), 1.33 (95% CI 1.07, 1.65), and 1.18 (95% CI 1.02, 1.36) for every 10-μg/m3 increment in ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) PM, respectively. ALT (4.47%) and GGT (4.78%) exhibited statistically significant mediation effects on the association between PM2.5 and diabetes, and the ALT (4.30%) also had a mediating role on PM10. However, none of the liver enzymes had a significant mediating effect on PM1. CONCLUSION The relationship between PM and diabetes is partially mediated by liver enzymes, suggesting that lipid accumulation, oxidative stress, and chronic inflammation in the liver may be involved in its pathogenesis.
Collapse
Affiliation(s)
- Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xianxian Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jingzhong Li
- Tibet Center for disease control and prevention, Lhasa, Tibet, China
| | - Yangji Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Bergstra AD, Been JV, Burdorf A. The association of specific industry-related air pollution with occurrence of chronic diseases: A register-based study. ENVIRONMENTAL RESEARCH 2022; 209:112872. [PMID: 35131328 DOI: 10.1016/j.envres.2022.112872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Air pollution may contribute to onset and progression of chronic diseases such as cardiovascular and respiratory diseases. Most studies have focused on the contribution of traffic-related exposure to PM10 or PM2.5. Our aim was to investigate the association of different components of industry-related air pollution on the occurrence of chronic diseases. A register-based repeated cross-sectional study was conducted among 89,714 subjects (2012) with 536,599 annual observations (2012-2017) living in the vicinity of a large industrial area in the Netherlands. Information from the dispensed medication registration was linked with a dispersion model to characterize annual individual-level exposure of all subjects at place of residence. Associations between annual exposure (concentration and duration) to particulate matter (PM10), nitrogen oxides (NOX), sulphur dioxide (SO2), and volatile organic compounds (VOC) with annual dispensed medication for cardiovascular diseases, respiratory diseases, diabetes mellitus, and inflammatory conditions were investigated by multivariate logistic regression analysis with generalized estimating equations (GEE) while controlling for confounders. Exposure to PM10 and to NOX (per μg/m3) were significantly associated with medication for cardiovascular diseases (OR 1.06, 95CI% 1.06-1.06 and OR 1.01, 95%CI 1.01-1.01 respectively). Exposures to PM10 and SO2 (per μg/m3) were significantly associated with medication for inflammatory conditions (OR 1.05, 95%CI 1.00-1.09 and OR 1.07, 95%CI 1.01-1.14 respectively). Exposure to SO2 was inversely associated with respiratory diseases (OR 0.91, 95%CI 0.86-0.97). Except for inflammatory conditions, exposure duration (years) was significantly associated with the other three chronic diseases (OR varying from 1.01 to 1.03). This study indicates that specific air pollution components caused by industry may contribute to the occurrence of cardiovascular diseases, respiratory diseases, diabetes mellitus, and inflammatory conditions.
Collapse
Affiliation(s)
- Arnold D Bergstra
- Department of Public Health, Erasmus MC, University Medical Centre, PO Box 2040, 3000CA, Rotterdam, the Netherlands; The Zeeland Public Health Service, PO Box 345, 4460AS, Goes, the Netherlands.
| | - Jasper V Been
- Department of Public Health, Erasmus MC, University Medical Centre, PO Box 2040, 3000CA, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, PO Box 2060, 3000CB, Rotterdam, the Netherlands
| | - Alex Burdorf
- Department of Public Health, Erasmus MC, University Medical Centre, PO Box 2040, 3000CA, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Cervantes-Martínez K, Stern D, Zamora-Muñoz JS, López-Ridaura R, Texcalac-Sangrador JL, Cortés-Valencia A, Acosta-Montes JO, Lajous M, Riojas-Rodríguez H. Air pollution exposure and incidence of type 2 diabetes in women: A prospective analysis from the Mexican Teachers' Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151833. [PMID: 34813806 DOI: 10.1016/j.scitotenv.2021.151833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Air pollution is a risk factor for type 2 diabetes (T2D). However, scarse longitudinal studies have evaluated this association in low- and middle-income countries, where 80% of the worldwide cases of T2D occur. OBJECTIVE Our aim was to estimate the association between PM2.5 and NO2 exposure and incident T2D, in the Mexican Teachers' Cohort (MTC). METHODS We selected a subsample of female teachers from the MTC from Mexico City metropolitan area (MCMA), recruited in 2008 and with active follow-up every three years. We assigned the monthly time-weighted exposures (PM2.5 and NO2) using home and work addresses, until failure, censoring or death. We developed two high resolution (1 × 1-km) spatiotemporal predictive generalized additive models of PM2.5 and NO2. Incident diabetes was identified through self-report and two administrative databases of registered diabetes patients. We fitted time-varying Cox models to estimate hazard ratios of the relation between PM2.5 and NO2 and incident T2D, adjusting for confounding variables that were identified using a causal model. RESULTS A total of 13,669 teachers were followed-up for a maximum of 11.5 years, over which 996 incident T2D cases (88 cases per 100,000 person-months) occurred. Incident T2D increased by 72% (HR = 1.72 [1.47-2.01]) for each 10 μg/m3 increase of PM2.5, and 52% for each 10 ppb of NO2 (HR = 1.52 [1.37-1.68]). DISCUSSION Mid-term exposure to PM2.5 and NO2 was associated with a higher risk of T2D after adjusting for indoor wood smoke, socioeconomic status, and physical activity. These associations were attenuated in two-pollutant models but remained positive when evaluated long-term exposure. This is the first prospective study to evaluate T2D risk by exposure to both pollutants, PM2.5 and NO2 in a population from an upper middle-income country in the Americas.
Collapse
Affiliation(s)
- Karla Cervantes-Martínez
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico
| | - Dalia Stern
- CONACyT - Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico
| | - José Salvador Zamora-Muñoz
- National Autonomous University of Mexico, Ave. Universidad No. 3000, Universidad Nacional Autónoma de México, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Ruy López-Ridaura
- National Center for Preventive Programs and Disease Control, Ministry of Health, Benjamín Franklin No. 132, Escandón, C.P. 11800 Miguel Hidalgo, Ciudad de México, Mexico
| | - José Luis Texcalac-Sangrador
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico
| | - Adrian Cortés-Valencia
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico
| | - Jorge Octavio Acosta-Montes
- Nursing and Nutrition Faculty, Autonomous University of Chihuahua, C. Escorza No. 900 Centro, C.P. 31000, Chihuahua, Chihuahua, Mexico
| | - Martín Lajous
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Horacio Riojas-Rodríguez
- Center for Population Health Research, National Institute of Public Health, Ave. Universidad No. 655 Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
25
|
Wu C, Yan Y, Chen X, Gong J, Guo Y, Zhao Y, Yang N, Dai J, Zhang F, Xiang H. Short-term exposure to ambient air pollution and type 2 diabetes mortality: A population-based time series study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117886. [PMID: 34371265 DOI: 10.1016/j.envpol.2021.117886] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Acute health effects of air pollution on diabetes risk have not been fully studied in developing countries and the results remain inconsistent. This study aimed to investigate the association between short-term exposure to ambient air pollution and Type 2 diabetes mellitus (T2DM) mortality in China. Data on T2DM mortality from 2013 to 2019 were obtained from the Cause of Death Reporting System (CDRS) of Wuhan Center for Disease Control and Prevention. Air pollution data for the same period were collected from 10 national air quality monitoring stations of Wuhan Ecology and Environment Institute, including daily average PM2.5, PM10, SO2, and NO2. Meteorological data including daily average temperature and relative humidity were collected from Wuhan Meteorological Bureau. Generalized additive models (GAM) based on quasi-Poisson distribution were applied to evaluate the association between short-term exposure to air pollution and daily T2DM deaths. A total of 9837 T2DM deaths were recorded during the study period in Wuhan. We found that short-term exposure to PM2.5, PM10, SO2, and NO2 were positively associated with T2DM mortality, and gaseous pollutants appeared to have greater effects than particulate matter (PM). For the largest effect, per 10 μg/m3 increment in PM2.5 (lag 02), PM10 (lag 02), SO2 (lag 03), and NO2 (lag 02) were significantly associated with 1.099% (95% CI: 0.451, 1.747), 1.016% (95% CI: 0.517, 1.514), 3.835% (95% CI: 1.480, 6.189), and 1.587% (95% CI: 0.646, 2.528) increase of daily T2DM deaths, respectively. Stratified analysis showed that females or elderly population aged 65 and above were more susceptible to air pollution exposure. In conclusion, short-term exposure to air pollution was significantly associated with a higher risk of T2DM mortality. Further research is required to verify our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chuangxin Wu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yaqiong Yan
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Xi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China; Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Jie Gong
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Yuanyuan Zhao
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Niannian Yang
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Juan Dai
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Faxue Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Liu X, Li Z, Guo M, Zhang J, Tao L, Xu X, Deginet A, Lu F, Luo Y, Liu M, Liu M, Sun Y, Li H, Guo X. Acute effect of particulate matter pollution on hospital admissions for stroke among patients with type 2 diabetes in Beijing, China, from 2014 to 2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112201. [PMID: 33838569 DOI: 10.1016/j.ecoenv.2021.112201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The health effect of particulate matter pollution on stroke has been widely examined; however, the effect among patients with comorbid type 2 diabetes (T2D) in developing countries has remained largely unknown. METHODS A time-series study was conducted to investigate the short-term effect of fine particulate matter (PM2.5) and inhalable particulate matter (PM10) on hospital admissions for stroke among patients with T2D in Beijing, China, from 2014 to 2018. An over-dispersed Poisson generalized additive model was employed to adjust for important covariates, such as weather conditions and long-term and seasonal trends. RESULTS A total of 159,298 hospital admissions for stroke comorbid with T2D were reported. Approximately linear exposure-response curves were observed for PM2.5 and PM10 in relation to stroke admissions among T2D patients. A 10 μg/m3 increase in the four-day moving average of PM2.5 and PM10 was associated with 0.14% (95% confidence interval [CI]: 0.05-0.23%) and 0.14% (95% CI: 0.06-0.22%) incremental increases in stroke admissions among T2D patients, respectively. A 10 μg/m3 increase in PM2.5 in the two-day moving average corresponded to a 0.72% (95% CI: 0.02-1.42%) incremental increase in hemorrhagic stroke, and a 10 μg/m3 increase in PM10 in the four-day moving average corresponded to a 0.14% (95% CI: 0.06-0.22%) incremental increase in ischemic stroke. CONCLUSIONS High particulate matter might be a risk factor for stroke among patients with T2D. PM2.5 and PM10 have a linear exposure-response relationship with stroke among T2D patients. The study provided evidence of the risk of stroke due to particulate matter pollution among patients with comorbid T2D.
Collapse
Affiliation(s)
- Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Zhiwei Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Moning Guo
- Beijing Municipal Health Commission Information Center, Beijing 100034, China.
| | - Jie Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Lixin Tao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Xiaolin Xu
- School of Public Health, Zhejiang University, Hangzhou 310058, China; The University of Queensland, Brisbane, Australia.
| | - Aklilu Deginet
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, Beijing 100034, China.
| | - Yanxia Luo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Mengyang Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Yue Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Haibin Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| |
Collapse
|
27
|
Wang W, Liu L, Tian Z, Han T, Sun C, Li Y. Dietary Tryptophan and the Risk of Metabolic Syndrome: Total Effect and Mediation Effect of Sleep Duration. Nat Sci Sleep 2021; 13:2141-2151. [PMID: 34924776 PMCID: PMC8674673 DOI: 10.2147/nss.s337171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Tryptophan affects energy homeostasis, glucose metabolism, blood pressure, and sleep. However, studies investigating the association between tryptophan and metabolic syndrome (MetSyn) are rare. We aimed to investigate the associations of dietary tryptophan with MetSyn incidence and potential mediation via sleep duration. METHODS Data of 7890 participants were obtained from the China Health and Nutrition Survey (1997-2011) (male: 49.9%; mean age=43.43 years;median follow-up=129.76 months; MetSyn incidence: 16.3%). A combination of individual 24-hour recall and household survey was used to assess dietary intake. In total, 6720 and 4474 participants who reported sleep duration and had blood samples taken, respectively, were incorporated into subgroup analyses. MetSyn was defined according to National Cholesterol Education Program Adult Treatment Panel (NCEP ATP) III criteria (2004), and tryptophan consumption and sleep duration were assessed by self-report in each survey. Multivariate Cox regression models were used to assess the associations between tertiles of tryptophan intake and MetSyn. Generalized linear regression models were used to evaluate the effect of tryptophan on sleep duration and plasma biomarkers. RESULTS Dietary tryptophan showed a protective effect on the risk of MetSyn. The hazard ratio (95% CI) of MetSyn was 0.77 (0.65-0.90) for individuals with a high tertile of tryptophan. Sleep duration was significantly higher, and HbA1c, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B (APO-B) were lower in the high tertile of tryptophan compared to the low tertile (P<0.05). In addition, mediation effects on the association between tryptophan intake and MetSyn risk were observed for sleep duration (estimated mediation percentage: 26.5%). CONCLUSION Our study demonstrated a negative association between dietary tryptophan and MetSyn incidence, and the mediation effect of sleep duration on this association, after adjusting for numerous confounders such as nutrients and food patterns. These findings may have important public health implications for the improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Weiqi Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lin Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
28
|
Jabbari F, Mohseni Bandpei A, Daneshpour MS, Shahsavani A, Hashemi Nazari SS, Faraji Sabokbar H, Momenan AA, Azizi F. Role of Air Pollution and rs10830963 Polymorphism on the Incidence of Type 2 Diabetes: Tehran Cardiometabolic Genetic Study. J Diabetes Res 2020; 2020:2928618. [PMID: 32964052 PMCID: PMC7502123 DOI: 10.1155/2020/2928618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus (DM) is considered one of the leading health issues that are egregiously threatening human life throughout the world. Several epidemiological studies have examined the relationship of a particular matter < 10 μm (PM10) exposure and with type 2 diabetes mellitus (T2DM) prevalence and incidence. Accordingly, the current study is a study investigating the independent influence of air pollution (AP) and rs10830963 on the incidence of T2DM. A total number of 2428 adults over 20 years of age participated in a prospective cohort (TCGS) during a 9-year follow-up phase. The concentration of AP was measured, and the obtained values were considered the mean level in three previous years since the exposure concentration took the people living in that location. The COX regression model was employed to determine the influence of AP and rs10830963 on the incidence of T2DM in adjustment with covariate factors. Among the 392 T2DM, 230 cases (58.7%) were female diabetics, and 162 (41.3%) were male diabetics. According to the multivariable-adjusted model, exposure to PM10 (per 10 μm/m3), associated with the risk of T2DM, although just a borderline (p = 0.07) was found in the multivariable model (HR; 1.50, 95% CI; 1-2.32). The rs10830963 was directly associated with the incidence of diabetes, and the GG genotype increased the T2DM rate by 113% (more than two times) (HR; 2.134, 95% CI; 1.42-3.21, p ≤ 0.001) and GC increased it by 65% (HR; 1.65, 95% CI; 1.24-2.21, p ≤ 0.001). Long-term exposure to PM10 was associated with an increased risk of diabetes. Thus, it is suggested that the individuals with variant rs10830963 genotypes fall within a group susceptible to an increased risk of T2DM arising from AP.
Collapse
Affiliation(s)
- Fatemeh Jabbari
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni Bandpei
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi Nazari
- Prevention of Cardiovascular Disease Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Amir abbas Momenan
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|