1
|
Chen L, Huang F, Liu J, Yang R, Hu Q, Li T, Zeng Y, Dai W, Qiu T, White JC, Fang L. Engineered Nanomaterials Enhance Crop Drought Resistance for Sustainable Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8715-8728. [PMID: 40191873 DOI: 10.1021/acs.jafc.4c11693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nanotechnology has emerged as a promising strategy for enhancing crop resilience to extreme weather events induced by climate change, such as drought. However, the potential of nanomaterials (NMs) to mitigate drought-induced stress remains insufficiently understood. Here, we conducted a meta-analysis to quantify the effects of NMs on crop growth and yield under drought. Our findings reveal that NMs significantly improved crop growth under drought, with a more pronounced positive impact on C3 than C4 crops. Furthermore, seed application of NMs exhibits more significant potential in protecting crops than root or foliar applications. Specifically, NMs increased the relative water content and water use efficiency of crops by 10.8 and 33.3%, respectively. The potential of NMs to enhance the drought resistance was associated with improving the photosynthetic process, increasing osmolyte accumulation, enhancing nutrient uptake, and alleviating oxidative damage. This analysis raises the potential of nanotechnology as a significant tool for sustainable nano-enabled agriculture in a changing climate.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- College of Resources and Environmental Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an 710061, China
| | - Ruohan Yang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Tao Li
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China
| | - Wei Dai
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Charagh S, Wang J, Hui S, Raza A, Cao R, Zhou L, Yang L, Xu B, Zhang Y, Mawia AM, Sheng Z, Tang S, Hu S, Hu P. Smart reprogramming of plants against cadmium toxicity using membrane transporters and modern tools. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109919. [PMID: 40239253 DOI: 10.1016/j.plaphy.2025.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Cadmium (Cd) in soil and water streams is now recognized as a significant environmental issue that harms plants and animals. Plants damaged by Cd toxicity experience various effects, from germination to yield reduction. Plant- and animal-based goods are allowing more Cd to enter our food chain, which could harm human health. Therefore, this urgent global concern must be addressed by implementing appropriate remedial measures. Plant-based phytoremediation is one safe, economical, and environmentally acceptable way to remove hazardous metals from the environment. Hyperaccumulator plants possess specialized transport proteins, such as metal transporters located in membranes of roots, as well as they facilitate Cd uptake from soil. This review outlines the latest findings about these membrane transporters. Moreover, we also discuss how innovative modern tools such as microbiomes, omics, nanotechnology, and genome editing have revealed molecular regulators connected to Cd tolerance, which may be employed to develop Cd-tolerant future plants. We can develop effective solutions to enhance tolerance of plant to Cd toxicity by leveraging membrane transporters and modern biotechnological tools. Additionally, implementing strategies to increase tolerance of Cd and restrict its bioavailability in plants' edible parts is crucial for improving food safety. These combined efforts will lead to the cultivation of safer food crops and support sustainable agricultural practices in contaminated environments.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, 310006, China.
| |
Collapse
|
3
|
Falak A, Anas M, Khan A, Hayat A, Shaheen Z, Saleem MH, Fahad S, Quraishi UM. Efficacy of ascorbic acid coated quantum dots in alleviating lead-induced oxidative damage and enhancing growth parameters in rice (Oryza sativa L.) for sustainable cultivation. J Trace Elem Med Biol 2025; 88:127603. [PMID: 39847985 DOI: 10.1016/j.jtemb.2025.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.4 mV), particle size (472.3 nm, PDI 0.745), UV-Vis absorption peak (240 nm), FT-IR analysis revealing functional groups (carboxylic acid and alkene), and TEM showing spherical morphology (average size 9.43 nm). Pb stress reduced key traits in JP-5, including tillers per plant (11.11 %), grain yield (18.22 %), kernel weight (18.22 %), protein (40.19 %), phenolic content (59.66 %), and antioxidant capacity (17.75 %), while 50 ppm AsA-QDs improved these by 33.33 %, 5.73 %, 2.03 %, and 13.19 %, respectively. Similarly, Pb stress reduced plant height, T/P, biomass yield (BY), GY, TKW, total sugars, reducing sugars, non-reducing sugars, starch, proteins, and TPC in Super Basmati by 19.76 %, 21.43 %, 11.01 %, 11.01 %, 7.52 %, 38.09 %, 7.24 %, 13.96 %, 11.97 %, and 40.39 %, respectively, while PbQD1 improved these traits by 14.29 %, 15.49 %, 9.25 %, 109.52 %, 8.31 %, 31.72 %, 25.91 %, and 7.075 %, respectively. The findings demonstrate that AsA-QDs effectively mitigate Pb toxicity by reducing oxidative stress, enhancing growth parameters, and restoring yield components, establishing them as a promising nanomaterial for sustainable crop resilience under Pb stress.
Collapse
Affiliation(s)
- Aliza Falak
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Amjid Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Botany, University of Mianwali, Mianwali, Punjab 42200, Pakistan.
| | - Alvina Hayat
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Zeenat Shaheen
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, Qatar.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
4
|
Feng G, Li S, Yang X, Hu Y, Zhang X, Chen D, Liu W, Yu G, Nie G, Huang L, Zhang X. Integrative multi-omic analyses reveal the molecular mechanisms of silicon nanoparticles in enhancing hyperaccumulator under Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125677. [PMID: 39805468 DOI: 10.1016/j.envpol.2025.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood. In this study, the candidate Pb-hyperaccumulator Lolium multiflorum was selected to investigate the toxicity of Pb and the mitigation of Pb stress by SiNPs. The application of SiNPs was able to enhance Pb enrichment and maintain proper photosynthesis and root growth of L. multiflorum. Transcriptomic and metabolomic analyses indicated that Pb exposure interfered with nitrogen metabolism and alanine, aspartate and glutamate metabolism pathways in roots, which changed the root exudate composition. Besides, SiNPs altered both the accumulation of metabolites and correlated gene expression in roots, further affecting root exudates and stimulating the defense system, consequently increasing Pb tolerance. Our findings both demonstrated that co-application of L. multiflorum with SiNPs has potential for phytoremediation of Pb-polluted soil and revealed the contributions of SiNP amendment to mitigating Pb toxicity, and provided a new strategy for phytoremediation of farmland ecosystems.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangyu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Youshuang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xianfang Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongming Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Zaman W, Ayaz A, Park S. Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2025; 14:716. [PMID: 40094659 PMCID: PMC11901503 DOI: 10.3390/plants14050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has emerged as a transformative field in agriculture, offering innovative solutions to enhance plant growth and resilience against abiotic stresses. This review explores the diverse applications of nanomaterials in agriculture, focusing on their role in promoting plant development and improving tolerance to drought, salinity, heavy metals, and temperature fluctuations. The method classifies nanomaterials commonly employed in plant sciences and examines their unique physicochemical properties that facilitate interactions with plants. Key mechanisms of nanomaterial uptake, transport, and influence on plants at the cellular and molecular levels are outlined, emphasizing their effects on nutrient absorption, photosynthetic efficiency, and overall biomass production. The molecular basis of stress tolerance is examined, highlighting nanomaterial-induced regulation of reactive oxygen species, antioxidant activity, gene expression, and hormonal balance. Furthermore, this review addresses the environmental and health implications of nanomaterials, emphasizing sustainable and eco-friendly approaches to mitigate potential risks. The integration of nanotechnology with precision agriculture and smart technologies promises to revolutionize agricultural practices. This review provides valuable insights into the future directions of nanomaterial R&D, paving the way for a more resilient and sustainable agricultural system.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
6
|
Luo X, Li J, Guo S, Yu H, Zeng X, Zhou Z, Shangguan Y, He M, Ouyang Y, Chen K, Chen Z, Qin Y. Analysis of research status and trends on nano-agricultural application: a bibliometric study. FRONTIERS IN PLANT SCIENCE 2025; 16:1530629. [PMID: 40034150 PMCID: PMC11872930 DOI: 10.3389/fpls.2025.1530629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025]
Abstract
Introduction The rapid global population growth and limitations of traditional agricultural practices have resulted in inadequate nutrient supply. Nano-agricultural technology presents significant potential for enhancing crop growth and resistance, reducing stresses, and providing economic benefits with lower environmental risks. Methods In this study, a bibliometric analysis of nano-agricultural applications was conducted using the Web of Science Core Collection, and 2,626 publications from 2000 to 2023 were identified, with an exponential increase in both publications and citations. Results and discussion European and Asian countries and institutions are more actively involved, although USA produces the highest-quality papers. Additionally, this field has evolved through two stages: the first stage (2000-2016) focused on the toxicology of nanomaterials (NMs), while the second stage (2017-present) emphasizes NMs as nanofertilizers to promote crop growth, and as nanoregulators or nanopesticides to enhance crop resistance against biotic stress and abiotic stress. Finally, future research perspectives were also proposed, including the optimalizations of NMs, the investigations of the behavior and bioavailability of NMs driven by rhizosphere and phyllosphere process, interdisciplinary collaboration across various fields, the application of NMs from laboratory to the field, and the long-term environmental behaviors and assessments of NMs in diverse ecosystems. Overall, this bibliometric study provides a valuable reference for understanding the development of this field and pinpointing research frontiers.
Collapse
Affiliation(s)
- Xing Luo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jing Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Song Guo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hua Yu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiangzhong Zeng
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zijun Zhou
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mingjiang He
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yiting Ouyang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kun Chen
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhimin Chen
- Soil and Fertilizer Station of Liangshan, Liangshan Yi Autonomous Prefecture Bureau of Agriculture and Rural Affairs, Xichang, China
| | - Yusheng Qin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
7
|
Haider FU, Virk AL, Zhou S, Ul Ain N, Aguila LCR, Siddique KHM, Farooq M, Li Y. Impact of silicon nitride nanoparticles on soil organic carbon dynamics in subtropical evergreen forest ecosystems of China: An incubation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178682. [PMID: 39892230 DOI: 10.1016/j.scitotenv.2025.178682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ensuring the stability of soil organic carbon (SOC) is vital for effective long-term carbon storage in forest ecosystems. While nanoparticles (NPs) have shown the potential to enhance SOC stability and reduce cumulative carbon mineralization rates (CCMR) in agricultural soils, their effects on forest soils remain largely unexplored. This study addresses this gap through an incubation experiment that evaluated the impact of silicon nitride nanoparticles (Si3N4-NPs) at varying concentrations [control, 0 mg kg-1 (NP0); 50 mg kg-1 (NP1); 100 mg kg-1 (NP2)] on SOC stability, CCMR, enzymatic activities, and microbial diversity across three forest ecosystems in the Dinghushan region of Guangdong, China: coniferous forest (CF), mixed conifer-broadleaf forest (MCBF), and monsoon evergreen broadleaf forest (MEF). The results revealed that Si3N4-NP application at the NP2 concentration significantly reduced CCMR by 40.82 % compared to the control (NP0). Moreover, NP2 substantially decreased the activities of key soil enzymes: β-glucosidase by 13.81 %, N-acetylglucosaminidase by 32.62 %, cellobiohydrolase by 59.12 %, and phenol oxidase by 26.40 %, relative to NP0. The NP2 treatment also enhanced total SOC retention by 24.62 % compared to NP0. Within SOC fractions, NP2 significantly impacted the less labile (C3) and non-labile (C4) fractions, which increased by 46.83 % and 57.84 %, respectively, compared to NP0. Meanwhile, the very labile C (C1) and labile C (C2) fractions showed non-significant changes. Furthermore, the Si3N4-NP applications induced distinct shifts in bacterial (Actinobacteriota) and fungal (Ascomycota) microbiomes, which correlated significantly with CCMR and total SOC. These findings indicate that Si3N4-NPs improve SOC stability and reduce mineralization in forest soils. However, field-scale validation is essential to assess the long-term impacts of Si3N4-NPs on microbial communities and overall ecosystem functioning. This study highlights the significance of NP concentration and forest type in developing effective strategies for SOC management to mitigate climate change.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ahmad Latif Virk
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuyidan Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Luis Carlos Ramos Aguila
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Yuelin Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
8
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
9
|
He E, Li X, Xu X, Fu Z, Romero-Freire A, Qiu H. Distinct accumulation patterns, translocation efficiencies, and impacts of nano-fertilizer and nano-pesticide in wheat through foliar versus soil application. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136357. [PMID: 39486329 DOI: 10.1016/j.jhazmat.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The use of nano-chemicals in agriculture has been shown to enhance crop production through soil additions or foliar sprays. However, the accumulation pattern, translocation efficiency, mode of action of nanomaterials (NMs) via different application methods remain unclear. In this study, wheat was treated with CuO-NPs/CeO2-NPs (50 and 100 nm) for 21 days using soil and foliar application separately. Foliar spray resulted in higher accumulation and more efficient translocation of NMs compared to soil addition. Smaller NMs exhibited higher accumulation and transfer capabilities under the same application method. The accumulation of CuO-NPs was approximately 20 times greater than that of CeO2-NPs, particularly under the soil addition treatment. Scanning electron microscopy analysis demonstrated that NMs could directly enter wheat leaves via stomata during foliar application. Wheat growth was inhibited by roughly 15 % following CuO-NPs exposure, whereas no significant effects on growth were observed with CeO2-NPs. By integrating nontargeted metabolomics analysis with targeted physiological characteristics assessments, it was revealed that CuO-NPs mainly disturbed nitrogen metabolism pathways and induced oxidative damage. In contrast, CeO2-NPs enhanced carbohydrates related biological processes such as starch and sucrose metabolism, glycolysis, and TCA cycle, which are crucial for carbon metabolism. These findings suggest that the type of nanomaterial is a crucial factor to consider when evaluating their foliar or soil application in agriculture.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhuozhong Fu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ana Romero-Freire
- Department of Soil Science, University of Granada, Granada 18002, Spain
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
11
|
Chen R, Yang J, Cai X, Liu Z, Huang W, Shi R, Ma T. Assessing soil remediation effect of Cr and Pb based on bioavailability using DGT, BCR and standardized determination method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175947. [PMID: 39260481 DOI: 10.1016/j.scitotenv.2024.175947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
In the field of soil remediation, the importance of bioavailability of pollutants has not received adequate attention, leading to the excessive application of remediation measures. Therefore, to ensure the safe use of farmland soil, a scientific method is needed to assess labile contaminants and their translocation in plants. To evaluate soil remediation effect based on bioavailability, the concentrations of these heavy metals in soil were analyzed using by the method for total metal content, the Community Bureau of Reference (BCR) extraction, and the diffusive gradients in thin films (DGT) technique. The results reveal that the correlation coefficients between metal concentrations measured by DGT and those accumulated in rice grains are the highest (Cr-R2 = 0.8966, Pb-R2 = 0.9045). However, the capability of method for total metal content to evaluate the remediation effect of heavy metals is very limited. In contrast, although Cr and Pb measured by BCR show a high correlation with HMs in rice plants, the method still falls short in precisely assessing bioavailability. Significantly, DGT proves to be more effective, successfully distinguishing the remediation effects of different treatments. Generally, DGT offers a more accurate and simpler assessment method, underscoring its practical significance for monitoring soil remediation and environmental management.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xuying Cai
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zean Liu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
12
|
Cheng L, Tao J, Lu P, Liang T, Li X, Chang D, Su H, He W, Qu Z, Li H, Mu W, Zhang W, Liu N, Zhang J, Cao P, Jin J. Manipulation in root-associated microbiome via carbon nanosol for plant growth improvements. J Nanobiotechnology 2024; 22:685. [PMID: 39516921 PMCID: PMC11549841 DOI: 10.1186/s12951-024-02971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Modulating the microbiome with nanomaterials has been proposed to improve plant growth, and reduce reliance on external inputs. Carbon Nanosol (CNS) was attracted for its potential to improve plant productivity. However, the mechanism between CNS and rhizosphere microorganisms remained largely elusive. RESULTS Here, we tried to systematically explore the effects of CNS (600 and 1200 mg/L by concentration) on tobacco growth, soil physical properties, and root-associated microbiome. The influence of CNS on soil physicochemical properties and plant growth was significant and dose-dependent, leading to a 28.82% increase in biomass accumulation by 600 mg/L CNS. Comparison between the CNS-treated and control plants revealed significant differences in microbiome composition, including 1148 distinct ASVs (923 bacteria and 225 fungi), microbiome interactions, and metabolic function of root-associated microbiomes. Fungal and bacterial communities had different response patterns for CNS treatment, with phased and dose-dependent effects, with the most significant changes in microbial community structure observed at 1200 mg/L after 10 days of treatment. Microbial networks of CNS-treated plants had more nodes and edges, higher connectivity, and more hub microorganisms than those of control plants. Compared with control, CNS significantly elevated abundances of various bacterial biomarkers (such as Sphingomonas and Burkholderia) and fungi biomarkers (including Penicillium, Myceliophthora, and Talaromyces), which were potential plant-beneficial organisms. Functional prediction based on metagenomic data demonstrated pathways related to nutrient cycling being greatly enriched under CNS treatment. Furthermore, 391 culturable bacteria and 44 culturable fungi were isolated from soil and root samples. Among them, six bacteria and two fungi strains enriched upon CNS treatment were validated to have plant growth promotion effect, and two fungi (Cladosporium spp. and Talaromyces spp.) played their roles by mediating volatile organic compounds (VOCs). To some extent, the driving and shaping of the microbiome by CNS contributed to its impact on plant growth and development. CONCLUSION Our results revealed the key role of root-associated microbiota in mediating the interaction between CNS and plants, thus providing valuable insights and strategies for harnessing CNS to enhance plant growth.
Collapse
Affiliation(s)
- Lingtong Cheng
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jiemeng Tao
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peng Lu
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xutao Li
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Dong Chang
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei He
- Fujian Tobacco Industry Co., Ltd, Xiamen, 361001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wenjun Mu
- Beijing Life Science Academy, Beijing, 102200, China
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Haghmadad Milani M, Mohammadi A, Panahirad S, Farhadi H, Labib P, Kulak M, Gohari G, Fotopoulos V, Vita F. Cerium Oxide Nanoparticles (CeO 2 NPs) Enhance Salt Tolerance in Spearmint ( Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition. PLANTS (BASEL, SWITZERLAND) 2024; 13:2934. [PMID: 39458881 PMCID: PMC11510870 DOI: 10.3390/plants13202934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Salinity represents a considerable environmental risk, exerting deleterious effects on horticultural crops. Nanotechnology has recently emerged as a promising avenue for enhancing plant tolerance to abiotic stress. Among nanoparticles, cerium oxide nanoparticles (CeO2 NPs) have been demonstrated to mitigate certain stress effects, including salinity. In the present study, the impact of CeO2 NPs (0, 25, and 100 mg L-1) on various morphological traits, photosynthetic pigments, biochemical parameters, and the essential oil profile of spearmint plants under moderate (50 mM NaCl) and severe (100 mM NaCl) salinity stress conditions was examined. As expected, salinity reduced morphological parameters, including plant height, number of leaves, fresh and dry weight of leaves and shoots, as well as photosynthetic pigments, in comparison to control. Conversely, it led to an increase in the content of proline, total phenols, malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities. In terms of CeO2 NP applications, they improved the salinity tolerance of spearmint plants by increasing chlorophyll and carotenoid content, enhancing antioxidant enzyme activities, and lowering MDA and H2O2 levels. However, CeO2 NPs at 100 mg L-1 had adverse effects on certain physiological parameters, highlighting the need for careful consideration of the applied concentration of CeO2 NPs. Considering the response of essential oil compounds, combination of salinity stress and CeO2 treatments led to an increase in the concentrations of L-menthone, pulegone, and 1,8-cineole, which are the predominant compounds in spearmint essential oil. In summary, foliar application of CeO2 NPs strengthened the resilience of spearmint plants against salinity stress, offering new insights into the potential use of CeO2 NP treatments to enhance crop stress tolerance.
Collapse
Affiliation(s)
- Maryam Haghmadad Milani
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh 551877684, Iran;
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran; (A.M.); (S.P.)
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran; (A.M.); (S.P.)
| | - Habib Farhadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
| | - Parisa Labib
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, 84536 Bratislava, Slovakia;
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir 76000, Türkiye;
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| |
Collapse
|
14
|
Wang Z, Fan N, Li X, Yue L, Wang X, Liao H, Xiao Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato- Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS NANO 2024; 18:26631-26642. [PMID: 39297401 DOI: 10.1021/acsnano.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding the trophic transfer and ecological cascade effects of nanofertilizers and nanopesticides in terrestrial food chains is crucial for assessing their nanotoxicity and environmental risks. Herein, the trophic transfer of La2O3 (nLa2O3) and CuO (nCuO) nanoparticles from tomato leaves to Helicoverpa armigera (Lepidoptera: Noctuidae) caterpillars and their subsequent effects on caterpillar growth and intestinal health were investigated. We found that 50 mg/L foliar nLa2O3 and nCuO were transferred from tomato leaves to H. armigera, with particulate trophic transfer factors of 1.47 and 0.99, respectively. While nCuO exposure reduced larval weight gain more (34.7%) than nLa2O3 (11.3%), owing to higher oxidative stress (e.g., MDA and H2O2) and more serious intestinal pathological damage (i.e., crumpled columnar cell and disintegrated goblet cell) by nCuO. Moreover, nCuO exposure led to a more compact antagonism between the phyllosphere and gut microbiomes compared to nLa2O3. Specifically, nCuO exposure resulted in a greater increase in pathogenic bacteria (e.g., Mycobacterium, Bacillus, and Ralstonia) and a more significant decrease in probiotics (e.g., Streptomyces and Arthrobacter) than nLa2O3, ultimately destroying larval intestinal immunity. Altogether, our findings systematically revealed the cascade effect of metal oxide nanomaterials on higher trophic consumers through alteration in the phyllosphere and insect gut microbiome interaction, thus providing insights into nanotoxicity and environmental risk assessment of nanomaterials applied in agroecosystems.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huimin Liao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Li J, Li X, Kah M, Yue L, Cheng B, Wang C, Wang Z, Xing B. Unlocking the potential of carbon dots in agriculture using data-driven approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173605. [PMID: 38879020 DOI: 10.1016/j.scitotenv.2024.173605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
The utilization of carbon dots (CDs) in agriculture to enhance plant growth has gained significant attention, but the data remains fractionated. Systematically integrating existing data is needed to identify the factors driving the interactions between CDs and plants and strategically guide future research. Articles reporting on CDs and their effects on plants were searched based on inclusion and exclusion criteria, resulting in the collection of 71 articles comprising a total of 2564 data points. The meta-analysis reveals that the soil and foliar application of red-emitting bio-derived CDs at a low concentration (<10 ppm) leads to the most beneficial effects on plant growth. Random forest and gradient boosting algorithms revealed that the size and dose of CDs were important factors in predicting plant responses across multiple aspects (CDs properties, plant properties, environmental factors, and experimental conditions). Specifically, smaller sizes are more favorable to growth indicators (GI) below 6 nm, nutrient and quality (NuQ) at 3-6 nm, photosynthesis (PSN) below 7 nm, and antioxidant responses (AR) below 5 nm. Overall, our analysis of existing data suggests that CDs applications can significantly improve plant responses (GI, NuQ, PSN, and AR) by 10-39 %. To unlock the full potential of CDs, customized synthesis techniques should be employed to meet the specific requirements of different crops and climate condition. For example, we recommend the synthesis of small CDs (<7 nm) with emission peak values falling within the range of 405-475 and 610-670 nm to enhance plant growth. The global prediction of plant responses to CDs application in future scenarios have shown significant improvements ranging from 17 to 58 %, suggesting that CDs have widespread applicability. This novel understanding of the impact of CDs on plant response provides valuable insights for optimizing the application of these nanomaterials in agriculture.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Melanie Kah
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Ali MA, Nafees M, Waseem M, Alomrani SO, Al-Ghanim KA, Alshehri MA, Zheng H, Ali S, Li F. Modulation of Cd carriers by innovative nanocomposite (Ca+Mg) and Cd-resistance microbes ( Bacillus pumilus): a mechanistic approach to enhance growth and yield of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1387187. [PMID: 39290730 PMCID: PMC11405208 DOI: 10.3389/fpls.2024.1387187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
Cadmium (Cd) is a well-known pollutant in agricultural soil, affecting human health through the food chain. To combat this issue, Ca + Mg (25 mg L-1) nanocomposite and Bacillus pumilus, either alone or combined, were applied to rice plants under Cd (5 mg kg-1, 10 mg kg-1) contamination. In our study, growth and yield traits demonstrated the beneficial influence of Ca + Mg and B. pumilus application in improving rice defense mechanism by reducing Cd stress. Combined Ca + Mg and B. pumilus application increased SPAD (15), total chlorophyll (18), chlorophyll a (11), chlorophyll b (22), and carotenoids (21%) with Cd (10 mg kg-1), compared to the application alone. Combined Ca + Mg and B. pumilus application significantly regulated MDA (15), H2O2 (13), EL (10), and O2 •- (24%) in shoots under Cd (10 mg kg-1), compared to the application alone. Cd (10 mg kg-1) increased the POD (22), SOD (21), APX (12), and CAT (13%) in shoots with combined Ca + Mg and B. pumilus application, compared to the application alone. Combined Ca + Mg and B. pumilus application significantly reduced Cd accumulation in roots (22), shoots (13), and grains (20%) under Cd (10 mg kg-1), compared to the application alone. Consequently, the combined application of Ca + Mg and B. pumilus is a sustainable solution to enhance crop production under Cd stress.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Muhammad Waseem
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
18
|
Gatasheh MK, Shah AA, Noreen Z, Usman S, Shaffique S. FeONPs alleviate cadmium toxicity in Solanum melongena through improved morpho-anatomical and physiological attributes, along with oxidative stress and antioxidant defense regulations. BMC PLANT BIOLOGY 2024; 24:742. [PMID: 39095745 PMCID: PMC11297600 DOI: 10.1186/s12870-024-05464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, 41566, Daegu, South Korea
| |
Collapse
|
19
|
Xu Y, Tao M, Xu W, Xu L, Yue L, Cao X, Chen F, Wang Z. Nano-CeO 2 activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116289. [PMID: 38570269 DOI: 10.1016/j.ecoenv.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.
Collapse
Affiliation(s)
- Yinuo Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Wei Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; School of Environment & Energy, South China University of Technology, Guangzhou 510006, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
20
|
Zhang X, Li X, Chen F, Cao X, Wang C, Jiao L, Yue L, Wang Z. Selenium Nanomaterials Enhance the Nutrients and Functional Components of Fuding Dabai Tea. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:681. [PMID: 38668175 PMCID: PMC11053761 DOI: 10.3390/nano14080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Liya Jiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
21
|
Pietrzak M, Skiba E, Wolf WM. Root-Applied Cerium Oxide Nanoparticles and Their Specific Effects on Plants: A Review. Int J Mol Sci 2024; 25:4018. [PMID: 38612829 PMCID: PMC11012102 DOI: 10.3390/ijms25074018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.
Collapse
Affiliation(s)
- Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | | |
Collapse
|
22
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
23
|
Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:984. [PMID: 38611512 PMCID: PMC11013062 DOI: 10.3390/plants13070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
As global food security faces challenges, enhancing crop yield and stress resistance becomes imperative. This study comprehensively explores the impact of nanomaterials (NMs) on Gramineae plants, with a focus on the effects of various types of nanoparticles, such as iron-based, titanium-containing, zinc, and copper nanoparticles, on plant photosynthesis, chlorophyll content, and antioxidant enzyme activity. We found that the effects of nanoparticles largely depend on their chemical properties, particle size, concentration, and the species and developmental stage of the plant. Under appropriate conditions, specific NMs can promote the root development of Gramineae plants, enhance photosynthesis, and increase chlorophyll content. Notably, iron-based and titanium-containing nanoparticles show significant effects in promoting chlorophyll synthesis and plant growth. However, the impact of nanoparticles on oxidative stress is complex. Under certain conditions, nanoparticles can enhance plants' antioxidant enzyme activity, improving their ability to withstand environmental stresses; excessive or inappropriate NMs may cause oxidative stress, affecting plant growth and development. Copper nanoparticles, in particular, exhibit this dual nature, being beneficial at low concentrations but potentially harmful at high concentrations. This study provides a theoretical basis for the future development of nanofertilizers aimed at precisely targeting Gramineae plants to enhance their antioxidant stress capacity and improve photosynthesis efficiency. We emphasize the importance of balancing the agricultural advantages of nanotechnology with environmental safety in practical applications. Future research should focus on a deeper understanding of the interaction mechanisms between more NMs and plants and explore strategies to reduce potential environmental impacts to ensure the health and sustainability of the ecosystem while enhancing the yield and quality of Gramineae crops.
Collapse
Affiliation(s)
| | | | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| | - Duo Liu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| |
Collapse
|
24
|
Yan G, Huang Q, Zhao S, Xu Y, He Y, Nikolic M, Nikolic N, Liang Y, Zhu Z. Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. FRONTIERS IN PLANT SCIENCE 2024; 15:1393458. [PMID: 38606077 PMCID: PMC11006995 DOI: 10.3389/fpls.2024.1393458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.
Collapse
Affiliation(s)
- Guochao Yan
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingying Huang
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuaijing Zhao
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
25
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
26
|
Mgadi K, Ndaba B, Roopnarain A, Rama H, Adeleke R. Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Front Microbiol 2024; 15:1354440. [PMID: 38511012 PMCID: PMC10951078 DOI: 10.3389/fmicb.2024.1354440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Globally, food security has become a critical concern due to the rise in human population and the current climate change crisis. Usage of conventional agrochemicals to maximize crop yields has resulted in the degradation of fertile soil, environmental pollution as well as human and agroecosystem health risks. Nanotechnology in agriculture is a fast-emerging and new area of research explored to improve crop productivity and nutrient-use efficiency using nano-sized agrochemicals at lower doses than conventional agrochemicals. Nanoparticles in agriculture are applied as nanofertilizers and/or nanopesticides. Positive results have been observed in terms of plant growth when using nano-based agricultural amendments. However, their continuous application may have adverse effects on plant-associated rhizospheric and endospheric microorganisms which often play a crucial role in plant growth, nutrient uptake, and disease prevention. While research shows that the application of nanoparticles has the potential to improve plant growth and yield, their effect on the diversity and function of plant-associated microorganisms remains under-explored. This review provides an overview of plant-associated microorganisms and their functions. Additionally, it highlights the response of plant-associated microorganisms to nanoparticle application and provides insight into areas of research required to promote sustainable and precision agricultural practices that incorporate nanofertilizers and nanopesticides.
Collapse
Affiliation(s)
- Katiso Mgadi
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Environmental Sciences, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Haripriya Rama
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Physics, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Rasheed Adeleke
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
27
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
28
|
Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, Viswanathan D, Govindasamy R. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108261. [PMID: 38096734 DOI: 10.1016/j.plaphy.2023.108261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai 600042, Tamil Nadu India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Arti Gaur
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara-390025, Gujarat, India
| | - Malathy Sekar
- Department of Botany, PG and Research Department of Botany Government Arts College for Men, (autonomous), Nandanam, Chennai 35, Tamilnadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India.
| |
Collapse
|
29
|
Liu D, Iqbal S, Gui H, Xu J, An S, Xing B. Nano-Iron Oxide (Fe 3O 4) Mitigates the Effects of Microplastics on a Ryegrass Soil-Microbe-Plant System. ACS NANO 2023; 17:24867-24882. [PMID: 38084717 DOI: 10.1021/acsnano.3c05809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
To understand microplastic-nanomaterial interactions in agricultural systems, a randomized block 90-day pot experiment was set up to cultivate ryegrass seedings in a typical red sandy soil amended with compost (1:9 ratio). Polyvinyl chloride (PVC) and polyethylene (PE) microplastic (MP) contaminants were added into pot soils at 0.1 and 10%, whereas nano-Fe3O4 (as nanoenabled agrochemicals) was added at 0.1% and 0.5% in comparison with chemical-free controls. The combination of nano-Fe3O4 and MPs significantly increased the soil pH (+3% to + 17%) but decreased the total nitrogen content (-9% to - 30%; P < 0.05). The treatment group with both nano-Fe3O4 and PE had the highest total soil C (29 g kg-1 vs 20 g kg-1 in control) and C/N ratio (13 vs 8 in control). Increased rhizosphere nano-Fe3O4 concentrations promoted ryegrass growth (+42% dry weight) by enhancing the chlorophyll (+20%) and carotenoid (+15%) activities. Plant leaf and root peroxidase enzyme activity was more significantly affected by nano-Fe3O4 with PVC (+15%) than with PE (+6%). Nano-Fe3O4 significantly changed the ryegrass bacterial community structure from belowground (the rhizoplane and root endosphere) to aboveground (the phylloplane). Under MP contamination, the addition of nano-Fe3O4 increased bacterial diversity (+0.35%) and abundance (+30%) in the phylloplane and further intensified the connectivity of ryegrass aboveground bacterial networks (positive association increased 17%). The structural equation model showed that the change in the plant microbiome was associated with the rhizosphere microbiome. Overall, these findings imply the positive influences of nano-Fe3O4 on the soil-microbe-plant system and establish a method to alleviate the harmful effects of MP accumulation in soils.
Collapse
Affiliation(s)
- Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
31
|
Yu K, Zhao B, Yan Y, Yang Q, Chen L, Xia Y. Effect of CeO 2 Nanoparticles on the Spread of Antibiotic Resistance in a Reclaimed Water-Soil-Radish System - Shenzhen City, Guangdong Province, China, April 2023. China CDC Wkly 2023; 5:1029-1037. [PMID: 38046641 PMCID: PMC10689965 DOI: 10.46234/ccdcw2023.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction The use of reclaimed water (RW) for irrigation in agricultural practices raises concerns regarding the dissemination of antibiotic resistance genes (ARGs) from soils to edible crops. The effectiveness of nanoparticles (NPs) in reducing antibiotic resistance in vegetables irrigated with RW remains largely unexplored. Methods To investigate the effects, we conducted pot experiments in which radishes were planted in soil amended with CeO2 NPs using various application techniques. The abundance of ARGs was characterized using high-throughput quantitative PCR (HT-qPCR). Concurrently, we utilized 16S ribosomal RNA (rRNA) gene sequencing to evaluate the microbial community structure of both the rhizosphere soil and the endophytic compartment within the radishes. Employing bioinformatics analysis, we probed the potential mechanisms by which NPs influence the resistome within the reclaimed water-soil-radish system. Results Following the application of CeO2 NPs, there was a noticeable reduction in both the number and concentration of ARG genotypes in the rhizosphere soil, as well as within the radish. Concurrently, CeO2 NPs appeared to mitigate the propagation of ARGs within the reclaimed water-soil-radish system. The ability of CeO2 NPs to modulate the resistome is linked to alterations in microbial community structure. Soil treatment with NPs emerged as the most effective strategy for curbing the spread of ARGs. Discussion This finding provides a theoretical foundation for the development of nano-agricultural technologies aimed at controlling the proliferation of ARGs.
Collapse
Affiliation(s)
- Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
- School of Resource, Environment and Life Science, Ningxia Normal University, Guyuan City, Gansu Province, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| | - Yuxi Yan
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| | - Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen City, Guangdong Province, China
| |
Collapse
|
32
|
Li Y, Xu R, Ma C, Yu J, Lei S, Han Q, Wang H. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122340. [PMID: 37562530 DOI: 10.1016/j.envpol.2023.122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental issue facing agriculture. Under certain conditions, the stable Cd that bound to soil particles tend to be remobilized and absorbed into plants, which is seriously toxic to plant growth and threat food safety. Engineering nanomaterials (ENMs) has attracted increasing attentions in the remediation of Cd pollution in soil-plant system due to their excellent properties with nano-scale size. Herein, this article firstly systematically summarized Cd transformation in soil, transport in soil-plant system, and the toxic effects in plants, following which the functions of ENMs in these processes to remediate Cd pollution are comprehensively reviewed, including immobilization of Cd in soil, inhibition in Cd uptake, transport, and accumulation, as well as physiological detoxication to Cd stress. Finally, some issues to be further studied were raised to promote nano-remediation technology in the environment. This review provides a significant reference for the practical application of ENMs in remediation of Cd pollution in soil, and contributes to sustainable development of agriculture.
Collapse
Affiliation(s)
- Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ronghua Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Shang Lei
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Qianying Han
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
33
|
Xu X, Qiu H, Van Gestel CAM, Gong B, He E. Impact of nanopesticide CuO-NPs and nanofertilizer CeO 2-NPs on wheat Triticum aestivum under global warming scenarios. CHEMOSPHERE 2023; 328:138576. [PMID: 37019396 DOI: 10.1016/j.chemosphere.2023.138576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Concurrent effect of nanomaterials (NMs) and warming on plant performance remains largely unexplored. In this study, the effects of nanopesticide CuO and nanofertilizer CeO2 on wheat (Triticum aestivum) under optimal (22 °C) and suboptimal (30 °C) temperatures were evaluated. CuO-NPs exerted a stronger negative effect on plant root systems than CeO2-NPs at tested exposure levels. The toxicity of both NMs could be attributed to altered nutrient uptake, induced membrane damage, and raised disturbance of antioxidative related biological pathways. Warming significantly inhibited root growth, which was mainly linked to the disturbance of energy metabolism relevant biological pathways. The toxicity of NMs was enhanced upon warming, with a stronger inhibition of root growth and Fe and Mn uptake. Increasing temperature increased the accumulation of Ce upon CeO2-NP exposure, while the accumulation of Cu was not affected. The relative contribution of NMs and warming to their combined effects was evaluated by comparing disturbed biological pathways under single and multiple stressors. CuO-NPs was the dominant factor inducing toxic effects, while both CeO2-NPs and warming contributed to the mixed effect. Our study revealed the importance of carefully considering global warming as a factor in risk assessment of agricultural applications of NMs.
Collapse
Affiliation(s)
- Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
34
|
Dang F, Li C, Nunes LM, Tang R, Wang J, Dong S, Peijnenburg WJGM, Wang W, Xing B, Lam SS, Sonne C. Trophic transfer of silver nanoparticles shifts metabolism in snails and reduces food safety. ENVIRONMENT INTERNATIONAL 2023; 176:107990. [PMID: 37247467 DOI: 10.1016/j.envint.2023.107990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Chengcheng Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Luís M Nunes
- University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, Portugal
| | - Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuofei Dong
- Agilent Technologies Co. Ltd (China), No.3, Wang Jing Bei Road, Chao Yang District, Beijing 100102, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Wenxiong Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Christian Sonne
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
35
|
Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. AGROCHEMICALS 2023; 2:220-256. [DOI: 10.3390/agrochemicals2020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Rumana Ahmad
- Department of Biochemistry, Era University, Lucknow 226003, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
36
|
Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114783. [PMID: 36963184 DOI: 10.1016/j.ecoenv.2023.114783] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
Collapse
Affiliation(s)
- Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Lokesh C Mishra
- Department of Zoology, Hansraj College, University of Delhi, Delhi 110007, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
37
|
Zhang L, Yu L, Zhao Z, Li P, Tan S. Chitosan oligosaccharide as a plant immune inducer on the Passiflora spp. (passion fruit) CMV disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1131766. [PMID: 36814757 PMCID: PMC9939820 DOI: 10.3389/fpls.2023.1131766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cucumber mosaic virus (CMV), one of the main viruses, is responsible for Passiflora spp. (passion fruit) virus diseases, which negatively affect its planting, cultivation, and commercial quality. In this study, a laboratory anti-CMV activity screening model for Passiflora spp. CMV disease was first established. Then, the effects of different antiviral agents of chitosan oligosaccharide (COS), dufulin (DFL), and ningnanmycin (Ning) on CMV virulence rate in Passiflora spp. were determined. The virulence rate and anti-CMV activity in Passiflora spp. treated with COS were 50% and 45.48%, respectively, which were even better than those of DFL (66.67% and 27.30%, respectively) and Ning (83.30% and 9.17%, respectively). Field trials test results showed COS revealed better average control efficiency (47.35%) against Passiflora spp. CMV disease than those of DFL (40.93%) and Ning (33.82%), indicating that COS is effective in the control of the Passiflora spp. CMV disease. Meanwhile, the nutritional quality test results showed that COS could increase the contents of soluble solids, titratable acids, vitamin C, and soluble proteins in Passiflora spp. fruits as well as enhance the polyphenol oxidase (PPO), superoxide dismutase (SOD), and peroxidase (POD) activity in the leaves of Passiflora spp. seedlings. In addition, the combined transcriptome and proteome analysis results showed that COS mainly acted on the Brassinosteroids (BRs) cell signaling pathway, one of plant hormone signal transduction pathway, in Passiflora spp., thus activating the up-regulated expression of TCH4 and CYCD3 genes to improve the resistance to CMV disease. Therefore, our study results demonstrated that COS could be used as a potential plant immune inducer to control the Passiflora spp. CMV disease in the future.
Collapse
Affiliation(s)
- Liqun Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
38
|
Xiao Z, Fan N, Wang X, Ji H, Yue L, He F, Wang Z. Earthworms Drive the Effect of La 2O 3 Nanoparticles on Radish Taproot Metabolite Profiles and Rhizosphere Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17385-17395. [PMID: 36351052 DOI: 10.1021/acs.est.2c05828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To promote the sustainable and safe application of nanotechnology employing engineered nanoparticles (NPs) in agroecosystems, it is crucial to pay more attention to the NP-mediated biological response process and environmental impact assessment simultaneously. Herein, 50 mg kg-1 La2O3 NPs were added to soils without and with earthworms for cherry radish growth for 50 days to investigate the response changes of metabolites in radish above- and below-ground organs and rhizosphere bacterial communities. We found that La2O3 NP exposure, especially with earthworms, notably increased the La bioavailability and uptake by taproots and eventually increased radish leaf sucrose content and plant biomass. The La2O3 NP exposure significantly altered metabolite profiles in taproot flesh and peel tissues, and particularly La2O3 NP exposure combined with earthworms was more conducive to La2O3 NPs to promote radish taproot peel to synthesize more secondary antioxidant metabolites. Moreover, compared with the control, the La2O3 NP exposure resulted in weaker and fewer correlations between rhizosphere bacteria and taproot metabolites, but this was recovered somewhat after the inoculation of earthworms. Altogether, our results provide novel insights into the soil-fauna-driven biological and biochemical impact of La2O3 NP exposure on edible root crops and the long-term environmental risks to the rhizosphere microbiota in agroecosystems.
Collapse
Affiliation(s)
- Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Zhi Y, Li X, Lian F, Wang C, White JC, Wang Z, Xing B. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157536. [PMID: 35878859 DOI: 10.1016/j.scitotenv.2022.157536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Humic acids (HAs), kinds of valuable active carbon, are critical for improving soil fertility. However, the majority of soils are poor in HAs, arousing the development of artificial HAs. In this study, two iron-based catalysts (nanoscale iron trioxide (nFe2O3) and FeCl3) were used to catalyze the hydrothermal humification of waste corn straw. With the help of ultra-performance liquid chromatography-mass spectrometry, we proposed the specific humification process with the action of catalysis for the first time, which is of great significance for the design, synthesis and application of artificial HAs in the future. Moreover, the growth-promoting effect and mechanisms of the artificial HAs were determined by rice planting in a greenhouse. Results showed that compared to no catalyst treatment, the FeCl3 and nFe2O3 catalysts increased the decomposition rate of macromolecular biomass by 39 and 14 %, respectively, increasing the yield of artificial HAs. During the humification process, nFe2O3 catalysts benefit the formation of many aromatic structure monomers including furfural and hydroxycaproic acids. These monomers were condensed into growth hormone analogs such as vanillin and methionine sulfoxide and were further built in the artificial HAs. Therefore, the artificial HAs from nFe2O3 catalytic treatment promoted the rice growth the best, showing that the resultant germination rate, root activity, and photosynthetic rate of rice increased by 50, 167, and 72 %, respectively; moreover, the uptake and accumulation of water and nutrient by roots as well as the contents of soluble protein and sugar of rice are also significantly increased. This could be ascribed to the upregulated expression of functional genes including OsRHL1, OsZPT5-07, OsSHR2 and OsDCL. Considering both the economic and environmental benefits, we suggested that the artificial HAs, especially that produced with the action of nFe2O3 catalysis, are promising in alleviating environmental stress from waste biomass and sustainably improving agricultural production.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
40
|
Wang Y, Deng C, Shen Y, Borgatta J, Dimkpa CO, Xing B, Dhankher OP, Wang Z, White JC, Elmer WH. Surface Coated Sulfur Nanoparticles Suppress Fusarium Disease in Field Grown Tomato: Increased Yield and Nutrient Biofortification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14377-14385. [PMID: 36331134 DOI: 10.1021/acs.jafc.2c05255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Little is known about the effect of nano sulfur (NS) under field conditions as a multifunctional agricultural amendment. Pristine and surface coated NS (CS) were amended in soil at 200 mg/kg that was planted with tomato (Solanum lycopersicum) and infested with Fusarium oxysporum f. sp. lycopersici. Foliar exposure of CS (200 μg/mL) was also included. In healthy plants, CS increased tomato marketable yield up to 3.3∼3.4-fold compared to controls. In infested treatments, CS significantly reduced disease severity compared to the other treatments. Foliar and soil treatment with CS increased yield by 107 and 192% over diseased controls, respectively, and significantly increased fruit Ca, Cu, Fe, and Mg contents. A $33/acre investment in CS led to an increase in marketable yield from 4920 to 11,980 kg/acre for healthy plants and from 1135 to 2180 kg/acre for infested plants, demonstrating the significant potential of this nanoenabled strategy to increase food production.
Collapse
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Chaoyi Deng
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Yu Shen
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi214122, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| |
Collapse
|
41
|
Sivamaruthi BS, Nallasamy PK, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Li J, Yue L, Zhao Q, Cao X, Tang W, Chen F, Wang C, Wang Z. Prediction models on biomass and yield of rice affected by metal (oxide) nanoparticles using nano-specific descriptors. NANOIMPACT 2022; 28:100429. [PMID: 36130713 DOI: 10.1016/j.impact.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The use of in silico tools to investigate the interactions between metal (oxide) nanoparticles (NPs) and plant biological responses is preferred because it allows us to understand molecular mechanisms and improve prediction efficiency by saving time, labor, and cost. In this study, four models (C5.0 decision tree, discriminant function analysis, random forest, and stepwise multiple linear regression analysis) were applied to predict the effect of NPs on rice biomass and yield. Nano-specific descriptors (size-dependent molecular descriptors and image-based descriptors) were introduced to estimate the behavior of NPs in plants to appropriately represent the wide space of NPs. The results showed that size-dependent molecular descriptors (e.g., E-state and connectivity indices) and image-based descriptors (e.g., extension, area, and minimum ferret diameter) were associated with the behavior of NPs in rice. The performance of the constructed models was within acceptable ranges (correlation coefficient ranged from 0.752 to 0.847 for biomass and from 0.803 to 0.905 for yield, while the accuracy ranged from 64% to 77% for biomass and 81% to 89% for yield). The developed model can be used to quickly and efficiently evaluate the impact of NPs under a wide range of experimental conditions and sufficient training data.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Zhao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xuesong Cao
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weihao Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Feiran Chen
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
43
|
Wang C, Ji Y, Cao X, Yue L, Chen F, Li J, Yang H, Wang Z, Xing B. Carbon Dots Improve Nitrogen Bioavailability to Promote the Growth and Nutritional Quality of Soybeans under Drought Stress. ACS NANO 2022; 16:12415-12424. [PMID: 35946591 DOI: 10.1021/acsnano.2c03591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The inefficient utilization of nitrogen (N) in soil and drought stress seriously threatens agricultural and food production. Herein, soil application of carbon dots (CDs, 5 mg kg-1) promoted the growth and nutritional quality of soybeans by improving N bioavailability, which was beneficial to alleviate the economic losses caused by drought stress. Soil application of CDs enhanced the N-fixing ability of nodules, regulated rhizosphere processes, and ultimately enhanced N and water uptake in soybeans under drought stress. Compared to control (drought stress), the application of CDs under drought stress enhanced soybean nitrogenase activity by 8.6% and increased N content in soybean shoots and roots by 18.5% and 14.8%, respectively. CDs in soil promoted the secretion of root exudates (e.g., organic acids, fatty acids, and polyketides) and regulated beneficial microbial communities (e.g., Proteobacteria, Acidobacteria, Gemmatimonadetes, and Actinobacteria), thus enhancing the N release from soil. Besides, compared to control, the expression of GmNRT, GmAMT, GmLB, and GmAQP genes in roots were upregulated by 1.2-, 1.8-, 2.7-, and 2.3-fold respectively, implying enhanced N transport and water uptake. Furthermore, the proteins, fatty acids, and amino acids in soybean grains were improved by 3.4%, 6.9%, and 17.3%, respectively, as a result of improved N bioavailability. Therefore, CD-enabled agriculture is promising for improving the drought tolerance and quality of soybeans, which is of significance for food security in facing the crisis of global climate change.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yahui Ji
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hanyue Yang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
44
|
Overview on Recent Developments in the Design, Application, and Impacts of Nanofertilizers in Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14159397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nutrient management is always a great concern for better crop production. The optimized use of nutrients plays a key role in sustainable crop production, which is a major global challenge as it depends mainly on synthetic fertilizers. A novel fertilizer approach is required that can boost agricultural system production while being more ecologically friendly than synthetic fertilizers. As nanotechnology has left no field untouched, including agriculture, by its scientific innovations. The use of nanofertilizers in agriculture is in the early stage of development, but they appear to have significant potential in different ways, such as increased nutrient-use efficiency, the slow release of nutrients to prevent nutrient loss, targeted delivery, improved abiotic stress tolerance, etc. This review summarizes the current knowledge on various developments in the design and formulation of nanoparticles used as nanofertilizers, their types, their mode of application, and their potential impacts on agricultural crops. The main emphasis is given on the potential benefits of nanofertilizers, and we highlight the current limitations and future challenges related to the wide-scale application before field applications. In particular, the unprecedent release of these nanomaterials into the environment may jeopardize human health and the ecosystem. As the green revolution has occurred, the production of food grains has increased at the cost of the disproportionate use of synthetic fertilizers and pesticides, which have severely damaged our ecosystem. We need to make sure that the use of these nanofertilizers reduces environmental damage, rather than increasing it. Therefore, future studies should also check the environmental risks associated with these nanofertilizers, if there are any; moreover, it should focus on green manufactured and biosynthesized nanofertilizers, as well as their safety, bioavailability, and toxicity issues, to safeguard their application for sustainable agriculture environments.
Collapse
|
45
|
Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NANOIMPACT 2022; 27:100411. [PMID: 35803478 DOI: 10.1016/j.impact.2022.100411] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 05/21/2023]
Abstract
Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.
Collapse
Affiliation(s)
- Ali Murad Jakhar
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jiahua Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China.
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
46
|
Cheng B, Wang C, Chen F, Yue L, Cao X, Liu X, Yao Y, Wang Z, Xing B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153712. [PMID: 35149065 DOI: 10.1016/j.scitotenv.2022.153712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
A selenium (Se)-nanoenabled agriculture strategy was established in this work to improve crop yield and quality. The results demonstrated that Se engineering nanomaterials (Se ENMs, 10 mg·L-1) were absorbed and translocated in cherry radish (Raphanus sativus L. var. radculus pers) from shoots to taproots after foliar application. RNA-Seq and metabolomic results indicated that the glucolysis, pyruvate and tricarboxylic acid (TCA) cycle metabolism pathways were accelerated by exposure to Se ENMs, resulting in increased production of flavonoids (3.2-fold), amino acids (1.4-fold), and TCA (2.5-fold) compared with the control. Moreover, Se content was enhanced by 5.4 and 2.6 times in pericarp and pulp upon Se ENMs exposure, respectively, which was more efficient (2.2 and 1.1 times) than SeO32- treatment. Additionally, the yield of cherry radish was increased by 67.6% under Se ENMs, whereas SeO32- exposure only led to an increase of 7.4%. Therefore, the application of Se ENMs could reduce the amount of fertilizer used to minimize the environmental impact in agriculture while improve crop production and quality. These findings highlighted the significant potential of Se ENMs-enabled agriculture practices as an eco-friendly and sustainable crop strategy.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yusong Yao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
47
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
48
|
Zhang X, Wells M, Niazi NK, Bolan N, Shaheen S, Hou D, Gao B, Wang H, Rinklebe J, Wang Z. Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118810. [PMID: 35007673 DOI: 10.1016/j.envpol.2022.118810] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair, NJ, 07043, United States
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sabry Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia
| | - Deyi Hou
- Tsinghua University, School of Environment, Beijing, 100084, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
49
|
Wang Z, Le X, Cao X, Wang C, Chen F, Wang J, Feng Y, Yue L, Xing B. Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. NANOMATERIALS 2022; 12:nano12081341. [PMID: 35458049 PMCID: PMC9028851 DOI: 10.3390/nano12081341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/25/2022]
Abstract
Flavonoids contribute to fruit sensorial and nutritional quality. They are also highly beneficial for human health and can effectively prevent several chronic diseases. There is increasing interest in developing alternative food sources rich in flavonoids, and nano-enabled agriculture provides the prospect for solving this action. In this study, triiron tetrairon phosphate (Fe7(PO4)6) nanomaterials (NMs) were synthesized and amended in soils to enhance flavonoids accumulation in tomato fruits. 50 mg kg−1 of Fe7(PO4)6 NMs was the optimal dose based on its outstanding performance on promoting tomato fruit flavonoids accumulation. After entering tomato roots, Fe7(PO4)6 NMs promoted auxin (IAA) level by 70.75 and 164.21% over Fe-EDTA and control, and then up-regulated the expression of genes related to PM H+ ATPase, leading to root proton ef-flux at 5.87 pmol cm−2 s−1 and rhizosphere acidification. More Mg, Fe, and Mn were thus taken up into plants. Subsequently, photosynthate was synthesized, and transported into fruits more rapidly to increase flavonoid synthesis potential. The metabolomic and transcriptomic profile in fruits further revealed that Fe7(PO4)6 NMs regulated sucrose metabolism, shi-kimic acid pathway, phenylalanine synthesis, and finally enhanced flavonoid biosynthesis. This study implies the potential of NMs to improve fruit quality by enhancing flavonoids synthesis and accumulation.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xiehui Le
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jing Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Yan Feng
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85911911
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
50
|
Han Y, Lian F, Xiao Z, Gu S, Cao X, Wang Z, Xing B. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127870. [PMID: 34848066 DOI: 10.1016/j.jhazmat.2021.127870] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/25/2023]
Abstract
Nanoplastics (NPs) are widely detected in aquatic ecosystems and attracting considerable attention. Although ecotoxicological impacts of NPs on aquatic biota are increasingly identified, the extent and magnitude of these detrimental effects on fish and aquatic invertebrates still lack systematic quantification and mechanistic interpretation. Here, the toxicity, influencing factors, and related mechanisms of NPs to fish and aquatic invertebrates are critically reviewed and summarized based on a total of 634 biological endpoints through a meta-analysis, where five vital response categories including growth, consumption, reproduction, survival, and behavior were emphasized to elucidate the negative impacts of NPs to fish and aquatic invertebrates from physiological to molecular levels. Our results revealed that NPs significantly decreased the survival, behavior, and reproduction of fish and/or aquatic invertebrates by 56.1%, 24.2%, and 36.0%, respectively. NPs exposure increased the oxidative stress and oxidative damage by 72.0% and 9.6%, respectively; while significantly decreased antioxidant prevention system and neurotransmission by 24.4% and 15.9%, respectively. Also, the effects of particle size, functional group, and concentration range of NPs on the physiological and biochemical reactions in the living organisms were discussed. This information is helpful to more accurately understanding the underlying toxic mechanisms of NPs to aquatic biota and guiding future studies.
Collapse
Affiliation(s)
- Yaru Han
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiguo Gu
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|