1
|
Zhang H, Crawford I, Song C, Gallagher M, Zheng Z, Chan MN, Xing S, Lee HBM, Topping D. Data-Driven Detection of Nocturnal Pollen Fragmentation Triggered by High Humidity in an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40400486 DOI: 10.1021/acs.est.4c13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Biological particulate matter (BioPM) in the urban environment can affect human health and climate. Pollen, a key BioPM component, produces smaller particles when fragmented, significantly impacting public health. However, detecting pollen fragmentation and identifying the meteorological thresholds that trigger it remain largely hypothetical and uncertain. Here, we develop a novel data-driven approach integrating deep learning, efficient clustering methods, and automatic machine learning with explainable methods to identify BioPM components and quantify their environmental drivers. For the first time, we demonstrate the ability to routinely detect pollen fragmentation using only meteorological and online BioPM spectral data. Our findings resolve the previously unclear humidity threshold, confirming that fragmentation is triggered when relative humidity exceeds 90%. Our results find that this humidity-induced fragmentation occurs at night─a critical, yet previously overlooked, time, resulting in the highest pollen concentrations of the day. This critical yet previously unidentified fragmentation phenomenon may have significant health impacts on urban cohorts.
Collapse
Affiliation(s)
- Hao Zhang
- The University of Manchester, Centre for Atmospheric Science, Simon building, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| | - Ian Crawford
- The University of Manchester, Centre for Atmospheric Science, Simon building, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| | - Congbo Song
- National Centre for Atmospheric Science (NCAS), The University of Manchester, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| | - Martin Gallagher
- The University of Manchester, Centre for Atmospheric Science, Simon building, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| | - Zhonghua Zheng
- The University of Manchester, Centre for Atmospheric Science, Simon building, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| | - Man Nin Chan
- Faculty of Science, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Sinan Xing
- Faculty of Science, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Hing Bun Martin Lee
- Faculty of Science, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - David Topping
- The University of Manchester, Centre for Atmospheric Science, Simon building, Manchester M13 9PL, United Kingdom of Great Britain - England, Scotland, Wales
| |
Collapse
|
2
|
Pogner CE, Antunes C, Apangu GP, Bruffaerts N, Celenk S, Cristofori A, González Roldán N, Grinn-Gofroń A, Lara B, Lika M, Magyar D, Martinez-Bracero M, Muggia L, Muyshondt B, O'Connor D, Pallavicini A, Marchã Penha MA, Pérez-Badia R, Ribeiro H, Rodrigues Costa A, Tischner Z, Xhetani M, Ambelas Skjøth C. Airborne DNA: State of the art - Established methods and missing pieces in the molecular genetic detection of airborne microorganisms, viruses and plant particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177439. [PMID: 39549753 DOI: 10.1016/j.scitotenv.2024.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Bioaerosol is composed of different particles, originating from organisms, or their fragments with different origin, shape, and size. Sampling, analysing, identification and describing this airborne diversity has been carried out for over 100 years, and more recently the use of molecular genetic tools has been implemented. However, up to now there are no established protocols or standards for detecting airborne diversity of bacteria, fungi, viruses, pollen, and plant particles. In this review we evaluated commonalities of methods used in molecular genetic based studies in the last 23 years, to give an overview of applicable methods as well as knowledge gaps in diversity assessment. Various sampling techniques show different levels of effectiveness in detecting airborne particles based on their DNA. The storage and processing of samples, as well as DNA processing, influences the outcome of sampling campaigns. Moreover, the decisions on barcode selection, method of analysis, reference database as well as negative and positive controls may severely impact the results obtained. To date, the chain of decisions, methodological biases and error propagation have hindered DNA based molecular sequencing from offering a holistic picture of the airborne biodiversity. Reviewing the available studies, revealed a great diversity in used methodology and many publications didn't state all used methods in detail, making comparisons with other studies difficult or impossible. To overcome these limitations and ensure genuine comparability across studies, it is crucial to standardize protocols. Publications need to include all necessary information to enable comparison among different studies and to evaluate how methodological choices can impacts the results. Besides standardization, implementing of automatic tools and combining of different analytical techniques, such as real-time evaluation combined with sampling and molecular genetic analysis, could assist in achieving the goal of accurately assessing the actual airborne biodiversity.
Collapse
Affiliation(s)
- C-E Pogner
- Unit Bioresources, Center of Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - C Antunes
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - G P Apangu
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - N Bruffaerts
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - S Celenk
- Bursa Uludag University, Arts and Science Faculty, Biology Department, Görükle-Bursa, Turkey
| | - A Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Via Mach 1, 38098 San Michele all'Adige, TN, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - N González Roldán
- Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - A Grinn-Gofroń
- Institute of Biology, University of Szczecin, Wąska 13 Street, 71-415 Szczecin, Poland
| | - B Lara
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - M Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - D Magyar
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Martinez-Bracero
- Department of Botany, Ecology and Plant Physiology, Córdoba University, 14071 Córdoba, Spain
| | - L Muggia
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - B Muyshondt
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - D O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 V209, Ireland
| | - A Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - M A Marchã Penha
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - R Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - H Ribeiro
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - A Rodrigues Costa
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Z Tischner
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - C Ambelas Skjøth
- Department of Environmental Science, iCLIMATE, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
3
|
Wan X, Yang C, Qiu S, Xu W, Lian J, Zhang J, Xing W, Yuan Y. Natural volatile organic compounds (NVOCs) and airborne microorganisms in different stands of urban forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176964. [PMID: 39423900 DOI: 10.1016/j.scitotenv.2024.176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Natural volatile organic compounds (NVOCs) and airborne microorganisms are important elements in urban forest air that affect air quality and human health. In this study, the Zhuyu Bay urban forest in Yangzhou was selected as the research object, and gas chromatography-mass spectrometry (GC-MS) was used to detect the composition of NVOCs in different forest stands. Terpenes, heterocyclic compounds, and esters accounted for the highest proportions. We then explored the effects of NVOCs on the physiological health of each forest stand and used Kyoto Encyclopedia of Genes and Genome enrichment analysis to identify beneficial secondary metabolites. Among the identified compounds, alpha-phellandrene 1, azulene, and other terpenoids were found to possess antibacterial, anti-inflammatory, and antioxidant properties. Heterocyclic compounds, such as 4-Pyridinecarboxylic acid and visnagin, showed significant effects in the treatment of diseases. In addition, we collected and analyzed culturable airborne microorganisms in different forest stands and found that the bamboo forest had the lowest number of culturable airborne microorganisms. To further explore the influence of urban microclimates on air microorganisms and NVOCs, a partial least squares path modelling (PLS-PM) analysis was conducted. Air negative oxygen ion is an important factor affecting NVOCs, and Air moisture has a significant positive effect on bacteria proportion.
Collapse
Affiliation(s)
- Xin Wan
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Can Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Weitao Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jingwei Lian
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Jiaojiao Zhang
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China.
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Zhao C, Sinkkonen A, Jumpponen A, Hui N. Neighborhood plant community, airborne microbiota transferred indoors and prevalence of respiratory diseases are interrelated: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176978. [PMID: 39419227 DOI: 10.1016/j.scitotenv.2024.176978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Airborne microbiota transferred indoors (AMTI) is linked to human respiratory health. Yet, the factors influencing these microorganisms and their connections to the prevalence of respiratory diseases (RDs) remain unclear. In this study, we examined plant communities and AMTI using VenTube, next-generation sequencing and quantitative polymerase chain reaction (qPCR) in 72 Shanghai neighborhoods in warm and cold seasons, respectively. To determine the prevalence of RDs, we collected 1026 questionnaires, enlisting 30 ± 5 volunteers aged 40-80, residing in the area for more than a decade, with an equal gender balance. Our results demonstrated that the AMTI communities were less diverse in the cold season than in the warm season, which is in agreement with the changes of garden plant diversity between seasons. Along the reduction of AMTI diversity, greater relative abundances of RDs-associated microbes (e.g., Pseudomonas and Streptococcus) was transferred indoors during the cold season. The questionnaire survey showed that the most prevalent symptom was shortness of breath (25.6 %), followed by rhinitis (20.8 %) and wheeze (14.4 %), with generally no prevalence difference between urban and peri-urban neighborhoods. Notably, despite the sparse garden plant community in the cold season, the abundance of Oleaceae trees showed an inverse relationship with the RDs-associated microbes as well as the prevalences of RDs based on the structural equation model results. This finding was largely supported by the negative effect of Oleaceae trees on the population of Streptococcus anginosus (qPCR) which was a dominant species transferred indoors in the cold season, given that S. anginosus is highly associated with rhinitis and rhinoconjunctivitis. Taken together, our findings suggest a strong association between the Oleaceae trees, the AMTI and the prevalence of RDs, which can shed some lights in the ecological development towards respiratory safe environment in cities.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Aki Sinkkonen
- Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| |
Collapse
|
5
|
Maestre J, Jarma D, Williams E, Wylie D, Horner S, Kinney K. Microbial communities in rural and urban homes and their relationship to surrounding land use, household characteristics, and asthma status. BUILDING AND ENVIRONMENT 2024; 266:112014. [DOI: 10.1016/j.buildenv.2024.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Geng X, Nie C, Li D, Wang M, Wu Y, Sun X, An T, Yao M, Huang J, Chen J. A potential bioaerosol source from kitchen chimneys in restaurants. ENVIRONMENT INTERNATIONAL 2024; 193:109115. [PMID: 39500121 DOI: 10.1016/j.envint.2024.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution. This putative anthropogenic source of bioaerosols has been long ignored. To investigated whether kitchen chimneys can be a potential source for bioaerosols, air samples, oil stains from in/out chimneys, and surface sand samples were collected near several commercial restaurants. PCoA showed that sampling sites significantly impacted microbiomes, whereas SourceTracker analysis led to the finding that waste grease significantly contributed to bioaerosol composition. Both findings agree with the kitchen chimney as a source of microbes in bioaerosols in the surrounding environment. Furthermore, despite the low biodiversity, a high proportion of stress-tolerant and potential pathogenic bacteria and fungi were found in residual culinary grease, which may escape into the air causing potential risks to human beings. These results led to the proposal that airborne microbiota can originate from cooking waste grease. Immediate actions should be taken into account to enhance disinfection and sterilization aimed at fume vents.
Collapse
Affiliation(s)
- Xueyun Geng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
7
|
Pan R, Wang W, Wei N, Liu L, Yi W, Song J, Cheng J, Su H, Fan Y. Does the morphology of residential greenspaces contribute to the development of a cardiovascular-healthy city? ENVIRONMENTAL RESEARCH 2024; 257:119280. [PMID: 38821460 DOI: 10.1016/j.envres.2024.119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUNDS Greenspaces are indispensable for the construction of a healthy city. Research has shown that greenspaces contribute to the reduction of cardiovascular risks. However, the role of greenspace morphology in the development of a healthy city is not well understood. METHODS Our study utilized data from a cardiovascular disease screening cohort comprising 106,238 residents in Anhui Province, China, aged between 35 and 75 years. We calculated landscape indices of each participant using high-resolution land cover data to measure the greenness, fragmentation, connectivity, aggregation, and shape of greenspaces. We used a multivariate linear regression model to assess the associations between these landscape indices and triglyceride risk, and employed a structural equation model to explore the potential contributions of heatwaves and fine particulate matter (PM2.5) to this association. RESULTS Overall, triglyceride was expected to increase by 0.046% (95% CI: 0.040%, 0.052%) with a 1% increase in the percentage of built-up area. Conversely, an increase in the percentage of greenspace was associated with a 0.270% (95% CI: 0.337%, -0.202%) decrease in triglyceride levels. Furthermore, when the total greenspace was held constant, the shape, connectedness, and aggregation of greenspace were inversely correlated with triglyceride levels, with effects of -0.605% (95% CI: 1.012%, -0.198%), -0.031% (95% CI: 0.039%, -0.022%), and -0.049% (95% CI: 0.058%, -0.039%), respectively. Likewise, the protective effect of the area-weighed mean shape index was higher than that of the total amount of greenspace. The stratification results showed that urban residents benefited more from greenspace exposure. Greenspace morphology can minimize triglyceride risk by reducing pollutant and heatwaves, with aggregation having the greatest effect on reducing pollutants whereas fragmentation is more efficient at reducing heatwaves. CONCLUSION Exposure to the greenspaces morphology is associated with a reduction in triglyceride risk. The study has important practical and policy implications for early health monitoring and the spatial layout of greenspace and will provide scientific information for healthy urban planning by reducing unfavorable health consequences.
Collapse
Affiliation(s)
- Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Weiqiang Wang
- Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China.
| |
Collapse
|
8
|
Matthews K, Cavagnaro T, Weinstein P, Stanhope J. Health by design; optimising our urban environmental microbiomes for human health. ENVIRONMENTAL RESEARCH 2024; 257:119226. [PMID: 38797467 DOI: 10.1016/j.envres.2024.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Humans have evolved in direct and intimate contact with their environment and the microbes that it contains, over a period of 2 million years. As a result, human physiology has become intrinsically linked to environmental microbiota. Urbanisation has reduced our exposure to harmful pathogens, however there is now increasing evidence that these same health-protective improvements in our environment may also be contributing to a hidden disease burden: immune dysregulation. Thoughtful and purposeful design has the potential to ameliorate these health concerns by providing sources of microbial diversity for human exposure. In this narrative review, we highlight the role of environmental microbiota in human health and provide insights into how we can optimise human health through well-designed cities, urban landscapes and buildings. The World Health Organization recommends there should be at least one public green space of least 0.5 ha in size within 300m of a place of residence. We argue that these larger green spaces are more likely to permit functioning ecosystems that deliver ecosystem services, including the provision of diverse aerobiomes. Urban planning must consider the conservation and addition of large public green spaces, while landscape design needs to consider how to maximise environmental, social and public health outcomes, which may include rewilding. Landscape designers need to consider how people use these spaces, and how to optimise utilisation, including for those who may experience challenges in access (e.g. those living with disabilities, people in residential care). There are also opportunities to improve health via building design that improves access to diverse environmental microbiota. Considerations include having windows that open, indoor plants, and the relationship between function, form and organization. We emphasise possibilities for re-introducing potentially health-giving microbial exposures into urban environments, particularly where the benefits of exposure to biodiverse environments may have been lost.
Collapse
Affiliation(s)
- Kate Matthews
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Timothy Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia; Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Philip Weinstein
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Public Health, The University of Adelaide, Adelaide, SA, Australia; South Australian Museum, Adelaide, SA, Australia
| | - Jessica Stanhope
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
9
|
Yang L, Chen H, Gao H, Wang Y, Chen T, Svartengren M, Norbäck D, Wei J, Zheng X, Zhang L, Lu C, Yu W, Wang T, Ji JS, Meng X, Zhao Z, Zhang X. Prenatal and postnatal early life exposure to greenness and particulate matter of different size fractions in relation to childhood rhinitis - A multi-center study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173402. [PMID: 38797418 DOI: 10.1016/j.scitotenv.2024.173402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The impact of early life exposure to residential greenness on childhood rhinitis and its interaction with particulate matter (PM) of different size fractions remain inconsistent. Herein, we recruited 40,486 preschool children from randomly selected daycare centers in 7 cities in China from 2019 to 2020, and estimated exposure to residential greenness by the normalized difference vegetation index (NDVI) with a 500 m buffer. Exposure to ambient PM (PM1, PM2.5, and PM10) was evaluated using a satellite-based prediction model (daily, at a resolution of 1 km × 1 km). By mixed-effect logistic regression, NDVI values during pregnancy, in the first (0-1 year old) and the second (1-2 years old) year of life were negatively associated with lifetime rhinitis (LR) and current rhinitis (CR) (P < 0.001). PM in the same time windows was associated with increased risks of LR and CR in children, with smaller size fraction of PM showing greater associations. The negative associations between prenatal and postnatal NDVI and LR and CR in preschool children remained robust after adjusting for concomitant exposure to PM, whereas the associations of postnatal NDVI and rhinitis showed significant interactions with PM. At lower levels of PM, postnatal NDVI remained negatively associated with rhinitis and was partly mediated by PM (10.0-40.9 %), while at higher levels of PM, the negative associations disappeared or even turned positive. The cut-off levels of PM were identified for each size fraction of PM. In conclusion, prenatal exposure to greenness had robust impacts in lowering the risk of childhood rhinitis, while postnatal exposure to greenness depended on the co-exposure levels to PM. This study revealed the complex interplay of greenness and PM on rhinitis in children. The exposure time window in prenatal or postnatal period and postnatal concomitant PM levels played important roles in influencing the associations between greenness, PM and rhinitis.
Collapse
Affiliation(s)
- Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China
| | - Huiyu Gao
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China
| | - Magnus Svartengren
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Dan Norbäck
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xiaohong Zheng
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chan Lu
- Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha 410078, China
| | - Wei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
10
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Guerrieri F, Libert C. The invisible life. Front Microbiol 2024; 15:1401487. [PMID: 38832115 PMCID: PMC11144902 DOI: 10.3389/fmicb.2024.1401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Affiliation(s)
- Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, Lyon, France
| | - Cédric Libert
- Ecole Nationale Superieure d'Architecture de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
12
|
Hao Y, Lu C, Xiang Q, Sun A, Su JQ, Chen QL. Unveiling the overlooked microbial niches thriving on building exteriors. ENVIRONMENT INTERNATIONAL 2024; 187:108649. [PMID: 38642506 DOI: 10.1016/j.envint.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
13
|
Lu C, Xiao Z, Li H, Han R, Sun A, Xiang Q, Zhu Z, Li G, Yang X, Zhu YG, Chen QL. Aboveground plants determine the exchange of pathogens within air-phyllosphere-soil continuum in urban greenspaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133149. [PMID: 38056267 DOI: 10.1016/j.jhazmat.2023.133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The microbiome in the air-phyllosphere-soil continuum of urban greenspaces plays a crucial role in re-connecting urban populations with biodiverse environmental microbiomes. However, little is known about whether plant type affects the airborne microbiomes, as well as the extent to which soil and phyllosphere microbiomes contribute to airborne microbiomes. Here we collected soil, phyllosphere and airborne microbes with different plant types (broadleaf tree, conifer tree, and grass) in urban parks. Despite the significant impacts of plant type on soil and phyllosphere microbiomes, plant type had no obvious effects on the diversity of airborne microbes but shaped airborne bacterial composition in urban greenspaces. Soil and phyllosphere microbiomes had a higher contribution to airborne bacteria in broadleaf trees (37.56%) compared to conifer trees (9.51%) and grasses (14.29%). Grass areas in urban greenspaces exhibited a greater proportion of potential pathogens compared to the tree areas. The abundance of bacterial pathogens in phyllosphere was significantly higher in grasses compared to broadleaf and conifer trees. Together, our study provides novel insights into the microbiome patterns in air-phyllosphere-soil continuum, highlighting the potential significance of reducing the proportion of extensively human-intervened grass areas in future urban environment designs to enhance the provision of ecosystem services in urban greenspaces.
Collapse
Affiliation(s)
- Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Li H, Hong Y, Gao M, An X, Yang X, Zhu Y, Chen J, Su J. Distinct responses of airborne abundant and rare microbial communities to atmospheric changes associated with Chinese New Year. IMETA 2023; 2:e140. [PMID: 38868217 PMCID: PMC10989829 DOI: 10.1002/imt2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 06/14/2024]
Abstract
Airborne microorganisms, including pathogens, would change with surrounding environments and become issues of global concern due to their threats to human health. Microbial communities typically contain a few abundant but many rare species. However, how the airborne abundant and rare microbial communities respond to environmental changes is still unclear, especially at hour scale. Here, we used a sequencing approach based on bacterial 16S rRNA genes and fungal ITS2 regions to investigate the high time-resolved dynamics of airborne bacteria and fungi and to explore the responses of abundant and rare microbes to the atmospheric changes. Our results showed that air pollutants and microbial communities were significantly affected by human activities related to the Chinese New Year (CNY). Before CNY, significant hour-scale changes in both abundant and rare subcommunities were observed, while only abundant bacterial subcommunity changed with hour time series during CNY. Air pollutants and meteorological parameters explained 61.5%-74.2% variations of abundant community but only 13.3%-21.6% variations of rare communities. These results suggested that abundant species were more sensitive to environmental changes than rare taxa. Stochastic processes predominated in the assembly of abundant communities, but deterministic processes determined the assembly of rare communities. Potential bacterial pathogens during CNY were the highest, suggesting an increased health risk of airborne microbes during CNY. Overall, our findings highlighted the "holiday effect" of CNY on airborne microbes and expanded the current understanding of the ecological mechanisms and health risks of microbes in a changing atmosphere.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - You‐Wei Hong
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Meng‐Ke Gao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resource and Environmental ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin‐Li An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao‐Ru Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Lab of Urban and Regional Ecology, Research Center for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Jin‐Sheng Chen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Zhou Y, Zhou S. Role of microplastics in microbial community structure and functions in urban soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132141. [PMID: 37506647 DOI: 10.1016/j.jhazmat.2023.132141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Evidence from the laboratory suggests that microplastics (MPs) can harm soil microorganisms, affecting the structures and functions of microbial communities. The impact of soil MPs on microbes in actual urban environments with high human activity levels, however, has not been well reported. To investigate the MP effect on urban soil microorganisms under complex scenarios, we analyzed 42 soil samples from standardized plots of 7 urban functional zones. We report that urban green spaces are important for studying microbial diversity in the study area, and they also contribute to the global homogenization of soil microbes and genes. Bacterial communities in soils enriched with various MPs showed greater differences in OTUs than fungi. Compared to low-MP soils, most ARGs and nutrient cycling genes had similar or slightly lower abundances in soils with high levels of MPs. The coupling of pollutant factors with MPs as independent variables had significant explanatory power for both positive and negative correlations in PLS-PM analysis. Specifically, PET and PP MPs explained 3.54% and 6.03%, respectively, of the microbial community and functional genes. This study fills knowledge gaps on the effects of MPs on urban soil microbial communities in real environments, facilitating better management of urban green spaces.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Geographic Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China.
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China.
| |
Collapse
|
16
|
Huang XR, Neilson R, Yang LY, Deng JJ, Zhou SYD, Li H, Zhu YG, Yang XR. Urban greenspace types influence the microbial community assembly and antibiotic resistome more in the phyllosphere than in the soil. CHEMOSPHERE 2023; 338:139533. [PMID: 37459932 DOI: 10.1016/j.chemosphere.2023.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Urban greenspace (UGS) is recognized to confer significant societal benefits, but few studies explored the microbial communities and antibiotic resistance genes (ARGs) from different urban greenspace types. Here, we collected leaf and soil samples from forest, greenbelt, and parkland to analyze microbial community assembly and ARG profile. For phyllosphere fungal community, the α-diversity was higher in forest, compared to those in greenbelt and parkland. Moreover, urban greenspace types altered the community assembly. Stochastic processes had a greater effect on phyllosphere fungal community in greenbelt and parkland, while in forest they were dominated by deterministic processes. In contrast, no significant differences in bacterial community diversity, community assembly were observed between the samples collected from different urban greenspace types. A total of 153 ARGs and mobile genetic elements (MGEs) were detected in phyllosphere and soil with resistance to the majority classes of antibiotics commonly applied to humans and animals. Structural equation model further revealed that a direct association between greenspace type and ARGs in the phyllosphere even after considering the effects of all other factors simultaneously. Our findings provide new insights into the microbial communities and antibiotic resistome of urban greenspaces and the potential risk linked with human health.
Collapse
Affiliation(s)
- Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jing-Jun Deng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China.
| |
Collapse
|
17
|
Zhang YD, Fan SJ, Zhang Z, Li JX, Liu XX, Hu LX, Knibbs LD, Dadvand P, Jalaludin B, Browning MH, Zhao T, Heinrich J, He Z, Chen CZ, Zhou Y, Dong GH, Yang BY. Association between Residential Greenness and Human Microbiota: Evidence from Multiple Countries. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87010. [PMID: 37585351 PMCID: PMC10431502 DOI: 10.1289/ehp12186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Greenness, referring to a measurement of the density of vegetated land (e.g., gardens, parks, grasslands), has been linked with many human health outcomes. However, the evidence on greenness exposure and human microbiota remains limited, inconclusive, drawn from specific regions, and based on only modest sample size. OBJECTIVES We aimed to study the association between greenness exposure and human microbial diversity and composition in a large sample across 34 countries and regions. METHODS We explored associations between residential greenness and human microbial alpha-diversity, composition, and genus abundance using data from 34 countries. Greenness exposure was assessed using the normalized difference vegetation index and the enhanced vegetation index mean values in the month before sampling. We used linear regression models to estimate the association between greenness and microbial alpha-diversity and tested the effect modification of age, sex, climate zone, and pet ownership of participants. Differences in microbial composition were tested by permutational multivariate analysis of variance based on Bray-Curtis distance and differential taxa were detected using the DESeq2 R package between two greenness exposure groups split by median values of greenness. RESULTS We found that higher greenness was significantly associated with greater richness levels in the palm and gut microbiota but decreased evenness in the gut microbiota. Pet ownership and climate zone modified some associations between greenness and alpha-diversity. Palm and gut microbial composition at the genus level also varied by greenness. Higher abundances of the genera Lactobacillus and Bifidobacterium, and lower abundances of the genera Anaerotruncus and Streptococcus, were observed in people with higher greenness levels. DISCUSSION These findings suggest that residential greenness was associated with microbial richness and composition in the human skin and gut samples, collected across different geographic contexts. Future studies may validate the observed associations and determine whether they correspond to improvements in human health. https://doi.org/10.1289/EHP12186.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu-Jun Fan
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zheng Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jia-Xin Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Xin Hu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Luke D. Knibbs
- School of Public Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Kensington, New South Wales, Australia
| | - Matthew H.E.M. Browning
- Department of Park, Recreation, and Tourism Management, Clemson University, Clemson, South Carolina, USA
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Comprehensive Pneumology Center Munich, LMU Munich, Munich, Germany
- German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU Munich, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng-Zhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yuanzhong Zhou
- Department of Epidemiology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Alqahtani S, Alqahtani S, Saquib Q, Mohiddin F. Toxicological impact of microplastics and nanoplastics on humans: understanding the mechanistic aspect of the interaction. FRONTIERS IN TOXICOLOGY 2023; 5:1193386. [PMID: 37521752 PMCID: PMC10375051 DOI: 10.3389/ftox.2023.1193386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Plastic is a pervasive material that has become an indispensable part of our daily lives and is used in various commercial products. However, plastic waste has significantly impacted the environment, accumulating in water and land ecosystems and harming all forms of life. When plastic degrades, it breaks down into smaller particles called microplastics (MPs), which can further breakdown into nanoplastics (NPs). Due to their small size and potential toxicity to humans, NPs are of particular concern. During the COVID-19 pandemic, the production of plastic had reached unprecedented levels, including essential medical kits, food bags, and personal protective equipment (PPE), which generate MPs and NPs when burned. MPs and NPs have been detected in various locations, such as air, food, and soil, but our understanding of their potential adverse health effects is limited. This review aims to provide a comprehensive overview of the sources, interactions, ecotoxicity, routes of exposure, toxicity mechanisms, detection methods, and future directions for the safety evaluation of MPs and NPs. This would improve our understanding of the impact of MPs and NPs on our health and environment and identify ways to address this global crisis.
Collapse
Affiliation(s)
- Saeed Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Shaherah Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayaz Mohiddin
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| |
Collapse
|
19
|
Styles JN, Egorov AI, Griffin SM, Klein J, Scott JW, Sams EA, Hudgens E, Mugford C, Stewart JR, Lu K, Jaspers I, Keely SP, Brinkman NE, Arnold JW, Wade TJ. Greener residential environment is associated with increased bacterial diversity in outdoor ambient air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163266. [PMID: 37028654 DOI: 10.1016/j.scitotenv.2023.163266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
In urban areas, exposure to greenspace has been found to be beneficial to human health. The biodiversity hypothesis proposed that exposure to diverse ambient microbes in greener areas may be one pathway leading to health benefits such as improved immune system functioning, reduced systemic inflammation, and ultimately reduced morbidity and mortality. Previous studies observed differences in ambient outdoor bacterial diversity between areas of high and low vegetated land cover but didn't focus on residential environments which are important to human health. This research examined the relationship between vegetated land and tree cover near residence and outdoor ambient air bacterial diversity and composition. We used a filter and pump system to collect ambient bacteria samples outside residences in the Raleigh-Durham-Chapel Hill metropolitan area and identified bacteria by 16S rRNA amplicon sequencing. Geospatial quantification of total vegetated land or tree cover was conducted within 500 m of each residence. Shannon's diversity index and weighted UniFrac distances were calculated to measure α (within-sample) and β (between-sample) diversity, respectively. Linear regression for α-diversity and permutational analysis of variance (PERMANOVA) for β-diversity were used to model relationships between vegetated land and tree cover and bacterial diversity. Data analysis included 73 ambient air samples collected near 69 residences. Analysis of β-diversity demonstrated differences in ambient air microbiome composition between areas of high and low vegetated land (p = 0.03) and tree cover (p = 0.07). These relationships remained consistent among quintiles of vegetated land (p = 0.03) and tree cover (p = 0.008) and continuous measures of vegetated land (p = 0.03) and tree cover (p = 0.03). Increased vegetated land and tree cover were also associated with increased ambient microbiome α-diversity (p = 0.06 and p = 0.03, respectively). To our knowledge, this is the first study to demonstrate associations between vegetated land and tree cover and the ambient air microbiome's diversity and composition in the residential ecosystem.
Collapse
Affiliation(s)
- Jennifer N Styles
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, Division of Allergy and Immunology, Chapel Hill, NC, USA.
| | - Andrey I Egorov
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Shannon M Griffin
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Cincinnati, OH, USA
| | - Jo Klein
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA; North Carolina State University Libraries, Raleigh, NC, USA
| | - J W Scott
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Elizabeth A Sams
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Edward Hudgens
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| | - Chris Mugford
- United States Public Health Service Commissioned Corps, Research Triangle Park, NC, USA; The Agency for Toxic Substances and Disease Registry, Boston, MA, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Center for Environmental Measurement and Monitoring, Office of Research and Development, Cincinnati, OH, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Office of Research and Development, Cincinnati, OH, USA
| | - Jason W Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Timothy J Wade
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Li Y, Hua Y, Ji Z, Wu Z, Fan J, Liu Y. Dual-bionic nano-groove structured nanofibers for breathable and moisture-wicking protective respirators. J Memb Sci 2023; 672:121257. [PMID: 36593802 PMCID: PMC9797220 DOI: 10.1016/j.memsci.2022.121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuezhen Hua
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zekai Ji
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Zheng Wu
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
21
|
Asri AK, Liu T, Tsai HJ, Lee HY, Pan WC, Wu CD, Wang JY. Residential greenness and air pollution's association with nasal microbiota among asthmatic children. ENVIRONMENTAL RESEARCH 2023; 219:115095. [PMID: 36535395 DOI: 10.1016/j.envres.2022.115095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Both greenness and air pollution have widely been linked with asthma. However, the potential mechanism has rarely been investigated. This study aimed to identify the association between residential greenness and air pollution (fine particulate matter [PM2.5]; nitrogen dioxide [NO2]; ozone [O3]) with nasal microbiota among asthmatic children during the recovery phase. The normalized difference vegetation index was used to assess the extent of residential greenness. Spatiotemporal air pollution variation was estimated using an integrated hybrid kriging-LUR with the XG-Boost algorithm. These exposures were measured in 250-m intervals for four incremental buffer ranges. Nasal microbiota was collected from 47 children during the recovery phase. A generalized additive model controlled for various covariates was applied to evaluate the exposure-outcome association. The lag-time effect of greenness and air pollution related to the nasal microbiota also was examined. A significant negative association was observed between short-term exposure to air pollution and nasal bacterial diversity, as a one-unit increment in PM2.5 or O3 significantly decreased the observed species (PM2.5: -0.59, 95%CI -1.13, -0.05 and O3: -0.93, 95%CI -1.54, -0.32) and species richness (PM2.5: -0.64, 95%CI -1.25, -0.02 and O3: -0.68, 95%CI -1.43, -0.07). Considering the lag-time effect, we found a significant positive association between greenness and both the observed species and species richness. In addition, we identified a significant negative association for all pollutants with the observed species richness. These findings add to the evidence base of the links between nasal microbiota and air pollution and greenness. This study establishes a foundation for future studies of how environmental exposure plays a role in nasal microbiota, which in turn may affect the development of asthma.
Collapse
Affiliation(s)
- Aji Kusumaning Asri
- Department of Geomatics, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan.
| | - Hsiao-Yun Lee
- Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan.
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan.
| | - Jiu-Yao Wang
- Department of Pediatrics, National Cheng Kung University, Tainan, 701, Taiwan; Allergy, Immunology, and Microbiome (A.I.M.) Research Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
22
|
Zhou XY, Li H, Zhou SYD, Zhang YS, Su JQ. City-scale distribution of airborne antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159176. [PMID: 36191698 DOI: 10.1016/j.scitotenv.2022.159176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Concerns around urban air quality have been increasing worldwide due to large-scale urbanization. A large volume of work has been focused on the chemical pollutants in the air and their impacts on human health. However, the profile of airborne microbial contaminants, especially antibiotic resistance genes (ARGs), is largely understudied. Here, high-throughput quantitative PCR (HT-qPCR) was employed to explore the temporal and spatial distribution of airborne ARGs from 11 sites with various functional zones and different urbanization levels within Xiamen, China. A total of 104 unique ARGs and 23 mobile genetic elements (MGEs) were detected across all samples. Temporal shift was observed in the distribution of ARG profiles, with significantly higher relative abundance of ARGs detected in summer than that in spring. Temperature is the key predictor of the total relative abundance of ARGs and MGEs in summer, while PM2.5 and PM10 were the two most important factors affecting the abundance in spring. Our findings suggest that urban aerosols accommodate rich and dynamic ARGs and MGEs, and emphasize the role of temperature, air quality and anthropogenic activities in shaping the profile of ARGs.
Collapse
Affiliation(s)
- Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yu-Sen Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
23
|
Li H, Liu PQ, Luo QP, Ma JJ, Yang XR, Yan Y, Su JQ, Zhu YG. Spatiotemporal variations of microbial assembly, interaction, and potential risk in urban dust. ENVIRONMENT INTERNATIONAL 2022; 170:107577. [PMID: 36244231 DOI: 10.1016/j.envint.2022.107577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Community and composition of dust-borne microbes would affect human health and are regulated by microbial community assembly. The dust in kindergarten is always collected to evaluate the microbial exposure of children, yet the microbial assembly, their interactions, and potential pathogens in kindergarten dust remain unclear. Here, we aim to investigate the microbial community assembly and structures, and potential bacterial pathogens in outdoor dust of kindergartens, and reveal the factors influencing the assembly and composition of microbial community. A total of 118 urban dust samples were collected on the outdoor impervious surfaces of 59 kindergartens from different districts of Xiamen in January and June 2020. We extracted microbial genomic DNA in these dusts and characterized the microbial (i.e., bacteria and fungi) community compositions and diversities using target gene-based (16S rRNA genes for bacterial community and ITS 2 regions for fungal community) high-throughput sequencing. Potential bacterial pathogens were identified and the interactions between microbes were determined through a co-occurrence network analysis. Our results showed the predominance of Actinobacteria and α-Proteobacteria in bacterial communities and Capnodiales in fungal communities. Season altered microbial assembly, composition, and interactions, with both bacterial and fungal communities exhibiting a higher heterogeneity in summer than those in winter. Although stochastic processes predominated in bacterial and fungal community assembly, the season-depended environmental factors (e.g., temperature) and interactions between microbes play important roles in dust microbial community assembly. Potential bacterial pathogens were detected in all urban dust, with significantly higher relative abundance in summer than that in winter. These results indicated that season exerted more profound effects on microbial community composition, assembly, and interactions, and suggested the seasonal changes of potential risk of microbes in urban dust. Our findings provide new insights into microbial community, community assembly, and interactions between microbes in the urban dust, and indicate that taxa containing opportunistic pathogens occur commonly in urban dust.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Pei-Qin Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiu-Ping Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jin-Jin Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
24
|
Li H, Zhou SYD, Neilson R, An XL, Su JQ. Skin microbiota interact with microbes on office surfaces. ENVIRONMENT INTERNATIONAL 2022; 168:107493. [PMID: 36063613 DOI: 10.1016/j.envint.2022.107493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The indoor environment is recognized as a potential contributor to human health impacts through resident microbiomes. Indoor surface microbial communities are formed from several sources, environmental and anthropogenic. In this study, we characterized the bacterial and fungal communities from various sources typical of a working office environment including dust, fingers, and computer keyboards and mice. The composition of the dust bacterial community was significantly different from the other tested surfaces (P < 0.05), whereas the dust fungal community was only significantly different from fingers (P < 0.05). Bacterial and fungal communities were both shaped by deterministic processes, and bacterial communities had a higher migration rate. Results of a network analysis showed that the microbial community interactions of keyboards and mice were mainly competitive. Fast expectation-maximization microbial source tracking (FEAST) identified the sources of > 70 % of the keyboard and mouse microbial communities. Biomarkers for each sample types were identified by LDA Effect Size (LEfSE) analysis, some of which were soil-derived and potential anthropogenic pathogens, indicating the potential for exchange of microbes among outdoor, human and indoor surfaces. The current study shows that the source of microorganisms at the office interface is highly traceable and that their migration is linked to human activity. The migration of potentially pathogenic microbes were identified, emphasising the importance of personal hygiene.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
25
|
Jiang X, Wang C, Guo J, Hou J, Guo X, Zhang H, Tan J, Li M, Li X, Zhu H. Global Meta-analysis of Airborne Bacterial Communities and Associations with Anthropogenic Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9891-9902. [PMID: 35785964 PMCID: PMC9301914 DOI: 10.1021/acs.est.1c07923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Airborne microbiome alterations, an emerging global health concern, have been linked to anthropogenic activities in numerous studies. However, these studies have not reached a consensus. To reveal general trends, we conducted a meta-analysis using 3226 air samples from 42 studies, including 29 samples of our own. We found that samples in anthropogenic activity-related categories showed increased microbial diversity, increased relative abundance of pathogens, increased co-occurrence network complexity, and decreased positive edge proportions in the network compared with the natural environment category. Most of the above conclusions were confirmed using the samples we collected in a particular period with restricted anthropogenic activities. Additionally, unlike most previous studies, we used 15 human-production process factors to quantitatively describe anthropogenic activities. We found that microbial richness was positively correlated with fine particulate matter concentration, NH3 emissions, and agricultural land proportion and negatively correlated with the gross domestic product per capita. Airborne pathogens showed preferences for different factors, indicating potential health implications. SourceTracker analysis showed that the human body surface was a more likely source of airborne pathogens than other environments. Our results advance the understanding of relationships between anthropogenic activities and airborne bacteria and highlight the role of airborne pathogens in public health.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chunhui Wang
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Jinyuan Guo
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiaheng Hou
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Xiao Guo
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Haoyu Zhang
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Jie Tan
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Mo Li
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- School
of Life Sciences, Peking University, Beijing 100871, China
- Beijing
National Day School, Beijing 100039, China
| | - Huaiqiu Zhu
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30332, United States
- . Phone: 8610-6276-7261
| |
Collapse
|
26
|
Occurrence of Trace Heavy Metals in Leaves of Urban Greening Plants in Fuxin, Northeast China: Spatial Distribution & Plant Purification Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14148445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Trace element analysis, in the leaves of five kinds of greening plants (Buxus, Picea, Pine, Juniperus and Platycladus) from eight uniform distribution sites in Fuxin, a typical traditional resource-based city in northeast China, was carried out to study the purification ability difference of urban greening plants and spatial distribution tendency of heavy metal elements in the whole city area. In terms of the purification ability analysis, Platycladus had a better environmental purification capacity for Cd, As, Pb and Cr. Juniperus also showed a certain environmental purification potential for As, Pb and Cu. Furthermore, Mn has the highest point mean of element content in all plants, ranging from 64.044–114.290 µg/g, and the MnPA content of Buxus and Juniperus was 60% higher than that of the other three plants, which showed a better Mn purification effect. In terms of the spatial distribution tendency analysis, point pollution source location and the urban climate factors (mainly for the wind factor) were the main controlling factors. However, the specificity of Mn distribution suggested that its polluting behavior had a close relation with minerals transportation during exploiting and transferring in the city’s coal mining industry in the past.
Collapse
|
27
|
Tan H, Liu X, Yin S, Zhao C, Su L, Li X, Khalid M, Setälä H, Hui N. Immune-mediated disease associated microbial community responded to PAH stress in phyllosphere of roadside greenspaces in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118379. [PMID: 34662594 DOI: 10.1016/j.envpol.2021.118379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms in urban greenspaces play key roles in ecosystem service provision and potentially influence human health. Increasing evidence suggests that anthropogenic disturbance poses constant stress on urban microbial communities, yet, as previous studies have focused on non-contaminated greenspaces, it has remained largely unknown how microorganisms respond to anthropogenic stress in roadside greenspaces with contamination. Our previous effort determined phyllosphere PAHs of camphor trees in 84 sites of roadside greenspaces along the urban-rural gradient in Shanghai. Here, we further investigated the phyllosphere microbial communities (PMCs) of the same sites across the same urban categories, including urban, suburban, and rural areas using high-throughput DNA sequencing. We aimed to explore how PMCs, especially those associated with immune-mediated diseases (IMDs), were affected by PAHs and the surrounding land-use types. We found that several microorganisms associated with increasing IMD risk were stimulated by PAHs. The composition of PMCs differed between the three urban categories which can be largely explained by the variation of phyllosphere PAH concentration and the surrounding land-use types. Similar to our previous study, suburban areas were linked with the most potential adverse health effects, where we observed the lowest bacterial diversity, the highest relative abundance of IMD-associated bacteria, and the highest relative abundance of Pathotroph. Urban green-blue infrastructure (GBI) was positively correlated with the diversity of PMCs, whereas urban grey infrastructure tended to homogenize PMCs. Notably, GBI also reduced the relative abundance of IMD-associated and pathogenic microbes, indicating the potential health benefits of GBI in land-use planning. Taken together, our study emphasizes the need to further investigate environmental communities in contaminated traffic environments, as human microbiomes are directly exposed to risky microorganisms.
Collapse
Affiliation(s)
- Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Heikki Setälä
- Department of Environmental Sciences, University of Helsinki, FIN-15140, Lahti, Finland.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Department of Environmental Sciences, University of Helsinki, FIN-15140, Lahti, Finland.
| |
Collapse
|
28
|
Xu C, Chen H, Liu Z, Sui G, Li D, Kan H, Zhao Z, Hu W, Chen J. The decay of airborne bacteria and fungi in a constant temperature and humidity test chamber. ENVIRONMENT INTERNATIONAL 2021; 157:106816. [PMID: 34399240 DOI: 10.1016/j.envint.2021.106816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Despite substantial research to profile the microbial characteristics in the atmosphere, the changing metabolism underpinning microbial successional dynamics remains ambiguous. Herein, we applied qPCR, high-throughput sequencing of the genes encoding 16S and ITS rRNA to render the bacterial/fungal dynamics of ambient PM2.5 filters maintained at constant conditions of temperature (20 ± 2 °C) and humidity (50 ± 5%). The incubation experiments which lasted for 50 days aim to simulate a metabolic process of microbe in two types PM2.5 (polluted and non-polluted). The results show that microbial community species in polluted PM2.5 had faster decay rates, more bacterial diversity and less fungal community compared to the non-polluted ones. For bacteria, the proportion of anaerobic species is higher than aerobic ones, and their performance of contain mobile elements, form-biofilms, and pathogenic risks declined rapidly as times went by. Whereas for fungi, saprotroph species occupied about 70% of the population, resulting in a specified peak of abundance due to the adequacy nutrients supplied by the apoptosis cells. Combining the classified microbial species, we found stable community structure and the volatile ones related to the various metabolic survival strategies during different time. Without the input of peripheral environment, the health risks of airborne microbe descend to a healthy level after 20 days, implying their biologic effectiveness was about 20 days no matter the air is polluted or not. This study provided new insights into the different metabolic survival of airborne microorganisms in ideal and stable conditions.
Collapse
Affiliation(s)
- Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Zhe Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wei Hu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
29
|
El-Tanbouly R, Hassan Z, El-Messeiry S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front Mol Biosci 2021; 8:709395. [PMID: 34277711 PMCID: PMC8279815 DOI: 10.3389/fmolb.2021.709395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The last two decades have seen the discovery of novel retroviruses that have resulted in severe negative consequences for human health. In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmission rate and severe effects on human health, with 5% infected persons requiring hospitalisation and 3.81 million deaths to date globally. Aerosol particles containing virions are considered the main source of SARS CoV-2 transmission in this pandemic, with increased infection rates in confined spaces. Consequently, public and private institutions had to institute mitigation measures including the use of facial masks and social distancing to limit the spread of the virus. Moreover, the role of air purification and bio-decontamination is understood as being essential to mitigate viral spread. Various techniques can be applied to bio-decontaminate the air such as the use of filtration and radiation; however, these methods are expensive and not feasible for home use. Another method of air purification is where indoor plants can purify the air by the removal of air pollutants and habituated airborne microbes. The use of indoor plants could prove to be a cost-efficient way of indoor air-purification that could be adapted for a variety of environments with no need for special requirements and can also add an aesthetic value that can have an indirect impact on human health. In this review, we discuss the emergence of the COVID-19 pandemic and the currently used air purification methods, and we propose the use of indoor plants as a new possible eco-friendly tool for indoor air purification and for reducing the spread of COVID-19 in confined places.
Collapse
Affiliation(s)
- Rania El-Tanbouly
- Department of Floriculture, Ornamental Horticulture and Landscape Design, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ziad Hassan
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|