1
|
Qin X, Li Y, Zhang H, Liu W, Zhao X. Interactions among Cupressaceae pollen, air pollutants and meteorology in the urban and suburban areas of Beijing, China. Sci Rep 2025; 15:14184. [PMID: 40269145 PMCID: PMC12019579 DOI: 10.1038/s41598-025-98316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atmospheric pollutants alter the physicochemical properties of pollen allergens, and raise a high risk of co-exposure to more aeroallergens in the allergic population. It is necessary to reveal the relationships between them and the impacts of meteorology on them both. Herein, synchronous data of aerobiology, pollution and meteorology at the same location are used to investigate the correlation between Cupressaceae pollen (major allergen in Norther China) and atmospheric pollutants, and their association with meteorological factors at different timescales in the urban and suburban areas of Beijing, China. In this research, the correlation between allergenic pollen, air pollutants and meteorological factors may display distinct patterns at daily and hourly timescales. Daily concentration of Cupressaceae pollen was positively correlated with PM2.5 and O3. Hourly pollen concentration exhibited positive correlation with NOx and PM2.5 during high-pollen episodes. Increasing temperature and decreasing relative humidity after sunrise facilitate pollination, causing hourly pollen peak. Temperature exhibited a strong positive correlation with daily and hourly O3 concentrations. Highly humid conditions largely decreased allergenic pollen and O3 concentrations but increased NOx and PM2.5 concentrations. In the urban area, local winds considerably impacting on hourly pollen peaks were associated with high levels of NOx and PM2.5. Concentration weighted trajectory (CWT) results indicated that allergenic pollen and O3 may have some common potential source areas. This research will help us to get a better understanding of the linkage between allergenic pollen and air pollutants, and their dynamics under varying meteorological conditions, and provide effective support on addressing respiratory allergies on the risk of co-exposure for allergenic pollen and air pollutants in the urban and suburban areas of Beijing city.
Collapse
Affiliation(s)
- Xiaoxin Qin
- Guangdong Provincial Key Laboratory of Eco-Environmental Studies and Low-Carbon Agriculture in Peri-Urban Areas, Zhaoqing University, Zhaoqing, 526061, China.
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Yiyin Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Hongxing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Liu
- Meteorological Bureau of Haidian District, Beijing, 100081, China
| | - Xinyi Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Burbank AJ, Penrice AJ, Rorie AC, Oh JW. Climate Change and Allergens: Current and Future Impacts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00212-0. [PMID: 40074172 DOI: 10.1016/j.jaip.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Climate change will continue to impact allergic diseases in direct and indirect ways. Rising global temperatures are contributing to increased duration of pollen seasons, altered aeroallergen production and potency of allergens, and changes in the geographic distribution of allergenic plants that drive increased human exposure to aeroallergens and increased allergic disease morbidity. Climate change is inextricably linked with air pollution, the latter of which was shown to act as an adjuvant for allergic inflammatory processes promoting allergic sensitization. Pollutant exposure is also linked with higher prevalence of childhood asthma and exacerbation of existing asthma and allergic disease. Increased exposure, or co-exposure, to aeroallergens and air pollution as a result of climate change will result in higher rates of sensitization, and incident allergic disease remains uncertain. Vulnerable populations, including children, the elderly, and marginalized groups, are likely to be disproportionately affected. This review summarizes the current knowledge of the effects of climate change on aeroallergens, and by extension, allergic disease. Addressing these health challenges requires a comprehensive understanding of the interaction between climate change, allergens, pollution and public health, alongside proactive measures to mitigate these effects.
Collapse
Affiliation(s)
- Allison J Burbank
- Department of Pediatrics, Division of Allergy and Immunology, University of North Carolina, Chapel Hill, NC.
| | - Alexander J Penrice
- Department of Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - Andrew C Rorie
- Department of Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - Jae-Won Oh
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
3
|
Trinel M, Dubois C, Burger P, Plainfossé H, Azoulay S, Verger‐Dubois G, Fernandez X. Phytochemical Investigation of an Ostrya carpinifolia L. Extract: An Effective Anti-Pollution Cosmetic Active Ingredient. Chem Biodivers 2025; 22:e202402139. [PMID: 39316583 PMCID: PMC11741155 DOI: 10.1002/cbdv.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Ostrya carpinifolia L., a member of the Betulaceae family, is a tree endemic to the Mediterranean basin that is well known for the hardness of its wood. In this study, we assess the anti-pollution activities of a hydroalcoholic extract of O. carpinifolia twigs using several judiciously selected in vitro cosmetic bioassays. The extract's capacity to counteract excessive production of reactive oxygen species following a cutaneous exposure to atmospheric pollution was evaluated using a combination of several antioxidant assays: DPPH, FRAP and β-carotene bleaching assays. These antioxidant assays were complemented by anti-elastase, anti-collagenase, anti-hyaluronidase and anti-lipoxygenase assays to evaluate the capacity of the extract to preserve the integrity of the skin. The hydroalcoholic extract of O. carpinifolia demonstrates intriguing biological antioxidant activities, with approximately 50 % inhibition observed in DPPH and β-carotene assays. Furthermore, its anti-lipoxygenase, anti-hyaluronidase, and anti-collagenase activities are noteworthy, exceeding 50 % inhibition. The two major compounds of O. carpinifolia ethanolic extract were isolated and identified as myricitrin (1) and quercitrin (2). Myricitrin and quercitrin exhibit antioxidant and anti-hyaluronidase properties; we explored the correlation of these properties with the activity of the crude hydroalcoholic extract. Notably, these compounds have not been previously described in the Ostrya genus.
Collapse
Affiliation(s)
- Manon Trinel
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | - Camille Dubois
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | - Pauline Burger
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| | - Hortense Plainfossé
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| | - Stéphane Azoulay
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | | | - Xavier Fernandez
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| |
Collapse
|
4
|
Singhal RP, Khandelwal S, Gupta AB, Singh N, Singh V. Exploring the correlation between airborne pollen levels and respiratory conditions in Jaipur, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-13. [PMID: 39494736 DOI: 10.1080/09603123.2024.2423728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Airborne pollen, a significant natural pollutant, restricts outdoor activities and impacts quality of life for sensitive individuals with pulmonary disorders. This study examines trends in airborne pollen concentrations and explores whether air pollution, pollen concentration, or both impact patient counts. The annual pollen trend in Jaipur shows peaks in pollen concentration in March (due to trees, 66%), September (due to weeds, 45%), and December (due to grass, 50%). Among the fifteen taxa examined, Holoptelea integrifolia is the largest pollen emitter in Jaipur, followed by Poaceae, among others. The count of patients arriving for clinical consultations in a hospital shows a strong and positive correlation with weed (Asteraceae spp. and Argemone mexicana) and grass pollen. A linear regression equation is developed (R2 value = 0.835) for forecasting consulting patient counts based on Cassia siamea pollen concentration. This can assist hospital administration in resource management, especially during peak allergy seasons.
Collapse
Affiliation(s)
- Rajat Prakash Singhal
- Department of Civil Engineering, Malaviya National Institute Technology, Jaipur, India
| | - Sumit Khandelwal
- Department of Civil Engineering, Malaviya National Institute Technology, Jaipur, India
| | - A B Gupta
- Department of Civil Engineering, Malaviya National Institute Technology, Jaipur, India
| | | | | |
Collapse
|
5
|
Zeldin J, Ratley G, Shobnam N, Myles IA. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J Allergy Clin Immunol 2024; 154:861-873. [PMID: 39151477 PMCID: PMC11456380 DOI: 10.1016/j.jaci.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by dry, pruritic skin and significant atopic and psychological sequelae. Although AD has always been viewed as multifactorial, early research was dominated by overlapping genetic determinist views of either innate barrier defects leading to inflammation or innate inflammation eroding skin barrier function. Since 1970, however, the incidence of AD in the United States has increased at a pace that far exceeds genetic drift, thus suggesting a modern, environmental etiology. Another implicated factor is Staphylococcus aureus; however, a highly contagious microorganism is unlikely to be the primary etiology of a noncommunicable disease. Recently, the roles of the skin and gut microbiomes have received greater attention as potentially targetable drivers of AD. Here too, however, dysbiosis on a population scale would require induction by an environmental factor. In this review, we describe the evidence supporting the environmental hypothesis of AD etiology and detail the molecular mechanisms of each of the AD-relevant toxins. We also outline how a pollution-focused paradigm demands earnest engagement with environmental injustice if the field is to meaningfully address racial and geographic disparities. Identifying specific toxins and their mechanisms can also inform in-home and national mitigation strategies.
Collapse
Affiliation(s)
- Jordan Zeldin
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Grace Ratley
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Nadia Shobnam
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
6
|
Verscheure P, Honnay O, Speybroeck N, Daelemans R, Bruffaerts N, Devleesschauwer B, Ceulemans T, Van Gerven L, Aerts R, Schrijvers R. Impact of environmental nitrogen pollution on pollen allergy: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164801. [PMID: 37321510 DOI: 10.1016/j.scitotenv.2023.164801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The current rise in the prevalence of allergies to aeroallergens is incompletely understood and attributed to interactions with environmental changes and lifestyle changes. Environmental nitrogen pollution might be a potential driver of this increasing prevalence. While the ecological impact of excessive nitrogen pollution has been widely studied and is relatively well understood, its indirect effect on human allergies is not well documented. Nitrogen pollution can affect the environment in various ways, including air, soil, and water. We aim to provide a literature overview of the nitrogen-driven impact on plant communities, plant productivity, and pollen properties and how they lead to changes in allergy burden. We included original articles investigating the associations between nitrogen pollution, pollen, and allergy, published in international peer-reviewed journals between 2001 and 2022. Our scoping review found that the majority of studies focus on atmospheric nitrogen pollution and its impact on pollen and pollen allergens, causing allergy symptoms. These studies often examine the impact of multiple atmospheric pollutants and not just nitrogen, making it difficult to determine the specific impact of nitrogen pollution. There is some evidence that atmospheric nitrogen pollution affects pollen allergy by increasing atmospheric pollen levels, altering pollen structure, altering allergen structure and release, and causing increased allergenic reactivity. Limited research has been conducted on the impact of soil and aqueous nitrogen pollution on pollen allergenic reactivity. Further research is needed to fill the current knowledge gap about the impact of nitrogen pollution on pollen and their related allergic disease burden.
Collapse
Affiliation(s)
- Paulien Verscheure
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Olivier Honnay
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
| | - Niko Speybroeck
- Institut de Recherche Santé et Société, UC Louvain, Louvain-la-Neuve, Belgium
| | - Robin Daelemans
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
| | - Nicolas Bruffaerts
- Department of Mycology & Aerobiology, Sciensano (Belgian Institute for Health), Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano (Belgian Institute for Health), Brussels, Belgium; Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Tobias Ceulemans
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium; Department Biology, UAntwerpen, Antwerpen, Belgium
| | - Laura Van Gerven
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head & Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Raf Aerts
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute for Health), Brussels, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Zhao Y, Sun Z, Xiang L, An X, Hou X, Shang J, Han L, Ye C. Effects of pollen concentration on allergic rhinitis in children: A retrospective study from Beijing, a Chinese megacity. ENVIRONMENTAL RESEARCH 2023; 229:115903. [PMID: 37080269 DOI: 10.1016/j.envres.2023.115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
With global climate change and rapid urbanization, the prevalence of allergic diseases caused by pollen is rising dramatically worldwide with unprecedented complexity and severity, especially for children in mega-cities. However, because of the lack of long time-series pollen concentrations data, the accurate evaluation of the impact of pollen on allergic rhinitis (AR) was scarce in the Chinese metropolis. A generalized additive model was used to assess the effect of pollen concentration on pediatric AR outpatient visits in Beijing from 2014 to 2019. A stratified analysis of 10 pollen species and age-gender-specific groups was also conducted during the spring and summer-autumn peak pollen periods separately. Positive associations between pollen concentration and pediatric AR varied with the season and pollen species were detected. Although the average daily pollen concentration is higher during the spring tree pollen peak, the influence was stronger at the summer-autumn weed pollen peak with the maximum relative risk 1.010 (95% CI 1.009, 1.011), which was higher than the greatest relative risk, 1.003 (95% CI 1.002, 1.004) in the spring peak. The significant adverse effects can be sustained to lag10 during the study period, and longer in the summer-autumn peak (lag13) than in the spring peak (lag8). There are thresholds for the health effects and they varied between seasons. The significant effect appeared when the pollen concentration was higher than 3.74 × 105 grain·m-2·d-1 during the spring tree pollen peaks and 4.70 × 104 grain·m-2·d-1 during the summer-autumn weed pollen peaks. The stratified results suggested that the species-specific effects were heterogeneous. It further highlights that enough attention should be paid to the problem of pollen allergy in children, especially school-aged children aged 7-18 years and weed pollen in the summer-autumn peak pollen period. These findings provide a more accurate reference for the rational coordination of medical resources and improvement of public health.
Collapse
Affiliation(s)
- Yuxin Zhao
- Nanjing University of Information Science & Technology, School of Atmospheric Physics Nanjing, 210044, Jiangsu Province, China; State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Li Xiang
- Children's National Medical Center, Department of Anaphylaxis, Beijing Children's Hospital- Capital Medical University, Key Laboratory of Pediatric Major Diseases-Ministry of Education, National Clinical Medical Research Center for Respiratory Diseases, Beijing, 100045, China.
| | - Xingqin An
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| | - Xiaoling Hou
- Children's National Medical Center, Department of Anaphylaxis, Beijing Children's Hospital- Capital Medical University, Key Laboratory of Pediatric Major Diseases-Ministry of Education, National Clinical Medical Research Center for Respiratory Diseases, Beijing, 100045, China
| | - Jing Shang
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Ling Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Caihua Ye
- Beijing Meteorological Service Center, Beijing Meteorological Bureau, Beijing, 100089, China
| |
Collapse
|
8
|
Gilles S, Meinzer M, Landgraf M, Kolek F, von Bargen S, Pack K, Charalampopoulos A, Ranpal S, Luschkova D, Traidl-Hoffmann C, Jochner-Oette S, Damialis A, Büttner C. Betula pendula trees infected by birch idaeovirus and cherry leaf roll virus: Impacts of urbanisation and NO 2 levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121526. [PMID: 37001600 DOI: 10.1016/j.envpol.2023.121526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Viruses are frequently a microbial biocontaminant of healthy plants. The occurrence of the infection can be also due to environmental stress, like urbanisation, air pollution and increased air temperature, especially under the ongoing climate change. The aim of the present study was to investigate the hypothesis that worsened air quality and fewer green areas may favour the higher frequency of common viral infections, particularly in a common tree in temperate and continental climates, Betula pendula ROTH. We examined 18 trees, during the years 2015-2017, the same always for each year, in the region of Augsburg, Germany. By specific PCR, the frequency of two viruses, Cherry leaf roll virus (CLRV, genus Nepovirus, family Secoviridae), which is frequent in birch trees, and a novel virus tentatively named birch idaeovirus (BIV), which has been only recently described, were determined in pollen samples. The occurrence of the viruses was examined against the variables of urban index, air pollution (O3 and NO2), air temperature, and tree morphometrics (trunk perimeter, tree height, crown height and diameter). Generalized Non-linear models (binomial logit with backward stepwise removal of independent variables) were employed. During the study period, both CLRV and BIV were distributed widely throughout the investigated birch individuals. CLRV seemed to be rather cosmopolitan and was present independent of any abiotic factor. BIV's occurrence was mostly determined by higher values of the urban index and of NO2. Urban birch trees, located next to high-traffic roads with higher NO2 levels, are more likely to be infected by BIV. Increased environmental stress may lead to more plant viral infections. Here we suggest that this is particularly true for urban spaces, near high-traffic roads, where plants may be more stressed, and we recommend taking mitigation measures for controlling negative human interventions.
Collapse
Affiliation(s)
- Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Meike Meinzer
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Maria Landgraf
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Franziska Kolek
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Susanne von Bargen
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Kaja Pack
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| | - Athanasios Charalampopoulos
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Surendra Ranpal
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
| | - Daria Luschkova
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Susanne Jochner-Oette
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
| | - Athanasios Damialis
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Carmen Büttner
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Department of Phytomedicine, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
9
|
Stawoska I, Myszkowska D, Oliwa J, Skoczowski A, Wesełucha-Birczyńska A, Saja-Garbarz D, Ziemianin M. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. PLoS One 2023; 18:e0279826. [PMID: 36696393 PMCID: PMC9876359 DOI: 10.1371/journal.pone.0279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Pollen allergy becomes an increasing problem for humans, especially in the regions, where the air pollution level increases due to the traffic and urbanization. These factors may also affect the physiological activity of plants, causing changes in pollen allergenicity. The aim of the study was to estimate the influence of air pollutants on the chemical composition of birch pollen and the secondary structures of the Bet v1 protein. The research was conducted in seven locations in Malopolska region, South of Poland of a different pollution level. We have found slight fluctuations in the values of parameters describing the photosynthetic light reactions, similar spectra of leaf reflectance and the negligible differences in the discrimination values of the δ13C carbon isotope were found. The obtained results show a minor effect of a degree of pollution on the physiological condition B. pendula specimen. On the other hand, mean Bet v1 concentration measured in pollen samples collected in Kraków was significantly higher than in less polluted places (p = .03886), while FT-Raman spectra showed the most distinct variations in the wavenumbers characteristic of proteins. Pollen collected at sites of the increased NOx and PM concentration, show the highest percentage values of potential aggregated forms and antiparallel β-sheets in the expense of α-helix, presenting a substantial impact on chemical compounds of pollen, Bet v1 concentration and on formation of the secondary structure of proteins, what can influence their functions.
Collapse
Affiliation(s)
- Iwona Stawoska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Dorota Myszkowska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Oliwa
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | | | | | - Diana Saja-Garbarz
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Ziemianin
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
10
|
Sheng Q, Zhou C, Liang Y, Zhang H, Song M, Zhu Z. Elevated NO 2 induces leaf defensive mechanisms in Bougainvillea spectabilis seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114292. [PMID: 36399992 DOI: 10.1016/j.ecoenv.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
With a growing economy, the living standard of people has improved which has led to increased use of urban motor vehicles globally. Consequently, the concentration of nitrogen dioxide (NO2) has increased in the ambient air, becoming a major pollutant in urban areas. Plant leaves can absorb, adsorb and fix nitrogen oxides to some extent. Interestingly, NO2 has been recognized as a positive/negative regulator of plant growth. To comprehensively understand the effect of NO2-induced pollution on plants, Bougainvillea spectabilis seedlings were fumigated with different concentrations of nitrogen dioxide (NO2) for a short period in the current study. Further, the induced morphological, physiological, and biochemical changes were measured in the treated as well as untreated seedlings. NO2 exposure caused yellow-brown spotting on the leaf blades in B. spectabilis, which could be the symptoms of oxidative damage. Our findings also reflected the changes in antioxidant enzyme activity and peroxidation of membrane lipids. In addition, the levels of osmotic regulatory substances were also found to be altered to different degrees. In addition, the activities of nitrogen metabolism-related enzymes varied, mainly affecting amino acid metabolism. Overall, the current study would provide a theoretical and scientific basis for selecting and allocating plants in NO2-contaminated areas to manage the pollutants level.
Collapse
Affiliation(s)
- Qianqian Sheng
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Chengyu Zhou
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuliang Liang
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huihui Zhang
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Min Song
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, College of Art & Design, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Climate Change Factors and the Aerobiology Effect. Immunol Allergy Clin North Am 2022; 42:771-786. [DOI: 10.1016/j.iac.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Ravindra K, Goyal A, Mor S. Pollen allergy: Developing multi-sectorial strategies for its prevention and control in lower and middle-income countries. Int J Hyg Environ Health 2022; 242:113951. [PMID: 35334435 DOI: 10.1016/j.ijheh.2022.113951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
Pollen allergy is considered a major public health problem that causes morbidity and subsequently affects a patient's quality of life. Pollen due to their large size cannot enter the thoracic regions of the respiratory tract but can affect the nasopharyngeal mucous membrane. At the same time, the submicronic-pollen particles can act as respirable particles reaching deeper into the upper airways leading to exacerbation of asthma, chronic obstructive pulmonary disease (COPD) and other allergic reactions. Based on the existing literature, expanding evidence shows that climate change and air pollutants could affect the pollen number, morphology, season, allergen content, and distribution pattern. Hence, this will influence the prevalence and occurrence of allergies linked to pollen exposure. Being a part of biogenic pollutants, pollen allergens are not expected to diminish in the foreseeable future. Therefore, it is imperative that steps need to be strengthened to improve and optimize preventive/adaptive strategies. This paper aims to review the major causes of widespread allergy, identify the major gaps, and suggest key preventive/adaptive measures to address the onset and exacerbation of pollen-related allergic diseases with a major focus on lower and middle-income countries. The study also discusses how-to implement the prevention and control measures at the individual, health care communities and organizations, Local Governments, National/International Governments levels to decrease the risk of illnesses associated with pollen allergy.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Davey RL, Mattson EJ, Huffman JA. Heterogeneous nitration reaction of BSA protein with urban air: improvements in experimental methodology. Anal Bioanal Chem 2022; 414:4347-4358. [DOI: 10.1007/s00216-021-03820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
|
14
|
Ziemianin M, Waga J, Czarnobilska E, Myszkowska D. Changes in qualitative and quantitative traits of birch (Betula pendula) pollen allergenic proteins in relation to the pollution contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39952-39965. [PMID: 33765259 PMCID: PMC8310481 DOI: 10.1007/s11356-021-13483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 05/17/2023]
Abstract
Birch (Betula pendula) pollen causes inhalant allergy in about 20% of human population in Europe, most of which is sensitive to the main birch allergen, Bet v1. The aim of the study was to find out (i) whether and how the analysed birch individuals differ in regard to composition of individual subunits of pollen proteins and to protein content in these subunits; (ii) whether the level of particulate matter relates to concentration of Bet v1 allergen. Study was performed in Southern Poland, in 2017-2019. Pollen material was collected at 20 sites, of highly or less polluted areas. Protein composition was analysed by SDS-PAGE, while the concentration of Bet v1 was evaluated by ELISA. The obtained results were estimated at the background of the particulate matter (PM10) level and the birch pollen seasons in Kraków. The electrophoregrams of pollen samples collected at different sites showed huge differences in staining intensities of individual protein subunits, also among important birch allergens: Bet v1, Bet v2, Bet v6 and Bet v7. The level of Bet v1 was significantly higher in the pollen samples collected at the more polluted sites. While the birch pollen allergenic potential is determined, the both pollen exposure and the content of the main allergenic components should be considered, as factors causing immunological response and clinical symptoms manifestation in sensitive individuals.
Collapse
Affiliation(s)
- Monika Ziemianin
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland
| | - Jacek Waga
- Department of Plant Breeding, Physiology, and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Kraków, Poland
| | - Ewa Czarnobilska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland
| | - Dorota Myszkowska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland.
| |
Collapse
|
15
|
Farah J, Choël M, de Nadaï P, Balsamelli J, Gosselin S, Visez N. Organic and aqueous extraction of lipids from birch pollen grains exposed to gaseous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34527-34538. [PMID: 33651286 DOI: 10.1007/s11356-021-12940-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The lipid fraction of birch pollen grains (BPGs) is not yet fully described, although pollen lipid molecules may play a role in the allergic immune response. The mechanisms by which atmospheric pollutants modify allergenic pollen grains (PGs) are also far from being elucidated despite high potential effects on allergic sensitization. This work is a contribution to a better description of the lipid profile (both external and cytoplasmic) of BPGs and of alterations induced by gaseous air pollutants. Several lipid extractions were performed using organic and aqueous solvents on BPGs following exposure to ozone and/or nitrogen dioxide and under conditions favoring the release of internal lipids. Ozone reacted with alkenes to produce aldehydes and saturated fatty acids, while nitrogen dioxide was shown to be unreactive with lipids. NO2 exhibited a protective effect against the reactivity of alkenes with ozone, probably by competition for adsorption sites. The decreased reactivity of ozone during simultaneous exposure to NO2/O3 raised the possibility of a Langmuir-Hinshelwood mechanism. Oxidation reactions induced by exposure of BPGs to ozone did not substantially modify the extraction of lipids by aqueous solvent, suggesting that the bioaccessibility of lipids was not modified by oxidation. On the contrary, the rupture of PGs appeared to be a key factor in enhancing the bioaccessibility of bioactive lipid mediators (linoleic and α-linolenic acids) in an aqueous solution. The internal lipid fraction of BPGs has specific characteristics compared with external lipids, with more abundant hexadecanoic acid, tricosanol, and particularly unsaturated fatty acids (linoleic and α-linolenic acids). Several mechanisms of action of gaseous pollutants on allergenic pollen were identified in this study: gaseous air pollutants can (i) modify the external lipid fraction by reactivity of alkenes, (ii) adsorb on the surface of PGs and be a source of oxidative stress after inhalation of PGs, and (iii) promote the release of cytoplasmic bioactive lipids by facilitating pollen rupture.
Collapse
Affiliation(s)
- Jinane Farah
- University Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France
- Université Libanaise, Faculté de Santé Publique Section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| | - Marie Choël
- University Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000, Lille, France
| | - Patricia de Nadaï
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Joanne Balsamelli
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sylvie Gosselin
- University Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France
| | - Nicolas Visez
- University Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France.
- Université de Lille, PC2A bâtiment C11, Cité Scientifique, 596555, Villeneuve d'Ascq, France.
| |
Collapse
|
16
|
Cariñanos P, Foyo-Moreno I, Alados I, Guerrero-Rascado JL, Ruiz-Peñuela S, Titos G, Cazorla A, Alados-Arboledas L, Díaz de la Guardia C. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111963. [PMID: 33465718 DOI: 10.1016/j.jenvman.2021.111963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Pollen grains emitted by urban vegetation are the main primary biological airborne particles (PBAPs) which alter the biological quality of urban air and have a significant impact on human health. This work analyses the interactions which exist between pollen-type PBAPs, meteorological variables, and air pollutants in the urban atmosphere so that the complex relationships and trends in future scenarios of changing environmental conditions can be assessed. For this study, the 1992-2018 pollen data series from the city of Granada (southeast Spain) was used, in which the dynamics of the total pollen as well as the 8 main pollen types (Cupressaceae, Olea, Pinus, Platanus, Poaceae, Populus, Quercus and Urticaceae) were analysed. The trend analysis showed that all except Urticaceae trended upward throughout the series. Spearman's correlations with meteorological variables showed that, in general, the most influential variables on the pollen concentrations were the daily maximum temperature, relative humidity, water vapor pressure, global radiation, and insolation, with different effects on different pollen types. Parallel analysis by neural networks (ANN) confirmed these variables as the predominant ones, especially global radiation. The correlation with atmospheric pollutants revealed that ozone was the pollutant with the highest influence, although some pollen types also showed correlation with NO2, SO2, CO and PM10. The Generalized Linear Models (GLM) between pollen and pollutants also indicated O3 as the most prominent variable. These results highlight the active role that pollen-type PBAPs have on urban air quality by establishing their interactions with meteorological variables and pollutants, thereby providing information on the behaviour of pollen emissions under changing environmental conditions.
Collapse
Affiliation(s)
- Paloma Cariñanos
- Department of Botany. University of Granada, Spain; Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain.
| | - Inmaculada Foyo-Moreno
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Inmaculada Alados
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics II, University of Málaga, Spain
| | - Juan Luis Guerrero-Rascado
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Soledad Ruiz-Peñuela
- Department of Botany. University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Alberto Cazorla
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | | |
Collapse
|
17
|
Markevych I, Ludwig R, Baumbach C, Standl M, Heinrich J, Herberth G, de Hoogh K, Pritsch K, Weikl F. Residing near allergenic trees can increase risk of allergies later in life: LISA Leipzig study. ENVIRONMENTAL RESEARCH 2020; 191:110132. [PMID: 32853665 DOI: 10.1016/j.envres.2020.110132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND We investigated whether residing in places with higher greenness, more trees and more allergenic trees early in life increases the risk of allergic outcomes, and whether these associations differ depending on the concentration of air pollutants. METHODS The analytic sample included 631 children from the German birth cohort LISA Leipzig. Asthma and allergic rhinitis, sensitization to aeroallergens and food allergens, as well as confounders, were collected prospectively up to 15 years. Greenness was assessed by Normalized Difference Vegetation Index (NDVI). A tree registry was used to derive information on trees, which were classified into allergenic and non-allergenic. Annual average concentrations of nitrogen dioxide (NO2) and ozone were also used. Geographic exposures were assigned to home addresses at birth. Longitudinal associations were analysed using generalized estimating equations. RESULTS Medium and high numbers (tertiles) of trees and allergenic trees in a 500 m buffer around birth addresses were associated with increased odds of allergic rhinitis up to 15 years regardless of NDVI. These exposures were also related to higher odds of sensitization to aeroallergens. Associations with asthma and sensitization to food allergens were less consistent. Effect estimates for allergic rhinitis were stronger in the high tertile of NO2 compared to the low tertile, while an opposite tendency was observed for ozone. CONCLUSION We observed that early life residence in places with many trees, and allergenic trees specifically, may increase the prevalence of allergic rhinitis later in life. This association and its modification by air pollution should be pursued in further studies.
Collapse
Affiliation(s)
- Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Institute of Psychology, Jagiellonian University, Krakow, Poland.
| | - Romina Ludwig
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Faculty of Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany; Allergens in Ecosystems, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Karin Pritsch
- Allergens in Ecosystems, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Weikl
- Allergens in Ecosystems, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
18
|
Eguiluz‐Gracia I, Mathioudakis AG, Bartel S, Vijverberg SJH, Fuertes E, Comberiati P, Cai YS, Tomazic PV, Diamant Z, Vestbo J, Galan C, Hoffmann B. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020; 75:2170-2184. [PMID: 31916265 DOI: 10.1111/all.14177] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Air pollution and climate change have a significant impact on human health and well-being and contribute to the onset and aggravation of allergic rhinitis and asthma among other chronic respiratory diseases. In Westernized countries, households have experienced a process of increasing insulation and individuals tend to spend most of their time indoors. These sequelae implicate a high exposure to indoor allergens (house dust mites, pets, molds, etc), tobacco smoke, and other pollutants, which have an impact on respiratory health. Outdoor air pollution derived from traffic and other human activities not only has a direct negative effect on human health but also enhances the allergenicity of some plants and contributes to global warming. Climate change modifies the availability and distribution of plant- and fungal-derived allergens and increases the frequency of extreme climate events. This review summarizes the effects of indoor air pollution, outdoor air pollution, and subsequent climate change on asthma and allergic rhinitis in children and adults and addresses the policy adjustments and lifestyle changes required to mitigate their deleterious effects.
Collapse
Affiliation(s)
- Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA‐Hospital Regional Universitario de Malaga‐UMA Malaga Spain
| | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel Leibniz Lung Center Member of the German Research Center for Lung Research (DZL) Borstel Germany
- Department of Pathology and Medical Biology University Medical Center Groningen GRIAC Research Institute University of Groningen Groningen The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Elaine Fuertes
- National Heart and Lung Institute Imperial College London London UK
| | - Pasquale Comberiati
- Section of Paediatrics Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
| | - Yutong Samuel Cai
- Department of Epidemiology and Biostatistics MRC Centre for Environment and Health School of Public Health Imperial College London London UK
- The George Institute for Global Health University of Oxford Oxford UK
| | - Peter Valentin Tomazic
- Department of General ORL, Head and Neck Surgery Medical University of Graz Graz Austria
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Carmen Galan
- Department of Botany, Ecology and Plant Physiology International Campus of Excellence on Agrifood (ceiA3) University of Córdoba Córdoba Spain
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine Medical Faculty University of Düsseldorf Düsseldorf Germany
| |
Collapse
|
19
|
|
20
|
Hong Q, Zhou S, Zhao H, Peng J, Li Y, Shang Y, Wu M, Zhang W, Lu S, Li S, Yu S, Wang W, Wang Q. Allergenicity of recombinant Humulus japonicus pollen allergen 1 after combined exposure to ozone and nitrogen dioxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:707-715. [PMID: 29241157 DOI: 10.1016/j.envpol.2017.11.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Ozone (O3) and nitrogen dioxide (NO2) are thought to play primary roles in aggravating air pollution-induced health problems. However, the effects of joint O3/NO2 on the allergenicity of pollen allergens are unclear. Humulus japonicus pollen allergen 1 (Hum j1) is a profilin protein that causes widespread pollinosis in eastern Asia. In order to study the effects of combined O3/NO2 on the allergenicity of Hum j1, tandem six-histidine peptide tag (His6)-fused recombinant Hum j1 (rHum j1) was expressed in a prokaryotic system and purified through His6 affinity chromatography. The purified rHum j1 was used to immunize SD rats. Rat sera with high titers of IgG and IgE antibodies against rHum j1 were used for allergenicity quantification. The rHum j1 was exposed to O3/NO2, and changes in allergenicity of the exposed rHum j1 were assayed using the immunized rat antibodies. Tandem LC-MS/LC (liquid chromatography-mass spectrometer/liquid chromatography spectrometer) chromatography and UV and circular dichroism (CD) spectroscopy were used to study the structural changes in rHum j1. Our data demonstrated that a novel disulfide bond between the sulfhydryl groups of two neighboring cysteine molecules was formed after the rHum j1 exposure to joint O3/NO2, and therefore IgE-binding affinity was increased and the allergenicity was reinforced. Our results provided clues to elucidate the mechanism behind air pollution-induced increase in pollinosis prevalence.
Collapse
Affiliation(s)
- Qiang Hong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shumin Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiaxian Peng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuijun Li
- Shanghai Xuhui Center Hospital, Shanghai 200031, China
| | - Shen Yu
- Shanghai Xuhui Center Hospital, Shanghai 200031, China
| | - Weiqian Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Qingyue Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
21
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
22
|
Osborne NJ, Alcock I, Wheeler BW, Hajat S, Sarran C, Clewlow Y, McInnes RN, Hemming D, White M, Vardoulakis S, Fleming LE. Pollen exposure and hospitalization due to asthma exacerbations: daily time series in a European city. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1837-1848. [PMID: 28500390 PMCID: PMC5643363 DOI: 10.1007/s00484-017-1369-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 05/03/2023]
Abstract
Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission. Models were adjusted for temperature, precipitation, humidity, day of week, and air pollutants. Analyses revealed an association between daily counts (continuous) of grass pollen and adult hospital admissions for asthma in London, with a 4-5-day lag. When grass pollen concentrations were categorized into Met Office pollen 'alert' levels, 'very high' days (vs. 'low') were associated with increased admissions 2-5 days later, peaking at an incidence rate ratio of 1.46 (95%, CI 1.20-1.78) at 3 days. Increased admissions were also associated with 'high' versus 'low' pollen days at a 3-day lag. Results from tree pollen models were inconclusive and likely to have been affected by the shorter pollen seasons and consequent limited number of observation days with higher tree pollen concentrations. Future reductions in asthma hospitalizations may be achieved by better understanding of environmental risks, informing improved alert systems and supporting patients to take preventive measures.
Collapse
Affiliation(s)
- Nicholas J Osborne
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK.
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Ian Alcock
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Benedict W Wheeler
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Shakoor Hajat
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Rachel N McInnes
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
- Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, UK
| | | | - Mathew White
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Sotiris Vardoulakis
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
- London School of Hygiene and Tropical Medicine, London, UK
- Environmental Change Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxon, OX11 0RQ, UK
| | - Lora E Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| |
Collapse
|
23
|
Zhao F, Durner J, Winkler JB, Traidl-Hoffmann C, Strom TM, Ernst D, Frank U. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO 2/O 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:503-514. [PMID: 28284545 DOI: 10.1016/j.envpol.2017.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 05/28/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Augsburg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| |
Collapse
|
24
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
25
|
Kulac S, Filiz E, Cicek E, Degermenci Z, Vatansever R. Assessment of genetic diversity in natural European hophornbeam ( Ostrya carpinifoliaScop.) populations in Turkey. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Semsettin Kulac
- Faculty of Forestry, Department of Forest Engineering, Duzce University, Duzce, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Duzce, Turkey
| | - Emrah Cicek
- Faculty of Forestry, Department of Forest Engineering, Duzce University, Duzce, Turkey
| | - Zerrin Degermenci
- Faculty of Forestry, Department of Forest Engineering, Duzce University, Duzce, Turkey
| | - Recep Vatansever
- Faculty of Science and Arts, Department of Biology, Marmara University, Istanbul, Turkey
| |
Collapse
|
26
|
Naas O, Mendez M, Quijada M, Gosselin S, Farah J, Choukri A, Visez N. Chemical modification of coating of Pinus halepensis pollen by ozone exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:816-821. [PMID: 27155099 DOI: 10.1016/j.envpol.2016.04.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Pollen coating, located on the exine, includes an extractible lipid fraction. The modification of the pollen coating by air pollutants may have implications on the interactions of pollen with plant stigmas and human cells. Pinus halepensis pollen was exposed to ozone in vitro and the pollen coating was extracted with organic solvent and analyzed by GC-MS. Ozone has induced chemical changes in the coating as observed with an increase in dicarboxylic acids, short-chain fatty acids and aldehydes. 4-Hydroxybenzaldehyde was identified as the main reaction product and its formation was shown to occur both on native pollen and on defatted pollen. 4-Hydroxybenzaldehyde is very likely formed via the ozonolysis of acid coumaric-like monomers constitutive of the sporopollenin. Modification of pollen coating by air pollutants should be accounted for in further studies on effect of pollution on germination and on allergenicity.
Collapse
Affiliation(s)
- Oumsaad Naas
- Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France; Laboratoire de Dispositifs Micro-ondes et Matériaux pour les Energies Renouvelables. DIMMER, Département d'Agronomie, Faculté des Sciences de la Nature et de la Vie, Equipe Biodiversité et Environnement, Université Ziane Achour, Djelfa, 17000, Algeria
| | - Maxence Mendez
- Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France
| | - Melesio Quijada
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France
| | - Sylvie Gosselin
- Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France
| | - Jinane Farah
- Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France; Lebanese University, Faculty of Public Health (FSP III), Water & Environment Science, Tripoli, Lebanon
| | - Ali Choukri
- Etude et exploitation des propriétés technofonctionnelles des produits alimentaires, Laboratoire de Chimie Organique et Substances Naturelles, Département d'Agronomie, Faculté des Sciences de la Nature et de la Vie, Université Ziane Achour, Djelfa, 17000, Algeria
| | - Nicolas Visez
- Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000, Lille, France.
| |
Collapse
|
27
|
Sabo NČ, Kiš T, Janaćković P, Đorđević D, Popović A. Pollution by Urticaceae pollen-influence of selected air pollutants and meteorological parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10072-10079. [PMID: 26865493 DOI: 10.1007/s11356-016-6163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The goal of this study was to analyze the influence of pollutants (concentrations of NO2, SO2, and soot in the air) and meteorological parameters (air temperature, humidity, wind speed, air pressure, cloud index) on Urticaceae pollen type emission measured in the region of Subotica, Serbia. The concentrations of the air pollutants, Urticaceae pollen, and meteorological parameters were measured over a 5-year period (2009-2013), followed by a statistical analysis of the values obtained. For most of the years examined, the concentration of NO2 correlates significantly with the concentration of Urticaceae pollen type. It was also established that air temperature, humidity, wind speed, atmospheric pressure, and cloud index have an influence on Urticaceae pollen type emission, while SO2 and soot do not contribute.
Collapse
Affiliation(s)
- Nataša Čamprag Sabo
- Public Health Institute of Subotica, Zmaj Jovina 30, 24000, Subotica, Serbia.
| | - Tibor Kiš
- University of Novi Sad, Faculty of Economics, Segedinski put 9-11, 24000, Subotica, Serbia
| | - Peđa Janaćković
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Dragana Đorđević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia
| | - Aleksandar Popović
- University of Belgrade, Department of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
28
|
Salmond JA, Tadaki M, Vardoulakis S, Arbuthnott K, Coutts A, Demuzere M, Dirks KN, Heaviside C, Lim S, Macintyre H, McInnes RN, Wheeler BW. Health and climate related ecosystem services provided by street trees in the urban environment. Environ Health 2016; 15 Suppl 1:36. [PMID: 26961700 PMCID: PMC4895605 DOI: 10.1186/s12940-016-0103-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
Collapse
Affiliation(s)
- Jennifer A Salmond
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Marc Tadaki
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC, V6T 1Z2, Canada.
| | - Sotiris Vardoulakis
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, OX11 0RQ, UK.
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, TR1 3HD, UK.
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | - Katherine Arbuthnott
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, OX11 0RQ, UK.
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | - Andrew Coutts
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, 3800, Australia.
- , Cooperative Research Centre for Water Sensitive Cities, Australia.
| | - Matthias Demuzere
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, 3800, Australia.
- , Cooperative Research Centre for Water Sensitive Cities, Australia.
- Department of Earth & Environmental Sciences Physical and Regional Geography Research Group - Regional climate studies Celestijnenlaan 200E, KU Leuven, 3001, Heverlee (Leuven), Belgium.
| | - Kim N Dirks
- School of Population Health, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Clare Heaviside
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, OX11 0RQ, UK.
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | - Shanon Lim
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Helen Macintyre
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, OX11 0RQ, UK.
| | - Rachel N McInnes
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, TR1 3HD, UK.
- Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3 PB, UK.
| | - Benedict W Wheeler
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, TR1 3HD, UK.
| |
Collapse
|
29
|
Frank U, Ernst D. Effects of NO2 and Ozone on Pollen Allergenicity. FRONTIERS IN PLANT SCIENCE 2016; 7:91. [PMID: 26870080 PMCID: PMC4740364 DOI: 10.3389/fpls.2016.00091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed.
Collapse
|
30
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
31
|
Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley JP, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra JP. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. ScientificWorldJournal 2015; 2015:940243. [PMID: 26819967 PMCID: PMC4706970 DOI: 10.1155/2015/940243] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| | - Nicolas Visez
- Physical Chemistry of Combustion and Atmosphere Processes (PC2A), UMR CNRS 8522, University of Lille, 59655 Villeneuve d'Ascq, France
| | - Denis Charpin
- Pneumo-Allergology Department, North Hospital, 265 chemin des Bourrely, 13915 Marseille 20, France
| | - Youcef Shahali
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Persiflore, 18 avenue du Parc, 91220 Le Plessis-Pâté, France
| | | | - Jean-Philippe Biolley
- SEVE Team, Ecology and Biology of Interactions (EBI), UMR-CNRS-UP 7267, University of Poitiers, 3 rue Jacques Fort, 86073 Poitiers, France
| | | | - Rémy Couderc
- Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris 12, France
| | - Ohri Yamada
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Audrey Malrat-Domenge
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Nhân Pham-Thi
- Allergology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Pascal Poncet
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Infections & Epidemiology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Jean-Pierre Sutra
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| |
Collapse
|
32
|
Lindgren A, Stroh E, Jakobsson K. Ever dispense of prescribed allergy medication in children growing up close to traffic: a registry-based birth cohort. BMC Public Health 2015; 15:1023. [PMID: 26444543 PMCID: PMC4595113 DOI: 10.1186/s12889-015-2356-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiologic studies have shown conflicting results regarding the role of traffic pollution in the development of allergic disease. This study investigated the relationship between living close to traffic and ever dispense of prescribed oral antihistamines or nasal anti-allergic medication, among young children. The underlying aim was to investigate if children growing up close to traffic pollution are at higher risk of developing allergy in early childhood. Methods We investigated a birth cohort in southern Sweden, consisting of N = 26 128 children (0–6 years) with health outcome and exposure data. Of these children, N = 7898, had additional covariate information. Traffic intensity and yearly averages of dispersion-modeled concentrations of NOX (100 × 100 m grid) at residential addresses, were linked with registry data on dispensed allergy medication (the Swedish Prescribed Drug Register). Individual level covariate information was obtained from questionnaires distributed to parents at Child Health Care-center visits, eight months after birth. Cox proportional hazards regression was used for the statistical analyses. Results Living in close proximity to a road with equal to or greater than 8640 cars/day (compared to 0–8639 cars/day), was not associated with higher incidence of ever dispensed oral antihistamine or nasal anti-allergic medication, with or without adjustment for confounders (sex, breastfeeding, parental allergy, parental origin, season, and year of birth). Similar results were found in relation to NOX. Conclusions Traffic-related exposure was not associated with higher incidence of ever dispensed medication against allergy, in children 0–6 years in southern Sweden. These results indicates that traffic-related exposure may not be a risk factor for early onset allergy in children in southern Sweden. However, children with dispense of prescribed allergy medication may be a selected subgroup, and the results for this group may not be generalizable to all children with allergy. Electronic supplementary material The online version of this article (doi:10.1186/s12889-015-2356-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Lindgren
- Division of Occupational and Environmental Medicine, Lund University, SE-221 85, Lund, Sweden.
| | - Emilie Stroh
- Division of Occupational and Environmental Medicine, Lund University, SE-221 85, Lund, Sweden.
| | - Kristina Jakobsson
- Division of Occupational and Environmental Medicine, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
33
|
Kampf CJ, Liu F, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, Pöschl U. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10859-66. [PMID: 26287571 DOI: 10.1021/acs.est.5b02902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.
Collapse
Affiliation(s)
- Christopher J Kampf
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz , 55128 Mainz, Germany
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| |
Collapse
|
34
|
Ouyang Y, Xu Z, Fan E, Li Y, Zhang L. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen. Int Forum Allergy Rhinol 2015; 6:95-100. [PMID: 26332319 DOI: 10.1002/alr.21632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nitrogen dioxide (NO2) and sulfur dioxide (SO2) generated by excessive coal combustion and motor vehicle emissions are major air pollutants in the large cities of China. The objective of our study was to determine the effects of the exposure of oak pollens (Quercusmongolica) to several concentrations of NO2 or SO2. METHODS Pollen grains were exposed to 0.5 ppm to 5.0 ppm NO2 or SO2 for 4 hours and assessed for morphological damage by field emission scanning electron microscopy and for viability using the trypan blue stain. Morphological changes in pollen grains were also examined after contact with acid solutions at pH 4.0 to pH 7.0. RESULTS Exposure to NO2 or SO2 significantly damaged pollen grains at all concentrations investigated, compared to exposure to air; with exposure to concentrations of 0.5 ppm to 2 ppm resulting in fissures or complete breaks in the exine and a concentration of 5 ppm resulting in complete breakdown and release of pollen cytoplasmic granules. Significantly greater amounts of pollen grain were damaged after exposure to SO2 (15.5-20.4%) than after exposure to NO2 (7.1-14.7%). Similarly, exposure to NO2 or SO2 significantly decreased the viability of pollen grains, compared with exposure to air; with SO2 being slightly more detrimental than NO2. Exposure to acid solutions also induced pollen damage, which appeared to be pH-dependent (from 24.6% at pH 6.0 to 55.8% at pH 4.0; compared to 3.8% at pH 7.0). CONCLUSION Short-term exposure of oak pollen to high concentrations of SO2 or NO2 significantly increases their fragility and disruption, leading to subsequent release of pollen cytoplasmic granules into the atmosphere. These results suggest that heightened air pollution during the oak pollen season may possibly increase the incidence of allergic airway disease in sensitized individuals by facilitating the bioavailability of airborne pollen allergens.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of Allergy, Beijing TongRen Hospital, Beijing, China.,Department of Allergy, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Zhaojun Xu
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Erzhong Fan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Beijing, China.,Department of Allergy, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
35
|
Toro A. R, Córdova J. A, Canales M, Morales S. RGE, Mardones P. P, Leiva G. MA. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile. PLoS One 2015; 10:e0123077. [PMID: 25946339 PMCID: PMC4422675 DOI: 10.1371/journal.pone.0123077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/27/2015] [Indexed: 01/28/2023] Open
Abstract
Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies.
Collapse
Affiliation(s)
- Richard Toro A.
- Centro de Ciencias Ambientales and Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Alicia Córdova J.
- Clínica de Enfermedades Respiratorias y Alérgicas Miguel Servet, Almirante Pastene N° 150–118, Providencia, Santiago, Chile
- Fundación de Aerobiología Medio Ambiente y Salud, Pérez Valenzuela 1572, Of 404, Santiago, Chile
| | - Mauricio Canales
- Centro de Ciencias Ambientales and Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Raul G. E. Morales S.
- Centro de Ciencias Ambientales and Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Pedro Mardones P.
- Clínica de Enfermedades Respiratorias y Alérgicas Miguel Servet, Almirante Pastene N° 150–118, Providencia, Santiago, Chile
- Fundación de Aerobiología Medio Ambiente y Salud, Pérez Valenzuela 1572, Of 404, Santiago, Chile
- * E-mail: (MALG); (PMP)
| | - Manuel A. Leiva G.
- Centro de Ciencias Ambientales and Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- * E-mail: (MALG); (PMP)
| |
Collapse
|
36
|
Cuinica LG, Cruz A, Abreu I, da Silva JCGE. Effects of atmospheric pollutants (CO, O3, SO2) on the allergenicity of Betula pendula, Ostrya carpinifolia, and Carpinus betulus pollen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:312-321. [PMID: 25055718 DOI: 10.1080/09603123.2014.938031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pollen of Betula pendula, Ostrya carpinifolia, and Carpinus betulus was exposed in vitro to relatively low levels of the air pollutants, namely carbon monoxide, ozone, and sulfur dioxide. The allergenicity of the exposed pollen was compared with that of non-exposed pollen samples to assess if air pollution exposition affects the allergenicity potential of pollen. The immunodetection assays indicated higher IgE recognition by all sera of allergic patients to the pollen protein extracts in all exposed samples in comparison to the non-exposed samples. These results show that the pollen exposition to low pollutants' levels induces increased allergic reaction to sensitized individuals.
Collapse
Affiliation(s)
- Lázaro G Cuinica
- a Centro de Investigação em Química (CIQ-UP), Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|