1
|
Yin S, Folarin BT, Bosschaerts S, Oluseyi T, Poma G, Liu X, Covaci A. Human exposure to polychlorinated alkanes (C 8-36) in soil and dust from Nigerian e-waste sites: Occurrence, homologue pattern and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136954. [PMID: 39721250 DOI: 10.1016/j.jhazmat.2024.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are recognized as significant sources of chlorinated paraffin (CP) exposure. This study aims to investigate the environmental occurrence and distribution of polychlorinated alkanes (PCAs-C8-36), specifically in soil and outdoor dust samples collected from e-waste dumpsites and automobile dismantling and resale sites in Nigeria. The results revealed a widespread occurrence of PCAs across all sampled locations. For the PCAs homologue groups ∑PCAs-C10-13, ∑PCAs-C14-17, and ∑PCAs-C18-20, the median concentrations were 1150 ng/g dry weight (dw), 1180 ng/g dw, and 370 ng/g dw in the dust samples, and 2840 ng/g dw, 1820 ng/g dw, and 830 ng/g dw in the soil samples, respectively. Notably, the homologue distribution patterns of PCAs-C8-36 were similar in both dust and soil samples. However, PCAs-C10-13 was found to be higher in the soil samples, likely due to the wet and/or dry deposition effect of the aerosols, given these chemicals' volatile nature and ease of atmospheric dispersion. Pearson correlation analysis further revealed a co-occurrence of contaminants in the soil samples, supporting the hypothesis that soil acts as a sink for persistent organic pollutants (POPs). Additionally, lower molecular weight polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) showed reduced correlation with the PCAs. Health risk assessments indicated that working on e-waste sites could potentially pose a risk to the workers' health. This study highlights the urgent need for mitigating occupational exposure to PCAs, especially in informal e-waste processing environments where personal protective measures are often lacking.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State 23409, Nigeria
| | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
2
|
Tang C, Zhu Y, Liang Y, Xia D, Xu J, Zheng R, Liu L, Ma S, Lin H, Luo XJ, Huang Q, Mai BX. Nontarget Analysis and Characterization of a Group of Abundant Polyfluoroalkyl Substances─Fluorinated Benzoylurea Pesticides and Their Analogues and Transformation Products in Fish by LC-HRMS and Chemical Species-Specific Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2322-2331. [PMID: 39806269 DOI: 10.1021/acs.jafc.4c09728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs. The total concentrations of FBU-relevant compounds were 0.8-1919.3 ng/g in the fish samples. The analysis strategy and data-processing algorithms can be extended to other fluorine-containing pesticides, and the characterization results provide a new understanding of PFAS pollution and unveil an important source of PFAS pollutants, the agrochemical utilization of FBUs.
Collapse
Affiliation(s)
- Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yizhe Zhu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiyang Liang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ruifen Zheng
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ling Liu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shirong Ma
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hui Lin
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiao-Jun Luo
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Bi-Xian Mai
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Sun Y, Zhang R, Li J, Hu Y, Zhang H, Wang X, Yang Y, Wang H, Ge M. 2-Ethylhexyl diphenyl phosphate induces lung oxidative stress and pyroptosis in chicks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178453. [PMID: 39818193 DOI: 10.1016/j.scitotenv.2025.178453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer easily released into the environment. Its biological toxicity is of great concern. The lung is considered a possible target organ for EHDPHP, but currently, there are limited studies on the biotoxicity of EHDPHP in poultry lungs. Therefore, the lungs were selected as the target organ to study the toxic effects of EHDPHP on chicks and their mechanisms of action. In this study, 7-day-old chicks were gavaged with different concentrations of EHDPHP, and lung samples were collected at 14, 28, and 42 days after intragastric administration. Lung histopathological and ultrapathological changes were examined by paraffin section-HE staining and transmission electron microscopy. The levels of lung damage markers (LDH) and oxidative stress markers (GSH-Px, SOD, and MDA) were detected by applying the kit. In contrast, lung cell pyroptosis-related factors (NLRP3, ASC, NF-κB, Pro-Caspase-1, IL-18, and IL-1β) and inflammatory factors (IL-6 and TNF-α) were assessed by using the qRT-PCR, Western blot and ELISA techniques. The results showed that EHDPHP induced pathological morphological changes and elevated LDH content in chick lungs, decreased lung antioxidant enzymes (GSH-Px and SOD) activities, increased peroxidation product MDA content and up-regulated the expression levels of cellular pyroptosis factors (NLRP3, ASC, NF-κB, Pro-Caspase-1, IL-18, and IL-1β), and the synthesis and secretion of inflammatory factors (IL-6 and TNF-α) were promoted. The above changes were EHDPHP dose-dependent. The results indicated that EHDPHP induced oxidative stress in chick lungs, resulting in oxidative damage to the lungs, and, intriguingly, the cellular pyroptosis pathway was activated, which was also involved in the process of EHDPHP-induced inflammatory damage in chick lungs. The results of this study revealed for the first time the damaging effects and mechanisms of EHDPHP on chick lungs. Also, they provided a scientific basis for further exploring the mechanisms of toxicity damage, safe use, and pollution control of EHDPHP.
Collapse
Affiliation(s)
- Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Jiali Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Haolin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Xiangjie Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
4
|
Kazim M, Saqib Z, Syed JH, Odabasi M, Kurt-Karakus PB. Characterization and distribution of brominated flame retardants in soils from informal E-waste recycling facilities: insights from Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:134. [PMID: 39760909 DOI: 10.1007/s10661-024-13551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021. The mean concentrations (ng/g) of ∑27PBDEs (polybrominated diphenyl ethers), ∑2PBB (polybrominated biphenyls), HBB (hexabromobiphenyl), and ∑HBCDD (hexabromocyclododecane) were 176 ( 0.76-11141), 31.0 (0.65-58.0), 1.39 (0.01-42.8), and 12.0 (0.22-461), respectively. These levels were significantly higher (6 to tenfold) than those at background sites. Karachi, Faisalabad, Gujranwala, and Lahore exhibited high levels of all BFRs. Notably, BDE-209 (mean = 45.5 ng/g) ranged (0.13-1152 ng/g) exhibited higher level in soil samples. Seasonally, total ΣBFR concentrations (ng/g) ranked higher in winter (11,620), followed by spring (3874), autumn (3139), and summer (1207) indicating a seasonal impact of recycling activities. The average daily dose for soil ingestion (ng/kg/day) was estimated for BDE-209 (0.10973) in Faisalabad, followed by BDE-47 (0.08616) and BDE-99 (0.06788) in Karachi. Our findings showed that these values were lower than RfD values, suggesting no ingestion risk from studied BFRs. However, the growing prevalence of such informal e-waste recycling facilities could lead to increased exposure to toxic chemicals in near future.
Collapse
Affiliation(s)
- Mureed Kazim
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Zafeer Saqib
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Tarlai Kalan Park Road 45550, Islamabad, Pakistan.
| | - Mustafa Odabasi
- Environmental Engineering Department, Faculty of Engineering, Dokuz Eylul University, İzmir, Turkey
| | - Perihan Binnur Kurt-Karakus
- Environmental Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
5
|
Folarin BT, Poma G, Yin S, Altamirano JC, Cleys P, Oluseyi T, Covaci A. Source identification and human exposure assessment of organophosphate flame retardants and plasticisers in soil and outdoor dust from Nigerian e-waste dismantling and dumpsites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124998. [PMID: 39313125 DOI: 10.1016/j.envpol.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are major sources of organophosphate flame retardant and plasticiser emissions and may pose potentially adverse effects on environment and human health. In 20 outdoor dust and 49 soil samples collected from four e-waste dismantling and three e-waste dumpsites in two States of Nigeria (Lagos and Ogun), we identified 13 alternative plasticisers (APs), 7 legacy phthalate plasticisers (LPs), and 17 organophosphorus flame retardants (OPFRs) for the first time in African e-waste streams. In the samples from dismantling sites, the range (median) concentrations of ∑13APs, ∑7LPs, and ∑17OPFRs were 11-2747 μg/g (144 μg/g), 11-396 μg/g (125 μg/g), and 0.2-68 μg/g (5.5 μg), in dust respectively and 1.8-297 μg/g (55 μg/g), 1.3-274 μg/g (48.5 μg/g), and 1.6-62 μg/g (1.6 μg/g), in soil respectively. Results for soil samples from e-waste dumpsites were (6.6-195 μg/g (23.7 μg/g), 6.0-295 μg/g (54.8), and 0.4-42.3 μg/g (9.0 μg/g) for ∑13APs, ∑7LPs, and ∑17OPFRs respectively. Overall, concentrations of APs were significantly higher at the dismantling sites (p = 0.005) compared to dumpsites, levels of LPs were higher at dismantling sites but not significant, while OPFR concentrations were significantly higher in dumpsite samples (p = 0.005). Plasticisers were found to be major contributors to pollution at e-waste dismantling sites, while OPFRs were associated with both automobile dismantling and e-waste dumpsite processes. Following particle size fractionation of selected soil samples, higher concentrations of targeted compounds were observed in the smaller mesh (180 μm) soil sieve fraction. For dust, the total median estimated daily intake via ingestion and dermal adsorption (EDIing and EDIderm) ranged from 43 to 74 ng/kg bw/day and 0.4-0.7 ng/kg bw/day, respectively. Correspondingly, 4.6-45 ng/kg bw/day and 0.015-0.57 ng/kg bw/day were the values found for soil, respectively. According to these results, the targeted chemicals do not appear to pose a non-carcinogenic risk to e-waste workers through ingestion or dermal contact of bio-accessible fractions of the chemicals. Human biomonitoring campaigns are recommended in the Nigerian e-waste environment considering the elevated concentration levels found for the majority of targeted compounds and that risk parameters required for exposure assessment were only available for a limited number of compounds.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, 5500, Mendoza, Argentina
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
6
|
Wan YY, Cheng XM, Li XH, Wang FS, Li YY, Li J, Qin ZF. Evaluating the impact of dermal absorption on internal doses of dechlorane plus in Chinese e-waste recycling employees. CHEMOSPHERE 2024; 369:143883. [PMID: 39631690 DOI: 10.1016/j.chemosphere.2024.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
E-waste recycling employees represent a specific population with a high potential for exposure to dechlorane plus (DP). However, the impact of skin-adherent DP on human exposure within this group has not been well characterized. This study aimed to address this gap by collecting handwipe and matched serum samples (n = 86 pairs) of Chinese e-waste recycling employees. In vivo human dermal bioavailability of DP was also examined to achieve effective exposure estimation. As a result, DP was detected in all handwipe and serum samples, indicating the occurrence of widespread exposure in the study population. For all the participants, the median level of ∑DP (the sum of syn-DP and anti-DP) in the serum was 45.1 ng g-1 lipid weight (lw), while handwipe samples showed the loading of 10.8 ng per wipe. Notably, significant associations were found between DP handwipe loadings and matched serum levels (p<0.05). Next, the in vivo human dermal bioavailability was estimated to be 9.54% for ∑DP. Based on this value, the estimated average daily dose was 0.231 ng kg-1 d-1 (median values), contributing 10.9% to serum levels of ∑DP. The significant associations and 10.9% percentage contribution together underscore the non-negligible influence of dermal absorption on DP internal doses in the e-waste recycling employees. Moreover, the extremely high levels of DP (up to 3.64E+04 ng g-1 lw) detected in serum highlight the extent of DP accumulation in humans. Continuous monitoring and assessment are warranted among e-waste workers due to the persistent organic pollutant properties of DP.
Collapse
Affiliation(s)
- Yao-Yuan Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Xiao-Meng Cheng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - Feng-Shuang Wang
- Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, 317200, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Jing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| |
Collapse
|
7
|
Yu Y, Ai T, Huang J, Jin L, Yu X, Zhu X, Sun J, Zhu L. Metabolism of isodecyl diphenyl phosphate in rice and microbiome system: Differential metabolic pathways and underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124803. [PMID: 39181304 DOI: 10.1016/j.envpol.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Isodecyl diphenyl phosphate (IDDP) is among the emerging aromatic organophosphate esters (aryl-OPEs) that pose risks to both human beings and other organisms. This study aims to investigate the translocation and biotransformation behavior of IDDP in rice and the rhizosphere microbiome through hydroponic exposure (the duration of hydroponic exposure was 10 days). The rhizosphere microbiome 9-FY was found to efficiently eliminate IDDP, thereby reducing its uptake in rice tissues and mitigating the negative impact of IDDP on rice growth. Furthermore, this study proposed the first-ever transformation pathways of IDDP, identifying hydrolysis, hydroxylation, methylation, methoxylation, carboxylation, and glucuronidation products. Notably, the methylation and glycosylation pathways were exclusively observed in rice, indicating that the transformation of IDDP in rice may be more complex than in microbiome 9-FY. Additionally, the presence of the product COOH-IDDP in rice suggested that there might be an exchange of degradation products between rice and rhizobacteria, implying their potential interaction. This finding highlights the significance of rhizobacteria's role which cannot be overlooked in the accumulation and transformation of organic pollutants in grain crops. The study revealed active members in 9-FY during IDDP degradation, and metagenomic analysis indicated that most of the active populations contained IDDP-degrading genes. Moreover, transcriptome sequencing showed that cytochrome P450, acid phosphatase, glucosyltransferase, and methyltransferases genes in rice were up-regulated, which was further confirmed by RT-qPCR. This provides insight into the intermediate products identified in rice, such as hydrolysis, hydroxylated, glycosylated, and methylated products. These results significantly contribute to our understanding of the translocation and transformation of organophosphate esters (OPEs) in plants and the rhizosphere microbiome, and reveal the fate of OPEs in rice and microbiome system to ensure the paddy yield and rice safety.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
8
|
Wang LJ, Chao HR, Chen CC, Chen CM, You HL, Tsai CC, Tsai CS, Chou WJ, Li CJ, Tsai KF, Cheng FJ, Kung CT, Li SH, Wang CC, Ou YC, Lee WC, Huang WT. Effects of urinary organophosphate flame retardants in susceptibility to attention-deficit/hyperactivity disorder in school-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117281. [PMID: 39509783 DOI: 10.1016/j.ecoenv.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Our previous studies have revealed a correlation between urinary phthalates (PAE) metabolites and parabens and PM2.5 exposure and susceptibility to attention-deficit/hyperactivity disorder (ADHD) in school-age children. Our goal was to examine the relationships between urinary organophosphate flame retardants (OPFRs) and their metabolites and the susceptibility to ADHD in the same cohort of children. We recruited 186 school children, including 132 with ADHD and 54 normal controls, living in southern Taiwan to investigate five OPFRs (1,3-dichloro-2-propyl phosphate (TDCPP), tri-n-butyl phosphate (TnBP), tris (2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPHP)) and five OPFR metabolites (bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-n-butyl phosphate (DNBP), bis(2-chloroethyl) hydrogen phosphate (BCEP), di-(2-butoxyethyl) phosphate (DBEP), and diphenyl phosphate (DPHP)) in urine. ADHD patients' behavioral symptoms and neuropsychological function were assessed using the Swanson, Nolan, and Pelham Version IV Scale (SNAP-IV) and the Conners' Continuous Performance Test 3rd Edition (Conners CPT3), respectively. BCEP was predominant among urinary OPFRs and the metabolites in both the ADHD and control groups. ADHD children had significantly higher levels of urinary BDCPP, BCEP, DBEP, DPHP, TCEP, TBEP, TNBP, TPHP, and Σ10OPFR compared to the controls. After controlling for age, gender, body mass index, PM2.5 exposure scenarios, and urinary phthalate metabolites, parabens, bisphenol-A and creatinine, levels of urinary BDCPP, TDCPP, and TBEP in ADHD children showed significant and dose-dependent effects on core behavioral symptoms of inattention. DNBP levels were positively correlated with neuropsychological deficits (CPT detectability, omission, and commission), while urinary DPHP in ADHD children were negatively related to CPT detectability and commission. Hyperactivity and impulsivity were not correlated with urinary OPFRs and their metabolites in ADHD children. In conclusion, the ADHD symptom of inattention and CPT performance may be closely associated with certain urinary OPFRs and their metabolites, independent of urinary PAE metabolites, parabens, and bisphenol-A in school-age-ADHD children.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Taiwan; Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung 83301, Taiwan
| | - Ching-Me Chen
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| |
Collapse
|
9
|
Guo J, Chen Z, Chen X, Xu Z, Ruan J. Organophosphate flame retardants in air from formal e-waste recycling workshops in China: Size-distribution, gas-particle partitioning and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124593. [PMID: 39043313 DOI: 10.1016/j.envpol.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
In order to understand the organophosphate flame retardants (OPFRs) pollution and evaluate the inhalation exposure risk in formal e-waste recycling facilities, the air concentrations, particle size distribution and gas-particle partitioning of OPFRs in four typical workshops were investigated. The total Σ15OPFR concentrations inside workshops were in the range of 64.7-682 ng/m3, with 5.80-23.4 ng/m3 in gas phase and 58.8-658 ng/m3 in particle phase. Triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) were main analogs, both of which contributed to 49.0-85.7% of total OPFRs. In the waste printed circuit boards thermal treatment workshop, the OPFRs concentration was the highest, and particle-bound OPFRs mainly distributed in 0.7-1.1 μm particles. The proportions of TPHP in different size particles increased as the decrease of particle size, while TCIPP presented an opposite trend. The gas-particle partitioning of OPFR analogs was dominated by absorption process, and did not reach equilibrium state due to continuous emission of OPFRs from the recycling activities. The deposition fluxes of OPFRs in respiratory tract were 65.7-639 ng/h, and the estimated daily intake doses of OPFRs were 8.52-76.9 ng/(kg·day) in four workshops. Inhalation exposure was an important exposure pathway for e-waste recycling workers, and deposition fluxes of size-segregated OPFRs were mainly in head airways region.
Collapse
Affiliation(s)
- Jie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Zhenyu Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xuan Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, PR China
| |
Collapse
|
10
|
Fang B, Wang C, Du X, Sun G, Jia B, Liu X, Qu Y, Zhang Q, Yang Y, Li YQ, Li W. Structure-dependent destructive adsorption of organophosphate flame retardants on lipid membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135494. [PMID: 39141940 DOI: 10.1016/j.jhazmat.2024.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The widespread use of organophosphate flame retardants (OPFRs), a serious type of pervasive environmental contaminants, has led to a global concern regarding their diverse toxicities to living beings. Using a combination of experimental and theoretical approaches, we systematically studied the adsorption, accumulation, and influence of a series of OPFRs on the lipid membranes of bacteria and cells. Our results revealed that OPFRs can aggregate in lipid membranes, leading to the destruction of membrane integrity. During this process, the molecular structure of the OPFRs is a dominant factor that significantly influences the strength of their interaction with the lipid membrane, resulting in varying degrees of biotoxicity. Triphenyl phosphate (TPHP), owing to its large molecular size and strong hydrophobicity, causes severe membrane disruption through the formation of nanoclusters. The corresponding severe toxicity originates from the phase transitions of the lipid membranes. In contrast, smaller OPFRs such as triethyl phosphate (TEP) and tris(2-chloroethyl) phosphate (TCEP) have weaker hydrophobicity and induce minimal membrane disturbance and ineffective damage. In vivo, gavage of TPHP induced more severe barrier damage and inflammatory infiltration in mice than TEP or TCEP, confirming the higher toxicity of TPHP. Overall, our study elucidates the structure-dependent adsorption of OPFRs onto lipid membranes, highlighting their destructive interactions with membranes as the origin of OPFR toxicity.
Collapse
Affiliation(s)
- Bing Fang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Chunzhen Wang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xuancheng Du
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Guochao Sun
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bingqing Jia
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiangdong Liu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Qingmeng Zhang
- Department of Orthopaedics Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yong-Qiang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
11
|
Kramer NE, Fillmore CE, Slane EG, Barnett LMA, Wagner JJ, Cummings BS. Insights into brominated flame retardant neurotoxicity: mechanisms of hippocampal neural cell death and brain region-specific transcriptomic shifts in mice. Toxicol Sci 2024; 201:282-299. [PMID: 38995820 DOI: 10.1093/toxsci/kfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Brominated flame retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of hexabromocyclododecane (HBCD) exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus-derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (current use), HBCD (phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All 3 BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 μM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed that BFR exposure increased LC3-II conversion and autophagosome/autolysosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared with the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex protein SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of changes in vesicular trafficking.
Collapse
Affiliation(s)
- Naomi E Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Courtney E Fillmore
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Lillie M A Barnett
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
12
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
13
|
Liao G, Weng X, Wang F, Kuen Yu YH, Arrandale VH, Chan AHS, Lu S, Tse LA. Estimated daily intake and cumulative risk assessment of organophosphate esters and associations with DNA damage among e-waste workers in Hong Kong. CHEMOSPHERE 2024; 360:142406. [PMID: 38782132 DOI: 10.1016/j.chemosphere.2024.142406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.
Collapse
Affiliation(s)
- Gengze Liao
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xueqiong Weng
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lap Ah Tse
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Zhang LN, Peng PA, Li HR, Liu MY, Hu JF. Halogenated aromatic pollutants in routine animal-derived food of south China: Occurrence, sources, and dietary intake risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124002. [PMID: 38636834 DOI: 10.1016/j.envpol.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.
Collapse
Affiliation(s)
- Li-Na Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping-An Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Ming-Yang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
15
|
Hasan MM, Mahmud TS, Assuah A, Ng KTW, Tasnim A, Abha AT. An investigation on the operational resilience of the Canadian electronic product stewardship program and the recycling business characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:68-78. [PMID: 38593732 DOI: 10.1016/j.wasman.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Electronic waste recycling companies have proliferated in many countries due to valuable materials present in end-of-life electronic and electrical equipment. This article examined the business characteristics and management performance of Electronic Products Recycling Association (EPRA), a Canadian nationwide electronic product stewardship organization. The organization's annual performance reports, from 2012 to 2020, for nine Canadian provinces in which it currently operates were aggregated and analyzed. Temporal analysis using regression and Mann-Kendall tests were employed, and five characteristics of EPRA's business were analyzed, including e-waste products collected, number of drop-off locations, efforts to build public awareness, operating expenses, and growth of e-waste stewardship. Results show a decline in the amount of e-waste collected across the provinces, except in New Brunswick, which started its program in 2017. The Mann-Kendall test revealed declining temporal trends in most provinces. Although the collection/drop off sites and stewardship organizations increased astronomically over the study period in Canada, the amounts of e-waste collected decreased. We found that public awareness generally did not increase the amount of e-waste collected, and these campaigns only appeared to be effective in jurisdictions with good accessibility of e-waste recycling. Processing cost accounted for the majority of the e-waste management budget in Canada, and different factors affected the financial success of the stewards differently.
Collapse
Affiliation(s)
- Mohammad Mehedi Hasan
- Environmental Systems Engineering, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| | - Tanvir Shahrier Mahmud
- Environmental Systems Engineering, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| | - Anderson Assuah
- University College of the North, 7th Street East, The Pas, Manitoba R9A 1M7, Canada.
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| | - Anica Tasnim
- Environmental Systems Engineering, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| | - Anika Tahsin Abha
- Environmental Systems Engineering, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
16
|
Cheng X, Lu Q, Lin N, Mao D, Yin S, Gao Y, Tian Y. Prenatal exposure to a mixture of organophosphate flame retardants and infant neurodevelopment: A prospective cohort study in Shandong, China. Int J Hyg Environ Health 2024; 258:114336. [PMID: 38460461 DOI: 10.1016/j.ijheh.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Previous studies have suggested that prenatal exposure to organophosphate flame retardants (OPFRs) may have adverse effect on early neurodevelopment, but limited data are available in China, and the overall effects of OPFRs mixture are still unclear. OBJECTIVE This study aimed to investigate the association between prenatal exposure to OPFR metabolites mixture and the neurodevelopment of 1-year-old infants. METHODS A total of 270 mother-infant pairs were recruited from the Laizhou Wan (Bay) Birth Cohort in China. Ten OPFR metabolites were measured in maternal urine. Neurodevelopment of 1-year-old infants was assessed using the Gesell Developmental Schedules (GDS) and presented by the developmental quotient (DQ) score. Multivariate linear regression and weighted quantile sum (WQS) regression models were conducted to estimate the association of prenatal exposure to seven individual OPFR metabolites and their mixture with infant neurodevelopment. RESULTS The positive rates of seven OPFR metabolites in the urine of pregnant women were greater than 70% with the median concentration ranged within 0.13-3.53 μg/g creatinine. The multivariate linear regression model showed significant negative associations between bis (1-chloro-2-propyl) phosphate (BCIPP), din-butyl phosphate (DnBP), and total OPFR metabolites exposure and neurodevelopment in all infants. Results from the WQS model consistently revealed that the OPFR metabolites mixture was inversely associated with infant neurodevelopment. Each quartile increased in the seven OPFR metabolites mixture was associated with a 1.59 decrease (95% CI: 2.96, -0.21) in gross motor DQ scores, a 1.41 decrease (95% CI: 2.38, -0.43) in adaptive DQ scores, and a 1.08 decrease (95% CI: 2.15, -0.02) in social DQ scores, among which BCIPP, bis (1, 3-dichloro-2-propyl) phosphate (BDCIPP) and DnBP were the main contributors. CONCLUSION Prenatal exposure to a mixture of OPFRs was negatively associated with early infant neurodevelopment, particularly in gross motor, adaptive, and social domains.
Collapse
Affiliation(s)
- Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengju Yin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
17
|
Ma Y, Stubbings WA, Jin J, Cline-Cole R, Abdallah MAE, Harrad S. Impact of Legislation on Brominated Flame Retardant Concentrations in UK Indoor and Outdoor Environments: Evidence for Declining Indoor Emissions of Some Legacy BFRs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4237-4246. [PMID: 38386008 PMCID: PMC10919073 DOI: 10.1021/acs.est.3c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Concentrations of polybrominated diphenyl ethers, hexabromocyclododecane (HBCDD), and novel brominated flame retardants (NBFRs) were measured in indoor dust, indoor air, and outdoor air in Birmingham, UK. Concentrations of ΣBFRs ranged from 490 to 89,000 ng/g, 46-14,000 pg/m3, and 22-11,000 pg/m3, respectively, in UK indoor dust, indoor air, and outdoor air. BDE-209 and decabromodiphenyl ethane (DBDPE) were the main contributors. The maximum concentration of DBDPE (10,000 pg/m3) in outdoor air is the highest reported anywhere to date. In contrast with previous studies of outdoor air in Birmingham, we observed significant correlations between concentrations of tri- to hepta-BDEs and HBCDD and temperature. This may suggest that primary emissions from ongoing use of these BFRs have diminished and that secondary emissions (e.g., evaporation from soil) are now a potentially major source of these BFRs in outdoor air. Conversely, the lack of significant correlations between temperature and concentrations of BDE-209 and DBDPE may indicate that ongoing primary emissions from indoor sources remain important for these BFRs. Further research to clarify the relative importance of primary and secondary sources of BFRs to outdoor air is required. Comparison with earlier studies in Birmingham reveals significant (p < 0.05) declines in concentrations of legacy BFRs, but significant increases for NBFRs over the past decade. While there appear minimal health burdens from BFR exposure for UK adults, dust ingestion of BDE-209 may pose a significant risk for UK toddlers.
Collapse
Affiliation(s)
- Yulong Ma
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - William A. Stubbings
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Jingxi Jin
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Reginald Cline-Cole
- Department
of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Stuart Harrad
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
18
|
Huang C, Zeng Y, Guan K, Qi X, Liu YE, Lu Q, Wang S, Luo X, Mai B. Occurrence, composition, and spatial distribution of dechlorane plus in surface sediments of black-odorous urban rivers across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17472-17480. [PMID: 38342836 DOI: 10.1007/s11356-024-32341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.
Collapse
Affiliation(s)
- Chenchen Huang
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Kelan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xuemeng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yin-E Liu
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
19
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Lv YZ, Luo XJ, Qi XM, Guan KL, Zeng YH, Mai BX. A comprehensive assessment of external exposure to persistent halogenated organic pollutants for residents in an e-waste recycling site, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123120. [PMID: 38072019 DOI: 10.1016/j.envpol.2023.123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Human skin wipes from 30 participants, air, dust, and food items were collected from a former electronic waste site in South China to provide a comprehensive understanding of residents' exposure to halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs). The total concentration of halogenated organic pollutants (HOPs) in the dust, air, food and skin wipes ranged 240-25000 ng/g, 130-2500 pg/m3, 0.08-590 ng/g wet weight, and 69-28000 ng/m2, respectively. Wild fish, vegetables, and air were dominated by PCBs, whereas dust, livestock, and poultry were dominated by HFRs. The HOP concentrations were several orders of magnitude higher in local foodstuffs than in market foodstuffs. The chemical composition on the forehead was remarkably different from that on the hand. The importance of different exposure routes depends on the residents' food choices, except decabromodiphenyl ethane (DBDPE). For residents who consumed a 100-foot diet (mainly egg) and local wild fish, diet ingestion overwhelmed other exposure routes, and PCBs were mainly contributed by fish and HFRs by egg. For residents who consumed market food, the dermal absorption of most PCB congeners and dust ingestion of highly brominated flame retardants were relatively prominent. Inhalation was found to be a crucial route for pentabromoethylbenzene (PBEB).
Collapse
Affiliation(s)
- Yin-Zhi Lv
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China.
| | - Xue-Meng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| |
Collapse
|
21
|
Tang C, Liu L, Zheng R, Zhu Y, Tang C, Zeng YH, Luo XJ, Mai BX. Comprehensive characterization and prioritization of halogenated organic compounds in fish and their implications for exposure. ENVIRONMENT INTERNATIONAL 2024; 184:108476. [PMID: 38346376 DOI: 10.1016/j.envint.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Fish are an important pollution indicator for biomonitoring of halogenated organic compounds (HOCs) in aquatic environments, and HOCs in fish may pose health threats to consumers. This study performed nontarget and comprehensive analyses of HOCs in fish from an e-waste recycling zone by gas chromatography-high-resolution mass spectrometry, and further prioritized their human exposure risks. A total of 1652 formulas of HOCs were found in the fish, of which 1222, 117, and 313 were organochlorines, organobromines, and organochlorine-bromines, respectively. The total concentrations of HOCs were 15.4-18.7 μg/g (wet weight), and organobromines were the predominant (14.1-16.8 μg/g). Of the HOCs, 41 % were elucidated with tentative structures and divided into 13 groups. The estimated total daily exposures of HOCs via dietary consumption of the fish for local adult residents were 3082-3744 ng/kg bw/day. The total exposures were dominated by several groups of HOCs with the following contribution order: polyhalogenated biphenyls and their derivatives > polyhalogenated diphenyl ethers > halo- (H-)alkanes/olefines > H-benzenes > H-dioxins > H-polycyclic aromatic hydrocarbons > H-phenols. The comprehensive characterization and prioritization results provide an overview of the species and distributions of HOCs in edible fish, and propose an inventory of crucial HOCs associated with high exposure risks.
Collapse
Affiliation(s)
- Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Liu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ruifen Zheng
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yizhe Zhu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Caixing Tang
- The Third Affiliated Hospital of Sun Yat-sen University, Lingnan Hospital, Guangzhou 510630, China
| | - Yan-Hong Zeng
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiao-Jun Luo
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Rawn DFK, Corrigan C, Ménard C, Sun WF, Breton F, Arbuckle TE. Novel halogenated flame retardants in Canadian human milk from the MIREC study (2008-2011). CHEMOSPHERE 2024; 350:141065. [PMID: 38159732 DOI: 10.1016/j.chemosphere.2023.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Novel halogenated flame retardants (NHFRs) have been developed to replace those brominated flame retardants that have been restricted due to their persistence, bioaccumulation potential and toxicity, therefore, it is important to determine whether these replacement products are present at detectable concentrations in Canadians. NHFRs were measured in human milk samples (n = 541) collected from across Canada between 2008 and 2011, which is the first pan-Canadian dataset for these chemicals in human milk. Among the 15 measured NHFRs and eight methoxy-polybrominated diphenyl ethers (MeO-PBDEs), nine NHFRs and two MeO-PBDEs (6-MeO-PBDE 47 and 2-MeO-PBDE 68) were detected at a frequency of more than 9%. Despite benzene, 1,1'-(1,2-ethanediyl)bis [2,3,4,5,6-pentabromo-]/decabromodiphenylethane [DBDPE] being detected less frequently than the other observed NHFRs, its relative contribution to the sum of nine NHFRs was important when it was present. The maximum ΣNHFR concentration in Canadian human milk was 6930 pg g-1 lipid while the maximum ΣMeO-PBDEs was 1600 pg g-1 lipid. While most NHFR concentrations were significantly correlated with each other, no relationships between maternal age, parity or pre-pregnancy BMI were identified with ΣNHFR concentrations in the milk. In contrast, maternal age was significantly correlated with ΣMeO-PBDE concentrations (r = 0.237, p < 0.001). ΣNHFR concentrations were similarly not related to maternal education, although ΣMeO-PBDE concentrations were found to be higher in milk from women who had graduated from trade schools relative to the other education levels considered. NHFR detection frequency and concentrations observed in the Canadian human milk seem to align well with Europe.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Catherine Corrigan
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Cathie Ménard
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Wing-Fung Sun
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - François Breton
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada; Generic Drugs Division, Bureau of Pharmaceutical Sciences, Health Products and Food Branch, Health Canada, 101 Tunney's Pasture Driveway, Address Locator 0201D, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
23
|
Burgos Melo HD, de Souza-Araujo J, Benavides Garzón LG, Macedo JC, Cardoso R, Mancini SD, Harrad S, Rosa AH. Concentrations and legislative aspects of PBDEs in plastic of waste electrical and electronic equipment in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167349. [PMID: 37769718 DOI: 10.1016/j.scitotenv.2023.167349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Brominated flame retardants (BFRs) have been widely used as additives in polymeric products such as electronic and electrical equipment (EEE) to help meet fire safety regulations. However, some BFRs like polybrominated diphenyl ethers (PBDEs), are now listed under the Stockholm Convention on persistent organic pollutants (POPs) and banned in many countries, due to their adverse health impacts, environmental persistence, and capacity for bioaccumulation and long-range atmospheric transport. Despite this, in Brazil, only a few studies exist of the presence of these contaminants in the environment, and even fewer in waste EEE (WEEE). Against this backdrop, this study measured the presence of PBDEs in samples (n = 159) of WEEE in the metropolitan region of Sorocaba, Sao Paulo, Brazil. PBDEs were detected in 149 samples, with concentrations in 18 samples exceeding the European Union's Low POP Content Limit (LPCL) of 1000 mg/kg. Decabromodiphenyl ether (BDE-209) was the congener present at the highest concentration in most samples, with those of other PBDEs such as BDE-47 much lower. In general, samples containing >1000 mg/kg are those categorised as display items and miscellaneous EEE (n = 15.27 %), comprising: parts from cathode ray tube TVs (n = 11), audio systems (n = 2), and LCD TVs (n = 2). In addition, in 5 % (n = 3) of IT and telecommunications equipment samples (computer parts) PBDE concentrations exceeded 1000 mg/kg. Our results show the need for greater control and monitoring of the presence of these pollutants in WEEE before recycling and final disposal, to prevent PBDEs entering the recycling stream.
Collapse
Affiliation(s)
- Hansel David Burgos Melo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Juliana de Souza-Araujo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | | | - João Carlos Macedo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Rafael Cardoso
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Sandro Donnini Mancini
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
24
|
Ou YC, Cheng FJ, Huang WT, Lee WC, Fu HC, Wu CH, Chen YY, Lan KC, Liou XP, Lin H, Kung CT. Lifestyle factors and urine levels of organophosphorus flame retardants in endometrial cancer: insights from a case-control study. Environ Health Prev Med 2024; 29:63. [PMID: 39523006 PMCID: PMC11570647 DOI: 10.1265/ehpm.24-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Organophosphate flame retardants (OPFRs) are commonly used in various consumer products to prevent fire hazards. However, OPFRs have been linked to several health problems, including cancer. This study aimed to investigate the association between urine levels of OPFRs and endometrial cancer (EC), and to explore the correlation between concentrations of parent OPFR compounds and their metabolites. METHODS Urine samples from 76 EC patients and 76 healthy controls were collected and analyzed for the levels of five common parent OPFRs and their respective metabolites. Propensity score matching was applied to account for differences in baseline characteristics between the two participant groups. Significantly higher levels of OPFRs in EC patients were identified, and logistic regression models were used to determine whether elevated OPFRs were associated with EC and to explore whether any lifestyle behaviors contributed to the increased OPFR levels. Spearman's rank correlation coefficients between the concentrations of the parent compounds and their metabolites were calculated. RESULTS Out of the ten OPFRs studied, the median urine levels of bis(1,3-dichloro-2-propyl) phosphate (BDCPP), tris(2-butoxyethyl) phosphate (TBEP), and di-(2-butoxyethyl) phosphate (DBEP) were significantly higher in EC patients compared to healthy controls. After matching 41 patients with 41 controls, multiple logistic regression analysis revealed that only BDCPP (OR 4.274; 95% CI 1.172-15.592) was an independent factor associated with EC. A lifestyle questionnaire survey found that urine BDCPP levels were related to age (OR 4.294; 95% CI 1.015-18.164), meals eaten out (OR 4.238; 95% CI 1.454-12.354), and consumption of chilled-ready meals (OR 0.118; 95% CI 0.014-0.985). A positive correlation was only observed between the concentrations of TBEP and its metabolite DBEP; other correlations were not significant. CONCLUSION We concluded that higher urine BDCPP level was an independent factor associated with EC, and higher BDCPP levels were related to aging, more meals eaten out, and fewer chilled-ready meals. These findings highlight the potential hazard of long-term OPFR exposure on the development of EC.
Collapse
Affiliation(s)
- Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Chiayi, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Hsuan Wu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Yi Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Xuan-Ping Liou
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Chiayi, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Emergency Medicine, Jen-Ai Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Lan Y, Liu Y, Cai Y, Du Q, Zhu H, Tu H, Xue J, Cheng Z. Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 238:117172. [PMID: 37729961 DOI: 10.1016/j.envres.2023.117172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
As alternatives for legacy brominated flame retardants, novel brominated flame retardants (NBFRs) have a wide array of applications in the electronic and electrical fields. The shift of recycling modes of electronic and electrical waste (e-waste) from informal recycling family workshop to formal recycling facilities might come with the change the chemical landscape emitted including NBFRs, however, little information is known about this topic. This study investigated the occurrence characteristics, distribution, and exposure profiles of eight common NBFRs and their derivatives in an e-waste recycling industrial park in central China and illustrated the differences in various functional zones in the recycling park. The highest level of ΣNBFRs in dust samples was found in e-waste storage area at median concentration of 27,400 ng/g, followed by e-waste dismantling workshops (23,300 ng/g), workshop outdoor area (7770 ng/g), and residential area outdoor (536 ng/g). In the e-waste dismantling associated dust samples, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), tetrabromobisphenol A (TBBPA) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) were the predominant components. This paper presented the first evidence regarding the occurrence characteristic and distribution of tetrabromobisphenol S (TBBPS), tetrabromobisphenol A bismethyl ether (TBBPA-BME) and tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in the e-waste associated dust samples. By comparing with previous studies performed in China, this paper also noticed the significant decrease of TBBPA concentrations in the dust probably due to the shift of e-wastes sources and recycling modes. We further assessed the risk of occupational workers exposure to NBFRs. The median EDI (estimated daily intake) value of ΣNBFRs among e-waste dismantling workers was 9.71 ng/kg BW/d with the maximum EDI value being 19.6 ng/kg BW/d, hundreds of times higher than those exposed by general population. The study raises great concern for the health risk of occupational exposure to NBFRs in the e-waste recycling industrial park.
Collapse
Affiliation(s)
- Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingping Du
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haitao Tu
- Division of Nephrology, The First affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
26
|
Hammel SC, Hansen KK, Madsen AM, Kolstad HA, Schlünssen V, Frederiksen M. Organophosphate ester (OPE) exposure among waste recycling and administrative workers in Denmark using silicone wristbands. CHEMOSPHERE 2023; 345:140449. [PMID: 37839747 DOI: 10.1016/j.chemosphere.2023.140449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
In a recent estimate, 96 million tons of hazardous waste were produced in the European Union, most of which were handled among the member states. Organophosphate esters (OPEs) are applied as flame retardants and plasticizers and are present in many products, e.g., electronics, which end up in the hazardous waste stream upon disposal. Given the growing body of information suggesting potential adverse health effects of OPEs, waste recycling workers who handle hazardous waste could potentially be at risk of elevated exposure to these chemicals. Using silicone wristbands, we evaluated OPE exposure among waste recycling workers who handled hazardous waste and compared their exposure to that of administrative workers from the same waste companies. Wristbands were extracted and analyzed for six OPEs, which were all detected in >75% of wristbands. Overall, the sum of tris(2-chloroisopropyl) phosphate (∑TCIPP) isomers was the most abundant OPE across all wristbands collected within the study. In general, the sum of tri(methyl phenyl) phosphate isomers (∑TMPP) was elevated for all waste workers (10β = 7.9), whereas tri-n-butyl phosphate (TnBP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), and ∑TMPP were 3-12 times higher among those specifically handling electronic and hazardous waste compared to the administrative workers (p < 0.05). Repeated wristband measurements from the same worker had fair to good consistency in OPE concentrations (intraclass correlation coefficients = 0.54-0.77), except for the two most volatile chlorinated OPEs. Taken together, our results suggest that waste recycling workers who handle electronic and hazardous waste have significantly elevated exposure to OPEs, and efforts to reduce these exposures should be considered.
Collapse
Affiliation(s)
- Stephanie C Hammel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Karoline K Hansen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, 8200, Aarhus, Denmark.
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Henrik A Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, 8200, Aarhus, Denmark.
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, 8000, Aarhus, Denmark.
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
27
|
Ma Y, Konecna E, Cline-Cole R, Harrad S, Abdallah MAE. Are UK E-waste recycling facilities a source of environmental contamination and occupational exposure to brominated flame retardants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165403. [PMID: 37442475 DOI: 10.1016/j.scitotenv.2023.165403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Investigations into the impacts of regulated electrical and electronic waste (e-waste) recycling activities on urban environments in Europe remain rather scarce. In this study, dust samples taken both inside and outside of five UK e-waste recycling facilities were analysed for concentrations of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and hexabromocyclododecane (HBCDD). Average concentrations of ∑BFRs in dust inside and outside UK e-waste recycling facilities were 12,000 ng/g and 180 ng/g, with median concentrations of 7500 ng/g and 85 ng/g, respectively. BDE-209 and decabromodiphenyl ethane (DBDPE) were the most abundant BFRs in both indoor and kerb dust, making a combined contribution to ∑BFRs of ~90 % on average. While four out of the five studied e-waste facilities showed a lack of significant impact on BFR contamination in surrounding environment, one of the studied e-waste recycling facilities was identified as a likely source of BFR contamination to UK urban environments, with industrial activities as another potential source of NBFRs. Occupational exposure of UK e-waste recycling workers to BFRs via dust ingestion was generally lower than that estimated for e-waste recyclers from other countries, but was comparable to BFR exposure via dust ingestion of UK office workers. Our estimates suggested that health burdens posed by dust ingestion of BFRs were minimal for UK e-waste recycling workers.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Ester Konecna
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
28
|
Bommarito PA, Friedman A, Welch BM, Cantonwine DE, Ospina M, Calafat AM, Meeker JD, McElrath TF, Ferguson KK. Temporal trends and predictors of gestational exposure to organophosphate ester flame retardants and plasticizers. ENVIRONMENT INTERNATIONAL 2023; 180:108194. [PMID: 37708814 PMCID: PMC10591987 DOI: 10.1016/j.envint.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs), used as flame retardants and plasticizers, are chemicals of concern for maternal and infant health. Prior studies examining temporal trends and predictors of OPE exposure are primarily limited by small sample sizes. OBJECTIVES Characterize temporal trends and predictors of OPE exposure biomarkers. METHODS We determined urinary concentrations of eight biomarkers of OPE exposure at three timepoints during pregnancy for participants in the LIFECODES Fetal Growth Study (n = 900), a nested case-cohort recruited between 2007 and 2018. We examined biomarker concentrations, their variability during pregnancy, and temporal trends over the study period. In addition, we identified sociodemographic and pregnancy characteristics associated with biomarker concentrations. Analyses were conducted using both the within-subject pregnancy geometric means and biomarker concentrations measured at individual study visits. RESULTS Five OPE biomarkers were detected in at least 60% of the study participants. Biomarkers were not strongly correlated with one another and intraclass correlation coefficients, measuring within-subject variability during pregnancy, ranged from 0.27 to 0.51. Biomarkers exhibited varying temporal trends across study years. For example, bis(1-chloro-2-propyl) phosphate (BCIPP) increased monotonically, whereas bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), displayed non-monotonic trends with concentrations that peaked between 2011 and 2014. We observed associations between sociodemographic characteristics and OPE biomarkers. In general, concentrations of most OPE biomarkers were higher among participants from racial and ethnic minority populations, participants who were younger, had higher pre-pregnancy body mass index (BMI), and less than a college degree. We observed consistent results using either averaged or visit-specific biomarker concentrations. SIGNIFICANCE We observed widespread exposure to several OPEs and OPE biomarkers displayed varying temporal trends in pregnant people from 2007 to 2018. Concentrations of most OPE biomarkers varied according to sociodemographic factors, suggesting higher burdens of exposure among participants with higher pre-pregnancy BMI, those belonging to racial and ethnic minority populations, and lower educational attainment.
Collapse
Affiliation(s)
- P A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - A Friedman
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - B M Welch
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA; School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - D E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115, USA
| | - M Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - A M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - J D Meeker
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - T F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115, USA
| | - K K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
29
|
Zhao L, Zhu H, Cheng Z, Shi Y, Zhang Q, Wang Y, Sun H. Co-occurrence and distribution of organophosphate tri- and di-esters in dust and hand wipes from an e-waste dismantling plant in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163176. [PMID: 37003336 DOI: 10.1016/j.scitotenv.2023.163176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison. The median ∑tri-OPE and ∑di-OPE levels in dust and hand wipe samples were approximately 7- and 2-fold higher than those in the comparison group, respectively (p < 0.01). Triphenyl phosphate (median: 11,700 ng/g and 4640 ng/m2) and bis(2-ethylhexyl) phosphate (median: 5130 ng/g and 940 ng/m2) were the dominant components of tri- and di-OPEs, respectively. The combination of Spearman rank correlations and the determinations of molar concentration ratios of di-OPEs to tri- OPEs revealed that apart from the degradation of tri-OPEs, di-OPEs could originate from direct commercial application, or as impurities in tri-OPE formulas. Significant positive correlations (p < 0.05) were found for most tri- and di-OPE levels between the dust and hand wipes from dismantling workers, whereas this was not observed in those from the ordinary microenvironment. Our results provide robust evidence that e-waste dismantling activities contribute to OPEs contamination in the surroundings and further human exposure pathways and toxicokinetics are needed to be elucidated.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
30
|
Li B, Xu D, Zhou X, Yin Y, Feng L, Liu Y, Zhang L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. ENVIRONMENTAL RESEARCH 2023; 227:115709. [PMID: 36933641 DOI: 10.1016/j.envres.2023.115709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
31
|
Ma Y, Romanak KA, Capozzi SL, Xia C, Lehman DC, Harrad S, Cline-Cole R, Venier M. Socio-Economic Factors Impact US Dietary Exposure to Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:478-484. [PMID: 37333937 PMCID: PMC10269323 DOI: 10.1021/acs.estlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
Although diet is an important route of exposure for brominated flame retardants (BFRs), little is known of their presence in US food. Therefore, we purchased meat, fish, and dairy product samples (n = 72) in Bloomington, IN, from 3 stores representing national retail chains at different price levels. Composite samples (n = 42) were analyzed for polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), novel BFRs (NBFRs), and dechlorane plus (DP). Concentrations of total halogenated flame retardants (HFRs) ranged between 54 and 1,400 pg/g ww, with PBDEs being the predominant compounds. Concentrations of NBFRs, but not PBDEs, in US food items were significantly impacted by price, raising the issue of environmental justice. Nonorganic food generally had a higher abundance of BDE-209 than organic food items. Estimates of dietary exposure revealed that meat and cheese consumption contribute most to the overall HFR intake and that intakes are highest for children and for non-Hispanic Asians. Taking into account several caveats and limitations of this study, these results as a whole suggest that health burdens from dietary exposure to HFRs have become minimal for US citizens, highlighting the positive impact of regulatory efforts.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Kevin Andrew Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Staci Lynn Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel Crawford Lehman
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
32
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Temporal trends in concentrations of brominated flame retardants in UK foodstuffs suggest active impacts of global phase-out of PBDEs and HBCDD. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160956. [PMID: 36528953 DOI: 10.1016/j.scitotenv.2022.160956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Global restrictions on use of legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) have generated demand for novel BFRs (NBFRs) as substitutes. Our research group has previously reported decreased concentrations of PBDEs and HBCDD and increased concentrations of NBFRs in UK indoor environments, suggesting that restrictions on PBDEs and HBCDD are exerting an impact. In this study, we analysed UK foodstuffs collected in 2020-21 and compared the BFR concentrations found with those found in similar samples collected in 2015 to investigate whether similar trends in BFR concentrations would be observed. Concentrations of PBDEs and HBCDD isomers detected in our samples had declined by 78-92 % and 59-97 % since the 2015 study, respectively. Moreover, concentrations of NBFRs (dominated by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE or TBE), and bis(2-ethyl hexyl) tetrabromophthalate (BEH-TEBP or TBPH)) in UK foodstuffs increased significantly (28-1400 %) between 2015 and 2020-21. Combined, these findings suggest that restrictions on use of PBDEs and HBCDD have had a discernible impact on concentrations of these legacy BFRs and their NBFR replacements in UK foodstuffs. Interestingly, given recent reports of a significant increase in concentrations of decabromodiphenyl ethane (DBDPE) in UK house dust between 2014 and 2019, a significant decline (70-84 %) in concentrations of DBDPE was observed in UK foodstuffs.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Recycling of Plastics from E-Waste via Photodegradation in a Low-Pressure Reactor: The Case of Decabromodiphenyl Ether Dispersed in Poly(acrylonitrile-butadiene-styrene) and Poly(carbonate). Molecules 2023; 28:molecules28062491. [PMID: 36985461 PMCID: PMC10053933 DOI: 10.3390/molecules28062491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Recycling of plastic waste from electrical and electronic equipment (EEE), containing brominated flame retardants (BFR) remains difficult due to the increasingly stringent regulations on their handling and recovery. This report deals with photodegradation in a low-pressure reactor applying UV-visible light on Decabromodiphenyl ether (DBDE or BDE-209) randomly dispersed in commercially available Poly(acrylonitrile-butadiene-styrene) (ABS) and Poly(carbonate) (PC). The aim of this study is to investigate the possibility of decomposing a BFR in plastic waste from EEE while maintaining the specifications of the polymeric materials in order to allow for their recycling. The photodegradation of the extracted BFR was monitored using infrared spectroscopy and gas chromatography coupled with mass spectroscopy. DBDE underwent rapid photodegradation during the first minutes of exposure to UV-visible light and reached degradation yields superior to 90% after 15 min of irradiation. The evaluation of polymer properties (ABS and PC) after irradiation revealed superficial crosslinking effects, which were slightly accelerated in the presence of DBDE. However, the use of a low-pressure reactor avoids large photooxidation and allowed to maintain the thermal and structural properties of the virgin polymers.
Collapse
|
34
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
35
|
Yu Y, Huang J, Jin L, Yu M, Yu X, Zhu X, Sun J, Zhu L. Translocation and metabolism of tricresyl phosphate in rice and microbiome system: Isomer-specific processes and overlooked metabolites. ENVIRONMENT INTERNATIONAL 2023; 172:107793. [PMID: 36739853 DOI: 10.1016/j.envint.2023.107793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers' transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine 10 Discovery Dr, Farmington, CT 06032, USA
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
36
|
Shi Y, Chen S, Yan M, Cheng Z, Zhao L, Liu Y, Zhang B, Zhu H, Zhang T, Kannan K. Elevated levels of biomarkers of oxidative stress and renal injury linked to nitrogenous flame retardants exposure in e-waste dismantling site: A case study in China. CHEMOSPHERE 2023; 314:137747. [PMID: 36608880 DOI: 10.1016/j.chemosphere.2023.137747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Nitrogenous flame retardants (NFRs) have aroused worldwide public concern as their nephrotoxic effect. However, knowledge regarding the pathogenesis mechanism of their exposure to induce kidney injury remains largely unknown. In this study, eight NFRs, four oxidative stress biomarkers (OSBs), and one kidney injury biomarker, namely neutrophil gelatinase-associated lipocalin (NGAL), were measured in urine specimens collected from residents living around e-waste disassembly and reference areas, representing two exposure scenarios. Significant higher concentrations of Σ8NFR (median: 70.6 vs. 33.8 μg/g Cre) and five biomarkers (124 vs. 97.4 μg/g Cre) were found in urines of populations living in e-waste site compared to those in the reference site (p < 0.05). Primary NFRs exhibited significant positive associations with OSBs and NGAL regardless of the population examined, implying that chronic NFRs exposure could induce oxidative stress and kidney damage. By using structure equation model, we found that oxidative stress, particularly DNA and RNA oxidation mediated 16.1% of the total effect of NFRs on NGAL in e-waste related people, but not on the general population. Overall, this study suggests long-term chronic exposure to NFRs can induce oxidative stress and renal injury in humans but the pathogenesis mode may be scenario-specific.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
37
|
Guo LC, Lv Z, Zhu T, He G, Hu J, Xiao J, Liu T, Yu S, Zhang J, Zhang H, Ma W. Associations between serum polychlorinated biphenyls, halogen flame retardants, and renal function indexes in residents of an e-waste recycling area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159746. [PMID: 36306844 DOI: 10.1016/j.scitotenv.2022.159746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
E-waste handling activities release large quantities of polychlorinated biphenyls (PCBs) and halogen flame retardants (HFRs) into the surrounding area, creating a high exposure risk for local residents. However, the possibility of PCBs and HFRs exposure contributing to renal injury has not been extensively studied. To fill this knowledge gap, we conducted an epidemiological analysis of adolescents and adults recruited from an e-waste recycling area and a control area. Some PCBs and HFRs compounds were statistically significantly associated with the levels of β2-microglobulin (β2-MG), blood urea nitrogen (BUN), serum creatinine (SCr), and uric acid, with thyroid hormone-related genes found to partly mediate these associations. The interactions of PCBs and HFRs with metals also influenced renal function indexes. Exposure to high concentrations of PCBs and HFRs resulted in higher levels of β2-MG and lower levels of BUN and SCr in the exposed group. As indicated by the elevated β2-MG levels, high exposure to PCBs and HFRs may increase the risk of early renal injury for adolescents. These findings help to clarify the impacts of PCBs and HFRs on renal function and highlight the need to protect the health of residents in regions impacted by e-waste handling activities.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanlu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Guanhao He
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jinliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Ma
- School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Yu Y, Yu X, Zhang D, Jin L, Huang J, Zhu X, Sun J, Yu M, Zhu L. Biotransformation of Organophosphate Esters by Rice and Rhizosphere Microbiome: Multiple Metabolic Pathways, Mechanism, and Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1776-1787. [PMID: 36656265 DOI: 10.1021/acs.est.2c07796] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon999077, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon999077, Hong Kong
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine, 10 Discovery Dr., Farmington, Connecticut06032, United States
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
39
|
Zhou Y, Li Z, Zhu Y, Chang Z, Hu Y, Tao L, Zheng T, Xiang M, Yu Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157307. [PMID: 35839871 DOI: 10.1016/j.scitotenv.2022.157307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many studies have elucidated health concerns of informal e-waste recycling activities, yet few has evaluated the effectiveness of the regulations as well as the human exposure risks to adjacent residents. Herein, legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs), and alternative organophosphate esters (OPEs) were investigated in indoor dust collected from three e-waste industrial parks and five adjacent villages located in south China. The levels and composition patterns varied significantly between workshop and home dust. BDE209 showed much higher (p < 0.01) concentrations in workshop dust versus home dust, while relatively comparable levels were found for OPEs and HBCDs. Principal component analysis revealed that OPEs and PBDEs were mainly related to home and workshop dust, respectively. Results strongly indicated that e-waste dismantling activities still contribute to a high burden of BDE209 to surrounding residents, whilst the sources of OPEs may also originated from household products, especially for TCEP. The estimated daily intakes (EDIs) via dust ingestion and dermal absorption for occupational worker and nearby toddlers were below available reference dose (RfD) values even at worst case scenario. This study highlights the significance of deca-BDEs rather than alternative OPEs in e-waste generated in China, which could provide scientific suggestions for policy formulation.
Collapse
Affiliation(s)
- Ying Zhou
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
40
|
Ye L, Zhang X, Wang P, Zhang Y, He S, Li Y, Li S, Liang K, Liao S, Gao Y, Zhou S, Peng Q. Low concentration triphenyl phosphate fuels proliferation and migration of hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2445-2459. [PMID: 35776891 DOI: 10.1002/tox.23609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used due to their unique properties. The OPFRs are mainly metabolized in the liver. However, whether the plasma level of OPFRs was involved in the progression of liver cancer remains unclear. Triphenyl phosphate (TPP) is one of the OPFRs that are mostly detected in environment. In this study, we performed CCK8, ATP, and EdU analyses to evaluate the effect of TPP at the concentrations at 0.025-12.8 μM on the proliferation, invasion, and migration of Hep3B, a hepatocellular carcinoma (HCC) cell line. Tumor-bearing mouse model was used for in vivo validation. The results showed that low concentrations of TPP at (0.025-0.1 μM), which are obtained in the plasma of patients with cancers, remarkably promoted cell invasion and migration of Hep3B cells. Animal experiments confirmed that TPP treatment significantly enhanced tumor growth in the xenograft HCC model. To explore the possible molecular mechanisms that might mediate the actions of TPP on Hep3B cells, we profiled gene expression in groups treated with or without TPP at the concentrations of 0.05 and 0.1 μM using transcriptional sequencing. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-protein interaction (PPI) analyses demonstrated that pathways affected by differentially expressed genes (DEGs) were mainly in nuclear-transcribed mRNA catabolic processes, cytosolic ribosome, and ATPase activity. A 0.05 and 0.1 μM TPP led to up-regulation of a series of genes including EREG, DNPH1, SAMD9, DUSP5, PFN1, CKB, MICAL2, SCUBE3, and CXCL8, but suppressed the expression of MCC. These genes have been shown to be associated with proliferation and movement of cells. Taken together, our findings suggest that low concentration of TPP could fuel the proliferation, invasion, and migration of HCC cells. Thus, TPP is a risk factor in the progression of HCC in human beings.
Collapse
Affiliation(s)
- Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shujiao He
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuguang Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Shuqing Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Hoang AQ, Karyu R, Tue NM, Goto A, Tuyen LH, Matsukami H, Suzuki G, Takahashi S, Viet PH, Kunisue T. Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119809. [PMID: 35931384 DOI: 10.1016/j.envpol.2022.119809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
42
|
Zhao Y, Yan Y, Liu C, Zhang D, Wang D, Ispas A, Bund A, Du B, Zhang Z, Schaaf P, Wang X. Plasma-Assisted Fabrication of Molecularly Imprinted NiAl-LDH Layer on Ni Nanorod Arrays for Glyphosate Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35704-35715. [PMID: 35894695 DOI: 10.1021/acsami.2c08500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An inorganic-framework molecularly imprinted NiAl layered double hydroxide (MI-NiAl-LDH) with specific template molecule (glyphosate pesticide, Glyp) recognition ability was prepared on Ni nanorod arrays (Ni NRAs) through electrodeposition followed by a low-temperature O2 plasma treatment. The freestanding Ni/MI-NiAl-LDH NRA electrode had highly enhanced sensitivity and selectivity. The electrocatalytic oxidation of Glyp was proposed to occur at Ni3+ centers in MI-NiAl-LDH, and the current response depended linearly on the Glyp concentration from 10.0 nmol/L to 1.0 μmol/L (R2 = 0.9906), with the limit of detection (LOD) being 3.1 nmol/L (S/N = 3). An exceptional discriminating capability with tolerance for other similar organophosphorus compounds was achieved. Molecular imprinting (N and P residues) affected the electronic structure of NiAl-LDH, triggering the formation of highly active NiOOH sites at relatively lower anodic potentials and substantially enhancing the electrocatalytic oxidation ability of the NiAl-LDH interface toward the C-N bonds in Glyp. In combination with the surface enrichment effect of MI-NiAl-LDH toward template molecules, the electrochemical oxidation signal intensity of Glyp increased significantly, with a greater peak separation from interfering molecules. These results challenge the common belief that the excellent performance of inorganic-framework molecularly imprinted interfaces arises from their specific adsorption of template molecules, providing new insight into the development of high-performance organic-pollutant-sensing electrodes.
Collapse
Affiliation(s)
- Yuguo Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Chunyue Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Dong Wang
- Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MarcoNano®, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Adriana Ispas
- Fachgebiet Elektrochemie und Galvanotechnik, Institut für Werkstofftechnik und Institut für Mikro- und Nanotechnologien MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Andreas Bund
- Fachgebiet Elektrochemie und Galvanotechnik, Institut für Werkstofftechnik und Institut für Mikro- und Nanotechnologien MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Biao Du
- Beijing Yixingyuan Petrochemical Technology Co., Ltd., 101301 Beijing, People's Republic of China
| | - Zhengdong Zhang
- Center for Environmental Metrology, National Institute of Metrology, 100029 Beijing, People's Republic of China
| | - Peter Schaaf
- Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MarcoNano®, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| |
Collapse
|
43
|
Zhao L, Lu Y, Zhu H, Cheng Z, Wang Y, Chen H, Yao Y, Zhang J, Li X, Sun Z, Zhang C, Sun H. E-waste dismantling-related occupational and routine exposure to melamine and its derivatives: Estimating exposure via dust ingestion and hand-to-mouth contact. ENVIRONMENT INTERNATIONAL 2022; 165:107299. [PMID: 35597114 DOI: 10.1016/j.envint.2022.107299] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Melamine (MEL) and its derivatives are increasingly applied as nitrogenous flame retardants in consumer products. Nevertheless, limited information is available on their environmental occurrence and subsequent human exposure via multiple exposure pathways. In this study, we analysed MEL and its derivatives in dust (indication of the dust ingestion route) and hand wipe samples (indication of the hand-to-mouth route) collected in various microenvironments. The levels of ∑MELs in both dust (median: 24,100 ng/g) and participant hand samples (803 ng/m2) collected in e-waste dismantling workshops were significantly higher than those in samples collected in homes (15,600 ng/g and 196 ng/m2, respectively), dormitories (13,100 ng/g and 227 ng/m2, respectively) and hotel rooms (11,800 ng/g and 154 ng/m2, respectively). Generally, MEL dominated in dust samples collected in e-waste dismantling workshops, whereas cyanuric acid dominated in hand wipe samples. This may occur partly because the latter is an ingredient in disinfection products, which are more frequently employed in daily lives during the COVID-19 pandemic. Exposure assessment suggests that dust ingestion is an important exposure pathway among dismantling workers and the general population, whereas hand-to-mouth contact could not be overlooked in certain populations, such as children and dismantling workers not wear gloves at work.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading, Beijing 100015, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Zhang W, Giesy JP, Wang P. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154271. [PMID: 35245542 DOI: 10.1016/j.scitotenv.2022.154271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Safety and sustainable agro-food production is important for food and nutrition security. Agro-foods safety is challenged by various emerging environmental contaminants. Organophosphate esters (OPEs) have been reported to occur in various agro-food items worldwide, which has resulted in increasing concerns for effects on health of humans and wildlife, including through agriculture. However, information on presence, sources and transfer routes of OPEs in agro-foods, and consequent health risks remains scant. This review critically evaluates available information on concentrations of OPEs in various agro-foods, and discusses potential sources of OPEs in agro-foods, which are closely related to the ambient agri-environment, agricultural inputs, and agro-foods processing. Some directions for future research are suggested. First, since food is an important exposure pathway to OPEs, systematic monitoring of concentrations of OPEs in various categories of agro-foods is recommended. Second, surveillance of concentrations and characteristics of OPEs in agro-foods and ambient agri-environments, agricultural inputs or processing in the agro-food chain is needed to obtain a more complete description of exposure and transmission behavior of OPEs in agro-foods. Third, future comprehensive studies of transmission, metabolism and accumulation of OPEs in animals or plants, are required. Finally, measures to control emissions of OPEs as sources to agriculture should be taken.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, PR China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
45
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: A critical review with particular focus on outdoor air and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150747. [PMID: 34619188 DOI: 10.1016/j.scitotenv.2021.150747] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
46
|
Yang J, Li X, Zhao Y, Yang H, Li Y. The exposure of OPFRs in fish from aquaculture area: Backward tracing of the ecological risk regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118550. [PMID: 34813886 DOI: 10.1016/j.envpol.2021.118550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, we backward traced and controlled the pollution of organophosphorus flame retardants (OPFRs) in aquaculture areas from the standpoints of terminal treatment, migration and transformation resistance, and source molecular substitution technology. A regulatory plan to considerably reduce the combined biotoxicity of fish exposed to OPFRs in aquaculture areas and significantly improves the biodegradation of sewage treatment and the efficiency of soil plant-microorganism combined remediation was formulated. Environmentally friendly alternatives of OPFRs were designed. The supplementation scheme of aquatic feed significantly alleviates the toxicity risk of fish exposure to OPFRs in aquafarm (reduced by 121.02%). The regulatory scheme of external stimulus to enhance the biodegradation of OPFRs in wastewater treatment process included an H2O2 concentration of 400 mg/L, voltage gradient of 1.5 V/m, and pH of 6.5 can improve the degradation capacity of OPFRs molecules by 88.86%. The degradation of OPFRs can be enhanced by plant-microorganism combined remediation (up to 98.64%) by growing plants whose primary function is phytoextraction in soils dominated by Sphingopyxis sp. and Rhodococcus sp. A 3D-QSAR pharmacophore model based on apoptosis toxicity, mitochondrial dysfunction, oxidative stress response, reproductive, neurotoxicity, gill-inhalation combined toxicity of fish exposed to OPFRs in aquafarm was fabricated. The recommended aquatic feed scheme and the control scheme of enhanced degradation of OPFRs by sewage treatment and soil environment had better applicability for the new-designed OPFRs substitution molecules (the maximum combined toxicity/degradation is reduced/increased by 75.46% and 63.24%, respectively). In this paper, a technical scheme of OPFRs terminal treatment, process regulation, and source control was applied as a cradle-to-grave approach to reduce the ecological toxicity risk of fish exposed to OPFRs in aquaculture areas providing theoretical support for the realization of OPFRs environmental pollution control.
Collapse
Affiliation(s)
- Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
47
|
Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020766. [PMID: 35055588 PMCID: PMC8775953 DOI: 10.3390/ijerph19020766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023]
Abstract
Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.
Collapse
|
48
|
Zhao C, Li JFT, Li XH, Dong MQ, Li YY, Qin ZF. Measurement of polychlorinated biphenyls with hand wipes and matched serum collected from Chinese E-waste dismantling workers: Exposure estimates and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149444. [PMID: 34365263 DOI: 10.1016/j.scitotenv.2021.149444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
To date, dermal/hand-to-mouth exposure to chemicals in the e-waste recycling environment has not been sufficiently understood, and the importance of dermal absorption of chemicals in e-waste dismantling workers remains controversial. In this study, we utilized hand wipes and matched sera to characterize dermal/hand-to-mouth exposure to PCBs for e-waste dismantling workers, and potential effects on thyroid hormones were also assessed. PCB loadings in hand wipes varied from 0.829-265 ng wipe-1 (11.3-2850 ng m-2 wipe-1), with 37.2 ng wipe-1 (432 ng m-2 wipe-1) as the median value. Serum concentrations of PCBs ranged from 32.3-3410 ng g-1 lipid weight (lw) with 364 ng g-1 lw as the median value. Between wipes and sera, lower-chlorinated congeners (e.g. CB-28, -66, -74, -99,-105 and -118) showed significant associations (p < 0.01), but higher-chlorinated congeners (e.g. CB-138, -153, -156, -170, and -180) did not. These lower-chlorinated CBs were the major contributors to estimated dermal/hand-to-mouth average daily doses (ADDs) and the hazard index (HI). Correspondingly, their estimated contributions to serum levels by dermal absorption were also significant, with the contribution of CB-28 being as high as 21.4%. As a consequence, dermal absorption of some low-chlorinated congeners was a non-negligible route for e-waste dismantling workers. Although insignificant association was shown between serum PCBs and thyroid hormones, the potential health risk should be of concern due to the high levels of PCBs observed in workers' sera.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; College of Earth Sciences, Guilin University of Technology, Guilin 541006, PR China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.
| | - Meng-Qi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| |
Collapse
|
49
|
Zhang Q, Li X, Wang Y, Zhang C, Cheng Z, Zhao L, Li X, Sun Z, Zhang J, Yao Y, Wang L, Li W, Sun H. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust. ENVIRONMENT INTERNATIONAL 2021; 157:106860. [PMID: 34500363 DOI: 10.1016/j.envint.2021.106860] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is a well-known source of plastic additives in the environment. However, the e-waste-related occupational exposure to organophosphite antioxidants (OPAs) and the relevant oxidation products-novel organophosphate esters (NOPEs)-via different pathways is still unknown. In this study, six OPAs and three NOPEs were measured in 116 dust and 43 hand-wipe samples from an e-waste dismantling area in Central China. The median concentrations of ΣOPAs and ΣNOPEs were 188 and 13,900 ng·g-1 in workshop dust and 5,250 ng·m-2 and 53,600 ng·m-2 on workers' hands, respectively. The increasing concentrations of dust in the form of triphenyl phosphate (TPHP) (p < 0.01) and tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) (p < 0.05) were strongly associated with the corresponding concentration on workers' hands. Furthermore, men had significantly lower levels of NOPEs on their hands than did women (p < 0.01). Moreover, the hand wipe levels of AO168 = O (41,600 ng·m-2) was significantly higher than that of the typical OPE (TPHP, 7370 ng·m-2), and the hand-to-mouth contact (ΣOPAs, 9.48 ng·kg bw-1·day-1; ΣNOPEs, 109 ng·kg bw-1·day-1) was a more significant and integrated pathway than dust ingestion (ΣOPAs, 0.10 ng·kg bw-1·day-1; ΣNOPEs, 5.01 ng·kg bw-1·day-1) of e-waste related occupational exposure to these "new" chemicals.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejiao Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
50
|
He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S. Environmental occurrence and remediation of emerging organohalides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118060. [PMID: 34479159 DOI: 10.1016/j.envpol.2021.118060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).
Collapse
Affiliation(s)
- Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Siyan Zhao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|