1
|
Mohsin MZ, Þórarinsdóttir R, Brynjólfsson S, Wu B. Utilization of residues from microalgal industries for agricultural practices: A comprehensive review. CHEMOSPHERE 2025; 384:144523. [PMID: 40513528 DOI: 10.1016/j.chemosphere.2025.144523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/21/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Global consumptions of fertilizers and freshwater have been continuously growing due to increased food demand, leading to great concerns on food security. Bio-based resilient nutrient resources such as microalgae-derived waste biomass and wastewater have gained great attention as alternative fertilizer resources because they contain key nutrients (nitrogen and phosphorus), organic compounds (acting as soil conditioner, growth stimulators), and micronutrients. Thus, microalgae-derived solid and liquid fertilizers have great potential in promoting plant growth in soil and/or hydroponic farming, controlling release of nutrients to avoid nutrient leaching and volatilization, and facilitating to achieve circular economy in microalgal industries. However, several challenges, such as imbalanced nutrient element ratios, causes of heavy metal accumulation and increased pH/conductivity, may limit their wide applications. Several recent-published review articles have documented the application of fresh microalgal biomass as fertilizer sources via direct use and conversion methods or recycling cultivation medium for microalgal growth, but no review has been conducted on utilization of microalgal processing wastewater and biomass residues for agriculture practices. Herein, this article provides a comprehensive review on the processes relating to recovery of resources (water, nutrients, valuable plant growth compounds) from microalgae processing wastewater and biomass residues generated in microalgal biorefinery industries, and identifies the key factors that are associated with the resource recovery efficiency and their effects on plant growth.
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavík, Iceland
| | - Ragnheiður Þórarinsdóttir
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavík, Iceland; Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, IS-311, Borgarbyggð, Iceland
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavík, Iceland.
| |
Collapse
|
2
|
Lei Y, Huang D, Zhou W, Xiao R, Chen H, Huang H, Xu W, Wang G, Li R. Higher remediation efficiency of Cd and lower CO 2 emissions in phytoremediation systems with biochar application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126345. [PMID: 40311740 DOI: 10.1016/j.envpol.2025.126345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Biochar has been considered a promising material for soil carbon sequestration. However, there are huge knowledge gaps regarding the carbon reduction effects of biochar-plant-polluted soil. Here, rice straw biochar (RB) was applied in ryegrass-cadmium (Cd)-contaminated soil to investigate the full-cycle carbon dioxide (CO2) emission and intrinsic mechanism. RB resulted in a 37.00 %-115.64 % reduction in accumulative CO2 emissions and a 31.61 %-45.80 % reduction in soil bioavailable Cd throughout the whole phytoremediation period. CO2 emission reduction triggered by RB can be attributed to the regulation of plant and rhizosphere ecological functions. RB could bolster photosynthetic carbon fixation by maintaining the stability of the structure of the chloroplasts and thylakoids, accelerating the consumption of terminal photosynthate, upregulating photosynthetic pigments, and mitigating oxidative damage. Besides, RB reduced the metabolism of readily mineralizable carbon sources while reinforcing the utilization of certain nutrient substrates. Besides, the composition of rhizosphere microbial communities was altered, especially those associated with carbon cycling (Chloroflexi, Actinobacteriota, and Acidobacteriota phyla) to orient soil microbial evolution to lower soil CO2 emission. This study aims to establish a win-win paradigm of "carbon reduction-pollution alleviation" to deepen the understanding of biochar in carbon neutrality and soil health and provide a theoretical basis for field pilot-scale studies.
Collapse
Affiliation(s)
- Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
3
|
Chen X, Alvarez PJJ, Masiello CA. Environmentally Persistent Free Radicals in Biochar: Environmental Context and Future Research Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11440-11454. [PMID: 40465377 DOI: 10.1021/acs.est.4c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are produced during biochar pyrolysis and, depending on biochar application, can be either detrimental or beneficial. High levels of EPFRs may interfere with cellular metabolism and be toxic, because EPFR-generated reactive oxygen species (e.g., hydroxyl radicals (•OH)) attack organic molecules. However, •OH can be useful in remediating recalcitrant organic contaminants in soils. Understanding the (system-specific) safe range of EPFRs produced by biochars requires knowing both the context of their use and their overall significance in the existing suite of environmental radicals, which has rarely been addressed. Here we place EPFRs in a broader environmental context, showing that biochar can have EPFR concentrations from 108-fold lower to 109-fold higher than EPFRs from other environmental sources, depending on feedstock, production conditions, and degree of environmental aging. We also demonstrate that •OH radical concentrations from biochar EPFRs can be from 104-fold lower to 1017-fold higher than other environmental sources, depending on EPFR type and concentration, reaction time, oxidant concentration, and extent of environmental EPFR persistence. For both EPFR and •OH concentrations, major uncertainties derive from the range of biochar properties and the range of data reporting practices. Controlling feedstock lignin content and pyrolysis conditions are the most immediate options for managing EPFRs. Co-application of compost to provide organics may serve as a postpyrolysis method to quench and reduce biochar EPFRs.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Carbon Hub, Rice University, Houston, Texas 77005, United States
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Caroline A Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
- Sustainability Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Lv B, Ma B, Li Y, Wu L, Huang M, He X, Xue J, Yang L. Biochar derived from feedstock with high lignin content leads to better soil improvement performance in red soils: from the perspective of soil microbial regulation and carbon stabilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:203. [PMID: 40343555 DOI: 10.1007/s10653-025-02522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Red soil in southern China has a significant potential for carbon sequestration enhancement. Therefore, this study aimed to explore more effective biochar options to enhance the soil microbial environment and investigate their effects on soil carbon cycling. Three types of biochar were prepared and analyzed: maize stover biochar (Maize-BC, low lignin content), cotton stover biochar (Cotton-BC, high lignin content), and sludge biochar (Sludge-BC, no lignin content). The structure of the soil microbial community and carbon dynamics were comprehensively analyzed. The three biochars increased soil inorganic carbon, stable organic carbon, microbial carbon, and dissolved organic carbon by 30.1%-75.5%, 37.6%-44.0%, 88.4%-248.1%, and 4.3%-73.9%, respectively. Maize-BC with lower lignin content exhibited higher abundance and diversity in soil microbial communities compared to other treatments. In contrast, the addition of Cotton-BC with higher lignin content resulted in a shift mainly in the phylum Actinobacteria and Proteobacteria. Overall, the soil changes induced by cotton stover were more favorable for promoting a shift in the microbial community structure toward a lower carbon cycle, enabling microorganisms to better regulate or control the soil carbon cycle. This study offers a promising approach for future research focused on enhancing soil fertility and reducing soil carbon emissions.
Collapse
Affiliation(s)
- Bowei Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch, 8440, New Zealand
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources (Ministry of Education), School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
5
|
Lian M, Li C, Wang L, Niu L, Zhao L, Wu D, Zhao Z, Li X, Zhang Z. Optimized immobilization of lead and cadmium in soil using dithiocarboxy functionalized silica: A long-term effectiveness study. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137402. [PMID: 39919631 DOI: 10.1016/j.jhazmat.2025.137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
The efficient immobilization of heavy metals often requires a high dosage of remediation material, resulting in increased remediation costs and potential ecological risks. In this study, we developed a novel silica-based material, RNS-TS, characterized by a high density of dithiocarboxy groups, aimed at remediating Pb and Cd contaminated soils and evaluating the long-term efficacy via aging experiments. The synthesized RNS-TS achieved a functional group density of 2.59 mmol/g. At a concentration of 1 %, it effectively reduced the content of bioaccessibility Pb, Cd, and Cu in slightly contaminated soil by 86 %, 82 %, and 100 %; in moderately contaminated soil by 94 %, 75 %, and 100 %; and in heavily contaminated soil by 68 %, 60 %, and 100 %. Furthermore, the remediation process was relatively fast, with equilibrium achieved within one day after adding the RNS-TS. Aging experiments revealed that the remediated products exhibited excellent stability under simulated climate conditions such as extreme temperatures, freeze-thaw cycles and dry-wet cycles etc. Field experiments demonstrated that a 0.2 wt% application of RNS-TS reduced the content of bioaccessible Cd from 0.6 mg/kg to 0.3 mg/kg (approximately 50.8 % reduction), while Cd content in wheat grains decreased from 0.18 mg/kg to 0.08 mg/kg (approximately 54.4 % reduction). This successful application ensured safe wheat production. This material shows great promise as a risk element stabilization agent for heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Mingming Lian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; College of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471000, China; Zhejiang Zhongtong Testing Technology Co., Ltd., Ningbo 315000, China
| | - Chaoran Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Longfei Wang
- College of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471000, China
| | - Liyong Niu
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Linlin Zhao
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province, Jiyuan 459000, China
| | - Dongdong Wu
- Zhejiang Zhongtong Testing Technology Co., Ltd., Ningbo 315000, China
| | - Zongsheng Zhao
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province, Jiyuan 459000, China
| | - Xiaohong Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Zhijun Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Meng F, Wang Y, Wei Y. Advancements in Biochar for Soil Remediation of Heavy Metals and/or Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1524. [PMID: 40271705 PMCID: PMC11990842 DOI: 10.3390/ma18071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid industrialization and economic growth have exacerbated the contamination of soils with both heavy metals and organic pollutants. These persistent contaminants pose substantial threats to ecosystem integrity and human health due to their long-term environmental persistence and potential for bioaccumulation. Biochar, with its high specific surface area, well-developed pore structure, and abundant surface functional groups, has emerged as a promising material for remediating soils contaminated by heavy metals and organic pollutants. While some research has explored the role of biochar in soil remediation, several aspects remain under investigation. Fully harnessing the potential of biochar for soil contamination remediation is of critical importance. This review provides an overview of the preparation methods and physicochemical properties of biochar, discusses its application in soils contaminated by organic compounds and/or heavy metals, and examines the mechanisms underlying its interaction with pollutants. Additionally, it summarizes the toxicity assessments of biochar during soil remediation and outlines future research directions, offering scientific insights and references for the practical deployment of biochar in soil pollution remediation.
Collapse
Affiliation(s)
- Fanyue Meng
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yanming Wang
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yuexing Wei
- College of Environment and Ecology, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
7
|
Xue Q, He M, Meng Z, Lu X, Wang Z, Liang L, Mo X. Modulated use of high-concentration invasive biochar in waste-to-energy strategies: Impact analysis on microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124547. [PMID: 39987878 DOI: 10.1016/j.jenvman.2025.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
As a potential amendment, biochar has attracted considerable attention for its impact on soil microbial communities. However, there is little consensus regarding the impacts of biochar derived from invasive plants on microbial communities in coastal saline wetland soils. In this study, we used Juglans regia biochar (JBC) and two other invasive plant biochar, Spartina alterniflora biochar (SBC) and Flaveria bidentis biochar (FBC) to saline soils at rates of 1%, 3%, and 5% (w/w). The results demonstrated that the application of biochar led to a reduction in microbial community diversity, particularly evident in the 5% SBC and FBC treatments. Furthermore, the 5% FBC treatment resulted in a notable decline in community richness. With regard to species composition, the addition of SBC and FBC resulted in a notable impact on the relative abundance of Acidobacteria in comparison to JBC. Additionally, 5% SBC led to a reduction in the relative abundance of Bacteroidetes by 21.49%-23.90%, and 5% FBC reduced the relative abundance of Nitrospirae by 14.71%-17.86%. The addition of biochar enhanced the overall complexity of the community. Specifically, adding 5% SBC boosted the complexity of the microbial network and encouraged cooperative relationships among microorganisms. However, this community became more vulnerable to environmental changes and exhibited weaker anti-interference capabilities. Moreover, 5% JBC and 5% SBC altered the community assembly process from deterministic to stochastic. We emphasize the importance of carefully selecting biochar types during soil remediation, with particular attention to the application of high concentrations of biochar. This paper lays the groundwork for long-term practice in soil remediation through the approach of "treating waste with waste".
Collapse
Affiliation(s)
- Qing Xue
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Zirui Meng
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xueqiang Lu
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ziyi Wang
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Limin Liang
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Xunqiang Mo
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
8
|
Li Z, Zhang R, Huang J, Yu D, Cheng Z, Chen G, Sun P. Carbon residue from co-pyrolysis of cartons and plastics: Characteristics, environmental behaviors and applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124296. [PMID: 39854896 DOI: 10.1016/j.jenvman.2025.124296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The continuously growing of municipal solid waste (MSW) has posed a threat to human-being. Pyrolysis is a promising technique for MSW disposal, as it can reduce its volume and produce valuable products as well. This study evaluated the potential of carbon residue (CR) derived from waste carton as soil amendment. Additionally, considering the waste plastics, such as plastic bags, plastic tape, etc., can mix with carton in MSW, the effect of polyvinyl chloride (PVC) addition on the characteristics of CR and its environmental behavior was measured. Results showed that the CR derived from carton exhibited notable efficacy in adsorbing Cd2+ (56.111 mg/g), pesticides and PO43- (0.231 mmol/g), thereby mitigating pollutants and immobilizing nutrient in soil environment. The introduction of PVC was found to enhance the adsorption of CR for Cd2+ (65.623 mg/g) and PO43- (0.524 mmol/g), albeit exhibiting diminished performance in the removal of pesticides. Different from previous studies, this study revealed that the dissolved black carbon (DBC) released from CRs did not generate reactive oxygen species (ROS) effectively under solar irradiation, and the light screening of DBC can mitigate the photodegradation of pollutants. Furthermore, both CRs increased bacterial luminescence by approximately 70%, which indicated that no toxicity produced during the pyrolysis process. And gas chromatography-mass spectrometry (GC-MS) revealed the absence of polyaromatic hydrocarbon (PAH) in CRs. In summary, this study may provide some new insights on the disposal of MSW, and the CR made by MSW could be effective in soil amendment and reduce the leaching of pollutants and nutrient.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Shengli Oilfield Company, Sinopec, Dongying, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Dandan Yu
- Shengli Oilfield Company, Sinopec, Dongying, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Wu Y, Wang Z, Xue Z, Yan Y, Huma B, Zhou Y, Tan Z. Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125551. [PMID: 39694309 DOI: 10.1016/j.envpol.2024.125551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.6%, 26.6%, and 42.9%, respectively, accompanied by corresponding decreases in bioavailability of 52.7%, 49.4%, and 39.4%. The accumulation of Cd, Pb, and As in rice seedlings cultivated in the remediated soil decreased by 79.50-85.47%, 38.05-38.99%, and 39.56-77.10%, respectively. However, the removal of essential mineral nutrients (Al, Fe, K, Ca, Mg, Si, N, Zn, Mn, and Cu) from the soil ranged from 3.26% to 36.28%, which adversely affected seed germination and rice seedling growth. Pre-planting fertilization with rice straw (RS), pig manure (PM), biochar (RSB and PMB), and regenerated SMBCS (RSMBCS1 and RSMBCS2) effectively reduced Cd (0.20-45.40%) and Pb (8.70-35.36%) uptake while enhancing the bioavailability of mineral nutrients, thereby promoting crop growth and physiological traits. The SMBCS-fertilization technique emerges as a viable approach for the removal of PTEs in agricultural soils, facilitating the restoration of ecological functions and ensuring safe agricultural production.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongwei Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyu Xue
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Yan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bushra Huma
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqian Zhou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Yu Y, Xu Z, Cui M, Li J. Feasibility assessment of biochar amendment for mitigating phytotoxicity of polyvinyl chloride micro/nano-plastics: A study based on lettuce pot experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124964. [PMID: 39278556 DOI: 10.1016/j.envpol.2024.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Micro/nano-plastics (M/NPs) are pervasive in agricultural soils, and their detrimental effects on crops are increasingly evident. This ultimately results in reduced crop yields and quality, posing a great threat to global food security. Therefore, the urgent need to mitigate the phytotoxicity of M/NPs has become apparent. Biochar (BC), as an environmentally friendly soil amendment, plays a crucial role in modifying soil properties and boosting agricultural production levels. Its strong adsorption capacity enables it to effectively passivate soil pollutants and reduce their phytotoxicity. However, the effect of BC on the phytotoxicity of M/NPs in soil remains unknown. In this study, the feasibility of BC amendment for mitigating phytotoxicity of polyvinyl chloride M/NPs (PVC-M/NPs) was evaluated by conducting pot experiments. The results show that the application of 0.1% (w/w) PVC-M/NPs resulted in a 48.60% reduction in lettuce yield. This reduction can be attributed to the decreased soil microbial activity and soil cation exchange capacity (CEC), as well as the direct physical damage to lettuce roots caused by PVC-M/NPs. BC amendment improved soil quality, but had insignificant effect on lettuce biomass compared to the control (p > 0.05). In contrast, BC amendment at an appropriate concentration (0.5% and 2.5%, w/w) to soils contaminated with PVC-M/NPs resulted in a significant increase in lettuce yield (p < 0.01). Furthermore, BC was found to mitigate the oxidative stress of PVC-M/NPs on lettuce roots. This indicates that the BC amendment has the potential to mitigate the toxicity of PVC-M/NPs to lettuce. Improving soil quality and enhancing PVC-M/NPs adsorption are perceived as the influencing mechanisms of BC on the phytotoxicity of PVC-M/NPs. The findings suggest that it is feasible to mitigate the phytotoxicity of M/NPs through BC amendments.
Collapse
Affiliation(s)
- Yufei Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zehua Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
11
|
Li J, Sun W, Lichtfouse E, Maurer C, Liu H. Life cycle assessment of biochar for sustainable agricultural application: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175448. [PMID: 39137840 DOI: 10.1016/j.scitotenv.2024.175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Biochar application is an effective strategy to address Agro-climatic challenges. However, the agro-environmental impacts of different biochar technology models are lacking of systematic summaries and reviews. Therefore, this paper comprehensively reviews recent developments derived from published literature, delving into the economic implications and environmental benefits of three distinct process namely technologies-pyrolysis, gasification, and hydrothermal carbonization. This paper specifically focuses on the agricultural life cycle assessment (LCA) methodology, and the influence of biochar preparation technologies and products on energy consumption and agricultural carbon emissions. LCA analysis shows that process and feedstock pose a predominant role on the properties and production rate of biochar, while gasification technology exhibits excellent economic attributes compared to the other two technologies. Biochar applications in agricultural has the beneficial effect of sequestering carbon and reducing emissions, especially in the area of mitigating the carbon footprint of farmland. However, the complexity of the composition of the prepared feedstock and the mismatch between the biochar properties and the application scenarios are considered as potential sources of risks. Notably, mechanism of carbon sequestration and emission reduction by soil microorganisms and agro-environmental sequestration by biochar application remains unclear, calling for in-depth studies. We review novel aspects that have not been covered by previous reviews by comparing the technical, economic, and environmental benefits of pyrolysis, gasification, and hydrothermal carbonization systematically. Overall, this study will provide a valuable framework to environmental implications of biochar preparation, application, and life cycle assessments.
Collapse
Affiliation(s)
- Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Claudia Maurer
- University of Stuttgart-Institute of Sanitary Engineering, Water Quality and Waste Management, Bandtäle 2, 70569 Stuttgart, Germany.
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| |
Collapse
|
12
|
Wang J, Yang Y, Wu J, Zhao K, Zhang X. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175240. [PMID: 39111445 DOI: 10.1016/j.scitotenv.2024.175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Biochar's interaction with soil-dwelling organisms, particularly earthworms, is crucial in ensuring the effective and secure utilization of biochar in the soil. This review introduces the application of biochar in soil, summarizes how earthworms respond to biochar-amended soil and the underlying factors that can influence their response, discusses the synergistic and antagonistic impacts of earthworm activity on the efficacy of biochar, and considers the feasibility of applying them together. A review of existing research has identified uncertainty in the effect of biochar exposure on earthworms, with biochar derived from animal wastes, produced at higher pyrolysis temperatures, and used at higher doses of biochar having more negative effects on earthworms. Habitat modification, toxicity release, particle effects, and contaminant immobilization are underlying factors in how biochar affects earthworm indicators. While biochar in contaminated soils may alleviate the stress of pollutants on earthworms by decreasing their bioaccumulation, this remedial effect is not always effective. Additionally, earthworm bioturbation can enhance the migration, fragmentation, and oxidation of biochar, while also stimulating extracellular enzymes that convert biochar into 'vermichar'. Earthworms and biochar can synergize well to improve soil fertility and remediate soil organic pollution, yet exhibit contrasting roles in soil C sequestration and immobilizing heavy metals in soil. These findings highlight both the advantages and risks of their co-application. Therefore, when considering the use of biochar alone or with earthworms, it is crucial to thoroughly assess its potential ecotoxicity on earthworms and other soil organisms, as well as the influence of bioturbation, such as that caused by earthworms, on the effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiang Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jizi Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Kracmarova-Farren M, Alexova E, Kodatova A, Mercl F, Szakova J, Tlustos P, Demnerova K, Stiborova H. Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures. ENVIRONMENTAL MICROBIOME 2024; 19:87. [PMID: 39516989 PMCID: PMC11549753 DOI: 10.1186/s40793-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w). RESULTS Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase). CONCLUSIONS These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Eliska Alexova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Anezka Kodatova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
14
|
Cheng Y, Bai Y, Yao H, Wang X, Yuan Y, He X, Lv S, You X, Zheng H, Li Y. Reduction of tobacco alkaloid bioaccumulation in pea shoots: A comparative study of biochar derived from cow dung and maize straw. CHEMOSPHERE 2024; 368:143633. [PMID: 39489304 DOI: 10.1016/j.chemosphere.2024.143633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Tobacco alkaloids in tobacco-cultivated soils pose potential risks for succeeding crops, due to their allelopathy and toxicity. Effects of biochar on the dissipation of tobacco alkaloids in soil-crop systems remain poorly understood. In this study, a 40-day pot experiment was conducted to explore the effect of cow dung biochar (CDBC) and maize straw biochar (MSBC) on the uptake of nicotine and nornicotine by pea (Pisum sativum L.) and their dissipation in an agricultural soil. The results revealed that the bioaccumulation of nicotine and nornicotine by pea shoots in the soils added with CDBC and MSBC at 1.5% and 3.0% significantly decreased by 46.97-79.13% and 33.64-71.59%, respectively. CDBC more effectively decreased the uptake and bioaccumulation of nicotine and nornicotine by pea shoots than MSBC due to the higher soil pH and nutrient content. In addition, the enhanced relative abundances of soil nicotine-degrading bacteria belonging to the genera Arthrobacter and Gemmatimonas also contributed to the decreasing uptake of nicotine by pea plants. The decreased bioavailability in the soils due to the increased adsorption was the key factor for the reduced bioaccumulation of tobacco alkaloids. This study provides guidance to protect subsequent crops in tobacco-cultivated soil from tobacco alkaloids with biochar.
Collapse
Affiliation(s)
- Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650231, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Xiaojian He
- China Tobacco Yunnan Industrial Co., LTD, Kunming, 650231, China
| | - Shibao Lv
- Qujing Branch of Yunnan Tobacco Company, Qujing, 655000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Hao Zheng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
15
|
Ghorbani M, Amirahmadi E. Biochar and soil contributions to crop lodging and yield performance - A meta-analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109053. [PMID: 39159533 DOI: 10.1016/j.plaphy.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Applying biochar has beneficial effects on regulating plant growth by providing water and nutrient availability for plants due to its physicochemical characteristics. Nevertheless, it is still unclear how soil and biochar interactions strengthen crop lodging resistance. The objective of the current study was to find out how soil physicochemical conditions and alterations in biochar affect lodging resistance and crop productivity in cereals. To do this, a meta-analysis was carried out using nine groups of effective variables including type of feedstock, pyrolysis temperature, application rate, soil pH, total nitrogen, available phosphorus, potassium, organic matter (OM), and soil texture. Results showed that straw-derived biochar caused the highest positive effect size in the dry weight of biomass (20.5%) and grain yield (19.9%). Also, the lowest lodging index was observed from straw (-8.3%) and wood-based (-5.6%) biochars. Besides, the high application rate of biochar results in the highest positive effect sizes of plant cellulose (8.1%) and lignin content (7.6%). Soils that contain >20 g kg-1 OM, resulted in the highest positive effect size in dry biomass (27.9%), grain yield (30.2%), and plant height (4.7%). Also, fine-textured soil plays an important role in increasing polymers in the anatomical structure of plants. Overall, the strong connection between biochar and soil processes, particularly the availability of OM, could strengthen plants' ability to tolerate lodging stress and contribute to high nutrient efficiency in terms of crop output and cell wall thickening.
Collapse
Affiliation(s)
- Mohammad Ghorbani
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05, Ceske Budejovice, Czech Republic.
| | - Elnaz Amirahmadi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
16
|
Sun X, Fu H, Ma Y, Zhang F, Li Y, Li Y, Lu J, Bao M. Unveiling the long-term dynamic effects: Biochar mediates bacterial communities to modulate the petroleum hydrocarbon degradation in oil-contaminated sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135235. [PMID: 39053054 DOI: 10.1016/j.jhazmat.2024.135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Sediment, as the destination of marine pollutants, often bears much more serious petroleum pollution than water. Biochar is increasingly utilized for remediating organic pollutant-laden sediments, yet its long-term impacts on oil-contaminated sediment remain poorly understood. In this study, simulation experiments adding 2.5 wt% biochars (corn straw and wood chips biochar at different pyrolysis temperatures) were conducted. The effects on petroleum hydrocarbon attenuation, enzyme activities, and microbial community structure were systematically investigated. Results showed enhanced degradation of long-chain alkanes in certain biochar-treated groups. Biochar species and PAH characteristics together lead to the PAHs' attenuation, with low-temperature corn straw biochar facilitating the degradation of phenanthrene, fluorene, and chrysene. Initially, biochars reduced polyphenol oxidase activity but increased urease and dehydrogenase activities. However, there was a noticeable rise in polyphenol oxidase activity for a long time. Biochars influenced bacterial community succession and abundance, likely due to nutrient release stimulating microbial activity. The structural equations model (SEM) reveals that DON affected the enzyme activity by changing the microbial community and thus regulated the degradation of PAHs. These findings shed light on biochar's role in bacterial communities and petroleum hydrocarbon degradation over extended periods, potentially enhancing biochar-based remediation for petroleum-contaminated sediments.
Collapse
Affiliation(s)
- Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanchen Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Feifei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
17
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
18
|
Shahzad A, Zahra A, Li HY, Qin M, Wu H, Wen MQ, Ali M, Iqbal Y, Xie SH, Sattar S, Zafar S. Modern perspectives of heavy metals alleviation from oil contaminated soil: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116698. [PMID: 38991309 DOI: 10.1016/j.ecoenv.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.
Collapse
Affiliation(s)
- Asim Shahzad
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, AJK, Pakistan.
| | - Hao Yang Li
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Hao Wu
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mei Qi Wen
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mushtaque Ali
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Younas Iqbal
- National Demonstration Centre for Environmental and Planning, College of Geography and Environmental Sciences, Henan University, Kaifeng, China.
| | - Shao Hua Xie
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Shehla Sattar
- Department of environmental sciences, University of Swabi, Pakistan.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab 54770, Pakistan.
| |
Collapse
|
19
|
Petrangeli Papini M, Cerra S, Feriaud D, Pettiti I, Lorini L, Fratoddi I. Biochar/Biopolymer Composites for Potential In Situ Groundwater Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3899. [PMID: 39203078 PMCID: PMC11355651 DOI: 10.3390/ma17163899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via UV-Vis, FTIR, and FESEM-EDS, highlighting the fact that that BCs are essentially graphitic in nature with a sponge-like morphology. The grinding process influences the particle size, reducing the specific surface area by about 30% (evaluated by BET). The adsorption performances of raw BC were validated via an adsorption isotherm using trichloroethylene (TCE) as a model contaminant. A selected BC sample was used to produce hydrophilic, stable polymer composites with chitosan (CS), alginate (ALG), potato starch (PST), and sodium carboxymethylcellulose (CMC) via a simple blending approach. Pilot sedimentation tests over 7 days in water identified BC@PST and BC@CMC as the most stable suspensions due to a combination of both hydrogen bonds and physical entrapment, as studied by FTIR. BC@CMC showed optimal distribution and retention properties without clogging in breakthrough tests. The study concludes that biopolymer-based biochar composites with improved stability in aqueous environments hold significant promise for addressing various groundwater pollution challenges.
Collapse
Affiliation(s)
- Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Damiano Feriaud
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ida Pettiti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Satta A, Ghiotto G, Santinello D, Giangeri G, Bergantino E, Modesti M, Raga R, Treu L, Campanaro S, Zampieri G. Synergistic functional activity of a landfill microbial consortium in a microplastic-enriched environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174696. [PMID: 38997032 DOI: 10.1016/j.scitotenv.2024.174696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Plastic pollution of the soil is a global issue of increasing concern, with far-reaching impact on the environment and human health. To fully understand the medium- and long-term impact of plastic dispersal in the environment, it is necessary to define its interaction with the residing microbial communities and the biochemical routes of its degradation and metabolization. However, despite recent attention on this problem, research has largely focussed on microbial functional potential, failing to clearly identify collective adaptation strategies of these communities. Our study combines genome-centric metagenomics and metatranscriptomics to characterise soil microbial communities adapting to high polyethylene and polyethylene terephthalate concentration. The microbiota were sampled from a landfill subject to decades-old plastic contamination and enriched through prolonged cultivation using these microplastics as the only carbon source. This approach aimed to select the microorganisms that best adapt to these specific substrates. As a result, we obtained simplified communities where multiple plastic metabolization pathways are widespread across abundant and rare microbial taxa. Major differences were found in terms of expression, which on average was higher in planktonic microbes than those firmly adhered to plastic, indicating complementary metabolic roles in potential microplastic assimilation. Moreover, metatranscriptomic patterns indicate a high transcriptional level of numerous genes in emerging taxa characterised by a marked accumulation of genomic variants, supporting the hypothesis that plastic metabolization requires an extensive rewiring in energy metabolism and thus provides a strong selective pressure. Altogether, our results provide an improved characterisation of the impact of microplastics derived from common plastics types on terrestrial microbial communities and suggest biotic responses investing contaminated sites as well as potential biotechnological targets for cooperative plastic upcycling.
Collapse
Affiliation(s)
- Alessandro Satta
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Davide Santinello
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 227, 220, 2800 Kgs. Lyngby, Denmark
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padua, Via Gradenigo, 6/a, 35131 Padova, Italy
| | - Roberto Raga
- Department of Civil, Environmental and Architectural Engineering, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
21
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
22
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
23
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
24
|
Peng Q, Wang P, Yang C, Liu J, Si W, Zhang S. Remediation effect of walnut shell biochar on Cu and Pb co-contaminated soils in different utilization types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121322. [PMID: 38824893 DOI: 10.1016/j.jenvman.2024.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Biochar, with its dual roles of soil remediation and carbon sequestration, is gradually demonstrating great potential for sustainability in agricultural and ecological aspects. In this study, a porous biochar derived from walnut shell wastes was prepared via a facile pyrolysis coupling with in-situ alkali etching method. An incubation study was conducted to investigate its performance in stabilizing copper (Cu) and lead (Pb) co-contaminated soils under different utilization types. The biochar effectively decreased the bioavailable Cu (8.5-91.68%) and Pb (5.03-88.54%), while increasing the pH, CEC, and SOM contents in both soils. Additionally, the results of sequential extraction confirmed that biochar promoted the transformation of the labile fraction of Cu and Pb to stable fractions. The mechanisms of Cu and Pb stabilization were found to be greatly dependent on the soil types. For tea plantation yellow soil, the main approach for stabilization was the complexation of heavy metals with abundant organic functional groups and deprotonation structure. Surface electrostatic adsorption and cation exchange contributed to the immobilization of Cu and Pb in vegetable-cultivated purple soil. This research provides valuable information for the stabilization of Cu and Pb co-contaminated soils for different utilization types using environmentally-friendly biochar.
Collapse
Affiliation(s)
- Qin Peng
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China; College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Chao Yang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Jumei Liu
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Wantong Si
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Sai Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
25
|
Kravchenko E, Dela Cruz TL, Chen XW, Wong MH. Ecological consequences of biochar and hydrochar amendments in soil: assessing environmental impacts and influences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42614-42639. [PMID: 38900405 DOI: 10.1007/s11356-024-33807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher soil CO2 effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and mitigating the impacts of climate change.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia
| | - Trishia Liezl Dela Cruz
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia.
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China.
| |
Collapse
|
26
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
27
|
Wang Y, Li A, Zou B, Qian Y, Li X, Sun Z. The Combination of Buchloe dactyloides Engelm and Biochar Promotes the Remediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons. Microorganisms 2024; 12:968. [PMID: 38792797 PMCID: PMC11124401 DOI: 10.3390/microorganisms12050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms.
Collapse
Affiliation(s)
- Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Bokun Zou
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Yongqiang Qian
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Xiaoxia Li
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| |
Collapse
|
28
|
Zhang J, Hao Y, Xiong G, Tang Q, Tang X. Impact of Physical Interventions, Phosphorus Fertilization, and the Utilization of Soil Amendments on the Absorption of Cadmium by Lettuce Grown in a Solar-Powered Greenhouse. BIOLOGY 2024; 13:332. [PMID: 38785814 PMCID: PMC11117768 DOI: 10.3390/biology13050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to evaluate the effects of physical measures and the applications of phosphorus fertilizer and soil conditioner on the growth of lettuce (Lactuca sativa) and its uptake of cadmium (Cd). In a solar greenhouse that contained soil enriched with cadmium (Cd) (1.75 ± 0.41 mg/kg) with lettuce used as a test plant, field experimental methods were utilized to explore the influence of physical measures, such as deep plowing and soil covering, and the applications of phosphorus fertilizer, including diammonium phosphate (DAP), calcium magnesium phosphate (CMP), and calcium superphosphate (SSP), and soil conditioners, such as biochar, attapulgite clay, and nano-hydroxyapatite, on the uptake of Cd in lettuce. The results indicated that the concentrations of Cd in the aboveground parts of lettuce were 1.49 ± 0.45, 1.26 ± 0.02, 1.00 ± 0.21, and 0.24 ± 0.13 mg/kg when the soil was plowed 30, 40, and 50 cm deep, respectively, and when the soil was covered with 15 cm, this resulted in reductions of 27.5%, 38.3%, 51.4%, and 88.4%, respectively, compared with the control treatment that entailed plowing to 15 cm. When 75, 150, and 225 kg/ha of phosphorus pentoxide (P2O5) were applied compared with the lack of application, the contents of Cd in the aboveground parts of lettuce increased by 2.0%, 54.5%, and 73.7%, respectively, when DAP was applied; by 52.5%, 48.5%, and 8.1%, respectively, when CMP was applied; and by 13.1%, 61.6%, and 90.9%, respectively, when SSP was applied. When the amounts of biochar applied were 0, 2, 4, 6, 8, 10, and 12 t/ha, the contents of Cd in the aboveground parts of lettuce were 1.36 ± 0.27, 1.47 ± 0.56, 1.80 ± 0.73, 1.96 ± 0.12, 1.89 ± 0.52, 1.44 ± 0.30, and 1.10 ± 0.27 mg/kg, respectively. Under concentrations of 0, 40, 80, 120, 160, and 200 kg/ha, the application of nano-hydroxyapatite resulted in Cd contents of 1.34 ± 0.56, 1.47 ± 0.10, 1.60 ± 0.44, 1.70 ± 0.21, 1.31 ± 0.09, and 1.51 ± 0.34 mg/kg, respectively. The concentrations of Cd in the aboveground parts of lettuce treated with attapulgite clay were 1.44 ± 0.48, 1.88 ± 0.67, 2.10 ± 0.80, 2.24 ± 0.75, 1.78 ± 0.41, and 1.88 ± 0.48 mg/kg, respectively. In summary, under the conditions in this study, deep plowing and soil covering measures can reduce the concentration of Cd in the aboveground parts of lettuce. The application of phosphorus fertilizer increased the concentration of Cd in the aboveground parts of lettuce. The application of higher amounts of DAP and SSP led to greater concentrations of Cd in the aboveground parts of lettuce. The application of higher amounts of CMP caused a lower concentration of Cd in the aboveground parts of lettuce. When biochar, attapulgite clay, and nano-hydroxyapatite were applied, the concentration of Cd in the aboveground parts of lettuce increased in parallel with the increase in the concentration of application when low amounts were applied. In contrast, when high amounts were applied, the concentration of Cd in the aboveground parts of lettuce began to decrease.
Collapse
Affiliation(s)
- Jun’an Zhang
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (J.Z.); (Y.H.); (G.X.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yingjun Hao
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (J.Z.); (Y.H.); (G.X.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Guangsen Xiong
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (J.Z.); (Y.H.); (G.X.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Quanzhong Tang
- Department of Sociology, HSE University, Saint Petersburg 192148, Russia;
| | - Xiwang Tang
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (J.Z.); (Y.H.); (G.X.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| |
Collapse
|
29
|
Xin X, Farid G, Nepal J, He S, Yang X, He Z. Comparative effectiveness of carbon nanoparticles and biochar in alleviating copper stress in corn (Zea mays L.). CHEMOSPHERE 2024; 355:141745. [PMID: 38521100 DOI: 10.1016/j.chemosphere.2024.141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The application of carbon nanoparticles (CNPs) and biochar in agriculture for improving plant health and soil quality and alleviating metal stress offers alternative approaches to meet the ever-increasing demand for food. However, poor understanding of their roles in improving crop production under Cu stress represents a significant obstacle to their wide application in agriculture. To clarify how CNPs and biochar affect corn (Zea mays L.) seed germination, seedling growth, plant health, and nutrient uptake under different Cu stress levels, soil-less Petri-dish and greenhouse soil-based bioassays were conducted. The results revealed that CNPs and biochar stimulated corn seed germination and seedling growth. Besides, they were effective in immobilizing Cu2+ sorption in sandy soil and alleviating Cu stress for plant growth, as shown by the increased plant height and dry biomass. The plant nutrient uptake efficiency (NUE) was significantly increased by CNPs, with a maximum increase of 63.1% for N and 63.3% for K at the highest Cu2+ stress level (400 mg Cu2+ L-1). In contrast, non-significant effects on NUE were observed with biochar treatments regardless of Cu stress levels. Interestingly, CNPs significantly increased plant uptake of Cu in the Petri dish test, while biochar inhibited plant uptake of Cu under both experimental conditions. Principle component analysis (PCA) and Pearson correlation analysis indicated that CNPs mitigated Cu stress mainly by elevating antioxidant enzyme activities, enhancing plant photochemical efficiency, and increasing plant uptake of N and K, while biochar was more likely to reduce bioavailability and uptake of Cu in the plant. These findings have great implications for the application of CNPs and biochar as plant growth stimulators and de-toxicity agents in agriculture.
Collapse
Affiliation(s)
- Xiaoping Xin
- University of Florida, Institution of Food and Agricultural Sciences, Soil, Water and Ecosystem Sciences Department, Florida, 34945, United States
| | - Ghulam Farid
- University of Florida, Institution of Food and Agricultural Sciences, Soil, Water and Ecosystem Sciences Department, Florida, 34945, United States; MNS University of Agriculture, Soil and Environmental Science Department, Multan, Pakistan
| | - Jaya Nepal
- University of Florida, Institution of Food and Agricultural Sciences, Soil, Water and Ecosystem Sciences Department, Florida, 34945, United States
| | - Shengjia He
- Zhejiang A & F University, School of Environmental and Resource Sciences, Hangzhou, 311300, China
| | - Xiaoe Yang
- Zhejiang University, College of Environ & Resource Science, Hangzhou, 310058, China
| | - Zhenli He
- University of Florida, Institution of Food and Agricultural Sciences, Soil, Water and Ecosystem Sciences Department, Florida, 34945, United States.
| |
Collapse
|
30
|
Tan R, Li K, Sun Y, Fan X, Shen Z, Tang L. Sustainable management of campus fallen leaves through low-temperature pyrolysis and application in Pb immobilization. J Environ Sci (China) 2024; 139:281-292. [PMID: 38105055 DOI: 10.1016/j.jes.2023.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 12/19/2023]
Abstract
Realizing campus sustainability requires the environmental-friendly and economical treatment of tremendous fallen leaves. Producing fallen leaf biochar at a low temperature is a candidate approach. In this study, six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochars were investigated. The adsorption capacity of leaf biochar for Pb was relatively high, up to 209 mg/g (Yulania denudata leaf biochar). Adsorption of Pb onto active sites was the rate-limiting step for most leaf biochars. But for Platanus leaf biochar, intraparticle diffusion of Pb2+ dominated owing to the lowest adsorption capacity. However, the highest exchangeable Pb fraction (27%) indicated its potential for removing aqueous Pb2+. Ginkgo and Prunus cerasifera leaf biochar immobilized Pb by surface complexation and precipitation as lead oxalate. Hence, they were suitable for soil heavy metal remediation. This study shed the light on the sustainable utilization of campus fallen leaves and the application of fallen leaf biochars in heavy metal remediation.
Collapse
Affiliation(s)
- Rongli Tan
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Ke Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoliang Fan
- School of Earth and Engineering Sciences, Nanjing University, Nanjing 210023, China
| | - Zhengtao Shen
- School of Earth and Engineering Sciences, Nanjing University, Nanjing 210023, China.
| | - Lingyi Tang
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada.
| |
Collapse
|
31
|
Xiao W, Zhang Q, Huang M, Zhao S, Chen D, Gao N, Chu T, Ye X. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities. CHEMOSPHERE 2024; 353:141636. [PMID: 38447895 DOI: 10.1016/j.chemosphere.2024.141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
32
|
Kang YG, Chun JH, Yun YU, Lee JY, Sung J, Oh TK. Pyrolysis temperature and time of rice husk biochar potentially control ammonia emissions and Chinese cabbage yield from urea-fertilized soils. Sci Rep 2024; 14:5692. [PMID: 38453974 PMCID: PMC10920921 DOI: 10.1038/s41598-024-54307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Current agricultural practices are increasingly favoring the biochar application to sequester carbon, enhance crop growth, and mitigate various environmental pollutants resulting from nitrogen (N) loss. However, since biochar's characteristics can vary depending on pyrolysis conditions, it is essential to determine the optimal standard, as they can have different effects on soil health. In this study, we categorized rice husk biochars basis on their pH levels and investigated the role of each rice husk biochar in reducing ammonia (NH3) emissions and promoting the growth of Chinese cabbage in urea-fertilized fields. The findings of this study revealed that the variation in pyrolysis conditions of rice husk biochars and N rates affected both the NH3 emissions and crop growth. The neutral (pH 7.10) biochar exhibited effective NH3 volatilization reduction, attributed to its high surface area (6.49 m2 g-1), outperforming the acidic (pH 6.10) and basic (pH 11.01) biochars, particularly under high N rates (640 kg N ha-1). Chinese cabbage yield was highest, reaching 4.00 kg plant-1, with the basic biochar application with high N rates. Therefore, the neutral rice husk biochar effectively mitigate the NH3 emissions from urea-treated fields, while the agronomic performance of Chinese cabbage enhanced in all biochar amendments.
Collapse
Affiliation(s)
- Yun-Gu Kang
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Jin-Hyuk Chun
- The Korea Ginseng Inspection Office, National Agricultural Cooperative Federation, Geumsan, 32747, South Korea
| | - Yeo-Uk Yun
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, South Korea
- Division of Environmentally Friendly Agriculture, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, 32418, South Korea
| | - Jun-Yeong Lee
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Taek-Keun Oh
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
33
|
Zhang H, Chen W, Qi Z, Qian W, Yang L, Wei R, Ni J. Biochar improved the solubility of triclocarban in aqueous environment: Insight into the role of biochar-derived dissolved organic carbon. CHEMOSPHERE 2024; 351:141172. [PMID: 38211797 DOI: 10.1016/j.chemosphere.2024.141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Biochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban. Biochar of 600∼750 °C with low polarity, high aromaticity, and high porosity presented an adsorption effect on triclocarban owing to less BC-DOC release as well as the strong π-π, hydrophobic, and pore filling interactions between biochar and triclocarban. In contrast and intriguingly, biochar of 300∼450 °C with low aromaticity and high polarity exhibited a significant solubilization effect rather than adsorption effect on triclocarban in aqueous solution. The maximum solubilization content of triclocarban in biochar-added solution reached approximately 3 times its solubility in biochar-free solution. This is mainly because the solubilization effect of BC-DOC surpassed the adsorption effect of biochar though the BC-DOC only accounted for 0.01-1.5 % of bulk biochar mass. Furthermore, the high solubilization content of triclocarban induced by biochar was dependent on the properties of BC-DOC as well as the increasing BC-DOC content. BC-DOC with higher aromaticity, larger molecular size, higher polarity, and more humic-like matters had a greater promoting effect on the water-solubility of triclocarban. This study highlights that biochar may promote the solubility of some organic pollutants (e.g., triclocarban) in aqueous environment and enhance their potential risk.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Liumin Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
34
|
Chen Y, Yang W, Zou Y, Wu Y, Mao W, Zhang J, Zia-Ur-Rehman M, Wang B, Wu P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168874. [PMID: 38029988 DOI: 10.1016/j.scitotenv.2023.168874] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Biochar (BC) has shown great potential in remediating heavy metal(loid)s (HMs) contamination in paddy fields. Variation in feedstock sources, pyrolysis temperatures, modification methods, and application rates of BC can result in great changes in its effects on HM bioavailability and bioaccumulation in soil-rice systems and remediation mechanisms. Meanwhile, there is a lack of application guidelines for BC with specific properties and application rates when targeting rice fields contaminated with certain HMs. To elucidate this topic, this review focuses on i) the effects of feedstock type, pyrolysis temperature, and modification method on the properties of BC; ii) the changes in bioavailability and bioaccumulation of HMs in soil-rice systems applying BC with different feedstocks, pyrolysis temperatures, modification methods, and application rates; and iii) exploration of potential remediation mechanisms for applying BC to reduce the mobility and bioaccumulation of HMs in rice field systems. In general, the application of Fe/Mn modified organic waste (OW) derived BC for mid-temperature pyrolysis is still a well-optimized choice for the remediation of HM contamination in rice fields. From the viewpoint of remediation efficiency, the application rate of BC should be appropriately increased to immobilize Cd, Pb, and Cu in rice paddies, while the application rate of BC for immobilizing As should be <2.0 % (w/w). The mechanism of remediation of HM-contaminated rice fields by applying BC is mainly the direct adsorption of HMs by BC in soil pore water and the mediation of soil microenvironmental changes. In addition, the application of Fe/Mn modified BC induced the formation of iron plaque (IP) on the root surface of rice, which reduced the uptake of HM by the plant. Finally, this paper describes the prospects and challenges for the extension of various BCs for the remediation of HM contamination in paddy fields and makes some suggestions for future development.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Yuzheng Zou
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yuhong Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
35
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
36
|
Chen A, Wang H, Zhan X, Gong K, Xie W, Liang W, Zhang W, Peng C. Applications and synergistic degradation mechanisms of nZVI-modified biochar for the remediation of organic polluted soil and water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168548. [PMID: 37989392 DOI: 10.1016/j.scitotenv.2023.168548] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Increasing organic pollution in soil and water has garnered considerable attention in recent years. Nano zero-valent iron-modified biochar (nZVI/BC) has been proven to remediate the contaminated environment effectively due to its abundant active sites and unique reducing properties. This paper provides a comprehensive overview of the application of nZVI/BC in organic polluted environmental remediation and its mechanisms. Firstly, the review introduced primary synthetic methods of nZVI/BC, including in-situ synthesis (carbothermal reduction and green synthesis) and post-modification (liquid-phase reduction and ball milling). Secondly, the application effects of nZVI/BC were discussed in remediating soil and water polluted by antibiotics, pesticides, polycyclic aromatic hydrocarbons (PAHs), and dyes. Thirdly, this review explored the mechanisms of the adsorption and chemical degradation of nZVI/BC, and synergistic degradation mechanisms of nZVI/BC-AOPs and nZVI/BC-Microbial interactions. Fourth, the factors that influence the removal of organic pollutants using nZVI/BC were summarized, encompassing synthesis conditions (raw materials, pyrolysis temperature and aging of nZVI/BC) and external factors (reagent dosage, pH, and coexisting substances). Finally, this review proposed future challenges for the application of nZVI/BC in environmental remediation. This review offers valuable insights for advancing technology in the degradation of organic pollutants using nZVI/BC and promoting its on-site application.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
37
|
Zhao S, Liu J, Miao D, Sun H, Zhang P, Jia H. Activation of persulfate for the degradation of ethyl-parathion in soil: Combined effects of microwave with biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119930. [PMID: 38160544 DOI: 10.1016/j.jenvman.2023.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Sulfate radical (SO4•-), formed by persulfate (PS) activation during advanced oxidation process (AOPs), can be used for the remediation of organic contaminated soil. However, the role of biochar and microwave (MW) in the activation of PS is not fully understood, especially the corresponding mechanism. Herein, biochar combined with MW was used to activate PS for the remediation of ethyl-parathion (PTH)-polluted soil. The dynamic evolutions of PTH under different conditions, such as biochar content, particle size, reaction temperature, and the degradation mechanisms of PTH were also systematically investigated. Significant enhancement performance on PTH removal was observed after adding biochar, which was 88.78% within 80 min. Meanwhile, activating temperature exhibited remarkable abilities to activate PS for PTH removal. The higher content of adsorption sites in nano-biochar facilitated the removal of PTH. Furthermore, chemical probe tests coupled with quenching experiments confirmed that the decomposition of PS into active species, such as SO4•-, •OH, O2•- and 1O2, contributed to the removal of PTH in biochar combined with MW system, which could oxidize PTH into oxidative products, including paraoxon, 4-ethylphenol, and hydroquinone. The results of this study provide valuable insights into the synergistic effects of biochar and MW in the PS activation, which is helpful for the potential application of biochar materials combined with MW-activated PS in the remediation of pesticide-polluted soils.
Collapse
Affiliation(s)
- Song Zhao
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, 830046, PR China.
| | - Jinbo Liu
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China
| | - Duo Miao
- Department of Science and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongwen Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Peng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China.
| |
Collapse
|
38
|
Wu Y, Yan Y, Wang Z, Tan Z, Zhou T. Biochar application for the remediation of soil contaminated with potentially toxic elements: Current situation and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119775. [PMID: 38070425 DOI: 10.1016/j.jenvman.2023.119775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Recently, biochar has garnered extensive attention in the remediation of soils contaminated with potentially toxic elements (PTEs) owing to its exceptional adsorption properties and straightforward operation. Most researchers have primarily concentrated on the effects, mechanisms, impact factors, and risks of biochar in remediation of PTEs. However, concerns about the long-term safety and impact of biochar have restricted its application. This review aims to establish a basis for the large-scale popularization of biochar for remediating PTEs-contaminated soil based on a review of interactive mechanisms between soil, PTEs and biochar, as well as the current situation of biochar for remediation in PTEs scenarios. Biochar can directly interact with PTEs or indirectly with soil components, influencing the bioavailability, mobility, and toxicity of PTEs. The efficacy of biochar in remediation varies depending on biomass feedstock, pyrolysis temperature, type of PTEs, and application rate. Compared to pristine biochar, modified biochar offers feasible solutions for tailoring specialized biochar suited to specific PTEs-contaminated soil. Main challenges limiting the applications of biochar are overdose and potential risks. The used biochar is separated from the soil that not only actually removes PTEs, but also mitigates the negative long-term effects of biochar. A sustainable remediation technology is advocated that enables the recovery and regeneration (95.0-95.6%) of biochar from the soil and the removal of PTEs (the removal rate of Cd is more than 20%) from the soil. Finally, future research directions are suggested to augment the environmental safety of biochar and promote its wider application.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Yan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongwei Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tuo Zhou
- China State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Marcińczyk M, Krasucka P, Duan W, Bo P, Oleszczuk P. Effect of chemical aging on phosphate adsorption and ecotoxicological properties of magnesium-modified biochar. CHEMOSPHERE 2024; 349:140721. [PMID: 37972863 DOI: 10.1016/j.chemosphere.2023.140721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Using magnesium-biochar composites (Mg-BC) in adsorption allows for the efficient and economically relevant removal of phosphate (PO43-) from water and wastewater. Applying Mg-BC for pollutant removal requires evaluating the adsorption capacity of composites and their ecotoxicological properties. Investigating the composite aging during the application of these composites into the soil is also essential. In the present study, nonaged and aged (at 60 or 90 °C) Mg-BC composites were investigated in the context of pyrolysis temperature (500 or 700 °C). All analyzed biochars were examined by Fourier transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and surface area. The content of polycyclic aromatic hydrocarbons (PAHs) (bioavailable Cfree and organic solvent-extractable Ctot), heavy metals (HMs), and environmentally persistent free radicals (EPFRs) were determined. Ecotoxicity was evaluated using tests with Folsomia candida and Allivibrio fischeri. The dependence of adsorption on pyrolysis temperature and composite aging time was observed. Changes in physicochemical properties occurring as a result of aging reduced the adsorption of PO43- on Mg-BC composites. It was found that nonaged Mg-BC700 was more effective (9.55 mg g -1) in the adsorption of PO43- than Mg-BC500 (5.75 mg g-1). The adsorption capacities of aged composites were from 21 to 61% lower than those of the nonaged composites. Due to aging, the content of Cfree PAHs increased by 3-5 times depending on the pyrolysis temperature. However, aging reduced the Ctot PAHs in all composites from 24 to 35% depending on the pyrolysis temperature. Ecotoxicological evaluation of Mg-BC composites showed increased toxicity after aging to both organisms. The use of aged BC potentially increases the contaminant content and toxicity of Mg-BC composites.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Pan Bo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| |
Collapse
|
40
|
Williams JM, Thomas SC. High-carbon wood ash biochar for mine tailings restoration: A field assessment of planted tree performance and metals uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165861. [PMID: 37516177 DOI: 10.1016/j.scitotenv.2023.165861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Unique properties of biochar render it appealing for revegetating and decontaminating historic, barren, and chemically complex mine tailings. Bottom ash from bioenergy facilities can contain high levels of charcoal residue, and thus qualify as a type of biochar; the wide availability of this material at low cost makes it of particular interest in the context of tailings remediation. Nevertheless, bottom ash is variable and often contains residual toxic metal/loids that could be phytoabsorbed into plant tissues. We implemented a replicated field trial on historic contaminated metal mine tailings in Northern Ontario (Canada) over a range of high‑carbon wood ash biochar (HCWAB) dosages (0-30 t/ha) to evaluate tree and substrate responses. Sapling survivorship and aboveground biomass growth were quantified over a 4-year period; substrate chemical parameters were measured using acid-digestion and ICP-MS, as well as ion exchange resin probes. To assess elemental composition of sapling tissues, we used electron probe microanalysis combined with laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on intact samples across the range of dosages applied. Survival and growth of saplings peaked at mid-range ash dosages of 3-6 t/ha. Similarly, substrate ion availability of P, K, and Zn were stable at lower dosages, but increased above 6 t/ha. The trace amounts of toxic metal/loids of concern measured in wood ash (As, Cd, Cu, and Pb) did not result in significantly increased sapling tissue concentrations at low to moderate dosages, but in some cases tissue contaminant levels were elevated at the highest dosage examined (30 t/ha). Our findings highlight the potential for high‑carbon wood ash biochar to be used for metal mine restoration at low to moderate dosages.
Collapse
Affiliation(s)
- Jasmine M Williams
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto M5S 3B3, Canada.
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto M5S 3B3, Canada
| |
Collapse
|
41
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
42
|
Nguyen TB, Sherpa K, Bui XT, Nguyen VT, Vo TDH, Ho HTT, Chen CW, Dong CD. Biochar for soil remediation: A comprehensive review of current research on pollutant removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122571. [PMID: 37722478 DOI: 10.1016/j.envpol.2023.122571] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Biochar usage in soil remediation has turned out to be an enticing topic recently. Biochar, a product formed by pyrolysis of organic waste, which is rich in carbon, has the aptitude to ameliorate climate change by sequestering carbon while also enhancing soil quality and crop yields. Two-edged implications of biochar on soil amendment are still being discussed yet, clarity on the long-term implications of biochar on soil health and the environment is not yet achieved. As a result, it is crucial to systematically uncover the pertinent information regarding biochar remediation, as this can serve as a roadmap for future research on using biochar to remediate contaminated soils in mining regions. This review endeavors to bring forth run thoroughly the latest state of research on the use of biochar in soil remediation, along with its potential benefits, limitations, challenges, and future scope. By synthesizing existing literature on biochar soil remediation, this review aims to provide insights into the potential of biochar as a sustainable solution for soil remediation. Specifically, this review will highlight the key factors that influence the effectiveness of biochar for soil remediation and the potential risks associated with its use, as well as the current gaps in knowledge and future research directions.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Kamakshi Sherpa
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Hien-Thi-Thanh Ho
- Faculty of Environment, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan, ROC
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan, ROC.
| |
Collapse
|
43
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
44
|
Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, Ng HS, Ge S. A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122451. [PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
Collapse
Affiliation(s)
- Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shanxi 710048, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
45
|
Lyu P, Li L, Huang J, Ye J, Zhu C, Xie J, Wang Z, Kang M, Yan A. Enhancing sorption of layered double hydroxide-based magnetic biochar for arsenic and cadmium through optimized preparation protocols. BIORESOURCE TECHNOLOGY 2023; 388:129756. [PMID: 37696337 DOI: 10.1016/j.biortech.2023.129756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 ℃ pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 ℃ pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinli Huang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Wang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Kang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ao Yan
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
46
|
Sun X, Wang J, Zhang M, Liu Z, E Y, Meng J, He T. Combined application of biochar and sulfur alleviates cadmium toxicity in rice by affecting root gene expression and iron plaque accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115596. [PMID: 37839192 DOI: 10.1016/j.ecoenv.2023.115596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution.
Collapse
Affiliation(s)
- Xiaoxue Sun
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jiangnan Wang
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Miao Zhang
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Zunqi Liu
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Yang E
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Tianyi He
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| |
Collapse
|
47
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
48
|
Duan M, Li Z, Yan R, Zhou B, Su L, Li M, Xu H, Zhang Z. Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163422. [PMID: 37087005 DOI: 10.1016/j.scitotenv.2023.163422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The remediation of agricultural soil contaminated by antibiotic resistance genes (ARGs) is of great significance for protecting food safety and human health. Reducing the availability of copper in soil may control coresistance to ARGs. However, the feasibility of applying nano-biochar and Bacillus cereus to mitigate the spread of ARGs in Cu contaminated soil remains unclear. Therefore, this study investigated the use of biochar with different particle sizes (2 % apple branch biochar and 0.5 % nano-biochar) and 3 g m-2B. cereus in a 60-day pot experiment with growing lettuce. The effects of single and combined application on the abundances of ARGs in Cu-contaminated soil (Cu = 200 mg kg-1) were compared, and the related mechanisms were explored. Studies have shown that the addition of biochar alone is detrimental to mitigating ARGs in soil-lettuce systems. The combined application of 3 g m-2B. cereus and 0.5 % nano-biochar effectively inhibited the proliferation of ARGs in Cu-contaminated soil, and 3 g m-2B. cereus effectively inhibited the proliferation of ARGs in lettuce. Partial least squares-path modeling and network analysis showed that bacterial communities and mobile genetic elements were the key factors that affected the abundances of ARGs in rhizosphere soil, and Cu resistance genes and bioavailable copper (acid extractable state Cu (F1) + reducing state Cu (F2)) had less direct impacts. The bacterial community was the key factor that affected the abundances of ARGs in lettuce. Rhodobacter (Proteobacteria), Corynebacterium (Actinobacteria), and Methylobacterium (Proteobacteria) may have been hosts of ARGs in lettuce plants. B. cereus and nano-biochar affected the abundances of ARGs by improving the soil properties and reducing the soil bioavailability of Cu, as well as directly or indirectly changing the bacterial community composition in soil and lettuce, thereby impeding the transport of ARGs to aboveground plant parts.
Collapse
Affiliation(s)
- Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zhijian Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; China Energy Engineering Group Guangxi Electric Power Design Institute Co., Ltd., Nanning 530007, China
| | - Rupan Yan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Mingxiu Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hongbo Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an 710065, China
| |
Collapse
|
49
|
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, Wang Q. From waste to wealth: Innovations in organic solid waste composting. ENVIRONMENTAL RESEARCH 2023; 229:115977. [PMID: 37100364 DOI: 10.1016/j.envres.2023.115977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
50
|
Mazarji M, Bayero MT, Minkina T, Sushkova S, Mandzhieva S, Bauer TV, Soldatov A, Sillanpää M, Wong MH. Nanomaterials in biochar: Review of their effectiveness in remediating heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163330. [PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023]
Abstract
Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Tukur Bayero
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55080, Turkey
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Center for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|