1
|
Jeon HE, Lee S, Lee J, Roh G, Park HJ, Lee YS, Kim YJ, Kim HK, Shin JH, Lee YJ, Gil CO, Jeon ES, Nam JH, Lim BK. SARS-CoV2 mRNA vaccine intravenous administration induces myocarditis in chronic inflammation. PLoS One 2024; 19:e0311726. [PMID: 39388490 PMCID: PMC11469607 DOI: 10.1371/journal.pone.0311726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The current COVID-19 mRNA vaccines were developed and applied for pandemic-emergent conditions. These vaccines use a small piece of the virus's genetic material (mRNA) to stimulate an immune response against COVID-19. However, their potential effects on individuals with chronic inflammatory conditions and vaccination routes remain questionable. Therefore, we investigated the effects of mRNA vaccines in a mouse model of chronic inflammation, focusing on their cardiac toxicity and immunogenicity dependent on the injection route. mRNA vaccine intravenous administration with or without chronic inflammation exacerbated cardiac pericarditis and myocarditis; immunization induced mild inflammation and inflammatory cytokine IL-1beta and IL-6 production in the heart. Further, IV mRNA vaccination induced cardiac damage in LPS chronic inflammation, particularly serum troponin I (TnI), which dramatically increased. IV vaccine administration may induce more cardiotoxicity in chronic inflammation. These findings highlight the need for further research to understand the underlying mechanisms of mRNA vaccines with chronic inflammatory conditions dependent on injection routes.
Collapse
Affiliation(s)
- Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yeon-Jung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hong-Ki Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - Ji-Hwa Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - You-Jeung Lee
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Chae-Ok Gil
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- SML Biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Lee S, Lee J, Cho SH, Roh G, Park HJ, Lee YJ, Jeon HE, Lee YS, Bae SH, Youn SB, Cho Y, Oh A, Ha D, Lee SY, Choi EJ, Cho S, Lee S, Kim DH, Kang MH, Yoon MS, Lim BK, Nam JH. Assessing the impact of mRNA vaccination in chronic inflammatory murine model. NPJ Vaccines 2024; 9:34. [PMID: 38360752 PMCID: PMC10869740 DOI: 10.1038/s41541-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
The implications of administration of mRNA vaccines to individuals with chronic inflammatory diseases, including myocarditis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are unclear. We investigated mRNA vaccine effects in a chronic inflammation mouse model implanted with an LPS pump, focusing on toxicity and immunogenicity. Under chronic inflammation, mRNA vaccines exacerbated cardiac damage and myocarditis, inducing mild heart inflammation with heightened pro-inflammatory cytokine production and inflammatory cell infiltration in the heart. Concurrently, significant muscle damage occurred, with disturbances in mitochondrial fusion and fission factors signaling impaired muscle repair. However, chronic inflammation did not adversely affect muscles at the vaccination site or humoral immune responses; nevertheless, it partially reduced the cell-mediated immune response, particularly T-cell activation. These findings underscore the importance of addressing mRNA vaccine toxicity and immunogenicity in the context of chronic inflammation, ensuring their safe and effective utilization, particularly among vulnerable populations with immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sun-Hee Cho
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - You-Jeung Lee
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sue Bean Youn
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayoung Oh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Dahyeon Ha
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Eun-Jin Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seongje Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sowon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Do-Hyung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- SML Biopharm, Gwangmyeong, 14353, Republic of Korea
| | - Min-Ho Kang
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Incheon, 21999, Republic of Korea.
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
- BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
- SML Biopharm, Gwangmyeong, 14353, Republic of Korea.
| |
Collapse
|
3
|
Malavazos AE, Dubini C, Milani V, Boveri S, Meregalli C, Bertolini C, Buscemi C, Cardani R, Renna LV, Trevisan MB, Scravaglieri V, Cuppone MT, Menicanti L, Costa E, Ambrogi F, Ruocco C, Carruba M, Iacobellis G, Nisoli E, Corsi Romanelli MM. BNT162b2 Booster Dose Elicits a Robust Antibody Response in Subjects with Abdominal Obesity and Previous SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1796. [PMID: 38140200 PMCID: PMC10747120 DOI: 10.3390/vaccines11121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Little is known about the long-term durability of the induced immune response in subjects with obesity, particularly in those with an abdominal distribution of adipose tissue. We evaluated SARS-CoV-2-specific antibody responses after BNT162b2 vaccine booster dose, comparing individuals with and without abdominal obesity (AO), discerning between individuals previously infected or not. IgG-TrimericS were measured in 511 subjects at baseline, on the 21st day after vaccine dose 1, and at 1, 3, 6, and 9 months from dose 2, and at 1 and 3 months following the booster dose. To detect SARS-CoV-2 infection, nucleocapsid antibodies were measured at baseline and at the end of the study. Multivariable linear regression evaluated the three-month difference in the absolute variation in IgG-TrimericS levels from booster dose, showing AO and SARS-CoV-2 infection status interactions (p = 0.016). Regardless of possible confounding factors and IgG-TrimericS levels at the booster dose, AO is associated with a higher absolute change in IgG-TrimericS in prior infected individuals (p = 0.0125). In the same regression model, no interaction is highlighted using BMI (p = 0.418). The robust response in the development of antibodies after booster dose, observed in people with AO and previous infection, may support the recommendations to administer a booster dose in this population group.
Collapse
Affiliation(s)
- Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiometabolic Prevention Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (C.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milan, Italy
| | - Carola Dubini
- Endocrinology Unit, Clinical Nutrition and Cardiometabolic Prevention Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (C.M.)
| | - Valentina Milani
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Sara Boveri
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Chiara Meregalli
- Endocrinology Unit, Clinical Nutrition and Cardiometabolic Prevention Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (C.M.)
| | | | - Carola Buscemi
- Unit of Internal Medicine, V. Cervello Hospital, 90146 Palermo, Italy
- Clinical Nutrition Unit, Department of Health Promotion, Maternal and Childhood, Internal and Specialized Medicine of Excellence (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Rosanna Cardani
- Biobank BioCor, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (L.V.R.)
| | - Laura Valentina Renna
- Biobank BioCor, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (L.V.R.)
| | - Manuel Bruno Trevisan
- Endocrinology Unit, Clinical Nutrition and Cardiometabolic Prevention Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (C.M.)
| | - Valentina Scravaglieri
- Endocrinology Unit, Clinical Nutrition and Cardiometabolic Prevention Service, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (C.M.)
| | - Maria Teresa Cuppone
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Menicanti
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Elena Costa
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Federico Ambrogi
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milan, Italy
| | - Chiara Ruocco
- Centre for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (C.R.); (E.N.)
| | - Michele Carruba
- Centre for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (C.R.); (E.N.)
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Enzo Nisoli
- Centre for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (C.R.); (E.N.)
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, University of Milan, 00133 Milan, Italy;
- Department of Clinical and Experimental Pathology, Istituto Auxologico Italiano IRCCS, 20100 Milan, Italy
| |
Collapse
|
4
|
Chenchula S, Sharma S, Tripathi M, Chavan M, Misra AK, Rangari G. Prevalence of overweight and obesity and their effect on COVID-19 severity and hospitalization among younger than 50 years versus older than 50 years population: A systematic review and meta-analysis. Obes Rev 2023; 24:e13616. [PMID: 37574901 DOI: 10.1111/obr.13616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Cohort studies have shown that both overweight and obesity have their impact by increasing hospitalization with COVID-19. We conducted a systematic literature search in PubMed, Google Scholar, and MedRxiv databases following the PRISMA guidelines. Statistical analyses were performed using STATA software version 16 MP (Stata Corp, College Station, TX, USA) and Med Calc software version 22.009(Med Calc software Ltd, Ostend, Belgium). The primary outcome was to measure the prevalence of overweight and obesity and their impact on the risk of hospitalization among COVID-19 patients under and above 50 years of age. In total, 184 studies involving 2,365,377 patients were included. The prevalence of overweight was highest among those younger than 50 years of age over those older than 50 years of age, (26.33% vs. 30.46%), but there was no difference in obesity (36.30% vs. 36.02%). Overall, the pooled prevalence of overweight and obesity among hospitalized COVID-19 patients was 31.0% and 36.26%, respectively. Compared with normal weight, the odds of hospitalization with overweight (odds ratio [OR] 2.186, 95% confidence interval [CI] [1.19, 3.99], p < 0.01) and obesity (OR 3.069, 95% CI [1.67, 5.61], p < 0.001) in those younger than 50 years and obesity (OR 3.977, 95% CI [2.75, 5.73], p < 0.001) in the older than 50 years age group were significantly high. The increased prevalence of overweight and obesity among the under 50 years age group and obesity among the older than 50 years age group significantly increased the rate of COVID-19 infections, severity and hospitalization.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Sushil Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Mukesh Tripathi
- Department of Anaesthesia and Critical care Medicine, All India Institute of Medical Sciences, Mangalagiri, India
| | - Madhavrao Chavan
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Arup Kumar Misra
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Gaurav Rangari
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| |
Collapse
|
5
|
Liatsos GD. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J Gastroenterol 2023; 29:2397-2432. [PMID: 37179584 PMCID: PMC10167898 DOI: 10.3748/wjg.v29.i16.2397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Liver is unlikely the key organ driving mortality in coronavirus disease 2019 (COVID-19) however, liver function tests (LFTs) abnormalities are widely observed mostly in moderate and severe cases. According to this review, the overall prevalence of abnormal LFTs in COVID-19 patients ranges from 2.5% to 96.8% worldwide. The geographical variability in the prevalence of underlying diseases is the determinant for the observed discrepancies between East and West. Multifactorial mechanisms are implicated in COVID-19-induced liver injury. Among them, hypercytokinemia with "bystander hepatitis", cytokine storm syndrome with subsequent oxidative stress and endotheliopathy, hypercoagulable state and immuno-thromboinflammation are the most determinant mechanisms leading to tissue injury. Liver hypoxia may also contribute under specific conditions, while direct hepatocyte injury is an emerging mechanism. Except for initially observed severe acute respiratory distress syndrome corona virus-2 (SARS-CoV-2) tropism for cholangiocytes, more recent cumulative data show SARS-CoV-2 virions within hepatocytes and sinusoidal endothelial cells using electron microscopy (EM). The best evidence for hepatocellular invasion by the virus is the identification of replicating SARS-CoV-2 RNA, S protein RNA and viral nucleocapsid protein within hepatocytes using in-situ hybridization and immunostaining with observed intrahepatic presence of SARS-CoV-2 by EM and by in-situ hybridization. New data mostly derived from imaging findings indicate possible long-term sequelae for the liver months after recovery, suggesting a post-COVID-19 persistent live injury.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, Hippokration General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
6
|
Wang M, Li H, Liu S, Ge L, Muhmood A, Liu D, Gan F, Liu Y, Chen X, Huang K. Lipopolysaccharide aggravates canine influenza a (H3N2) virus infection and lung damage via mTOR/autophagy in vivo and in vitro. Food Chem Toxicol 2023; 172:113597. [PMID: 36596444 DOI: 10.1016/j.fct.2022.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Influenza A (H3N2) accounts for the majority of influenza worldwide and continues to challenge human health. Disturbance in the gut microbiota caused by many diseases leads to increased production of lipopolysaccharide (LPS), and LPS induces sepsis and conditions associated with local or systemic inflammation. However, to date, little attention has been paid to the potential impact of LPS on influenza A (H3N2) infection and the potential mechanism. Hence, in this study we used canine influenza A (H3N2) virus (CIV) as a model of influenza A virus to investigate the effect of low-dose of LPS on CIV replication and lung damage and explore the underlying mechanism in mice and A549 and HPAEpiC cells. The results showed that LPS (25 μg/kg) increased CIV infection and lung damage in mice, as indicated by pulmonary virus titer, viral NP levels, lung index, and pulmonary histopathology. LPS (1 μg/ml) also increased CIV replication in A549 cells as indicated by the above same parameters. Furthermore, low doses of LPS reduced CIV-induced p-mTOR protein expression and enhanced CIV-induced autophagy-related mRNA/protein expressions in vivo and in vitro. In addition, the use of the mTOR activator, MHY1485, reversed CIV-induced autophagy and CIV replication in A549 and HPAEpiC cells, respectively. siATG5 alleviated CIV replication exacerbated by LPS in the two lines. In conclusion, LPS aggravates CIV infection and lung damage via mTOR/autophagy.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
7
|
Nateqi M, Baliga V, Hegde V. Infection and obesity: Two sides of the same coin. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:73-85. [DOI: 10.1016/b978-0-323-85730-7.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obes Surg 2022; 32:2987-2993. [PMID: 35802279 PMCID: PMC9263798 DOI: 10.1007/s11695-022-06181-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
AIM Obesity is a disease complicating the course of COVID-19 and SARS-CoV-2 vaccine effectiveness in adults with obesity may be compromised. Our aim is to investigate the spike-protein receptor-binding domain antibody titers against BNT162b2 mRNA and inactivated SARS-CoV-2 (CoronaVac) vaccines in people with severe obesity. It is anticipated that the results to be obtained may provide invaluable information about future SARS-CoV-2 vaccination strategies in this vulnerable population. METHODS A total of 124 consecutive patients with severe obesity (age > 18 years, BMI ≥ 40 kg/m2) presenting between August and November 2021 were enrolled. The normal weight control group (age > 18, BMI 18.5-24.9 kg/m2) was recruited from 166 subjects who visited the vaccination unit. SARS-CoV-2 spike-protein antibody titers were measured in patients with severe obesity and in normal weight controls who received two doses of BNT162b2, or CoronaVac vaccines. SARS-CoV-2 IgG Nucleocapsid Protein antibody (NCP Ab) testing was performed to discover prior SARS-CoV-2 infection. Blood samples were taken from individuals at 4th week and after 2nd dose of vaccination. SARS-CoV-2 IgG antibody titers were determined by quantitative serological methods. RESULTS A total of 290 individuals (220 female, 70 male) who have received two doses of BNT162b2 or CoronaVac vaccines were enrolled in the study. Seventy had prior SARS-CoV-2 infection. In 220 subjects (non-prior infection) vaccinated with BNT162b2 or CoronaVac, the antibody titers against SARS-CoV-2 spike antigen of patients with severe obesity were significantly lower than normal weight controls (p = 0.001, p = 0.001 respectively). In seventy subjects with prior SARS-CoV-2 infection, spike antigen antibody titers in patients with severe obesity, vaccinated with BNT162b2 or CoronaVac, were not significantly different from normal weight controls (p = 0.1, p = 0.1 respectively). In patients with severe obesity, with and without prior SARS-CoV-2 infection, spike antigen antibody levels of those vaccinated with BNT162b2 were found to be significantly higher than those vaccinated with CoronaVac (p = 0.043, p < 0.001 respectively). CONCLUSION Patients with severe obesity generated significantly reduced antibody titers against SARS-CoV-2 spike antigen after CoronaVac and BNT162b2 vaccines compared to people with normal weight. Antibody levels in patients with severe obesity vaccinated with BNT162b2 were found to be significantly higher than those vaccinated with CoronaVac. People living with severe obesity should be prioritized for COVID-19 vaccination and BNT162b2 vaccine may be recommended for this vulnerable population.
Collapse
|
9
|
Liu Z, Zhao J, Sun R, Wang M, Wang K, Li Y, Shang H, Hou J, Jiang Z. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice. Food Funct 2022; 13:5971-5986. [PMID: 35546499 DOI: 10.1039/d1fo04316a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a natural active ingredient, lactic acid bacteria have potential anti-inflammatory effects. In this study, male C57BL/6J mice were given a high-fat diet (HFD) to establish an obese mouse model. Lactobacillus plantarum 23-1 (LP23-1) with prebiotic characteristics was intervened for 8 weeks to evaluate its remission effect on obese animals and related mechanisms. The effects of LP23-1 on lipid accumulation and intestinal inflammation in HFD-fed mice were systematically evaluated by detecting lipid accumulation, blood lipid level, pathological changes in the liver and small intestine, oxidative stress and inflammatory cell level, lipid transport-related gene expression, the inflammatory signaling pathway, and intestinal tight junction (TJ) mRNA and protein expression. The results showed that LP23-1 could significantly reduce the body weight and fat index of HFD-fed mice, improve the lipid levels of serum and liver, reduce the histopathological damage to the liver and small intestine, and alleviate oxidative stress and inflammatory response caused by obesity. In addition, reverse transcription-polymerase chain reaction and western blot analysis showed that LP23-1 could regulate the mRNA expression of lipid transport-related genes; activate the TLR4/NF-κB signaling pathway; reduce intestinal inflammation; improve the mRNA and protein expression of intestinal TJ proteins zona occludens-1 (ZO-1), occludin, claudin-1, and Muc2; repair intestinal mucosal injury; and enhance intestinal barrier function. The aforementioned results showed that LP23-1 through the TLR4/NF-κB signaling pathway and intestinal barrier function reduced obesity symptoms. This study provided new insights into the mechanism of LP23-1 in reducing obesity and provided a theoretical basis for developing new functional foods.
Collapse
Affiliation(s)
- Zhijing Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jiale Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Rongbo Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Min Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Kunyang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yanan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hang Shang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Lombardo M, Feraco A, Bellia C, Prisco L, D’Ippolito I, Padua E, Storz MA, Lauro D, Caprio M, Bellia A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022; 14:2054. [PMID: 35631195 PMCID: PMC9145042 DOI: 10.3390/nu14102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones-called myokines-released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Prisco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Ilenia D’Ippolito
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alfonso Bellia
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| |
Collapse
|
11
|
Liu Z, Zhou X, Wang W, Gu L, Hu C, Sun H, Xu C, Hou J, Jiang Z. Lactobacillus paracasei 24 Attenuates Lipid Accumulation in High-Fat Diet-Induced Obese Mice by Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4631-4643. [PMID: 35377154 DOI: 10.1021/acs.jafc.1c07884] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity has become a worldwide public health problem. Lactic acid bacteria have attracted extensive attention for alleviating obesity and fat accumulation. This study aimed to evaluate the alleviating effects of Lactobacillus paracasei 24 (LP24) on lipid accumulation in an obese mouse model induced by a high-fat diet (HFD). The results showed that LP24 treatment significantly reduced body weight and fat deposition in HFD mice, improved blood lipid levels and liver steatosis, reduced liver oxidative stress injury and the inflammatory response, and regulated fat metabolism-related factors. Moreover, LP24 regulated the abundance and diversity of the gut microbiota, reduced the abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes (F/B), and increased the abundance of Akkermansia. In summary, LP24 regulates lipid metabolism by activating the expression level of related genes and regulating the gut microbiota through the gut-liver axis to attenuate the development of obesity. This study provides a theoretical basis for probiotics to regulate gut microbiota to reduce lipid accumulation.
Collapse
Affiliation(s)
- Zhijing Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liya Gu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chuanbing Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
de Jesus RP, de Carvalho JF, de Oliveira LPM, Cunha CDM, Alves TCHS, Vieira STB, Figueiredo VM, Bueno AA. Metabolic and nutritional triggers associated with increased risk of liver complications in SARS-CoV-2. World J Hepatol 2022; 14:80-97. [PMID: 35126841 PMCID: PMC8790394 DOI: 10.4254/wjh.v14.i1.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/28/2021] [Accepted: 12/22/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, diabetes, cardiovascular and respiratory diseases, cancer and smoking are risk factors for negative outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can quickly induce severe respiratory failure in 5% of cases. Coronavirus disease-associated liver injury may occur during progression of SARS-CoV-2 in patients with or without pre-existing liver disease, and damage to the liver parenchyma can be caused by infection of hepatocytes. Cirrhosis patients may be particularly vulnerable to SARS-CoV-2 if suffering with cirrhosis-associated immune dysfunction. Furthermore, pharmacotherapies including macrolide or quinolone antibiotics and steroids can also induce liver damage. In this review we addressed nutritional status and nutritional interventions in severe SARS-CoV-2 liver patients. As guidelines for SARS-CoV-2 in intensive care (IC) specifically are not yet available, strategies for management of sepsis and SARS are suggested in SARS-CoV-2. Early enteral nutrition (EN) should be started soon after IC admission, preferably employing iso-osmolar polymeric formula with initial protein content at 0.8 g/kg per day progressively increasing up to 1.3 g/kg per day and enriched with fish oil at 0.1 g/kg per day to 0.2 g/kg per day. Monitoring is necessary to identify signs of intolerance, hemodynamic instability and metabolic disorders, and transition to parenteral nutrition should not be delayed when energy and protein targets cannot be met via EN. Nutrients including vitamins A, C, D, E, B6, B12, folic acid, zinc, selenium and ω-3 fatty acids have in isolation or in combination shown beneficial effects upon immune function and inflammation modulation. Cautious and monitored supplementation up to upper limits may be beneficial in management strategies for SARS-CoV-2 liver patients.
Collapse
Affiliation(s)
- Rosangela Passos de Jesus
- Postgraduate Program in Food, Nutrition and Health at the School of Nutrition of the Federal University of Bahia, Salvador 40.110-150, Bahia, Brazil
| | | | | | - Carla de Magalhães Cunha
- Postgraduate Program in Food, Nutrition and Health at the School of Nutrition of the Federal University of Bahia, Salvador 40.110-150, Bahia, Brazil
| | - Thaisy Cristina Honorato Santos Alves
- Postgraduate Program in Food, Nutrition and Health at the School of Nutrition of the Federal University of Bahia, Salvador 40.110-150, Bahia, Brazil
| | - Sandra Tavares Brito Vieira
- Postgraduate Program in Food, Nutrition and Health at the School of Nutrition of the Federal University of Bahia, Salvador 40.110-150, Bahia, Brazil
| | - Virginia Maria Figueiredo
- Department of Gastroenterology, IPEMED, Ipemed Faculty of Medical Sciences, Salvador 40170-110, Bahia, Brazil
| | - Allain Amador Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, United Kingdom
| |
Collapse
|
13
|
Stȩpień-Wyrobiec O, Nowak M, Wyrobiec G, Morawiec E, Wierzbik-Strońska M, Staszkiewicz R, Grabarek BO. Crossroad between current knowledge and new perspective of diagnostic and therapy of late-onset schizophrenia and very late-onset schizophrenia-like psychosis: An update. Front Psychiatry 2022; 13:1025414. [PMID: 36387009 PMCID: PMC9643586 DOI: 10.3389/fpsyt.2022.1025414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a chronic, highly individualized disease with many symptoms that can occur with varying severity in different patients. Schizophrenia affects 1% of the population, but occurs in almost 20% of patients after 40 years of age. It should be noted that the next peak in the incidence of schizophrenia occurs at the age of 60 years, affects mostly females, and is closely associated with a high risk of developing memory disorders. Therefore, postadolescent schizophrenia includes two distinct groups of patients: those whose symptoms onset at the age of 45 or 60. The purposes of this literature review were as follows: (1) synthetically characterize the clinical manifestations of schizophrenia; (2) discuss difficulties in the diagnosis of schizophrenia, especially in patients over 40 years of age; (3) discuss the clinical utility of different classes of marker in diagnostic and differentiating schizophrenia from neurodegenerative diseases in elderly people; (4) discuss therapeutic options for schizophrenia, pharmacotherapy, and psychotherapy, emphasizing the role of caregivers of people with psychosis in therapy, in preadolescence and postadolescence schizophrenia. We have tried to primarily discuss the findings of original articles from the last 10 years with an indication of their clinical implications with the issues discussed in the various subsections. Moreover, despite many years of research, no specific, precise algorithm has been developed that can be used in clinical practice during the diagnosis of schizophrenia. For this reason, the diagnosis of schizophrenia is primarily based on an interview with the patient and his family, as well as on the experience of a psychiatrist. It also seems that schizophrenia treatment should be carried out holistically, including pharmacotherapy, psychotherapy, and the support of caregivers of patients who have this psychosis, which increases the achievement of therapeutic success. Finally, we must be aware of the difficulties in diagnosing schizophrenia in the elderly and the need to modify pharmacological treatment. Currently, no guidelines have been developed for the differentiation of negative symptoms in elderly patients with schizophrenia from amotivation/avolition/apathy symptoms in elderly patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Olga Stȩpień-Wyrobiec
- Department of Geriatrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.,EMC Hospitals, John Paul II Geriatric Hospital in Katowice, Katowice, Poland
| | - Marta Nowak
- Department of Histology and Cell Pathology, Faculty of Medicine in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Grzegorz Wyrobiec
- Department of Histology and Cell Pathology, Faculty of Medicine in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Emilia Morawiec
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,Department of Microbiology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | | | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,5th Military Clinical Hospital with Polyclinic - Independent Public Health Care Facility in Krakow, Kraków, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland.,Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
14
|
Sharifi Y, Payab M, Mohammadi-Vajari E, Aghili SMM, Sharifi F, Mehrdad N, Kashani E, Shadman Z, Larijani B, Ebrahimpur M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. J Diabetes Metab Disord 2021; 20:1743-1765. [PMID: 34222055 PMCID: PMC8233632 DOI: 10.1007/s40200-021-00822-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, which began spreading from China Wuhan and gradually spreaded to most countries, led to the announcement by the World Health Organization on March 11, 2020, as a new pandemic. The most important point presented by the World Health Organization about this disease is to better understand the risk factors that exacerbate the course of the disease and worsen its prognosis. Due to the high majority of cardio metabolic risk factors like obesity, hypertension, diabetes, and dyslipidemia among the population over 60 years old and higher, these cardio metabolic risk factors along with the age of these people could worsen the prognosis of the coronavirus disease of 2019 (COVID-19) and its mortality. In this study, we aimed to review the articles from the beginning of the pandemic on the impression of cardio metabolic risk factors on COVID-19 and the effectiveness of COVID-19 on how to manage these diseases. All the factors studied in this article, including hypertension, diabetes mellitus, dyslipidemia, and obesity exacerbate the course of Covid-19 disease by different mechanisms, and the inflammatory process caused by coronavirus can also create a vicious cycle in controlling these diseases for patients.
Collapse
Affiliation(s)
- Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Yaas Diabetes and Metabolic Diseases Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 US
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Mohammadi-Vajari
- Student of Medicine, School of Medicine, Gilan University of Medical Sciences, Rasht, Iran
| | - Seyed Morsal Mosallami Aghili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kashani
- Department of Obstetrics and Gynecology, Golestan University of Medical Sciences, Golestan, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Amin M, Fatema K, Arefin S, Hussain F, Bhowmik D, Hossain M. Obesity, a major risk factor for immunity and severe outcomes of COVID-19. Biosci Rep 2021; 41:BSR20210979. [PMID: 34350941 PMCID: PMC8380923 DOI: 10.1042/bsr20210979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
An influenza-like virus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19 disease and spread worldwide within a short time. COVID-19 has now become a significant concern for public health. Obesity is highly prevalent worldwide and is considered a risk factor for impairing the adaptive immune system. Although diabetes, hypertension, cardiovascular disease (CVD), and renal failure are considered the risk factors for COVID-19, obesity is not yet well-considered. The present study approaches establishing a systemic association between the prevalence of obesity and its impact on immunity concerning the severe outcomes of COVID-19 utilizing existing knowledge. Overall study outcomes documented the worldwide prevalence of obesity, its effects on immunity, and a possible underlying mechanism covering obesity-related risk pathways for the severe outcomes of COVID-19. Overall understanding from the present study is that being an immune system impairing factor, the role of obesity in the severe outcomes of COVID-19 is worthy.
Collapse
Affiliation(s)
- Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Kaniz Fatema
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhlai-3814, Bangladesh
| | - Sayema Arefin
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Fahad Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
16
|
Mohan M, Perry BI, Saravanan P, Singh SP. COVID-19 in People With Schizophrenia: Potential Mechanisms Linking Schizophrenia to Poor Prognosis. Front Psychiatry 2021; 12:666067. [PMID: 34079487 PMCID: PMC8166317 DOI: 10.3389/fpsyt.2021.666067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
As the global burden of mortality from COVID-19 continues to rise, an understanding of who is most at risk of adverse outcomes is of paramount importance. Pre-existing cardiometabolic, renal and respiratory diseases as well as old age are well-established risk factors associated with disease severity and mortality among patients with COVID-19. However, mounting evidence also indicates an increased susceptibility to, and risk of adverse outcomes from COVID-19 in people with schizophrenia, independent of age and comorbidity. Therefore, elucidating the underlying pathophysiological mechanisms which may increase the risk of poor outcomes in people with schizophrenia is of crucial importance. Here, we provide a narrative on the current understanding of COVID-19 in patients with schizophrenia and propose potential mechanisms which may link schizophrenia with an increased susceptibility to, and greater risk of adverse outcomes from COVID-19. Given the existing knowledge gaps, robust clinical and biological studies are required to further our understanding of some of these underlying mechanisms, so that effective prevention and treatment strategies for COVID-19 in patients with schizophrenia can be developed.
Collapse
Affiliation(s)
- Mohapradeep Mohan
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Benjamin Ian Perry
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Ponnusamy Saravanan
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, United Kingdom
| | - Swaran Preet Singh
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Coventry and Warwickshire Partnership Trust, Coventry, United Kingdom
| |
Collapse
|
17
|
Reiner Benaim A, Sobel JA, Almog R, Lugassy S, Ben Shabbat T, Johnson A, Eytan D, Behar JA. Comparing COVID-19 and Influenza Presentation and Trajectory. Front Med (Lausanne) 2021; 8:656405. [PMID: 34055833 PMCID: PMC8160103 DOI: 10.3389/fmed.2021.656405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: COVID-19 is a newly recognized illness with a predominantly respiratory presentation. It is important to characterize the differences in disease presentation and trajectory between COVID-19 patients and other patients with common respiratory illnesses. These differences can enhance knowledge of pathogenesis and help in guiding treatment. Methods: Data from electronic medical records were obtained from individuals admitted with respiratory illnesses to Rambam Health Care Campus, Haifa, Israel, between October 1st, 2014 and October 1st, 2020. Four groups of patients were defined: COVID-19 (693), influenza (1,612), severe acute respiratory infection (SARI) (2,292), and Others (4,054). The variable analyzed include demographics (7), vital signs (8), lab tests (38), and comorbidities (15) from a total of 8,651 hospitalized adult patients. Statistical analysis was performed on biomarkers measured at admission and for their disease trajectory in the first 48 h of hospitalization, and on comorobidity prevalence. Results: COVID-19 patients were overall younger in age and had higher body mass index, compared to influenza and SARI. Comorbidity burden was lower in the COVID-19 group compared to influenza and SARI. Severely- and moderately-ill COVID-19 patients older than 65 years of age suffered higher rate of in-hospital mortality compared to hospitalized influenza patients. At admission, white blood cells and neutrophils were lower among COVID-19 patients compared to influenza and SARI patients, while pulse rate and lymphoctye percentage were higher. Trajectories of variables during the first 2 days of hospitalization revealed that white blood count, neutrophils percentage and glucose in blood increased among COVID-19 patients, while decreasing among other patients. Conclusions: The intrinsic virulence of COVID-19 appeared higher than influenza. In addition, several critical functions, such as immune response, coagulation, heart and respiratory function, and metabolism were uniquely affected by COVID-19.
Collapse
Affiliation(s)
| | - Jonathan A. Sobel
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | | | - Snir Lugassy
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tsviel Ben Shabbat
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Alistair Johnson
- MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Danny Eytan
- Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Joachim A. Behar
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Chowdhury AI, Alam MR, Rabbi MF, Rahman T, Reza S. Does higher body mass index increase COVID-19 severity? A systematic review and meta-analysis. ACTA ACUST UNITED AC 2021; 23:100340. [PMID: 33875972 PMCID: PMC8046705 DOI: 10.1016/j.obmed.2021.100340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Introduction Obesity and higher BMI is one of the leading comorbidities to increase the risk of COVID-19 severity. This paper presents a systematic review and meta-analysis estimating the effects of overweight and obesity on COVID-19 disease severity. Method Two electronic databases (Medline and Cochrane library) and one grey literature database (Grey Literature Report) were searched. The risks of bias of the selected studies were assessed by using the Navigation Guide method for human data. Both random and fixed effect meta-analyses were determined using Review Manager (RevMan) software version 5.4. Results After initial screening, 12 studies were fulfilled the eligibility criteria, comprising a total of 405359 patients, and included in the systematic review. The pooled risk of COVID-19 severity was 1.31 times higher based on both fixed and random effect model among those overweight patients, I2 0% and 2.09 and 2.41 times higher based on fixed and random effect respectively among obese patients, I2 42% compared to healthy individuals. Conclusion Overweight and obesity are found to be risk factors for disease severity of COVID-19 patients. However, further assessment of metabolic parameters is required to estimate the risk factors of COVID-19 patients and understanding the mechanism between COVID-19 and body mass index.
Collapse
Affiliation(s)
- Akibul Islam Chowdhury
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Bangladesh
| | - Md Fazley Rabbi
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Bangladesh
| | - Tanjina Rahman
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Bangladesh
| | - Sompa Reza
- Institute of Nutrition and Food Science, University of Dhaka, Bangladesh
| |
Collapse
|
19
|
Gleeson LE, Roche HM, Sheedy FJ. Obesity, COVID-19 and innate immunometabolism. Br J Nutr 2021; 125:628-632. [PMID: 32892755 PMCID: PMC7520638 DOI: 10.1017/s0007114520003529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
As COVID-19 continues to spread worldwide, severe disease and mortality have been observed in obese patients. We discuss how obesity and obesity-associated factors such as ‘meta-flammation’, dietary fat intake and paradoxical suppression of the innate immune response within the pulmonary compartment may be crucial determinants in the host response to a novel viral pathogen. Modulation of immune cell bioenergetics and metabolic potential plays a central role in the innate immune response to infection, and as we strive to combat this new global health threat, immunometabolism of the innate immune system warrants attention.
Collapse
Affiliation(s)
- Laura E. Gleeson
- School of Medicine, Trinity College, Dublin, Republic of Ireland
- Department of Respiratory Medicine, St James’s Hospital, Dublin, Republic of Ireland
| | - Helen M. Roche
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Republic of Ireland
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
20
|
Guglielmi V, Colangeli L, D’Adamo M, Sbraccia P. Susceptibility and Severity of Viral Infections in Obesity: Lessons from Influenza to COVID-19. Does Leptin Play a Role? Int J Mol Sci 2021; 22:ijms22063183. [PMID: 33804765 PMCID: PMC8003928 DOI: 10.3390/ijms22063183] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
The recent pandemic Sars-CoV2 infection and studies on previous influenza epidemic have drawn attention to the association between the obesity and infectious diseases susceptibility and worse outcome. Metabolic complications, nutritional aspects, physical inactivity, and a chronic unbalance in the hormonal and adipocytokine microenvironment are major determinants in the severity of viral infections in obesity. By these pleiotropic mechanisms obesity impairs immune surveillance and the higher leptin concentrations produced by adipose tissue and that characterize obesity substantially contribute to such immune response dysregulation. Indeed, leptin not only controls energy balance and body weight, but also plays a regulatory role in the interplay between energy metabolism and immune system. Since leptin receptor is expressed throughout the immune system, leptin may exert effects on cells of both innate and adaptive immune system. Chronic inflammatory states due to metabolic (i.e., obesity) as well as infectious diseases increase leptin concentrations and consequently lead to leptin resistance further fueling inflammation. Multiple factors, including inflammation and ER stress, contribute to leptin resistance. Thus, if leptin is recognized as one of the adipokines responsible for the low grade inflammation found in obesity, on the other hand, impairments of leptin signaling due to leptin resistance appear to blunt the immunologic effects of leptin and possibly contribute to impaired vaccine-induced immune responses. However, many aspects concerning leptin interactions with inflammation and immune system as well as the therapeutical approaches to overcome leptin resistance and reduced vaccine effectiveness in obesity remain a challenge for future research.
Collapse
|
21
|
Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes (Lond) 2021; 45:998-1016. [PMID: 33637951 PMCID: PMC7909378 DOI: 10.1038/s41366-021-00776-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Background Recent studies have shown that obesity is associated with the severity of coronavirus disease (COVID-19). We reviewed clinical studies to clarify the obesity relationship with COVID-19 severity, comorbidities, and discussing possible mechanisms. Materials and methods The electronic databases, including Web of Science, PubMed, Scopus, and Google Scholar, were searched and all studies conducted on COVID-19 and obesity were reviewed. All studies were independently screened by reviewers based on their titles and abstracts. Results Forty relevant articles were selected, and their full texts were reviewed. Obesity affects the respiratory and immune systems through various mechanisms. Cytokine and adipokine secretion from adipose tissue leads to a pro-inflammatory state in obese patients, predisposing them to thrombosis, incoordination of innate and adaptive immune responses, inadequate antibody response, and cytokine storm. Obese patients had a longer virus shedding. Obesity is associated with other comorbidities such as hypertension, cardiovascular diseases, diabetes mellitus, and vitamin D deficiency. Hospitalization, intensive care unit admission, mechanical ventilation, and even mortality in obese patients were higher than normal-weight patients. Obesity could alter the direction of severe COVID-19 symptoms to younger individuals. Reduced physical activity, unhealthy eating habits and, more stress and fear experienced during the COVID-19 pandemic may result in more weight gain and obesity. Conclusions Obesity should be considered as an independent risk factor for the severity of COVID-19. Paying more attention to preventing weight gain in obese patients with COVID-19 infection in early levels of disease is crucial during this pandemic.
Collapse
|
22
|
Ningombam SS, Kumar R, Tanwar P. Mutant strains of SARS-CoV-2 are more prone to infect obese patient: a review. Wien Klin Wochenschr 2021; 133:383-392. [PMID: 33595720 PMCID: PMC7887545 DOI: 10.1007/s00508-021-01819-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/16/2021] [Indexed: 01/08/2023]
Abstract
The current review critically analyzes obesity as an important risk factor for increased predisposition towards coronavirus disease 2019 (COVID-19), its severity and causal death in current pandemic. Countries with higher prevalence of exposed obese individuals experienced the highest number of mortalities. The analysis also proved that individuals having more adipose tissue in body have a higher level of angiotensin-converting enzyme 2 (ACE2), which is identified as functional receptor for COVID-19. Therefore, obese individuals are worse in condition because of a higher presence of adiposity increases the number of ACE2 expressing cells. Furthermore, in silico interactions of ACE2 and different variants of coronavirus 2 (CoV-2) spike S1 protein suggest that mutant strains are more infectious than wildtype as they bind to host ACE2 protein with high binding affinities. Certain specific cancers including cervical cancer, pancreatic and rectal adenocarcinomas have more expression of such receptors and pose additional risk to already immunocompromised cancer patients. This review emphasizes obesity, as the covert risk factor of COVID-19 infection and sensitizes about of calorie restrictions, immunity building and preventive measures.
Collapse
Affiliation(s)
- Somorjit Singh Ningombam
- Laboratory Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Rakesh Kumar
- Laboratory Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, 110029, New Delhi, India.
| |
Collapse
|
23
|
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev 2021; 37:e3377. [PMID: 32588943 PMCID: PMC7361201 DOI: 10.1002/dmrr.3377] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of the coronavirus disease 2019 (Covid-19) has become an evolving worldwide health crisis. With the rising prevalence of obesity and diabetes has come an increasing awareness of their impacts on infectious diseases, including increased risk for various infections, post-infection complications and mortality from critical infections. Although epidemiological and clinical characteristics of Covid-19 have been constantly reported, no article has systematically illustrated the role of obesity and diabetes in Covid-19, or how Covid-19 affects obesity and diabetes, or special treatment in these at-risk populations. Here, we present a synthesis of the recent advances in our understanding of the relationships between obesity, diabetes and Covid-19 along with the underlying mechanisms, and provide special treatment guidance for these at-risk populations.
Collapse
Affiliation(s)
- Yue Zhou
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Jingwei Chi
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Wenshan Lv
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| |
Collapse
|
24
|
Obesity and Risk of COVID-19 Infection and Severity: Available Evidence and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:97-107. [PMID: 33656716 DOI: 10.1007/978-3-030-59261-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in worldwide research efforts to recognize people at greatest risk of developing critical illness and dying. Growing numbers of reports have connected obesity to more severe COVID-19 illness and death. Although the exact mechanism by which obesity may lead to severe COVID-19 outcomes has not yet been determined, the mechanisms appear to be multifactorial. These include mechanical changes of the airways and lung parenchyma, systemic and airway inflammation, and general metabolic dysfunction that adversely affect pulmonary function and/or response to treatment. As COVID-19 continues to spread worldwide, clinicians should carefully monitor and manage obese patients for prompt and targeted treatment.
Collapse
|
25
|
Aggarwal S, Mahawar K, Khaitan M, Raj P, Wadhawan R, Dukkipati N, Kular KS, Prasad A, Bhasker AG, Soni V, Madhok B, Baig S, Palaniappan R, Shivaram HV, Goel D, Bindal V, Saggu S, Shrivastava R, Shah S, Dhorepatil S, Khullar R. Obesity and Metabolic Surgery Society of India (OSSI) Recommendations for Bariatric and Metabolic Surgery Practice During the COVID-19 Pandemic. Obes Surg 2020; 30:5101-5107. [PMID: 32829450 PMCID: PMC7443150 DOI: 10.1007/s11695-020-04940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Bariatric and metabolic surgery (BMS), the only effective option for patients with obesity with or without comorbidities, has been stopped temporarily due to the ongoing novel corona virus disease (COVID-19) pandemic. However, there has been a recent change in the governmental strategy of dealing with this virus from 'Stay at Home' to 'Stay Alert' in many countries including India. A host of health services including elective surgeries are being resumed. In view of the possibility of resumption of BMS in near future, Obesity and Metabolic Surgery Society of India (OSSI) constituted a committee of experienced surgeons to give recommendations about the requirements as well as precautions to be taken to restart BMS with emphasis on safe delivery and high-quality care.
Collapse
Affiliation(s)
- Sandeep Aggarwal
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Praveen Raj
- Gem Hospital & Research Centre, Coimbatore, India
| | | | | | | | | | | | - Vandana Soni
- Max Institute of Laparoscopic, Endoscopic and Bariatric Surgery Max Super Specialty hospital, New Delhi, India
| | - Brijesh Madhok
- University Hospitals of Derby & Burton NHS Foundation Trust, University of Nottingham (School of Medicine), Nottingham, UK
| | | | | | | | - Deep Goel
- BLK Super-Speciality Hospital, New Delhi, India
| | - Vivek Bindal
- Institute of Minimal Access, Metabolic and Bariatric Surgery (iMAS), Sir Ganga Ram Hospital, New Delhi, India
| | | | | | - Sumeet Shah
- Max Smart Super Speciality Hospital, New Delhi, India
| | | | - Rajesh Khullar
- Max Institute of Laparoscopic, Endoscopic and Bariatric Surgery Max Super Specialty hospital, New Delhi, India
| |
Collapse
|
26
|
Magdy Beshbishy A, Hetta HF, Hussein DE, Saati AA, C. Uba C, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Behl T, Batiha GES. Factors Associated with Increased Morbidity and Mortality of Obese and Overweight COVID-19 Patients. BIOLOGY 2020; 9:E280. [PMID: 32916925 PMCID: PMC7564335 DOI: 10.3390/biology9090280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Overweight and obesity are defined as an unnecessary accumulation of fat, which poses a risk to health. It is a well-identified risk factor for increased mortality due to heightened rates of heart disease, certain cancers, musculoskeletal disorders, and bacterial, protozoan and viral infections. The increasing prevalence of obesity is of concern, as conventional pathogenesis may indeed be increased in obese hosts rather than healthy hosts, especially during this COVID-19 pandemic. COVID-19 is a new disease and we do not have the luxury of cumulative data. Obesity activates the development of gene induced hypoxia and adipogenesis in obese animals. Several factors can influence obesity, for example, stress can increase the body weight by allowing people to consume high amounts of food with a higher propensity to consume palatable food. Obesity is a risk factor for the development of immune-mediated and some inflammatory-mediated diseases, including atherosclerosis and psoriasis, leading to a dampened immune response to infectious agents, leading to weaker post-infection impacts. Moreover, the obese host creates a special microenvironment for disease pathogenesis, marked by persistent low-grade inflammation. Therefore, it is advisable to sustain healthy eating habits by increasing the consumption of various plant-based and low-fat foods to protect our bodies and decrease the risk of infectious diseases, especially COVID-19.
Collapse
Affiliation(s)
- Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Diaa E. Hussein
- Researcher, Department of Food Hygiene, Agricultural Research Center (ARC), Animal Health Research Institute, Port of Alexandria 26514, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Christian C. Uba
- Department of Microbiology, Paul University, Awka, Anambra State PMB 6074, Nigeria;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
27
|
Sales-Peres SHDC, de Azevedo-Silva LJ, Bonato RCS, Sales-Peres MDC, Pinto ACDS, Santiago Junior JF. Coronavirus (SARS-CoV-2) and the risk of obesity for critically illness and ICU admitted: Meta-analysis of the epidemiological evidence. Obes Res Clin Pract 2020; 14:389-397. [PMID: 32773297 PMCID: PMC7396969 DOI: 10.1016/j.orcp.2020.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate the relationship between coronavirus disease 2019 (COVID-19) and obesity in critically ill patients admitted to the intensive care unit (ICU). METHODS We systematically searched PubMed, SCOPUS, Embase, LILACS, and Web of Science for studies published up to April 27, 2020. The outcome of interest was composite poor outcome, comprising mortality and severe COVID-19. We used a standardized data extraction form to collect information from published reports of eligible studies. Heterogeneity and publication bias were assessed using I2 statistic and funnel plots, respectively. RESULTS Nine studies including 6577 patients were selected for evaluation. The COVID-19 patients were 59.80% male and had comorbidities such as hypertension (51.51%), diabetes (30.3%), cardiovascular disease (16.66%), lung disease (15.99%), renal disease (7.49%), cancer (5.07%), and immunosuppression (1.8%). For patients with severe complications, the overall pooled event rates were 56.2% (random; 95% CI: 35.3-75.1; p = 0.015; I2 = 71.461) for obesity, 23.6% (random; 95% CI: 17.9-30.5; p = 0.000; I2 = 87.705) for type 2 diabetes, 45.9% (random; 95% CI: 38.0-53.9; p = 0.000; I2 = 90.152) for hypertension, 20.0% (random; 95% CI: 7.9-42.0; p = 0.000; I2 = 94.577) for smoking, 21.6% (random; 95% CI: 14.1-31.4%; p = 0.000, I2 = 92.983) for lung diseases, and 20.6% (random; 95% CI: 15.2-27.5; p = 0.000, I2 = 85.735) for cardiovascular diseases. DISCUSSION This systematic review indicated the relationship between obesity, ICU admission, severe COVID-19, and disease progression in patients with COVID-19. Obese patients with hypertension, type 2 diabetes, smoking habit, lung disease, and/or cardiovascular disease should be cared for with increased attention.
Collapse
Affiliation(s)
- Silvia Helena de Carvalho Sales-Peres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, Brazil.
| | - Lucas José de Azevedo-Silva
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, Brazil
| | - Rafaela Carolina Soares Bonato
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, Brazil
| | | | - Ana Carolina da Silvia Pinto
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, Brazil
| | | |
Collapse
|
28
|
Belančić A, Kresović A, Rački V. Potential pathophysiological mechanisms leading to increased COVID-19 susceptibility and severity in obesity. OBESITY MEDICINE 2020; 19:100259. [PMID: 32501427 PMCID: PMC7255205 DOI: 10.1016/j.obmed.2020.100259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
As we are facing worldwide pandemic of COVID-19, we aimed to identify potential pathophysiological mechanisms leading to increased COVID-19 susceptibility and severity in obesity. Special emphasis will be given on increased susceptibility to infections due to obesity-related low-grade chronic inflammation, higher expression of angiotensin converting enzyme-2 and pathway-associated components, as well as decreased vitamin D bioavailability, since all of them provide easier ways for the virus to enter into host cells, replicate and stunt adequate immune responses.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical Pharmacology, University Hospital Centre Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Andrea Kresović
- Department of Gastroenterology, University Hospital Centre Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| |
Collapse
|
29
|
Yadav R, Aggarwal S, Singh A. SARS-CoV-2-host dynamics: Increased risk of adverse outcomes of COVID-19 in obesity. Diabetes Metab Syndr 2020; 14:1355-1360. [PMID: 32755835 PMCID: PMC7372253 DOI: 10.1016/j.dsx.2020.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM The pandemic of COVID-19 has put forward the public health system across countries to prepare themselves for the unprecedented outbreak of the present time. Recognition of the associated risks of morbidity and mortality becomes not only imperative but also fundamental to determine the prevention strategies as well as targeting the high-risk populations for appropriate therapies. METHODS We reviewed, collated and analysed the online database i.e. Pubmed, Google scholar, Researchgate to highlight the demographic and mechanistic link between obesity and associated risks of severity in COVID-19. RESULTS We observed a changing dynamic in the reporting from the time of initial pandemic in China to currently reported research. While, initially body mass index (BMI) did not find a mention in the data, it is now clearly emerging that obesity is one of the profound risk factors for complications of COVID-19. CONCLUSION Our review will help clinicians and health policy makers in considering the importance of obesity in making the prevention and therapeutic strategies of COVID-19. An extra attention and precaution for patients with obesity in COVID-19 pandemic is recommended.
Collapse
Affiliation(s)
- Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Abstract
Obese patients are at increased risk of exacerbations from viral respiratory infections. During the H1N1 pandemic, obesity was associated with an increased risk of influenza-associated intensive care unit (ICU) admission and death, longer duration of mechanical ventilation, and longer duration of ICU and hospital length of stay compared with the non-obese. These observations have raised a concern about the correlation between obesity and the current COVID-19 pandemic. In this review, we have outlined the potential impacts of obesity on respiratory physiology and the function of both innate and adaptive immune responses. Also, it has been clearly illustrated that obese patients are potentially more vulnerable to COVID-19 and more contagious than lean patients. The comorbidities associated with obesity were found to be correlated with a severe clinical course of COVID-19 and increased mortality and high BMI has been shown to be correlated with hospitalisation, the need for mechanical ventilation and non-survival. The review also sheds light on the challenges that obese patients pose for healthcare providers inside and outside ICUs.
Collapse
|
31
|
Chatterjee S, Ghosh R, Biswas P, Dubey S, Guria RT, Sharma CB, Kalra S. COVID-19: the endocrine opportunity in a pandemic. MINERVA ENDOCRINOL 2020; 45:204-227. [PMID: 32548995 DOI: 10.23736/s0391-1977.20.03216-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 2019 Coronavirus disease (COVID-19) pandemic has disrupted the social, economical and medical system worldwide. Although it is strictly an infectious disease, its intricate bidirectional relationship with various non-communicable metabolic diseases and endocrinological factors has been observed. While diabetes, hypertension, obesity have been found to be independent risk factors for COVID-19 disease severity and mortality, more inclination towards sedentary lifestyle, psychosocial stress at this critical time may be the harbingers of metabolic syndrome. Thus, endocrinologists have a great opportunity to play their role to combat this pandemic. This paper examines how various endocrinological disorders influence the dynamics of COVID-19 and vice versa. Moreover, it also intends to review the clinical guidelines to be adopted in practice of endocrinology in this trying time.
Collapse
Affiliation(s)
- Subhankar Chatterjee
- Department of General Medicine, Rajendra Institute of Medical Sciences, Ranchi, India -
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, India
| | - Payel Biswas
- Department of Radiodiagnosis, Care and Cure Hospital, Barasat, India
| | - Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education and Research and SSKM Hospital, Kolkata, India
| | - Rishi T Guria
- Department of General Medicine, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Chandra B Sharma
- Department of General Medicine, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| |
Collapse
|
32
|
Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol 2020; 57:759-764. [PMID: 32249357 PMCID: PMC7130453 DOI: 10.1007/s00592-020-01522-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
AIMS Analyze the relationship between obesity and influenza. METHODS Basal hormone milieu, defective response of both innate and adaptive immune system and sedentariness are major determinants in the severity of influenza viral infection in obese patients. Being overweight not only increases the risk of infection and of complications for the single obese person, but a large prevalence of obese individuals within the population might increase the chance of appearance of more virulent viral strain, prolongs the virus shedding throughout the total population and eventually might increase overall mortality rate of an influenza pandemic. RESULTS Waiting for the development of a vaccination against COVID-19, isolation of positive cases and social distancing are the primary interventions. Nonetheless, evidence from previous influenza pandemics suggests the following interventions aimed at improving immune response: (1) lose weight with a mild caloric restriction; (2) include AMPK activators and PPAR gamma activators in the drug treatment for obesity associated with diabetes; and (3) practice mild-to-moderate physical exercise. CONCLUSIONS Due to prolonged viral shedding, quarantine in obese subjects should likely be longer than normal weight individuals.
Collapse
Affiliation(s)
- Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
- Department of Biomedical Sciences and Health, Università degli Studi di Milano, Milan, Italy.
| | - Maria Grazia Radaelli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
33
|
Insight into the relationship between obesity-induced low-level chronic inflammation and COVID-19 infection. Int J Obes (Lond) 2020; 44:1541-1542. [PMID: 32444771 PMCID: PMC7243431 DOI: 10.1038/s41366-020-0602-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/20/2023]
|
34
|
Zimorovat A, Mohammadi M, Ramezani-Jolfaie N, Salehi-Abargouei A. The healthy Nordic diet for blood glucose control: a systematic review and meta-analysis of randomized controlled clinical trials. Acta Diabetol 2020; 57:1-12. [PMID: 31172295 DOI: 10.1007/s00592-019-01369-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
AIMS Investigations on the possible effect of the Nordic diet (ND) on the glycemic control and the risk of diabetes have led to inconsistent results. The present study tried to determine the effect of the ND on the markers of blood glucose control using a systematic review and meta-analysis of randomized controlled clinical trials (RCTs). METHODS Predefined keywords were used to search PubMed, ISI Web of Science, Scopus and Google Scholar up to April 2019. The random effects model was used to compute the overall estimates. RESULTS In total, six RCTs with 618 participants (6-26 weeks of follow-up period) were included in the present study. The meta-analysis revealed that the ND might not have a considerable effect on fasting blood glucose levels [weighted mean difference (WMD) = -0.05 mmol/l, 95% CI - 0.13, 0.01, P = 0.112]. In contrast, the analyses showed that the ND significantly reduces serum insulin concentrations (WMD = -1.12 mU/l, 95% CI - 1.84, - 0.39, P = 0.002) and the homeostasis model assessment for insulin resistance (HOMA-IR) (WMD = - 0.34, 95% CI - 0.53, - 0.14, P = 0.001) compared to control diets. The effect on serum insulin levels was sensitive to one of the included studies. This dietary pattern did not significantly affect 2-h post-prandial blood glucose and Matsuda index. CONCLUSIONS Adherence to the ND might improve serum insulin and HOMA-IR levels; however, this effect was not confirmed for other markers of blood glucose control. Future well-designed and long-term clinical trials are highly recommended.
Collapse
Affiliation(s)
- Alireza Zimorovat
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
35
|
Rojas-Osornio SA, Cruz-Hernández TR, Drago-Serrano ME, Campos-Rodríguez R. Immunity to influenza: Impact of obesity. Obes Res Clin Pract 2019; 13:419-429. [PMID: 31542241 DOI: 10.1016/j.orcp.2019.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Obesity is a health concern that is recognized as a critical factor for vulnerability to influenza A/pdmH1N1 virus infection, with epidemiological and clinical impacts. In humans, obesity induces disturbances in inflammatory and immune responses to the influenza virus and in some cases, this leads to severe complications, with fatal outcomes. Obesity impairs immunity by altering the response of cytokines, resulting in a decrease in the cytotoxic cell response of immunocompetent cells which have a key anti-viral role. Additionally, obesity seems to disturb the balance of endocrine hormones, such as leptin, that affect the interplay between metabolic and immune systems. This contribution focuses on reviewing the current epidemiologic data for the immune response to immunity in obese humans and animal models. In doing so, we aim to provide potential mechanisms to enhance immunity to influenza A/pdmH1N1 virus infection and protective factors in obese people.
Collapse
Affiliation(s)
- Sandra Angélica Rojas-Osornio
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico
| | - Teresita Rocío Cruz-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico.
| |
Collapse
|
36
|
Honce R, Schultz-Cherry S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 2019; 10:1071. [PMID: 31134099 PMCID: PMC6523028 DOI: 10.3389/fimmu.2019.01071] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of obesity has come an increasing awareness of its impact on communicable disease. As a consequence of the 2009 H1N1 influenza A virus pandemic, obesity was identified for the first time as a risk factor for increased disease severity and mortality in infected individuals. Over-nutrition that results in obesity causes a chronic state of meta-inflammation with systemic implications for immunity. Obese hosts exhibit delayed and blunted antiviral responses to influenza virus infection, and they experience poor recovery from the disease. Furthermore, the efficacy of antivirals and vaccines is reduced in this population and obesity may also play a role in altering the viral life cycle, thus complementing the already weakened immune response and leading to severe pathogenesis. Case studies and basic research in human cohorts and animal models have highlighted the prolonged viral shed in the obese host, as well as a microenvironment that permits the emergence of virulent minor variants. This review focuses on influenza A virus pathogenesis in the obese host, and on the impact of obesity on the antiviral response, viral shed, and viral evolution. We comprehensively analyze the recent literature on how and why viral pathogenesis is altered in the obese host along with the impact of the altered host and pathogenic state on viral evolutionary dynamics in multiple models. Finally, we summarized the effectiveness of current vaccines and antivirals in this populations and the questions that remain to be answered. If current trends continue, nearly 50% of the worldwide population is projected to be obese by 2050. This population will have a growing impact on both non-communicable and communicable diseases and may affect global evolutionary trends of influenza virus.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|