1
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
2
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
3
|
Fan S, Lin L, Li P, Tian H, Shen J, Zhou L, Zhao Q, Zhang J, Qin Y, Tang C. Selenomethionine protects the liver from dietary deoxynivalenol exposure via Nrf2/PPARγ-GPX4-ferroptosis pathway in mice. Toxicology 2024; 501:153689. [PMID: 38040082 DOI: 10.1016/j.tox.2023.153689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deoxynivalenol (DON) is a significant Fusarium toxin that has gained global attention due to its high frequency of contamination in food and feed. It was reported to have hepatotoxicity, immunotoxicity, and reproduction toxicity in organs. On the other hand, Selenomethionine (SeMet) was proven to have anti-oxidation, tissue repairing, immunity improvement, and antifungal mycotoxin infection functions. However, the molecular mechanism by which SeMet alleviates DON damage is not yet clear. C57BL/6 mice were randomly divided into three groups, Se-A and Se-A+DON were fed with a diet containing 0.2 mg/kg Se whereas Se-S+DON were fed with a diet of 1.0 mg/kg Se. After feeding for four weeks, the mice were gavaged for 21 days with DON (2.0 mg/kg BW) or ultrapure water once per day. In the present study, we showed that SeMet significantly decreased the lipid peroxidation product malondialdehyde, and increased activities of antioxidant enzymes superoxide dismutase and total antioxidant capacity after DON exposure. In addition, our investigation revealed that SeMet regulated pathways related to lipid synthesis and metabolisms, and effectively mitigated DON-induced liver damage. Moreover, we have discovered that SeMet downregulation of N-acylethanolamine and HexCer accumulation induced hepatic lipotoxicity. Further study showed that SeMet supplementation increased protein levels of glutathione peroxidase 4 (GPX4), peroxisome proliferator-activated receptor γ (PPARγ), nuclear erythroid 2-related factor 2 (Nrf2), and upregulated target proteins, indicating suppression of oxidative stress in the liver. Meanwhile, we found that SeMet significantly reduced the DON-induced protein abundances of Bcl2, Beclin1, LC3B and proteins related to ferroptosis (Lpcat3, and Slc3a2), and downregulation of Slc7a11. In conclusion, SeMet protected the liver from damage by enhancing the Nrf2/PPARγ-GPX4-ferroptosis pathway, inhibiting lipid accumulation and hepatic lipotoxicity. The findings of this study indicated that SeMet has a positive impact on liver health by improving antioxidant capacity and relieving lipotoxicity in toxin pollution.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luxi Lin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jialu Shen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Wang P, Yao Q, Meng X, Yang X, Wang X, Lu Q, Liu A. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food Chem Toxicol 2023; 182:114121. [PMID: 37890761 DOI: 10.1016/j.fct.2023.114121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.
Collapse
Affiliation(s)
- Pengju Wang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qin Yao
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiangwen Meng
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiaosong Yang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Aimei Liu
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
5
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
6
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
7
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Changes on proteomic and metabolomic profiling of cryopreserved sperm effected by melatonin. J Proteomics 2023; 273:104791. [PMID: 36538967 DOI: 10.1016/j.jprot.2022.104791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Cryopreservation may reduce sperm fertility due to cryodamage including physical-chemical and oxidative stress damages. As a powerful antioxidant, melatonin has been reported to improve cryoprotective effect of sperm. However, the molecular mechanism of melatonin on cryopreserved ram sperm hasn't been fully understand. Give this, this study aimed to investigate the postthaw motility parameters, antioxidative enzyme activities and lipid peroxidation, as well as proteomic, metabolomic changes of Huang-huai ram spermatozoa with freezing medium supplemented with melatonin. Melatonin was firstly replenished to the medium to yield five different final concentrations: 0.1, 0.5, 1.0, 1.5, and 2.0 mM. A control (NC) group without melatonin replenishment was included. Protective effects of melatonin as evidenced by postthaw motility, activities of T-AOC, T-SOD, GSH-Px, CAT, contents of MDA, 4-HNE, as well as acrosome integrity, plasma membrane integrity, with 0.5 mM being the most effective concentration (MC group). Furthermore, 29 differentially abundant proteins involving in sperm functions were screened among Fresh, NC and MC groups of samples (n = 5) based on the 4D-LFQ, with 7 of them upregulated in Fresh and MC groups. 26 differentially abundant metabolites were obtained involving in sperm metabolism among the three groups of samples (n = 8) based on the UHPLC-QE-MS, with 18 of them upregulated in Fresh and MC groups. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the abundance changes of vital proteins and metabolites related to sperm function. Particularly, several proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine may be potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa. In conclusion, a dose-dependent replenishment of melatonin to freezing medium protected ram spermatozoa during cryopreservation, which can improve motility, antioxidant enzyme activities, reduce levels of lipid peroxidation products, modify the proteomic and metabolomic profiling of cryopreserved ram spermatozoa through reduction of oxidative stress, maintenance of OXPHOS and microtubule structure. SIGNIFICANCE: Melatonin, a powerful antioxidant protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner, with 0.5 mM being the most effective concentration. Furthermore, sequencing results based on the 4D-LFQ combined with the UHPLC-QE-MS indicated that melatonin modifies proteomic and metabolomic profiling of ram sperm during cryopreservation. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the expression changes of vital proteins and metabolites related to sperm metabolism and function. Particularly, several potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa were acquired, proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine.
Collapse
|
9
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
10
|
Li J, Bai Y, Ma K, Ren Z, Li J, Zhang J, Shan A. Dihydroartemisinin alleviates deoxynivalenol induced liver apoptosis and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113811. [PMID: 35772362 DOI: 10.1016/j.ecoenv.2022.113811] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Deoxynivalenol (DON) is one of the mycotoxins that contaminate cereals and feed, thereby endangering human and animal health. Dihydroartemisinin (DHA), a derivative of artemisinin, has anti-inflammatory and antioxidant functions in addition to anti-malaria and anti-cancer. The purpose of this study was to investigate the effects of DHA on alleviating liver apoptosis and inflammation induced by DON in piglets. The experimental design followed a 2 (normal diet and DON-contaminated diet) × 2 (with and without supplementation of DHA) factorial arrangement. 36 weaned piglets were subjected to a 21-day experiment. Results showed that DON increased ALT activity, the levels of TNF-α, IL-1β and IL-2, and reduced the levels of total protein (TP) and albumin (ALB) in the serum. However, DHA decreased the levels of TNF-α, IL-1β and IL-2, and increased the levels of TP and ALB. Also, DON decreased glutathione (GSH) content and catalase (CAT) activity, and increased methane dicarboxylic aldehyde (MDA) content. But GSH content was increased by DHA. In addition, DHA decreased DON-induced increase in apoptosis rate of hepatocytes. Furthermore, DON activated death receptor pathway to promote apoptosis by up-regulating the protein expression of FasL and caspase-3, and the mRNA expression of FasL, TNFR1, caspase-8, Bid, Bax, CYC and caspase-3. However, DHA reduced caspase-3 protein expression, as well as the mRNA expression of FADD, Bid, Bax, CYC and caspase-3. Besides, DON also activated TNF/NF-κB pathway to induce an inflammatory response by up-regulating TNF-α protein expression, and the mRNA expression of TNFR1, RIP1, IKKβ, IκBα, IL-1β and IL-8. Nevertheless, DHA reduced the mRNA expression of RIP1, IκBα, NF-κB, IL-1β and IL-6, and the protein expression of TNF-α and NF-κB. In conclusion, DHA improved DON-induced negative effects on serum biochemical parameters and inflammatory cytokine levels, hepatic antioxidant capacity, hepatic apoptosis and inflammation.
Collapse
Affiliation(s)
- Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaidi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhongshuai Ren
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zhang
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Rajput SA, Shaukat A, Rajput IR, Kamboh AA, Iqbal Z, Saeed M, Akhtar RW, Shah SAH, Raza MA, El Askary A, Abdel-Daim MM, Mohammedsaleh ZM, Aljarai RM, Alamoudi MO, Alotaibi MA. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112333. [PMID: 34058674 DOI: 10.1016/j.ecoenv.2021.112333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Deoxynivalenol (DON) is considered to be a grave threat to humans and animals. Ginsenoside Rb1 (Rb1) has been reported for its antioxidant potential and medicinal properties. However, the shielding effects of Rb1 and the precise molecular mechanisms against DON-induced immunotoxicity in mice have not been reported yet. In the present research, 4-weeks old healthy C57BL/6 mice were randomly assigned into four experimental groups (n = 12), viz., CON, DON 3 mg/kg BW, Rb1 50 mg/kg BW and DON 3 mg/kg + Rb1 50 mg/kg BW (DON + Rb1). Feed intake and body weight gain were monitored during the entire experiment (15 d). Our results demonstrated that Rb1 markedly increased the ADG (30%) and ADFI (25.10%) of mice compared with DON group. Furthermore, Rb1 alleviated the DON-induced immune injury by relieving the splenic histopathological alteration, enhancing the T-lymphocytes subsets (CD4+, CD8+), the levels of cytokines (IL-2, IL-6, IFN-γ, and TNF-α), as well as production of immunoglobulins (IgA, IgM, and IgG). Moreover, Rb1 ameliorated DON-inflicted oxidative stress by reducing the ROS, MDA and H2O2 contents and boosting the antioxidant defense system (T-AOC, T-SOD, CAT, and GSH-Px). Additionally, Rb1 significantly reversed the DON-induced excessive splenic apoptosis via modulating the mitochondria-mediated apoptosis pathway in mice, depicting the decreased percentage of splenocyte apoptotic cells by 26.65%, down-regulated the mRNA abundance of Bax, caspase-3, caspase-9, and protein expression of Bax, cleaved caspase-3, and Cyt-c. Simultaneously, Rb1 markedly rescued both Bcl-2 mRNA and protein expression levels. Taken together, Rb1 mitigates DON-induced immune injury by suppressing the oxidative damage and regulating the mitochondria-mediated apoptosis pathway in mice. Conclusively, our current research provides an insight into the preventive mechanism of Rb1 against DON-induced immune injury in mice and thus, presents a scientific baseline for the therapeutic application of Rb1.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aftab Shaukat
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Rashid Rajput
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture Water and Marine Science, Uthal, Balochistan, Pakistan
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccine R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Pakistan
| | - Rana Waseem Akhtar
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Syed Aftab Hussain Shah
- Pakistan Scientific & Technological Information Center, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Muhammad Asif Raza
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Rabab M Aljarai
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Muna O Alamoudi
- Biology Department, Faculty of Sciences, Hail University, Hail, Saudi Arabia
| | | |
Collapse
|
13
|
DL-Selenomethionine Alleviates Oxidative Stress Induced by Zearalenone via Nrf2/Keap1 Signaling Pathway in IPEC-J2 Cells. Toxins (Basel) 2021; 13:toxins13080557. [PMID: 34437428 PMCID: PMC8402336 DOI: 10.3390/toxins13080557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) is a kind of nonsteroidal mycotoxin that is considered a risk affecting the safety of human food and livestock feed that causes oxidative damages in mammalian cells. Selenomethionine (SeMet) was indicated to have antioxidant activity and received great interest in investigating the role of SeMet as a therapeutic agent in oxidation. Therefore, the aim of this study was to investigate the hormetic role of DL-SeMet in porcine intestinal epithelial J2 (IPEC-J2) cells against ZEN-induced oxidative stress injury. As a result of this experiment, 30 μg/mL of ZEN was observed with significantly statistical effects in cell viability. Following the dose-dependent manner, 20 μg/mL was chosen for the subsequent experiments. Then, further results in the current study showed that the ZENinduced oxidative stress with subsequent suppression of the expression of antioxidant stress pathway-related genes species. Moreover, SeMet reversed the oxidative damage and cell death of ZEN toxins to some extent, by a Nrf2/Keap1-ARE pathway. The finding of this experiment provided a foundation for further research on the ZEN-caused cell oxidative damage and the cure technology.
Collapse
|
14
|
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, Feggeros K. Impact of Mycotoxins on Animals' Oxidative Status. Antioxidants (Basel) 2021; 10:214. [PMID: 33535708 PMCID: PMC7912820 DOI: 10.3390/antiox10020214] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxins appear to be the "Achilles' heel" of the agriculture sector inducing enormous economic losses and representing a severe risk to the health of humans and animals. Although novel determination protocols have been developed and legislation has been implemented within Europe, the side effects of mycotoxins on the homeostatic mechanisms of the animals have not been extensively considered. Feed mycotoxin contamination and the effects on the antioxidant status of livestock (poultry, swine, and ruminants) are presented. The findings support the idea that the antioxidant systems in both monogastrics and ruminants are challenged under the detrimental effect of mycotoxins by increasing the toxic lipid peroxidation by-product malondialdehyde (MDA) and inhibiting the activity of antioxidant defense mechanisms. The degree of oxidative stress is related to the duration of contamination, co-contamination, the synergetic effects, toxin levels, animal age, species, and productive stage. Since the damaging effects of MDA and other by-products derived by lipid peroxidation as well as reactive oxygen species have been extensively studied on human health, a more integrated monitoring mechanism (which will take into account the oxidative stability) is urgently required to be implemented in animal products.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Savvina Tavrizelou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Maria Zacharioudaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - George Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Kostas Feggeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| |
Collapse
|
15
|
Chen W, Cheng H, Jiang Q, Xia W. The characterization and biological activities of synthetic N, O-selenized chitosan derivatives. Int J Biol Macromol 2021; 173:504-512. [PMID: 33460653 DOI: 10.1016/j.ijbiomac.2021.01.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
Synthetic selenium polysaccharides with potential bioactivity have drawn great interest due to the SeO bonds existing in the structure. Herein, N, O-selenized N-(2-carboxyethyl) chitosan (sNCCS) was synthesized through carboxyethylation and selenylation. Various characterizations were performed to identify the structure of sNCCS, indicating that SeO bonds were formed both at the C-6 hydroxyl groups and the introduced C-2 carboxyethyl groups. The highest yield and selenium content of all sNCCS reached 84.5% and 1.553 mg/g, respectively. In vitro evaluation exhibited that sNCCS has excellent bile acid binding capacity, which was 1.63, 2.00, and 2.55-fold higher than that of N-(2-carboxyethyl) chitosan (NCCS). Moreover, it was found that higher selenium content could significantly enhance the antioxidant properties of sNCCS. Importantly, no obvious cytotoxic effect had been observed on Caco-2 cells. Taken together, sNCCS with desirable biological activity and non-cytotoxicity might be considered as an effective ingredient in the fields of food or medicine.
Collapse
Affiliation(s)
- Wanwen Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenshui Xia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
16
|
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food Chem Toxicol 2020; 140:111326. [DOI: 10.1016/j.fct.2020.111326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/24/2023]
|
17
|
Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes. Food Chem Toxicol 2020; 140:111357. [DOI: 10.1016/j.fct.2020.111357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
|
18
|
Taroncher M, Pigni MC, Diana MN, Juan-García A, Ruiz MJ. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress? Toxicol Mech Methods 2020; 30:417-426. [PMID: 32306886 DOI: 10.1080/15376516.2020.1757000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine whether exposure to low concentrations of deoxynivalenol (DON), T-2 toxin (T-2) and patulin (PAT) in a human hepatocellular carcinoma cell line (HepG2) exerts toxic effects through mechanisms related to oxidative stress, and how cells deal with such exposure. Cell viability was determined by the MTT and protein content (PC) assays over 24, 48 and 72 h. The IC50 values detected ranged from >10 to 2.53 ± 0.21 μM (DON), 0.050 ± 0.025 to 0.034 ± 0.007 μM (T-2) and 2.66 ± 0.66 to 1.17 ± 0.21 µM (PAT). The key players in oxidative stress are the generation of reactive oxygen species (ROS), lipid peroxidation (LPO) and mitochondrial membrane potential (MMP) dysfunction. The results obtained showed that PAT, DON and T-2 did not significantly increase LPO or ROS production with respect to the controls. Moreover, PAT and DON did not alter MMP, though T-2 increased MMP at the higher concentrations tested (17 and 34 nM). In conclusion, the exposure of HepG2 cells to nontoxic concentrations of T-2 condition them against subsequent cellular oxidative conditions induced by even higher concentrations of mycotoxin.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Chiari Pigni
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Natalia Diana
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Juan-García
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
19
|
Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Res 2020; 36:287-299. [PMID: 32076947 DOI: 10.1007/s12550-020-00392-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is a type B trichothecenes that is widely contaminating human and animal foods, leading to several toxicological implications if ingested. Induction of oxidative stress and production of lipid peroxides were suggested to be the reasons for DON-induced cytotoxicity. However, detailed and comprehensive profiling of DON-related lipid hydroperoxides was not identified. Furthermore, the mechanisms behind DON-induced cytotoxicity and oxidative stress have received less attention. Zinc (Zn) is an essential element that has antioxidant activities; however, the protective effects of Zn against DON-induced adverse effects were not examined. Therefore, this study was undertaken to investigate DON-induced cytotoxicity and oxidative damage to human HepG2 cell lines. Furthermore, a quantitative estimation for the formed lipid hydroperoxides was conducted using LC-MS/MS. In addition, DON-induced transcriptomic changes on the inflammatory markers and antioxidant enzymes were quantitatively examined using qPCR. The protective effects of Zn against DON-induced cytotoxicity and oxidative stress, the formation of lipid hydroperoxides (LPOOH), and antioxidant status in HepG2 cells were investigated. Finally, the effects of DON and Zn on the Nrf2-Keap1 pathway were further explored. The achieved results indicated that DON caused significant cytotoxicity in HepG2 cells accompanied by significant oxidative damage and induction of the inflammatory markers. Identification of DON-related LPOOH revealed the formation of 22 LPOOH species including 14 phosphatidylcholine hydroperoxides, 5 triacylglycerol hydroperoxides, and 3 cholesteryl ester hydroperoxides. DON caused significant downregulation of Nrf2-regulated antioxidant enzymes. Zn administration led to significant protection of HepG2 cells against DON-induced adverse effects, probably via activation of the Nrf2-Keap1 pathway.
Collapse
|
20
|
Ren Z, He H, Fan Y, Chen C, Zuo Z, Deng J. Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins. Biol Trace Elem Res 2019; 190:273-280. [PMID: 30267312 DOI: 10.1007/s12011-018-1532-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Animal feed is prone to becoming infected with molds during production and storage, resulting in secondary metabolite mycotoxins, such as aflatoxin B1 (AFB1), T-2 toxins, deoxynivalenol (DON), and ochratoxin A (OTA), which are harmful to humans and animals. Selenium is an essential trace element for humans and animals, and it is also an effective antioxidant. Many studies have shown that selenium can reduce the damage caused by mycotoxins in animals. This article reviews the current literature on the antagonistic effects of selenium on AFB1, T-2, DON, and OTA toxicity.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Hongyi He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yu Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Changhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China.
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
21
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Guo W, Gu X, Tong Y, Wang X, Wu J, Chang C. Protective effects of mannan/β-glucans from yeast cell wall on the deoxyniyalenol-induced oxidative stress and autophagy in IPEC-J2 cells. Int J Biol Macromol 2019; 135:619-629. [PMID: 31132443 DOI: 10.1016/j.ijbiomac.2019.05.180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effects of biomacromolecules mannan/β-glucans from yeast cell wall (BYCW) to alleviate Deoxynivalenol(DON)-induced injury. Considering that DON has strong oxidizing effect and stimulates autophagy and apoptosis, we examined the effects of BYCW on consequent oxidative stress damage indicators, cells autophagy and apoptosis induced by DON using the porcine jejunum epithelial cell lines (IPEC-J2) as a cell culture model. The results showed that application of BYCW could reverse the decrease of cell viability by DON significantly, and suppress the levels of tumor necrosis factor-α (TNF-α) and interleukin-8 and -6 (IL-8 and IL-6), except IL-1β. Further experiments revealed that BYCW treatment counteracted the DON-induced down-regulation of intracellular glutathione (GSH) and up-regulation of reactive oxygen species (ROS) and malondialdehyde (MDA). Through western blot analysis, we observed that BYCW treatment was able to down-regulate the expression of autophagy protein LC3-II and up-regulate the expression of P62 protein against DON, which suggested that autophagy induced by DON may be suppressed. Altogether, these results indicated a potential ability of supplementation of BYCW to improve cell growth and metabolism as well as the preventive properties of BYCW against the DON-induced cell damage by activating antioxidant system.
Collapse
Affiliation(s)
- Wenyan Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaqi Tong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
23
|
Toxicity of DON on GPx1-Overexpressed or Knockdown Porcine Splenic Lymphocytes In Vitro and Protective Effects of Sodium Selenite. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5769752. [PMID: 30944693 PMCID: PMC6421760 DOI: 10.1155/2019/5769752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON) is a common contaminant of grain worldwide and is often detected in the human diet and animal feed. Selenium is an essential trace element in animals. It has many biological functions. The role of selenium in the body is mainly orchestrated by selenoprotein. Glutathione peroxidase (GPx) also exists widely in the body and has attracted much attention due to its high antioxidant capacity. In order to explore the effect of the GPx1 gene on toxicity of DON, in this study, we overexpressed or knockdown GPx1 in porcine splenic lymphocytes, then added different concentrations of DON (0.1025, 0.205, 0.41, and 0.82 μg/mL) and sodium selenite (2 μmol/L) to the culture system. Using various techniques, we detected antioxidant function, free radical content, cell apoptosis, and methylation-related gene expression to explore the effect of GPx1 expression on DON-induced cell damage. We also explored whether selenium can antagonize the toxicity of DON in these two cell models and revealed the protective effect of sodium selenite on DON-induced cell damage in GPx1-overexpressing or knockdown splenic lymphocytes. Finally, our findings revealed the following: (1) GPx1 can regulate the antioxidant capacity, apoptosis rate, and expression of DNA methylation-related genes in pig splenic lymphocytes. (2) Na2SeO3 (2 μmol/L) can regulate the antioxidant capacity, apoptosis rate, and expression of DNA methylation-related genes in pig splenic lymphocytes, and this effect is more significant in GPx1-overexpressing cells than in GPx1-knockdown cells. (3) DON can cause oxidative damage, apoptosis, and methylation injury in GPx1-overexpressing or knockdown pig splenic lymphocytes in a concentration-dependent manner. (4) Na2SeO3 (2 μmol/L) can antagonize the toxic effect of DON on GPx1-overexpressing or knockdown pig splenic lymphocytes. Our findings may have important implications for food/feed safety, human health, and environmental protection.
Collapse
|
24
|
Pelyhe C, Kövesi B, Szabó-Fodor J, Zándoki E, Erdélyi M, Kovács B, Mézes M, Balogh K. Age-dependent effects of short-term exposure of T-2 toxin or deoxynivalenol on lipid peroxidation and glutathione redox system in broiler chickens. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2018.2325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Purpose of this study was to investigate the age-dependent, short-term effects of T-2 toxin (5.77 mg T-2 and 1.40 mg HT-2 toxin/kg feed) or deoxynivalenol (DON) (4.86 mg DON and 1.39 mg 15-acetyl-DON/kg feed) in one and three weeks old broiler chicken to observe the changes in parameters of lipid peroxidation, glutathione redox system, and expression of genes related to glutathione redox system in the first 24 h of mycotoxin exposure. Glutathione-redox system responsed to T-2 toxin exposure in both age groups for T-2 toxin in the first 8 h of exposure, while a reactivation was observed in the 3-week-old group after 20 h, although lipid peroxidation did not change significantly. DON did not alter these parameters, only at gene expression level. Gene expression of phospholipid hydroperoxide glutathione peroxidase (GPX4) showed minor, but significant, changes in both age- and mycotoxin exposure groups. Glutathione reductase (GSR) showed a dual response for the mycotoxin exposure, which was not consequent in either age groups, or treatments. Glutathione synthetase (GSS) showed a decreasing tendency in the younger animals while in the older group elevating tendency was observed as effect of both mycotoxins. Time, treatment and their combined effect also showed relation with the changes in the parameters.
Collapse
Affiliation(s)
- Cs. Pelyhe
- Hungarian Academy of Sciences, Kaposvár University – Szent István University ‘MTA-KE-SZIE Mycotoxins in the Food Chain’ Research Group, Guba S. u. 40, Kaposvár 7400, Hungary
| | - B. Kövesi
- Department of Nutrition, Szent István University, Páter K. u. 1, Gödöllő 2103, Hungary
| | - J. Szabó-Fodor
- Hungarian Academy of Sciences, Kaposvár University – Szent István University ‘MTA-KE-SZIE Mycotoxins in the Food Chain’ Research Group, Guba S. u. 40, Kaposvár 7400, Hungary
| | - E. Zándoki
- Hungarian Academy of Sciences, Kaposvár University – Szent István University ‘MTA-KE-SZIE Mycotoxins in the Food Chain’ Research Group, Guba S. u. 40, Kaposvár 7400, Hungary
| | - M. Erdélyi
- Department of Nutrition, Szent István University, Páter K. u. 1, Gödöllő 2103, Hungary
| | - B. Kovács
- Department of Aquaculture, Szent István University, Páter K. u. 1, Gödöllő 2103, Hungary
| | - M. Mézes
- Department of Nutrition, Szent István University, Páter K. u. 1, Gödöllő 2103, Hungary
| | - K. Balogh
- Department of Nutrition, Szent István University, Páter K. u. 1, Gödöllő 2103, Hungary
| |
Collapse
|
25
|
Sodium selenite inhibits deoxynivalenol-induced injury in GPX1-knockdown porcine splenic lymphocytes in culture. Sci Rep 2018; 8:17676. [PMID: 30518949 PMCID: PMC6281670 DOI: 10.1038/s41598-018-36149-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Deoxynivalenol (DON) is a cytotoxic mycotoxin that can cause cell damages. The main effect is to inhibit protein synthesis. Oxidative stress is one of the effects of DON. Selenium (Se) can ameliorate the cell damage caused by DON-induced oxidative stress, but it is unclear whether through selenoprotein glutathione peroxidase 1 (GPX1). We established GPX1-knockdown porcine spleen lymphocytes, and treated them with DON and Se. Untransfected porcine splenic lymphocytes (group P) and transfected cells (group M, GPX1 knockdown) were treated with or without DON (0.824, 0.412, 0.206, or 0.103 μg/mL, group D1-4), Se (Na2SeO3, 2 μM, group Se), or both (group SD1–4) for 6, 12, or 24 h. The cells were collected and the activities of SOD and CAT, levels of GSH, H2O2, malonaldehyde (MDA), total antioxidant capacity (T-AOC), and the inhibition of free hydroxyl radicals were determined. Levels of ROS were measured at 24 h. Compared with group P, the antioxidant capacity of group M was reduced. DON caused greater oxidative damage to the GPX1-knockdown porcine splenic lymphocytes than to the normal control cells. When Na2SeO3 was combined with DON, it reduced the damage in the GPX1-knockdown porcine splenic lymphocytes, but less effectively than in the normal porcine splenic lymphocytes.
Collapse
|
26
|
Ruelas-Inzunza J, Šlejkovec Z, Mazej D, Fajon V, Horvat M, Ramos-Osuna M. Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: tissue distribution and As speciation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19499-19509. [PMID: 29730759 DOI: 10.1007/s11356-018-2166-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
With the aim of knowing the distribution of As, Hg, and Se in skipjack (Katsuwonus pelamis, Linnaeus, 1758) and yellowfin tuna (Thunnus albacares, Bonnaterre, 1788) from the Eastern Pacific, elemental concentrations were determined in the muscle and liver; As species were also analyzed in the stomach content. Additionally, health risk for consumers was assessed. For both tunas, levels of As and Se were significantly higher (p < 0.05) in the liver than in the muscle. In K. pelamis, Hg concentrations in the muscle were significantly higher (p < 0.05) than those in the liver. In T. albacares, As, Hg, and Se showed a trend to increase with fish dimensions. Arsenic extractability was better in the muscle than in the liver of both species; in K. pelamis, As species were better extracted than in T. albacares. In both tuna species, the most extractable arsenic was arsenobetaine (AsB) and a minor part was dimethylarsinic acid (DMA). The liver contained mainly AsB with some DMA and arsenocholine (AsC). Hazard indexes (HI) indicated no risk from Hg and Se intake through these tuna species. Considering the individual contribution to the HI, Hg contributed more (80 to 86%) than Se. In the context of health risk, none of the As and Hg values were above the permissible limits; however, two samples of T. albacares (9%) and three samples of K. pelamis (12%) had Se concentrations over the limits. If Hg and Se in the edible portion of tuna are considered under the approach of the HBVSe, tuna consumption is beneficial.
Collapse
Affiliation(s)
- Jorge Ruelas-Inzunza
- Technological Institute of Mazatlán, Corsario 1 No. 203, Col Urías, 82070, Mazatlán, Sinaloa, Mexico.
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Mauricio Ramos-Osuna
- Technological Institute of Mazatlán, Corsario 1 No. 203, Col Urías, 82070, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
27
|
Wang X, Zuo Z, Deng J, Zhang Z, Chen C, Fan Y, Peng G, Cao S, Hu Y, Yu S, Chen C, Ren Z. Protective Role of Selenium in Immune-Relevant Cytokine and Immunoglobulin Production by Piglet Splenic Lymphocytes Exposed to Deoxynivalenol. Biol Trace Elem Res 2018; 184:83-91. [PMID: 28948563 DOI: 10.1007/s12011-017-1160-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 11/28/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin that causes immunosuppression, especially in swine. Selenium (Se) is essential for proper functioning of the immune system in animals. However, little is known about the effects of DON and Se on cytokine or immunoglobulin production in piglets. Here, we addressed this gap by examining piglet splenic lymphocyte responses in vitro. Cells were stimulated with concanavalin A, a T cell stimulatory lectin, in the absence or presence of DON (0.1, 0.2, 0.4, and 0.8 μg/mL), Se (Na2SeO3, 2 μM), or combinations of Se 2 μM and DON 0.1-0.8 μg/mL for 12, 24, or 48 h. At each time point, supernatants and cells were collected and the expression of cytokine and immunoglobulin protein and mRNA was examined. Compared with control and Se-alone treatments, DON exposure significantly and dose dependently decreased the expression levels of IL-2, IL-4, IL-6, IL-10, IFN-γ, IgG, and IgM mRNA and protein. By contrast, co-treatment with DON + Se significantly increased the mRNA and protein levels of all factors examined, except IL-4 and IL-6, compared with DON treatment alone. The results of this investigation demonstrate that Se has the potential to counteract DON-induced immunosuppression in piglets and is a promising treatment for DON-mediated toxicity.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuo Zhang
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhao Chen
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Fan
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoxi Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, 610041, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Shao Y, Wang J, Du Z, Li B, Zhu L, Wang J, Zhang S. Toxic effect of [Omim]BF 4 and [Omim]Br on antioxidant stress and oxidative damage in earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:37-44. [PMID: 29655015 DOI: 10.1016/j.etap.2018.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
In this paper, model soil organism, earthworms (Eisenia fetida), were selected to examine the chronic toxic effect of two different ionic liquids (ILs) [Omim]BF4 and [Omim]Br. Earthworms were put into different ILs concentrations (0, 5, 10, 20, 40 mg/kg) in artificial soil and random selected on days 7, 14, 21 and 28. Reactive oxygen species (ROS), antioxidant enzymes and detoxifying enzyme glutathione-S-transferase (GST) were researched for determination of antioxidant stress. Malondialdehyde (MDA) and olive tail moment (OTM) were researched to determine the oxidative damage. Both the pollutants had the same effect on earthworms: ILs led to accumulation of ROS, and then antioxidant enzymes and detoxification enzyme all changed to eliminate the effects of ROS, and the above process led to lipid peroxidation and DNA damage in earthworms. This paper shows that [Omim]BF4 and [Omim]Br both caused toxicity to earthworms and had the similar toxicity levels.
Collapse
Affiliation(s)
- Yuting Shao
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Shumin Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
29
|
Ren Z, Deng H, Deng Y, Liang Z, Deng J, Zuo Z, Hu Y, Shen L, Yu S, Cao S. Combined effects of deoxynivalenol and zearalenone on oxidative injury and apoptosis in porcine splenic lymphocytes in vitro. ACTA ACUST UNITED AC 2017; 69:612-617. [DOI: 10.1016/j.etp.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
30
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|