1
|
Martin C, Côté-Cyr M, Nguyen PT, Archambault D, Bourgault S. Evaluation of cylindrical micelles assembled from amphiphilic β-peptides as antigen delivery nanostructures. NANOSCALE ADVANCES 2025; 7:2979-2987. [PMID: 40177387 PMCID: PMC11960782 DOI: 10.1039/d5na00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Supramolecular nanostructures assembled from synthetic peptides constitute promising scaffolds for the delivery of antigens for vaccine development. Amphiphilic peptides and self-assembling cross-β-peptides have been shown to promote cellular uptake of antigenic epitopes by antigen-presenting cells, to stimulate the innate immune system and to induce a robust antigen-specific humoral immune response. In this study, we evaluated the use of cylindrical micelles assembled from the amphiphilic β-peptide C16V3A3K3 as a vaccine nanoplatform, combining the properties of cross-β-sheet fibrils and micelles. The ectodomain of the matrix 2 protein (M2e) of the influenza A virus was conjugated with a tetra-Gly linker at the C-terminus of C16V3A3K3. The chimeric peptide assembled into biocompatible unbranched filaments that exposed the antigen on the surface, and these filaments were readily internalized by dendritic cells and activated the toll-like receptor 2/6. These cylindrical micelles induced a robust M2e-specific humoral immune response upon intramuscular immunization in mice without the need for co-administration with adjuvants. Although this strong humoral response did not translate into protection against a lethal infection with the H1N1 influenza virus, these cylindrical micelles assembled from amphiphilic β-peptides expand the repertoire of self-adjuvanted nanostructures to enhance antibody production against peptide epitopes.
Collapse
Affiliation(s)
- Clément Martin
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA) Saint-Hyacinthe J2S 2M2 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO) Québec H3C 3P8 Canada
- Department of Biological Sciences, Université du Québec C.P.8888, Succursale Centre-Ville Montréal H3C 3P8 Canada
| |
Collapse
|
2
|
Skwarczynski M, Alharbi N, Nahar UJ, Shalash AO, Azuar A, Koirala P, Khisty SJ, Wang J, Marasini N, Hussein WM, Khalil ZG, Toth I. Influence of component structural arrangement on cholesterol-antigen conjugate immunogenicity and antisera bactericidal activity against group A Streptococcus. Bioorg Chem 2025; 157:108248. [PMID: 39952060 DOI: 10.1016/j.bioorg.2025.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Immune stimulants (adjuvants) are essential vaccine components; however, clinically approved adjuvants are limited with the majority being derived from pathogenic components. In this study, the adjuvanting capacity of cholesterol, a natural human lipid, was explored following conjugation with peptide antigens. A structure-activity relationship study was conducted to compare linear and branched cholesterol conjugates with other lipopeptide vaccines and commercial adjuvants. Group A Streptococcus (GAS) M protein-derived J8 B-cell epitope and a universal helper T-cell epitope P25 were selected as an antigen. In addition, liposomal formulations of the cholesterol-based vaccines were also evaluated in the mouse model. Following subcutaneous and intranasal administration, conjugates comprised of cholesterol, P25 and J8 induced the highest antibody production. Linear cholesterol peptide vaccines triggered strong antibody responses that killed GAS clinical isolates as effectively as responses triggered by commercial adjuvants. The immunogenicity of the vaccines was greatly influenced by the structural arrangement of the vaccine conjugate components. The lead cholesterol conjugate was self-adjuvanting and induced the desired immune response without any exogenous immune stimulation.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Nedaa Alharbi
- Applied College at Khulais, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Ummey J Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shefali J Khisty
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Waleed M Hussein
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Zhao G, Sathkumara HD, Miranda-Hernandez S, Seifert J, Valencia-Hernandez AM, Puri M, Huang W, Toth I, Daly N, Skwarczynski M, Kupz A. A Modular Self-Assembling and Self-Adjuvanting Multiepitope Peptide Nanoparticle Vaccine Platform to Improve the Efficacy and Immunogenicity of BCG. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406874. [PMID: 39757706 DOI: 10.1002/smll.202406874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/29/2024] [Indexed: 01/07/2025]
Abstract
After more than a century since its initial development, Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). Subunit boosters are considered a viable strategy to enhance BCG efficacy, which often wanes in adolescence. While many studies on booster subunit vaccines have concentrated on recombinant proteins, here we developed a novel modular peptide-based subunit vaccine platform that is flexible, cold-chain independent and customizable to diverse circumstances and populations. Each individual peptide building block consists of a linear arrangement comprising a 15-leucine self-assembly inducer moiety, a Mycobacterium tuberculosis (Mtb) target epitope and an human leukocyte antigen E (HLA-E) binding moiety, with each moiety separated by a triple lysine spacer. The building blocks, in any combination, are able to form a multiepitope nanoparticle. Six Mtb epitopes were selected to produce the self-assembling and self-adjuvating peptide-based TB nano-vaccine candidate PNx6. In vivo vaccination-challenge experiments demonstrated that subcutaneous boost of parenteral BCG immunization with PNx6 significantly enhanced its immunogenicity and improved its protective efficacy in a murine model of TB by more than 5-fold. This study presents evidence that purely amphiphilic peptides self-assemble into self-adjuvating nanoparticles with appropriate size and morphology for TB vaccination with great potential for a multitude of other diseases.
Collapse
Affiliation(s)
- Guangzu Zhao
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Harindra D Sathkumara
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Socorro Miranda-Hernandez
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Julia Seifert
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Ana Maria Valencia-Hernandez
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Munish Puri
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Wenbin Huang
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Norelle Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, 4878 & 4811, Australia
| |
Collapse
|
4
|
Zhang J, Madge HYR, Mahmoud A, Lu L, Wang W, Huang W, Koirala P, Gonzalez Cruz JL, Kong WY, Bashiri S, Shalash AO, Hussein WM, Khalil ZG, Wells JW, Toth I, Stephenson RJ. A synthetic cyclic peptide for promoting antigen presentation and immune activation. NPJ Vaccines 2025; 10:9. [PMID: 39809901 PMCID: PMC11733015 DOI: 10.1038/s41541-024-01050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Cyclic peptides are often used as scaffolds for the multivalent presentation of drug molecules due to their structural stability and constrained conformation. We identified a cyclic deca-peptide incorporating lipoamino acids for delivering T helper and B cell epitopes against group A Streptococcus (GAS), eliciting robust humoral immune responses. In this study, we assessed the function-immunogenicity relationship of the multi-component vaccine candidate (referred to as VC-13) to elucidate a mechanism of action. We identified a potential universal delivery platform, not only capable of adjuvanting different peptide epitopes (e.g., NS1 and 88/30 from group A Streptococcus, gonadotropin hormone releasing hormone [GnRH]), but also protein antigens (e.g., bovine serum albumin [BSA], receptor binding domain (RBD) of the SARS-CoV-2 protein responsible for COVID-19 infection [SARS-CoV-2 RBD]) and small molecular haptens (e.g., cocaine). All vaccine candidates self-assembled into sub-500 nm nanoparticles and induced high antigen-specific systemic IgG titers and opsonic potential compared to the antigen co-administered with a commercial adjuvant, complete Freund's adjuvant. Notably, presence of the cyclic decapeptide in this vaccine increased accumulation in the draining inguinal lymph nodes, facilitating cellular uptake of peptide antigens. Furthermore, the lipoamino acid promoted dendritic cell activation, acting as both toll-like receptors 2 and 4 -targeting moiety. Our study revealed the importance of the cyclic decapeptide and lipoamino acid presence in antigen presentation and immune response activation, leading onto the development of a fully synthetic, self-assembled, and promising platform for the delivery of subunit vaccines and anti-drug vaccines.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Lantian Lu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Wanyi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Wei Yang Kong
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Waleed M Hussein
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Liu R, He X, Bao W, Li Z. Enhancement of HPV therapeutic peptide-based vaccine efficacy through combination therapies and improved delivery strategies: A review. Hum Vaccin Immunother 2024; 20:2396710. [PMID: 39193781 PMCID: PMC11364057 DOI: 10.1080/21645515.2024.2396710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Human papillomavirus (HPV) has been linked to the development of various cancers, including head and neck, cervical, vaginal, penile, and anal cancers. The development of therapeutic vaccines against HPV-positive tumors is crucial for protecting individuals already infected with HPV, preventing tumor progression, and effectively treating the disease. The HPV therapeutic peptide-based vaccines demonstrate specificity and safety advantages by targeting specific epitopes while minimizing the risk of allergic or autoimmune reactions. However, HPV therapeutic peptide-based vaccines typically lack immunogenicity and frequently fail to induce effective immune responses. Therefore, there is a need for more effective approaches to improve the immunogenicity of HPV peptide-based vaccines. Here, we review relevant research and possible uses for increasing the immunogenicity and therapeutic efficacy of HPV peptide-based vaccines through combined therapy and improved delivery strategies. Additional research is necessary to validate the application of combination therapy and delivery strategy modifications as standard treatment approaches for HPV therapeutic peptide-based vaccines.
Collapse
Affiliation(s)
- Rongyu Liu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Xinlin He
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Wanying Bao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Jin J, Li S, Huang H, Li J, Lyu Y, Ran Y, Chang H, Zhao X. Development of human papillomavirus and its detection methods (Review). Exp Ther Med 2024; 28:382. [PMID: 39161614 PMCID: PMC11332130 DOI: 10.3892/etm.2024.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Human papillomavirus (HPV) infection plays an important role in cervical cancer. HPV is classified within the Papillomaviridae family and is a non-enveloped, small DNA virus. HPV infection can be classified into two distinct scenarios: i) With or without integration into the host chromosomes. Detection of its infection can be useful in the study of cervical lesions. In the present review, the structural and functional features of HPV, HPV typing, infection and transmission mode, the risk factors for cervical susceptibility to infection and HPV detection methods are described in detail. The development of HPV detection methods may have far-reaching significance in the prevention and treatment of cervical disease. This review summarizes the advantages and limitations of each HPV detection method.
Collapse
Affiliation(s)
- Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shujuan Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hehuan Huang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hui Chang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Xin Zhao
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
7
|
Wu B, Liu Y, Zhang X, Luo D, Wang X, Qiao C, Liu J. A bibliometric insight into nanomaterials in vaccine: trends, collaborations, and future avenues. Front Immunol 2024; 15:1420216. [PMID: 39188723 PMCID: PMC11345159 DOI: 10.3389/fimmu.2024.1420216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. Objective This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. Methods Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. Results Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "Vaccine", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the Journal of Controlled Release, and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," "in situ nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. Conclusions This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuexue Zhang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ding Luo
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejie Wang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Qiao
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Alharbi N, Shalash AO, Koirala P, Boer JC, Hussein WM, Khalil ZG, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Cholesterol as an inbuilt immunoadjuvant for a lipopeptide vaccine against group A Streptococcus infection. J Colloid Interface Sci 2024; 663:43-52. [PMID: 38387185 DOI: 10.1016/j.jcis.2024.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/21/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer C Boer
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Enhancement of Immune Response of Bioconjugate Nanovaccine by Loading of CpG through Click Chemistry. J Pers Med 2023; 13:jpm13030507. [PMID: 36983689 PMCID: PMC10052328 DOI: 10.3390/jpm13030507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
CpG is a widely used adjuvant that enhances the cellular immune response by entering antigen-presenting cells and binding with receptors. The traditional physical mixing of the antigen and CpG adjuvant results in a low adjuvant utilization rate. Considering the efficient delivery capacity of nanovaccines, we developed an attractive strategy to covalently load CpG onto the nanovaccine, which realized the co-delivery of both CpG and the antigen. Briefly, the azide-modified CpG was conjugated to a bioconjugate nanovaccine (NP-OPS) against Shigella flexneri through a simple two-step reaction. After characterization of the novel vaccine (NP-OPS-CpG), a series of in vitro and in vivo experiments were performed, including in vivo imaging, lymph node sectioning, and dendritic cell stimulation, and the results showed that more CpG reached the lymph nodes after covalent coupling. Subsequent flow cytometry analysis of lymph nodes from immunized mice showed that the cellular immune response was greatly promoted by the nanovaccine coupled with CpG. Moreover, by analyzing the antibody subtypes of immunized mice, NP-OPS-CpG was found to further promote a Th1-biased immune response. Thus, we developed an attractive method to load CpG on a nanovaccine that is simple, convenient, and is especially suitable for immune enhancement of vaccines against intracellular bacteria.
Collapse
|
10
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
11
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
12
|
Design and development of a self-assembling protein nanoparticle displaying PfHAP2 antigenic determinants recognized by natural acquired antibodies. PLoS One 2022; 17:e0274275. [PMID: 36094917 PMCID: PMC9467374 DOI: 10.1371/journal.pone.0274275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
Backgrounds In order to move towards the elimination and eradication of malaria in the world, the development of vaccines is inevitable. Many modern vaccines are based on recombinant technology; however, they may not provide a fully protective, long-lasting immune response. One of the strategies to improve recombinant vaccines is designing the nanovaccines such as self-assembling protein nanoparticles (SAPNs). Hence, the presentation of epitopes in a repeat array and correct conformation should be considered. P. falciparum generative cell-specific 1 (PfGCS1) is a main transmission-blocking vaccine candidate with two highly conserved fragments, HAP2-GCS1 and cd loop, inducing partial malaria transmission inhibitory antibodies. Therefore, to design an effective malaria vaccine, we used cd loop and HAP2-GCS1 fragments at the amino and carboxy terminuses of the SAPN-forming amino acid sequence, respectively. Methodology/Principal findings The SAPN monomer (PfGCS1-SAPN) sequence was designed, and the three-dimensional (3D) structure was predicted. The result of this prediction ensured the presence of antigens on the SAPN surface. Then the accuracy of the predicted 3D structure and its stability were confirmed by 100 ns molecular dynamics (MD) simulation. The designed SAPN substructure sequence was synthesized, cloned, and expressed in Escherichia coli. With a gradual decrease in urea concentration in dialysis solutions, the purified proteins progressed to the final desired structure of the SAPN, which then was confirmed by Dynamic Light Scattering (DLS) and Field Emission Scanning Electron Microscopy (FESEM) tests. According to the Enzyme-Linked Immunosorbent Assay (ELISA), antigenic determinants were presented on the SAPN surface and interacted with antibodies in the serum of malaria patients. Conclusions/Significance Our results show that the SAPN formed by PfGCS1-SAPN has produced the correct shape and size, and the antigenic determinants are presented on the surface of the SAPN, which indicates that the designed SAPN has great potential to be used in the future as a malaria vaccine.
Collapse
|
13
|
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022; 60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science and Arts, Department of Chemistry, Jeddah, Saudi Arabia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
14
|
A structural vaccinology approach for in silico designing of a potential self-assembled nanovaccine against Leishmania infantum. Exp Parasitol 2022; 239:108295. [PMID: 35709889 DOI: 10.1016/j.exppara.2022.108295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022]
Abstract
Visceral leishmaniasis (VL) remains a major public health problem across 98 countries. To date, VL has no effective drug. Vaccines, as the most successful breakthroughs in medicine, can promise an effective strategy to fight various diseases. More recently, self-assembled peptide nanoparticles (SAPNs) have attracted considerable attention in the field of vaccine design due to their multivalency. In this study, a SAPN nanovaccine was designed using various immunoinformatics methods. High-ranked epitopes were chosen from a number of antigens, including Leishmania-specific hypothetical protein (LiHy), Leishmania-specific antigenic protein (LSAP), histone H1, and sterol 24-c-methyltransferase (SMT). To facilitate the oligomerization process, pentameric and trimeric coiled-coil domains were employed. RpfE, a resuscitation-promoting factor of Mycobacterium tuberculosis, was added to induce strong immune responses. Pentameric and trimeric coiled-coil domains as well as eight immunodominant epitopes from antigenic proteins of Leishmania infantum, the causative agent of VL, were joined together using appropriate linkers. High-quality 3D structure of monomeric and oligomeric structures followed by refinement and validation processes demonstrated that the designed nanovaccine could be considered to be a promising medication against the parasite; however, experimental validation is essential to confirm the effectiveness of the nanovaccine.
Collapse
|
15
|
Lv S, Song K, Yen A, Peeler DJ, Nguyen DC, Olshefsky A, Sylvestre M, Srinivasan S, Stayton PS, Pun SH. Well-Defined Mannosylated Polymer for Peptide Vaccine Delivery with Enhanced Antitumor Immunity. Adv Healthc Mater 2022; 11:e2101651. [PMID: 34706166 PMCID: PMC9043035 DOI: 10.1002/adhm.202101651] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Indexed: 12/28/2022]
Abstract
Peptide-based cancer vaccines offer production and safety advantages but have had limited clinical success due to their intrinsic instability, rapid clearance, and low cellular uptake. Nanoparticle-based delivery vehicles can improve the in vivo stability and cellular uptake of peptide antigens. Here, a well-defined, self-assembling mannosylated polymer is developed for anticancer peptide antigen delivery. The amphiphilic polymer is prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and the peptide antigens are conjugated to the pH-sensitive hydrophobic block through the reversible disulfide linkage for selective release after cell entry. The polymer-peptide conjugates self-assemble into sub-100 nm micelles at physiological pH and dissociate at endosomal pH. The mannosylated micellar corona increases the accumulation of vaccine cargoes in the draining inguinal lymph nodes and facilitates nanoparticle uptake by professional antigen presenting cells. In vivo studies demonstrate that the mannosylated micelle formulation improves dendritic cell activation and enhances antigen-specific T cell responses, resulting in higher antitumor immunity in tumor-bearing mice compared to free peptide antigen. The mannosylated polymer is therefore a simple and promising platform for the delivery of peptide cancer vaccines.
Collapse
Affiliation(s)
- Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kefan Song
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Albert Yen
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dinh Chuong Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Audrey Olshefsky
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meilyn Sylvestre
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Huang W, Madge HYR, Zhang J, Gilmartin L, Hussein WM, Khalil ZG, Koirala P, Capon RJ, Toth I, Stephenson RJ. Structure-activity relationship of lipid, cyclic peptide and antigen rearrangement of physically mixed vaccines. Int J Pharm 2022; 617:121614. [PMID: 35245637 DOI: 10.1016/j.ijpharm.2022.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Currently there is no approved vaccine to prevent and/or treat group A Streptococcus (GAS) infection. With increasing reports of GAS antibiotic resistance, vaccine adjuvants and targeted delivery systems which induce a strong immune response are a widely acknowledged unmet need. Through extensive structure-activity studies, we investigated a cyclic decapeptide physically mixed with a GAS B cell peptide epitope (J8), a universal T helper epitope (PADRE), and different synthetic lipidic moieties as a conceivable self-adjuvanting GAS vaccine. We explored the structure (orientation)-relationship of the chemically-conjugated B cell epitope and T helper epitope peptide as part of this physically-mixed vaccine. Following in vivo assessment in mice, these cyclic lipopeptide vaccines showed successful induction of J8-specific systemic IgG antibodies when administered subcutaneously without additional adjuvant. Interestingly, an exposed C-terminus of the GAS B cell epitope and a 16-carbon alpha-amino fatty acid lipid was required for strong immunoreactivity, capable of effectively opsonising multiple strains of clinically-isolated GAS bacteria. Physicochemical assessment proved the alpha helix structure of the GAS B cell epitope was retained, impacting particle self-assembly and vaccine immunoreactivity. This study showed the capability for a self-adjuvanting cyclic delivery system to act as a vehicle for the delivery of GAS peptide antigens to treat GAS infection.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
17
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
18
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
19
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Khalid M, Kanwal T, Saifullah S, Imran M, Ullah S, Shah MR. Investigation of a Single Tail Lysine Rich Peptide Amphiphile with an Ultra Short Peptide Head for its Nano Scale Self-assembly and Drug Loading Potential. J CLUST SCI 2022. [DOI: 10.1007/s10876-020-01952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Madge HYR, Huang W, Gilmartin L, Rigau-Planella B, Hussein WM, Khalil ZG, Koirala P, Santiago VS, Capon RJ, Toth I, Stephenson RJ. Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic IgG antibodies against group A streptococcus. Biomater Sci 2021; 10:281-293. [PMID: 34853841 DOI: 10.1039/d1bm01333e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Untreated or reoccurring group A Streptococcus (GAS) infection can lead to a number of post-infection complications, including rheumatic heart disease. There is no licenced vaccine for the treatment or prevention of GAS infection. We identified that a cyclic decapeptide plays a significant positive influence on the adjuvant activity of several lipid-antigen mixtures. Here, three synthetic vaccine components were synthesised: (1) J8-PADRE represents the GAS B cell antigen (J8) conjugated to the universal T helper epitope (PADRE); (2) a synthetic toll like receptor 2 (TLR2) ligand based on a C16 alkyl chain lipid moiety; and (3) a cyclic carrier deca-peptide. Previously, through structure-immune activity investigations, it was observed that a physical mixture of these three components had significantly higher IgG immune responses when compared to a fully conjugated vaccine construct. Expanding the scope of this structure-activity investigation, we show that the presence of the cyclic peptide is required for the induction of a strong, balanced Th1/Th2 immune response when compared with lipid and antigen only, and cyclic lipopeptide plus B/T cell antigen physical mixtures.
Collapse
Affiliation(s)
- Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Berta Rigau-Planella
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Viviene S Santiago
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
23
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
24
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
25
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
26
|
Zuo R, Liu R, Olguin J, Hudalla GA. Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide. J Phys Chem B 2021; 125:6559-6571. [PMID: 34128680 PMCID: PMC9191660 DOI: 10.1021/acs.jpcb.1c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their biocompatibility and biodegradability, short synthetic peptides that self-assemble into elongated β-sheet fibers (i.e., peptide nanofibers) are widely used to create biomaterials for diverse medical and biotechnology applications. Glycosylation, which is a common protein post-translational modification, is gaining interest for creating peptide nanofibers that can mimic the function of natural carbohydrate-modified proteins. Recent reports have shown that glycosylation can disrupt the fibrillization of natural amyloid-forming peptides. Here, using transmission electron microscopy, fluorescence microscopy, and thioflavin T spectroscopy, we show that glycosylation at a site external to the fibrillization domain can alter the self-assembly pathway of a synthetic fibrillizing peptide, NSGSGQQKFQFQFEQQ (NQ11). Specifically, an NQ11 variant modified with N-linked N-acetylglucosamine, N(GlcNAc)SGSG-Q11 (GQ11), formed β-sheet nanofibers more slowly than NQ11 in deionized water (pH 5.8), which correlated to the tendency of GQ11 to form a combination of short fibrils and nonfibrillar aggregates, whereas NQ11 formed extended nanofibers. Acidic phosphate buffer slowed the rate of GQ11 fibrillization and altered the morphology of the structures formed yet had no effect on NQ11 fibrillization rate or morphology. The buffer ionic strength had no effect on the fibrillization rate of either peptide, while the diphosphate anion had a similar effect on the rate of fibrillization of both peptides. Collectively, these data demonstrate that a glycan moiety located external to the β-sheet fibrillizing domain can alter the pH-dependent self-assembly pathway of a synthetic peptide, leading to significant changes in the fibril mass and morphology of the structures formed. These observations add to the understanding of the effect of glycosylation on peptide self-assembly and should guide future efforts to develop biomaterials from synthetic β-sheet fibrillizing glycopeptides.
Collapse
Affiliation(s)
- Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juanpablo Olguin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
27
|
Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines (Basel) 2021; 9:563. [PMID: 34071482 PMCID: PMC8228360 DOI: 10.3390/vaccines9060563] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
The production of subunit nanovaccines relies heavily on the development of a vaccine delivery system that is safe and efficient at delivering antigens to the target site. Nanoparticles have been extensively investigated for vaccine delivery over the years, as they often possess self-adjuvanting properties. The conjugation of antigens to nanoparticles by covalent bonds ensures co-delivery of these components to the same subset of immune cells in order to trigger the desired immune responses. Herein, we review covalent conjugation strategies for grafting protein or peptide antigens onto other molecules or nanoparticles to obtain subunit nanovaccines. We also discuss the advantages of chemical conjugation in developing these vaccines.
Collapse
Affiliation(s)
| | | | | | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| |
Collapse
|
28
|
Rodrigues G, Gonçalves da Costa Sousa M, da Silva DC, Berto Rezende TM, de Morais PC, Franco OL. Nanostrategies to Develop Current Antiviral Vaccines. ACS APPLIED BIO MATERIALS 2021; 4:3880-3890. [PMID: 35006813 DOI: 10.1021/acsabm.0c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Mauricio Gonçalves da Costa Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Dieime Custódia da Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Departamento de Física, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Taia Maria Berto Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Paulo César de Morais
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Nanociências e Nanobiotecnologia, Universidade de Brasília, Brasília Distrito Federal 70790-160, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| |
Collapse
|
29
|
Zhao G, Azuar A, Toth I, Skwarczynski M. A Potent Vaccine Delivery System. Bio Protoc 2021; 11:e3973. [PMID: 33889667 DOI: 10.21769/bioprotoc.3973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Most vaccines require co-delivery of an adjuvant in order to generate the desired immune responses. However, many currently available adjuvants are non-biodegradable, have limited efficacy, and/or poor safety profile. Thus, new adjuvants, or self-adjuvanting vaccine delivery systems, are required. Here, we proposed a self-adjuvanting delivery system that is fully defined, biodegradable, and non-toxic. The system is produced by conjugation of polyleucine to peptide antigen, followed by self-assembly of the conjugate into nanoparticles. The protocol includes solid-phase peptide synthesis of the vaccine conjugate, purification, self-assembly and physicochemical characterization of the product. Overall, this protocol describes, in detail, the production of a well-defined and effective self-adjuvanting delivery system for peptide antigens, along with tips for troubleshooting.
Collapse
Affiliation(s)
- Guangzu Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
30
|
Chernysheva MG, Kasperovich AV, Skrabkova HS, Snitko AV, Arutyunyan AM, Badun GA. Lysozyme-dalargin self-organization at the aqueous-air and liquid-liquid interfaces. Colloids Surf B Biointerfaces 2021; 202:111695. [PMID: 33740631 DOI: 10.1016/j.colsurfb.2021.111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 01/04/2023]
Abstract
An experimental study of protein-peptide binding was performed by means of radiochemical and spectroscopic methods. Lysozyme and dalargin were chosen due to their biological and physiological importance. By means of tensiometry and radiochemical assays, it was found that dalargin possesses rather high surface activity at the aqueous-air and aqueous-p-xylene interfaces to be substituted by protein. Dalargin forms a hydrophobic complex with lysozyme in which the secondary structure of lysozyme is preserved. When lysozyme forms a mixed adsorption layer with dalargin at the aqueous-air surface, the peptide prevents protein from concentrating in the subsurface monolayer. In the presence of p-xylene protein in the interface, reorganization occurs quickly, so there is no lag in the interfacial tension time dependence. The interfacial tension in this case is controlled by protein and/or protein-peptide complexes. An increase in the enzymatic activity of lysozyme in the presence of dalargin was confirmed by a docking model that suggests the formation of hydrogen bonds between dalargin and amino acid residues in the active site.
Collapse
Affiliation(s)
| | | | - Hanna S Skrabkova
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexey V Snitko
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Gennadii A Badun
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
31
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Azuar A, Li Z, Shibu MA, Zhao L, Luo Y, Shalash AO, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A Streptococcus Vaccine Delivery. J Med Chem 2021; 64:2648-2658. [PMID: 33529034 DOI: 10.1021/acs.jmedchem.0c01660] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide antigens have been widely used in the development of vaccines, especially for those against autoimmunity-inducing pathogens and cancers. However, peptide-based vaccines require adjuvant and/or a delivery system to stimulate desired immune responses. Here, we explored the potential of self-adjuvanting poly(hydrophobic amino acids) (pHAAs) to deliver peptide-based vaccine against Group A Streptococcus (GAS). We designed and synthesized self-assembled nanoparticles with a variety of conjugates bearing a peptide antigen (J8-PADRE) and polymerized hydrophobic amino acids to evaluate the effects of structural arrangement and pHAAs properties on a system's ability to induce humoral immune responses. Immunogenicity of the developed conjugates was also compared to commercially available human adjuvants. We found that a linear conjugate bearing J8-PADRE and 15 copies of leucine induced equally effective, or greater, immune responses than commercial adjuvants. Our fully defined, adjuvant-free, single molecule-based vaccine induced the production of antibodies capable of killing GAS bacteria.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhuoqing Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, St. Lucia, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
33
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
34
|
Hussein WM, Toth I, Skwarczynski M. Peptide-Polymer Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods Mol Biol 2021; 2355:1-7. [PMID: 34386945 DOI: 10.1007/978-1-0716-1617-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dendrimers are structurally well-defined, artificial polymers with physicochemical characteristics that often imitate biomacromolecules. Consequently, they are encouraging candidates for the delivery of peptide-based vaccines. We developed a synthetic protocol for conjugating a peptide antigen derived from human papillomavirus (HPV) E7 protein to a poly(t-butyl acrylate) dendrimer to construct a vaccine candidate. The synthetic pathway utilized copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) click reaction, and resulted in a 76% substitution ratio of the 8-arm dendrimer. The obtained peptide-polymer construct was self-assembled, dialyzed, and characterized by microanalysis and dynamic light scattering.
Collapse
Affiliation(s)
- Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
35
|
Abstract
The rapid development of nanobiotechnology has enabled progress in therapeutic cancer vaccines. These vaccines stimulate the host innate immune response by tumor antigens followed by a cascading adaptive response against cancer. However, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. To date, a complicated tumor immunosuppressive environment and suboptimal design are the main obstacles for therapeutic cancer vaccines. The optimization of tumor antigens, vaccine delivery pathways, and proper adjuvants for innate immune response initiation, along with reprogramming of the tumor immunosuppressive environment, is essential for therapeutic cancer vaccines in triggering an adequate antitumor immune response. In this review, we aim to review the challenges in and strategies for enhancing the efficacy of therapeutic vaccines. We start with the summary of the available tumor antigens and their properties and then the optimal strategies for vaccine delivery. Subsequently, the vaccine adjuvants focused on the intrinsic adjuvant properties of nanostructures are further discussed. Finally, we summarize the combination strategies with therapeutic cancer vaccines and discuss their positive impact in cancer immunity.
Collapse
Affiliation(s)
- Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
36
|
Abudula T, Bhatt K, Eggermont LJ, O'Hare N, Memic A, Bencherif SA. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front Chem 2020; 8:598160. [PMID: 33195107 PMCID: PMC7662149 DOI: 10.3389/fchem.2020.598160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the undeniable success of vaccination programs in preventing diseases, effective vaccines against several life-threatening infectious pathogens such as human immunodeficiency virus are still unavailable. Vaccines are designed to boost the body's natural ability to protect itself against foreign pathogens. To enhance vaccine-based immunotherapies to combat infections, cancer, and other conditions, biomaterials have been harnessed to improve vaccine safety and efficacy. Recently, peptides engineered to self-assemble into specific nanoarchitectures have shown great potential as advanced biomaterials for vaccine development. These supramolecular nanostructures (i.e., composed of many peptides) can be programmed to organize into various forms, including nanofibers, nanotubes, nanoribbons, and hydrogels. Additionally, they have been designed to be responsive upon exposure to various external stimuli, providing new innovations in the development of smart materials for vaccine delivery and immunostimulation. Specifically, self-assembled peptides can provide cell adhesion sites, epitope recognition, and antigen presentation, depending on their biochemical and structural characteristics. Furthermore, they have been tailored to form exquisite nanostructures that provide improved enzymatic stability and biocompatibility, in addition to the controlled release and targeted delivery of immunomodulatory factors (e.g., adjuvants). In this mini review, we first describe the different types of self-assembled peptides and resulting nanostructures that have recently been investigated. Then, we discuss the recent progress and development trends of self-assembled peptide-based vaccines, their challenges, and clinical translatability, as well as their future perspectives.
Collapse
Affiliation(s)
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Loek J Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Nick O'Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Bioengineering, Northeastern University, Boston, MA, United States.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.,Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
37
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
38
|
Bartlett S, Skwarczynski M, Toth I. Lipids as Activators of Innate Immunity in Peptide Vaccine Delivery. Curr Med Chem 2020; 27:2887-2901. [PMID: 30362416 DOI: 10.2174/0929867325666181026100849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Innate immune system plays an important role in pathogen detection and the recognition of vaccines, mainly through pattern recognition receptors (PRRs) that identify pathogen components (danger signals). One of the typically recognised bacterial components are lipids in conjugation with peptides, proteins and saccharides. Lipidic compounds are readily recognised by the immune system, and thus are ideal candidates for peptide- based vaccine delivery. Thus, bacterial or synthetic lipids mixed with, or conjugated to, antigens have shown adjuvant properties. These systems have many advantages over traditional adjuvants, including low toxicity and good efficacy for stimulating mucosal and systemic immune responses. METHODS The most recent literature on the role of lipids in stimulation of immune responses was selected for this review. The vast majority of reviewed papers were published in the last decade. Older but significant findings are also cited. RESULTS This review focuses on the development of lipopeptide vaccine systems including application of palmitic acid, bacterial lipopeptides, glycolipids and the lipid core peptide and their routes of administration. The use of liposomes as a delivery system that incorporates lipopeptides is discussed. The review also includes a brief description of immune system in relation to vaccinology and discussion on vaccine delivery routes. CONCLUSION Lipids and their conjugates are an ideal frontrunner in the development of safe and efficient vaccines for different immunisation routes.
Collapse
Affiliation(s)
- Stacey Bartlett
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Lucia, QLD, 4072, Australia.,The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia.,The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
| |
Collapse
|
39
|
Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N. Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnol Adv 2020; 44:107603. [PMID: 32738381 DOI: 10.1016/j.biotechadv.2020.107603] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Peptide drugs hold great potential for the treatment of infectious diseases due to their unconventional mechanisms of action, biocompatibility, biodegradability and ease of synthesis and modification. The increasing rising of bacterial strains resistant to classical antibiotics have pushed the development of new peptide-based antimicrobial therapies. In this context, over the past few years, different approaches have reached a clinical approval. Furthermore, the application of nanotechnological principles to the design of antimicrobial peptide-based composites increases even more the already known benefits of antimicrobial peptides as competent protein drugs. Then, we provide here an overview of the current strategies for antimicrobial peptide discovery and modification and the status of such peptides already under clinical development. In addition, we summarize the innovative formulation strategies for their application, focusing on the controlled self-assembly for the fabrication of antimicrobial nanostructures without the assistance of external nanocarriers, and with emphasis on bioengineering, design of ultra-short peptides and rising insights in bacterial selectivity.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
40
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
41
|
Yoon SY, Kang SK, Lee HB, Oh SH, Kim WS, Li HS, Bok JD, Cho CS, Choi YJ. Enhanced Efficacy of Immunization with a Foot-and-Mouth Disease Multi-Epitope Subunit Vaccine Using Mannan-Decorated Inulin Microparticles. Tissue Eng Regen Med 2020; 17:33-44. [PMID: 32002844 PMCID: PMC6992806 DOI: 10.1007/s13770-019-00228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite the many advantages of recombinant subunit vaccines, they have critical weaknesses that include a low efficacy for promoting cellular and humoral immune responses against antigens because of their poor immunogenicity, and a rapidly cleared properties as a result of proteolytic enzymes in the body. To circumvent these problems, we developed mannan-decorated inulin acetate microparticles (M-IA MPs) that functioned as carriers and adjuvants for immunization with the recombinant foot-and-mouth disease multi-epitope subunit vaccine (M5BT). METHODS The M5BT-loaded M-IA MPs were obtained by a double-emulsion solvent-evaporation method. Their properties including morphology, size and release ability were determined by field emission scanning electron microscope, dynamic light-scattering spectrophotometer and spectrophotometer. To assess the immunization efficacy of the MPs, mice were immunized with MPs and their sera were analyzed by ELISA. RESULTS The M-IA MPs obtained by a double-emulsion solvent-evaporation method were spherical and approximately 2-3 µm, and M5BT was encapsulated in the M-IA MPs. The M5BT-loaded M-IA MPs showed higher antigen-specific IgG, IgG1, IgG2a and anti-FMDV antibodies than the M5BT-loaded IA MPs and the Freund's adjuvant as a control. CONCLUSION The M-IA MPs showed a powerful and multifunctional polymeric system that combined two toll-like receptor agonists compared to the conventional adjuvant.
Collapse
Affiliation(s)
- So-Yeon Yoon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science and Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-Gun, Gangwon-do, 25354, Republic of Korea
| | - Ho-Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seo-Ho Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Whee-Soo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hui-Shan Li
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Duck Bok
- Institute of Green-Bio Science and Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-Gun, Gangwon-do, 25354, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Bartlett S, Skwarczynski M, Xie X, Toth I, Loukas A, Eichenberger RM. Development of natural and unnatural amino acid delivery systems against hookworm infection. PRECISION NANOMEDICINE 2020. [DOI: 10.33218/prnano3(1).191210.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peptide-based vaccines consist of short antigen fragments derived from a specific pathogen. Alone, these peptide fragments are poorly or non-immunogenic; however, when incorporated into a proper delivery system, they can trigger strong immune responses. To eliminate the need for toxic and often ineffective oral adjuvants, we designed single molecule-based self-adjuvating vaccines against hookworms using natural and unnatural hydrophobic amino acids. Two vaccine conjugates were synthesized, consisting of B-cell epitope p3, derived from the hookworm Na-APR-1 protein; universal T-helper peptide P25; and either double copies of unnatural lipoamino acid (2-amino-D,L-eicosanoic acid), or ten copies of the natural amino acid leucine. After challenge with the model hookworm, Nippostrongylus brasiliensis, mice orally immunized with the conjugates, but without adjuvant, generated antibody responses against the hookworm epitope, resulting in significantly reduced worm and egg burdens compared to control mice. We have demonstrated that vaccine nanoparticles composed exclusively of natural amino acids can be effective even when administered orally.
Collapse
Affiliation(s)
| | | | - Xin Xie
- The University of Queensland,, St Lucia, Australia
| | - Istvan Toth
- The University of Queensland,, St Lucia, Australia
| | | | | |
Collapse
|
43
|
Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, Giddam AK, Khalil ZG, Pandey M, Shibu MA, Hussein WM, Nevagi RJ, Batzloff MR, Wells JW, Capon RJ, Plebanski M, Good MF, Toth I. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. SCIENCE ADVANCES 2020; 6:eaax2285. [PMID: 32064333 PMCID: PMC6989150 DOI: 10.1126/sciadv.aax2285] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/21/2019] [Indexed: 05/05/2023]
Abstract
To be optimally effective, peptide-based vaccines need to be administered with adjuvants. Many currently available adjuvants are toxic, not biodegradable; they invariably invoke adverse reactions, including allergic responses and excessive inflammation. A nontoxic, biodegradable, biocompatible, self-adjuvanting vaccine delivery system is urgently needed. Herein, we report a potent vaccine delivery system fulfilling the above requirements. A peptide antigen was coupled with poly-hydrophobic amino acid sequences serving as self-adjuvanting moieties using solid-phase synthesis, to produce fully defined single molecular entities. Under aqueous conditions, these molecules self-assembled into distinct nanoparticles and chain-like aggregates. Following subcutaneous immunization in mice, these particles successfully induced opsonic epitope-specific antibodies without the need of external adjuvant. Mice immunized with entities bearing 15 leucine residues were able to clear bacterial load from target organs without triggering the release of soluble inflammatory mediators. Thus, we have developed a well-defined and effective self-adjuvanting delivery system for peptide antigens.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Guangzu Zhao
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Victoria Ozberk
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Armira Azuar
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jazmina Gonzalez Cruz
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | | | - Zeinab G. Khalil
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Manisha Pandey
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Mohini A. Shibu
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Reshma J. Nevagi
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Michael R. Batzloff
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - James W. Wells
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Robert J. Capon
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Michael F. Good
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
- The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
44
|
Waku T, Nishigaki S, Kitagawa Y, Koeda S, Kawabata K, Kunugi S, Kobori A, Tanaka N. Effect of the Hydrophilic-Hydrophobic Balance of Antigen-Loaded Peptide Nanofibers on Their Cellular Uptake, Cellular Toxicity, and Immune Stimulatory Properties. Int J Mol Sci 2019; 20:E3781. [PMID: 31382455 PMCID: PMC6696487 DOI: 10.3390/ijms20153781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Recently, nanofibers (NFs) formed from antigenic peptides conjugated to β-sheet-forming peptides have attracted much attention as a new generation of vaccines. However, studies describing how the hydrophilic-hydrophobic balance of NF components affects cellular interactions of NFs are limited. In this report, three different NFs were prepared by self-assembly of β-sheet-forming peptides conjugated with model antigenic peptides (SIINFEKL) from ovalbumin and hydrophilic oligo-ethylene glycol (EG) of differing chain lengths (6-, 12- and 24-mer) to investigate the effect of EG length of antigen-loaded NFs on their cellular uptake, cytotoxicity, and dendritic cell (DC)-stimulation ability. We used an immortal DC line, termed JAWS II, derived from bone marrow-derived DCs of a C57BL/6 p53-knockout mouse. The uptake of NFs, consisting of the EG 12-mer by DCs, was the most effective and activated DC without exhibiting significant cytotoxicity. Increasing the EG chain length significantly reduced cellular entry and DC activation by NFs. Conversely, shortening the EG chain enhanced DC activation but increased toxicity and impaired water-dispersibility, resulting in low cellular uptake. These results show that the interaction of antigen-loaded NFs with cells can be tuned by the EG length, which provides useful design guidelines for the development of effective NF-based vaccines.
Collapse
Affiliation(s)
- Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Saki Nishigaki
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuichi Kitagawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sayaka Koeda
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazufumi Kawabata
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeru Kunugi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
45
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
46
|
Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I. Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. Eur J Med Chem 2019; 179:100-108. [PMID: 31247372 DOI: 10.1016/j.ejmech.2019.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Synthetic peptide vaccines based on epitopes derived from the conserved region of M-protein are proving to be a realistic option for protection against group A streptococcus (GAS). However, peptide epitopes alone are poorly immunogenic due to lack of pathogen-associated structural patterns. Therefore, we developed a GAS peptide vaccine based on combined lipidic TLR 2 agonist and self-adjuvanting polymers. We synthesized three α-poly-l-glutamic acid (PGA) conjugated lipopeptides composed of 2-amino-d,l-hexadecanoic acid, GAS B-cell peptide epitope J8 (QAEDKVKQSREAKKQVEKALKQLEDKVQ) and universal T-helper epitope PADRE (AKFVAAWTLKAAA) in different spatial arrangements. The anionic lipopeptide conjugates formed nanoparticles via ionic-complexation with a cationic polymer, trimethyl chitosan (TMC). We demonstrated that the spatial arrangement of vaccine components has a significant influence on peptide conformation and particle formation and, as such, contributes to the differential efficacy and opsonin-mediated killing potential of nanovaccines. Nanoparticles carrying branched helical lipopeptide with T-helper epitope on free N-termini (NP3) stimulated the most potent humoral immune responses. Lipopeptides without TMC (LP1-LP3) and TMC nanoparticles of peptide alone (without lipid) NP (P1) were poor inducers of antibody production, indicating that both TMC and lipid are required to induce a strong opsonic immune response.
Collapse
Affiliation(s)
- Reshma J Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wei Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, 11795, Egypt
| | - Robert J Capon
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
47
|
|
48
|
Allen SD, Bobbala S, Karabin NB, Scott EA. On the advancement of polymeric bicontinuous nanospheres toward biomedical applications. NANOSCALE HORIZONS 2019; 4:258-272. [PMID: 32254084 DOI: 10.1039/c8nh00300a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled soft nanocarriers that are capable of simultaneous encapsulation of both lipophilic and water soluble payloads have significantly enhanced controlled delivery applications in biomedicine. These nanoarchitectures, such as liposomes, polymersomes and cubosomes, are primarily composed of either amphiphilic polymers or lipids, with the polymeric variants generally possessing greater stability and control over biodistribution and bioresponsive release. Polymersomes have long demonstrated such advantages over their lipid analogs, liposomes, but only recently have bicontinuous nanospheres emerged as a polymeric cubic phase alternative to lipid cubosomes. In this review, we summarize the current state of the field for bicontinuous nanosphere formulation and characterization and suggest future directions for this nascent delivery platform as it is adopted for biomedical applications.
Collapse
Affiliation(s)
- Sean D Allen
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, USA.
| | | | | | | |
Collapse
|
49
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
50
|
Al-Halifa S, Babych M, Zottig X, Archambault D, Bourgault S. Amyloid self-assembling peptides: Potential applications in nanovaccine engineering and biosensing. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soultan Al-Halifa
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Margaryta Babych
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Ximena Zottig
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Denis Archambault
- Department of Biological Sciences; Université du Québec à Montréal; Montreal, QC Canada
- Swine and Poultry Infectious Diseases Research Centre, CRIPA; QC Canada
| | - Steve Bourgault
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| |
Collapse
|