1
|
Wen C, Yu X, Zhu J, Zeng J, Kuang X, Zhang Y, Tang S, Zhang Q, Yan J, Shen H. Gastrodin ameliorates oxidative stress-induced RPE damage by facilitating autophagy and phagocytosis through PPARα-TFEB/CD36 signal pathway. Free Radic Biol Med 2024; 224:103-116. [PMID: 39173893 DOI: 10.1016/j.freeradbiomed.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
Collapse
Affiliation(s)
- Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingya Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Youao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
3
|
Tisi A, Pulcini F, Carozza G, Mattei V, Flati V, Passacantando M, Antognelli C, Maccarone R, Delle Monache S. Antioxidant Properties of Cerium Oxide Nanoparticles Prevent Retinal Neovascular Alterations In Vitro and In Vivo. Antioxidants (Basel) 2022; 11:antiox11061133. [PMID: 35740031 PMCID: PMC9220105 DOI: 10.3390/antiox11061133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Cinzia Antognelli
- Department of Medicine & Surgery, Bioscience and Medical Embryology Division, University of Perugia, 06129 Perugia, Italy
- Correspondence: (C.A.); (R.M.)
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
- Correspondence: (C.A.); (R.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| |
Collapse
|
4
|
Kim HJ, Montenegro D, Zhao J, Sparrow JR. Bisretinoids of the Retina: Photo-Oxidation, Iron-Catalyzed Oxidation, and Disease Consequences. Antioxidants (Basel) 2021; 10:antiox10091382. [PMID: 34573014 PMCID: PMC8467448 DOI: 10.3390/antiox10091382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
The retina and, in particular, retinal pigment epithelial cells are unusual for being encumbered by exposure to visible light, while being oxygen-rich, and also amassing photoreactive molecules. These fluorophores (bisretinoids) are generated as a byproduct of the activity of vitamin A aldehyde-the chromophore necessary for vision. Bisretinoids form in photoreceptor cells due to random reactions of two molecules of vitamin A aldehyde with phosphatidylethanolamine; bisretinoids are subsequently transferred to retinal pigment epithelial (RPE) cells, where they accumulate in the lysosomal compartment with age. Bisretinoids can generate reactive oxygen species by both energy and electron transfer, and they become photo-oxidized and photolyzed in the process. While these fluorescent molecules are accrued by RPE cells of all healthy eyes, they are also implicated in retinal disease.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
- Department of Pathology and Cell Biology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-9944
| |
Collapse
|
5
|
Arunkumar R, Gorusupudi A, Li B, Blount JD, Nwagbo U, Kim HJ, Sparrow JR, Bernstein PS. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4 -/-/Bco2 -/- double knockout mice. Exp Eye Res 2021; 209:108680. [PMID: 34161819 PMCID: PMC8595537 DOI: 10.1016/j.exer.2021.108680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Accumulation of bisretinoids such as A2E and its isomer iso-A2E is thought to mediate blue light-induced oxidative damage associated with age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1). We hypothesize that increasing dietary intake of the macular carotenoids lutein and zeaxanthin in individuals at risk of AMD and STGD1 can inhibit the formation of bisretinoids A2E and iso-A2E, which can potentially ameliorate macular degenerative diseases. To study the beneficial effect of macular carotenoids in a retinal degenerative diseases model, we used ATP-binding cassette, sub-family A member 4 (Abca4-/-)/β,β-carotene-9',10'-oxygenase 2 (Bco2-/-) double knockout (KO) mice that accumulate elevated levels of A2E and iso-A2E in the retinal pigment epithelium (RPE) and macular carotenoids in the retina. Abca4-/-/Bco2-/- and Abca4-/- mice were fed a lutein-supplemented chow, zeaxanthin-supplemented chow or placebo chow (~2.6 mg of carotenoid/mouse/day) for three months. Visual function and electroretinography (ERG) were measured after one month and three months of carotenoid supplementation. The lutein and zeaxanthin supplemented Abca4-/-/Bco2-/- mice had significantly lower levels of RPE/choroid A2E and iso-A2E compared to control mice fed with placebo chow and improved visual performance. Carotenoid supplementation in Abca4-/- mice minimally raised retinal carotenoid levels and did not show much difference in bisretinoid levels or visual function compared to the control diet group. There was a statistically significant inverse correlation between carotenoid levels in the retina and A2E and iso-A2E levels in the RPE/choroid. Supplementation with retinal carotenoids, especially zeaxanthin, effectively inhibits bisretinoid formation in a mouse model of STGD1 genetically enhanced to accumulate carotenoids in the retina. These results provide further impetus to pursue oral carotenoids as therapeutic interventions for STGD1 and AMD.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Binxing Li
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - J David Blount
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Călin EF, Patoni Popescu SI, Coman Cernat CC, Patoni C, Popescu MN, Mușat O. Lipofuscin: a key compound in ophthalmic practice. Rom J Ophthalmol 2021; 65:109-113. [PMID: 34179573 PMCID: PMC8207864 DOI: 10.22336/rjo.2021.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipofuscin is an intracellular aging pigment with fluorescent properties, found in retinal pigment epithelium cells of the eye. It is the main fluorophore used in fundus autofluorescence imaging techniques to diagnose, describe, and follow retinal disease. Lipofuscin forms by incomplete lysosomal degradation of cellular material previously subjected to oxidative changes. A2E is the most studied fluorescent component of lipofuscin, but most of its composition remains unknown. Lipofuscin is photoreactive, generating reactive oxygen species, which may explain its role in disease development. Further knowledge is needed concerning lipofuscin genesis, biochemical composition, fluorescent compounds, and role in pathogenesis of retinal degenerative disease.
Collapse
Affiliation(s)
- Edward Florian Călin
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Corina Cristina Coman Cernat
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania.,"Victor Babeş" University of Medicine and Pharmacy, Timișoara, Romania
| | - Cristina Patoni
- Department of Gastroenterology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Ovidiu Mușat
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
7
|
Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 2021; 62:100042. [PMID: 32371567 PMCID: PMC7933493 DOI: 10.1194/jlr.tr120000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate [N-retinylidene-PE (NRPE)] through a Schiff base linkage with PE. The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde, a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family, some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial cells, their fluorescence characters, and new findings related to light- and iron-associated oxidation of bisretinoids.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence. J Clin Med 2020; 9:jcm9103303. [PMID: 33066661 PMCID: PMC7602508 DOI: 10.3390/jcm9103303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
Background. In recent years, deep learning has been increasingly applied to a vast array of ophthalmological diseases. Inherited retinal diseases (IRD) are rare genetic conditions with a distinctive phenotype on fundus autofluorescence imaging (FAF). Our purpose was to automatically classify different IRDs by means of FAF images using a deep learning algorithm. Methods. In this study, FAF images of patients with retinitis pigmentosa (RP), Best disease (BD), Stargardt disease (STGD), as well as a healthy comparable group were used to train a multilayer deep convolutional neural network (CNN) to differentiate FAF images between each type of IRD and normal FAF. The CNN was trained and validated with 389 FAF images. Established augmentation techniques were used. An Adam optimizer was used for training. For subsequent testing, the built classifiers were then tested with 94 untrained FAF images. Results. For the inherited retinal disease classifiers, global accuracy was 0.95. The precision-recall area under the curve (PRC-AUC) averaged 0.988 for BD, 0.999 for RP, 0.996 for STGD, and 0.989 for healthy controls. Conclusions. This study describes the use of a deep learning-based algorithm to automatically detect and classify inherited retinal disease in FAF. Hereby, the created classifiers showed excellent results. With further developments, this model may be a diagnostic tool and may give relevant information for future therapeutic approaches.
Collapse
|
9
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Xia H, Zhang Q, Shen Y, Bai Y, Ma X, Zhang B, Qi Y, Zhang J, Hu Q, Du W, Zhu L, Zhou P, Wang B, Xu H, Huang L, Li X. ube3d, a New Gene Associated with Age-Related Macular Degeneration, Induces Functional Changes in Both In Vivo and In Vitro Studies. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:217-230. [PMID: 32200270 PMCID: PMC7090285 DOI: 10.1016/j.omtn.2020.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 10/31/2022]
Abstract
Neovascular age-related macular degeneration (AMD) is characterized by the formation of choroidal neovascularization, which is responsible for more than 80% of cases of severe vision loss. Ubiquitin protein ligase E3D (UBE3D) gene missense has been proven to be associated with neovascular AMD in the East Asian population based on our previous study. In vivo, we explored the role of ube3d in eye development and the mechanisms underlying the development of neovascular AMD in a zebrafish model. In vitro, we investigated the function and mechanism of ube3d in oxidative damage in human retinal pigment epithelium (hRPE) cells. The ube3d gene was knocked down in zebrafish in our experiments, and rescue of ube3d morphants was also performed. We observed the zebrafish model at the molecular level and functional and morphological changes in vivo. Lentivirus-based gene transfer technology was used to overexpress/knockdown ube3d expression in hRPE cells in vitro. hRPE oxidative damage was induced by tert-butyl hydroperoxide (t-TBH). Cell proliferation and migration were assessed. Quantitative real-time PCR and western blot were used to measure the expression levels of UBE3D and CyclinB1. Abnormal eye development was found in zebrafish in this study, including small eyes, delayed retinal development, delayed retrograde melanosome transport, and reduced dark-induced hyper-locomotor activity under light-off conditions. In addition, increased angiogenesis was observed in ube3d morphants. A negative correlation between UBE3D and CyclinB1 was observed. Low UBE3D expression can promote oxidative damage and inflammatory reactions. UBE3D and autophagy have a synergetic effect on anti-oxidative damage. These findings indicate that ube3d may play an important role in the pathogenesis of AMD by affecting retinal development, oxidative damage, and autophagy.
Collapse
Affiliation(s)
- Huika Xia
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China; Department of Ophthalmology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Qi Zhang
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yujing Bai
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoyun Ma
- Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yun Qi
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Jingjing Zhang
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Qinrui Hu
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Peng Zhou
- Parkway Health Hongqiao Medical Center, Shanghai 201101, China
| | - Bin Wang
- Xiamen Eye Centre of Xiamen University & Eye Institute of Xiamen University, Xiamen, Fujian 361000, China
| | - Hui Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China.
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing 100044, China; Xiamen Eye Centre of Xiamen University & Eye Institute of Xiamen University, Xiamen, Fujian 361000, China.
| |
Collapse
|
11
|
Marie M, Gondouin P, Pagan D, Barrau C, Villette T, Sahel J, Picaud S. Blue-violet light decreases VEGFa production in an in vitro model of AMD. PLoS One 2019; 14:e0223839. [PMID: 31644596 PMCID: PMC6808507 DOI: 10.1371/journal.pone.0223839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Blue light is an identified risk factor for age-related macular degeneration (AMD). The production of vascular endothelial growth factor (VEGF), leading to neovascularization, is a major complication of the wet form of this disease. We investigated how blue light affects VEGF expression and secretion using A2E-loaded retinal pigment epithelium (RPE) cells, a cell model of AMD. Incubation of RPE cells with A2E resulted in a significant increase in VEGF mRNA and, intracellular and secreted VEGF protein levels, but not mRNA levels of VEGFR1 or VEGFR2. Blue light exposure of A2E-loaded RPE cells resulted in a decrease in VEGF mRNA and protein levels, but an increase in VEGFR1 levels. The toxicity of 440 nm light on A2E-loaded RPE cells was enhanced by VEGF supplementation. Our results suggest that age-related A2E accumulation may result in VEGF synthesis and release. This synthesis of VEGF, which enhances blue light toxicity for the RPE cells, is itself suppressed by blue light. Anti-VEGF therapy may therefore improve RPE survival in AMD.
Collapse
Affiliation(s)
- Mélanie Marie
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Pauline Gondouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Pagan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - José Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
12
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
13
|
Farjood F, Vargis E. Novel devices for studying acute and chronic mechanical stress in retinal pigment epithelial cells. LAB ON A CHIP 2018; 18:3413-3424. [PMID: 30328441 DOI: 10.1039/c8lc00659h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist. The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to mimic localized and continuous stretching of the RPE as would occur in AMD in vivo. To bridge this gap, we developed two in vitro devices to model chronic and acute mechanical stress on RPE cells during different stages of AMD. In one device, high levels of continuous mechanical stress were applied to focal regions of the RPE monolayer by stretching the underlying silicon substrate to study the role of chronic mechanical stimulation. In the second device, RPE cells were grown on porous plastic substrates and acute stress was studied by stretching small areas. Using these devices, we studied the effect of mechanical stress on VEGF expression in RPE cells. Our results suggest that mechanical stress in RPE cells induces VEGF expression and promotes in vitro angiogenesis. These results confirm the hypothesis that mechanical stress is involved in the initiation and progression of CNV.
Collapse
Affiliation(s)
- Farhad Farjood
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA.
| | | |
Collapse
|
14
|
Dhingra A, Bell BA, Peachey NS, Daniele LL, Reyes-Reveles J, Sharp RC, Jun B, Bazan NG, Sparrow JR, Kim HJ, Philp NJ, Boesze-Battaglia K. Microtubule-Associated Protein 1 Light Chain 3B, (LC3B) Is Necessary to Maintain Lipid-Mediated Homeostasis in the Retinal Pigment Epithelium. Front Cell Neurosci 2018; 12:351. [PMID: 30349463 PMCID: PMC6186781 DOI: 10.3389/fncel.2018.00351] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
Like other neurons, retinal cells utilize autophagic pathways to maintain cell homeostasis. The mammalian retina relies on heterophagy and selective autophagy to efficiently degrade and metabolize ingested lipids with disruption in autophagy associated degradation contributing to age related retinal disorders. The retinal pigment epithelium (RPE) supports photoreceptor cell renewal by daily phagocytosis of shed photoreceptor outer segments (OS). The daily ingestion of these lipid-rich OS imposes a constant degradative burden on these terminally differentiated cells. These cells rely on Microtubule-Associated Protein 1 Light Chain 3 (LC3) family of proteins for phagocytic clearance of the ingested OS. The LC3 family comprises of three highly homologous members, MAP1LC3A (LC3A), MAP1LC3B (LC3B), and MAP1LC3C (LC3C). The purpose of this study was to determine whether the LC3B isoform plays a specific role in maintaining RPE lipid homeostasis. We examined the RPE and retina of the LC3B-/- mouse as a function of age using in vivo ocular imaging and electroretinography coupled with ex vivo, lipidomic analyses of lipid mediators, assessment of bisretinoids as well as imaging of lipid aggregates. Deletion of LC3B resulted in defects within the RPE including increased phagosome accumulation, decreased fatty acid oxidation and a subsequent increase in RPE and sub-RPE lipid deposits. Age-dependent RPE changes included elevated levels of oxidized cholesterol, deposition of 4-HNE lipid peroxidation products, bisretinoid lipofuscin accumulation, and subretinal migration of microglia, collectively likely contributing to loss of retinal function. These observations are consistent with a critical role for LC3B-dependent processes in the maintenance of normal lipid homeostasis in the aging RPE, and suggest that LC3 isoform specific disruption in autophagic processes contribute to AMD-like pathogenesis.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brent A Bell
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Lauren L Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Juan Reyes-Reveles
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel C Sharp
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Biswal MR, Justis BD, Han P, Li H, Gierhart D, Dorey CK, Lewin AS. Daily zeaxanthin supplementation prevents atrophy of the retinal pigment epithelium (RPE) in a mouse model of mitochondrial oxidative stress. PLoS One 2018; 13:e0203816. [PMID: 30265681 PMCID: PMC6161850 DOI: 10.1371/journal.pone.0203816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023] Open
Abstract
Oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD). The dry form of AMD (geographic atrophy) is characterized by loss of RPE, photoreceptors, and macular pigments. The cumulative effects of oxidative stress impact mitochondrial function in RPE. In Sod2flox/floxVMD2-cre mice, the RPE specific deletion of Sod2, the gene for mitochondrial manganese superoxide dismutase (MnSOD), leads to elevated oxidative stress in retina and RPE, and causes changes in the RPE and underlying Bruch's membrane that share some features of AMD. This study tested the hypothesis that zeaxanthin supplementation would reduce oxidative stress and preserve RPE structure and function in these mice. Zeaxanthin in retina/RPE/choroid and liver was quantified by LC/MS, retinal function and structure were evaluated by electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT), and antioxidant gene expression was measured by RT-PCR. After one month of supplementation, zeaxanthin levels were 5-fold higher in the retina/RPE/choroid and 12-fold higher in liver than in unsupplemented control mice. After four months of supplementation, amplitudes of the ERG a-wave (function of rod photoreceptors) and b-wave (function of the inner retina) were not different in supplemented and control mice. In contrast, the c-wave amplitude (a measure of RPE function) was 28% higher in supplemented mice than in control mice. Higher RPE/choroid expression of antioxidant genes (Cat, Gstm1, Hmox1, Nqo1) and scaffolding protein Sqstm1 were found in supplemented mice than in unsupplemented controls. Reduced nitrotyrosine content in the RPE/choroid was demonstrated by ELISA. Preliminary assessment of retinal ultrastructure indicated that supplementation supported better preservation of RPE structure with more compact basal infoldings and intact mitochondria. We conclude that daily zeaxanthin supplementation protected RPE cells from mitochondrial oxidative stress associated with deficiency in the MnSOD and thereby improved RPE function early in the disease course.
Collapse
Affiliation(s)
- Manas R. Biswal
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- College of Pharmacy, University of South Florida, Tampa, United States of America
- * E-mail:
| | - Bradley D. Justis
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Pingyang Han
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Hong Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | | | - Cheryl K. Dorey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
16
|
Pichi F, Abboud EB, Ghazi NG, Khan AO. Fundus autofluorescence imaging in hereditary retinal diseases. Acta Ophthalmol 2018; 96:e549-e561. [PMID: 29098804 DOI: 10.1111/aos.13602] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023]
Abstract
Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to non-invasively map changes at the level of the retinal pigment epithelium (RPE)/photoreceptor complex and alterations of macular pigment distribution. This imaging method is based on the visualization of intrinsic fluorophores and may be easily and rapidly used in routine patient care. Excessive accumulation of lipofuscin granules in the lysosomal compartment of RPE cells represents a common downstream pathogenic pathway in various hereditary and complex retinal diseases. The clinical applications of FAF continue to expand. It is now an essential tool for evaluating macular dystrophies and various hereditary retinal disorders. Fundus autofluorescence (FAF) may detect abnormalities beyond those detected on funduscopic examination, fluorescein angiography (FA) or optical coherence tomography (OCT). Fundus autofluorescence (FAF) imaging is particularly helpful for differential diagnosis, detection and extent delineation of involved retinal areas, genotype-phenotype correlations and monitoring of changes overtime. Given its ease of use, non-invasive nature and value in characterizing retinal disease, FAF enjoys increasing clinical relevance. This review summarizes basic principles and FAF findings in various hereditary retinal diseases.
Collapse
Affiliation(s)
- Francesco Pichi
- Eye Institute; Cleveland Clinic Abu Dhabi; Abu Dhabi United Arab Emirates
| | - Emad B. Abboud
- Eye Institute; Cleveland Clinic Abu Dhabi; Abu Dhabi United Arab Emirates
| | - Nicola G. Ghazi
- Eye Institute; Cleveland Clinic Abu Dhabi; Abu Dhabi United Arab Emirates
| | - Arif O. Khan
- Eye Institute; Cleveland Clinic Abu Dhabi; Abu Dhabi United Arab Emirates
| |
Collapse
|
17
|
Inhibition of Proteasome Activity Upregulates IL-6 Expression in RPE Cells through the Activation of P38 MAPKs. J Ophthalmol 2018; 2018:5392432. [PMID: 30116631 PMCID: PMC6079444 DOI: 10.1155/2018/5392432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose As far as we know, during the development of age-related macular degeneration (AMD), the activity of proteasome in retinal pigment epithelium cells (RPE) gradually decreases. And a lot of research has shown that age-related macular degeneration is closely related to inflammation and autoimmune. Moreover, there are many cytokines (CKs) involved in the course of inflammation. In this study, we are going to investigate how the decrease of proteasome activity affects the production of interleukin-6 (IL-6) in human retinal pigment epithelium cells (ARPE-19). Methods Cultured ARPE-19 was treated with or without MG132, a proteasome inhibitor, and the levels of IL-6 mRNA (messenger ribonucleic acid) in RPE at 1 h, 4 h, 8 h, and IL-6 protein in the culture medium at 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h were measured by real-time polymerase chain reaction (real-time PCR) and enzyme-linked immunosorbent assay (ELISA). The protein levels of MCP-1 (monocyte chemoattractant protein-1) in the culture medium at 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h were also measured by ELISA. Then we tested which of cell signal pathways regulating the production of IL-6 were activated when we added MG132 into the medium by Western blot and electrophoretic mobility shift assays (EMSA). After that, we put the inhibitors of these activated cell signal pathways into the medium individually to see which inhibitor can counteract the effect of upregulating the levels of IL-6 in the culture medium of RPE. Results MG132 decreased the secretion of MCP-1 in the culture medium of RPE, but it increased the expression of IL-6 mRNA in RPE and IL-6 protein level in the culture medium of RPE. MG132 treatment was also found to enhance the level of phosphorylated p38 mitogen-activated protein kinases (MAPKs) and c-Jun N-terminal Kinase (JNK) by Western blotting. More importantly, the effect of MG132 on upregulating the levels of IL-6 was inhibited by SB203580, an inhibitor of P38 MAP kinases. But the JNK inhibitor, SP600125, cannot prevent the effect of upregulating the levels of IL-6 by MG132 in the RPE culture medium. Conclusions We concluded that the proteasome inhibitor, MG132, upregulates IL-6 production in RPE cells through the activation of P38 MAPKs.
Collapse
|
18
|
Quintana MM, Rivero Osimani V, Magnarelli G, Rovedatti MG, Guiñazú N. The insecticides chlorpyrifos and acetamiprid induce redox imbalance in umbilical cord blood erythrocytes in vitro. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:87-92. [PMID: 29891383 DOI: 10.1016/j.pestbp.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Maria Martha Quintana
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi, 8324 Cipolletti, Río Negro, Argentina; Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
| | - Valeria Rivero Osimani
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi, 8324 Cipolletti, Río Negro, Argentina
| | - Gladis Magnarelli
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi, 8324 Cipolletti, Río Negro, Argentina
| | - María Gabriela Rovedatti
- Departamento de Biodiversidad y Biología Experimental y Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina; Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina.
| |
Collapse
|
19
|
Yang Y, Shi R, Soomro MH, Hu F, Du F, She R. Hepatitis E Virus Induces Hepatocyte Apoptosis via Mitochondrial Pathway in Mongolian Gerbils. Front Microbiol 2018; 9:460. [PMID: 29615994 PMCID: PMC5864903 DOI: 10.3389/fmicb.2018.00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
Previous studies demonstrated that Mongolian gerbils can be infected by hepatitis E virus (HEV), which induces the hepatic injury. Here, the mitochondria in hepatocytes from HEV-infected gerbils were considerably swollen, thin cristae. After HEV infection, the activity of superoxide dismutase significantly decreased (p < 0.01), while malondialdehyde concentrations significantly increased, compared with those in the control group (p < 0.01). Adenosine triphosphatase levels decreased significantly in the hepatocyte of the inoculated groups, compared with those in control group (p < 0.05) at days 21, 28, 42 post-inoculation (dpi) as well. Furthermore, the levels of ATP synthetase ATP5A1 significantly decreased during HEV infection, compared with those in the control group (p < 0.05). According to the TdT mediated dUTP nick end labeling (TUNEL) detection, TUNEL positive hepatocytes increased in the inoculated group, compared with that in the control group (p < 0.05). Up-regulation of the mitochondrion-mediated apoptosis regulating proteins, Bax and Bcl-2, in the HEV-infected gerbils (p < 0.05) was observed. However, cytochrome c levels in mitochondria decreased, while this molecule was detected in the cytoplasm of the infected animals, in contrast to that in the control group. Apaf-1, and active caspase-9 and -3 levels were shown to be significantly higher in the inoculated group compared with those in the control group (p < 0.05). Taken together, our results demonstrated that HEV infection induces hepatocyte injuries and activity of the mitochondrial apoptotic pathway, which trigger the hepatocyte apoptosis in Mongolian gerbils.
Collapse
Affiliation(s)
- Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihan Shi
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Majid H Soomro
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengjiao Hu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Du
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Vila N, Siblini A, Esposito E, Bravo-Filho V, Zoroquiain P, Aldrees S, Logan P, Arias L, Burnier MN. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model. BMC Ophthalmol 2017; 17:198. [PMID: 29096624 PMCID: PMC5667496 DOI: 10.1186/s12886-017-0592-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Background Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Methods Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. Results A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Conclusions Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein-pretreated conditions in a similar manner.
Collapse
Affiliation(s)
- Natalia Vila
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada. .,Hospital Universitari de Bellvitge, Ophthalmology Department, Barcelona University, Barcelona, Spain.
| | - Aya Siblini
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Evangelina Esposito
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Vasco Bravo-Filho
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Pablo Zoroquiain
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Sultan Aldrees
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Patrick Logan
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Lluis Arias
- Hospital Universitari de Bellvitge, Ophthalmology Department, Barcelona University, Barcelona, Spain
| | - Miguel N Burnier
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Chang YC, Lin CW, Hsieh MC, Wu HJ, Wu WS, Wu WC, Kao YH. High mobility group B1 up-regulates angiogenic and fibrogenic factors in human retinal pigment epithelial ARPE-19 cells. Cell Signal 2017; 40:248-257. [PMID: 28970183 DOI: 10.1016/j.cellsig.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Hypoxia-induced retinal neovascularization plays a central role in the pathogenesis of diabetic retinopathy. This study aimed to investigate whether hypoxia leads to the release of nuclear high mobility group box 1 (HMGB1) peptides from cultured retinal pigment epithelial ARPE-19 cells, to determine the effect of HMGB1 on angiogenic cytokine production and elucidate the involved signaling pathways. A chemical hypoxia mimetic agent, cobalt chloride, induced SIRT1 downregulation, HMGB1 nucleocytoplasmic relocation and extracellular release from ARPE-19 cells, implicating its autocrine function. Resveratrol treatment significantly reduced secretion of HMGB1 from ARPE-19 cells exposed to hypoxia. Cell proliferation and cell cycle analyses demonstrated that exogenous HMGB1 caused significant growth suppression and G1 cell cycle arrest in ARPE-19 cells. Morphological observations showed that HMGB1 enhanced adhesion, but suppressed migration of ARPE-19 cells. More intriguingly, HMGB1 up-regulated expression of angiofibrogenic factors in ARPE-19 cells, including VEGF, bFGF, TGF-β2, and CTGF. Signal profiling characterization indicated that HMGB1 triggered hyperphosphorylation of Akt, p38 MAPK, and NF-κB, but not that of ERK, JNK, and Smad2, whereas inhibition of PI3K, MAPK, or NF-κB significantly attenuated the HMGB1-driven cytokine overproduction in ARPE-19 cells. Functional neutralization with anti-TLR4 and -RAGE antibodies confirmed that both receptors were involved in the cytokine overproduction. In conclusion, chemically-mimicked hypoxia induced nucleocytoplasmic relocation and release of HMGB1 peptides, which in turn up-regulated the production of angiofibrogenic factors in RPE cells, thereby contributing to the pathogenesis of hypoxia-associated diabetic retinopathies. Conversely, blockades of intraocular HMGB1 bioavailability or signal activation may prevent angiofibrogenesis in development of diabetic retinopathy.
Collapse
Affiliation(s)
- Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Lin
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Jiun Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Crooke A, Huete-Toral F, Colligris B, Pintor J. The role and therapeutic potential of melatonin in age-related ocular diseases. J Pineal Res 2017; 63. [PMID: 28658514 DOI: 10.1111/jpi.12430] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Basilio Colligris
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Wang Y, Kim HJ, Sparrow JR. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp Eye Res 2017; 160:45-55. [PMID: 28461203 DOI: 10.1016/j.exer.2017.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023]
Abstract
A family of photoreactive retinaldehyde-derived molecules accumulate in retinal pigment epithelial cells with age; this accumulation is implicated in some retinal diseases. One of these compounds is the diretinal fluorophore A2E. Here we compared polyphenols for their ability to suppress the photooxidation and photodegradation of A2E. In cells that had accumulated A2E and were irradiated with short-wavelength light, quercetin, cyanidin-3-glucoside, ferulic acid and chlorogenic acid diminished cellular levels of reactive oxygen species, but only quercetin and cyanidin-3-glucoside promoted cell viability. By chromatographic quantitation, quercetin and cyanidin-3-glucoside reduced the consumption of A2E by photooxidation in both cell- and cell-free assays. With ultra-high performance liquid chromatography-mass spectrometry, quercetin and cyanidin-3-glucoside also inhibited the formation of photooxidized-A2E species. While photodegradation of A2E is known to result in the release of reactive carbonyls, we demonstrated that quercetin and cyanidin-3-glucoside decreased the formation of methylglyoxal adducts in the cells, and reduced the expression of mRNA encoding receptor for advanced glycation end products. These polyphenols also protected glutathione from reaction with photooxidized A2E. In rod outer segments incubated with all-trans-retinal to generate bisretinoid, followed by irradiation, quercetin and cyanidin-3-glucoside reduced release of the lipid peroxidation product 4-hydroxynonenal. In conclusion, quercetin and cyanidin-3-glucoside can guard against photooxidative processes in retina.
Collapse
Affiliation(s)
- Yong Wang
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, United States
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
24
|
Vilà N, Coblentz J, Moreira-Neto C, Bravo-Filho V, Zoroquiain P, Burnier Jr. MN. Pretreatment of RPE Cells with Lutein Can Mitigate Bevacizumab-Induced Increases in Angiogenin and bFGF. Ophthalmic Res 2016; 57:48-53. [DOI: 10.1159/000449252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
|
25
|
Jin HL, Lee SC, Kwon YS, Choung SY, Jeong KW. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. J Pharm Biomed Anal 2016; 117:560-7. [PMID: 26604166 DOI: 10.1016/j.jpba.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Abstract
Age-related macular degeneration (AMD) is a common retinal disease that leads to irreversible central vision loss in the elderly population. Recent studies have identified many factors related to the development of dry AMD, such as aging, cigarette smoking, genetic predispositions, and oxidative stress, eventually inducing the accumulation of lipofuscin, which is one of the most critical risk factors. One of the major lipofuscins in retinal pigment epithelial (RPE) cells is N-retinylidene-N-retinylethanolamine (also known as A2E), a pyridinium bis-retinoid. Currently there is a lack of effective therapy to prevent or restore vision loss caused by dry AMD. Recent studies have shown that 430 nm blue light induces the oxidation of A2E and the activation of caspase-3 to subsequently cause the death of RPE cells, suggesting that removal of A2E from retinal pigment cells might be critical for preventing AMD. Here, we developed a fluorescence-labeled A2E analog (A2E-BDP) that functions similar to A2E in RPE cells, but is more sensitive to detection than A2E. A2E-BDP-based tracing of intracellular A2E will be helpful, not only for studying the accumulation and removal of A2E in human RPE cells but also for identifying possible inhibitors of AMD.
Collapse
|
26
|
Zhou J, Ueda K, Zhao J, Sparrow JR. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J Biol Chem 2015; 290:27215-27227. [PMID: 26400086 DOI: 10.1074/jbc.m115.680363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 01/10/2023] Open
Abstract
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4(-/-) and Rdh8(-/-)/Abca4(-/-) mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4(-/-) but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4(-/-) mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4(-/-) mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Jilin Zhou
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Keiko Ueda
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
27
|
Sparrow JR, Duncker T. Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration. J Clin Med 2015; 3:1302-21. [PMID: 25774313 PMCID: PMC4358814 DOI: 10.3390/jcm3041302] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that increase susceptibility to age-related macular degeneration (AMD) have been identified; however, since many individuals carrying these risk alleles do not develop disease, other contributors are involved. One additional factor, long implicated in the pathogenesis of AMD, is the lipofuscin of retinal pigment epithelium (RPE). The fluorophores that constitute RPE lipofuscin also serve as a source of autofluorescence (AF) that can be imaged by confocal laser ophthalmoscopy. The AF originating from lipofuscin is excited by the delivery of short wavelength (SW) light. A second autofluorescence is emitted from the melanin of RPE (and choroid) upon near-infrared (NIR-AF) excitation. SW-AF imaging is currently used in the clinical management of retinal disorders and the advantages of NIR-AF are increasingly recognized. Here we visit the damaging properties of RPE lipofuscin that could be significant when expressed on a background of genetic susceptibility. To advance interpretations of disease-related patterns of fundus AF in AMD, we also consider the photochemical and spectrophotometric features of the lipofuscin compounds responsible for generating the fluorescence emission.
Collapse
Affiliation(s)
- Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 168th Street, New York, NY 10032, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-305-0044
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
| |
Collapse
|
28
|
Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E. FEBS Open Bio 2014; 4:1007-14. [PMID: 25473597 PMCID: PMC4250541 DOI: 10.1016/j.fob.2014.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
In this study, we show augmented autophagy in the retinal pigment epithelial cell line ARPE-19 when cultured in the presence of the lipofuscin pigment A2E. A2E alone does not induce RPE cell death, but cell death was induced in the presence of A2E with the autophagy inhibitor 3-methyladenine (3MA), with a concomitant increase in the generation of mitochondrial reactive oxygen species. On the other hand, the ATP production capacity of mitochondria was decreased in the presence of A2E, and pharmacological inhibition of autophagy had no additional effects. The altered mRNA expression level of mitochondrial function markers was confirmed by real-time polymerase chain reaction, which showed that the antioxidant enzymes SOD1 and SOD2 were not reduced in the presence of A2E alone, but significantly suppressed with the addition of 3MA. Furthermore, transmission electron micrography revealed autophagic vacuole formation in the presence of A2E, and inhibition of autophagy resulted in the accumulation of abnormal mitochondria with loss of cristae. Spheroid culture of human RPE cells demonstrated debris accumulation in the presence of A2E, and this accumulation was accelerated in the presence of 3MA. These results indicate that autophagy in RPE cells is a vital cytoprotective process that prevents the accumulation of damaged cellular molecules.
Collapse
|
29
|
Boulton ME. Studying melanin and lipofuscin in RPE cell culture models. Exp Eye Res 2014; 126:61-7. [PMID: 25152361 DOI: 10.1016/j.exer.2014.01.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/05/2023]
Abstract
The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols.
Collapse
Affiliation(s)
- Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, USA.
| |
Collapse
|
30
|
Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 2014; 35:2013-20. [DOI: 10.1016/j.neurobiolaging.2014.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 01/20/2023]
|
31
|
Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 2014; 69:1-14. [PMID: 24434119 PMCID: PMC3960355 DOI: 10.1016/j.freeradbiomed.2014.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.
Collapse
Affiliation(s)
- Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jun Wan
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bradley P Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katayoon Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
32
|
Wu L, Ueda K, Nagasaki T, Sparrow JR. Light damage in Abca4 and Rpe65rd12 mice. Invest Ophthalmol Vis Sci 2014; 55:1910-8. [PMID: 24576873 DOI: 10.1167/iovs.14-13867] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Bisretinoids form in photoreceptor cells and accumulate in retinal pigment epithelium (RPE) as lipofuscin. To examine the role of these fluorophores as mediators of retinal light damage, we studied the propensity for light damage in mutant mice having elevated lipofuscin due to deficiency in the ATP-binding cassette (ABC) transporter Abca4 (Abca4(-/-) mice) and in mice devoid of lipofuscin owing to absence of Rpe65 (Rpe65(rd12)). METHODS Abca4(-/-), Rpe65(rd12), and wild-type mice were exposed to 430-nm light to produce a localized lesion in the superior hemisphere of retina. Bisretinoids of RPE lipofuscin were measured by HPLC. In histologic sections, outer nuclear layer (ONL) thickness was measured as an indicator of photoreceptor cell degeneration, and RPE nuclei were counted. RESULTS As shown previously, A2E levels were increased in Abca4(-/-) mice. These mice also sustained light damage-associated ONL thinning that was more pronounced than in age-matched wild-type mice; the ONL thinning was also greater in 5-month versus 2-month-old mice. Numbers of RPE nuclei were reduced in light-stressed mice, with the reduction being greater in the Abca4(-/-) than wild-type mice. In Rpe65(rd12) mice bisretinoid compounds of RPE lipofuscin were not detected chromatographically and light damage-associated ONL thinning was not observed. CONCLUSIONS Abca4(-/-) mice that accumulate RPE lipofuscin at increased levels were more susceptible to retinal light damage than wild-type mice. This finding, together with results showing that Rpe65(rd12) mice did not accumulate lipofuscin and did not sustain retinal light damage, indicates that the bisretinoids of retinal lipofuscin are contributors to retinal light damage.
Collapse
Affiliation(s)
- Li Wu
- Department of Ophthalmology, Columbia University, New York, New York
| | | | | | | |
Collapse
|
33
|
Williams JD, Bermudez Y, Park SL, Stratton SP, Uchida K, Hurst CA, Wondrak GT. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 132:56-65. [PMID: 24584085 PMCID: PMC3973651 DOI: 10.1016/j.jphotobiol.2014.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 01/08/2023]
Abstract
Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored.
Collapse
Affiliation(s)
- Joshua D Williams
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Yira Bermudez
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Steven P Stratton
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Craig A Hurst
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
34
|
He D, Sun J, K. Bhawal U, Y. Fukuoka C, Huang YC, Hamada N, Arakawa H. Receptor for Advanced Glycation End Products is Required for HMGB1/S100A4/NF-κβ Interaction In Porphyromonas gingivalis Induced Gingival Inflammation. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:237-50. [PMID: 24664704 DOI: 10.1007/978-1-4614-3209-8_31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related factors. The UPP could be impaired by oxidative stress or chemical inhibition. Impairment of the UPP in RPE increased the expression of several inflammatory cytokines, such as IL-6 and IL-8. However, the expression of monocyte chemoattractant protein-1 (MCP-1) and complement factor H (CFH) and was reduced upon impairment of the UPP. These data suggest that impairment of the UPP in RPE may be one of the causes of retinal inflammation and abnormal functions of monocyte and the complement system during the pathogenesis of age-related macular degeneration.
Collapse
|
36
|
Klettner A, Kauppinen A, Blasiak J, Roider J, Salminen A, Kaarniranta K. Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization. Int J Biochem Cell Biol 2013; 45:1457-67. [PMID: 23603148 DOI: 10.1016/j.biocel.2013.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, degenerative and progressive disease involving multiple genetic and environmental factors. It can result in severe visual loss e.g. AMD is the leading cause of blindness in the elderly in the western countries. Although age, genetics, diet, smoking, and many cardiovascular factors are known to be linked with this disease there is increasing evidence that long-term oxidative stress, impaired autophagy clearance and inflammasome mediated inflammation are involved in the pathogenesis. Under certain conditions these may trigger detrimental processes e.g. release of vascular endothelial growth factor (VEGF), causing choroidal neovascularization e.g. in wet AMD. This review ties together these crucial pathological threads in AMD.
Collapse
Affiliation(s)
- Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Campello L, Esteve-Rudd J, Cuenca N, Martín-Nieto J. The ubiquitin-proteasome system in retinal health and disease. Mol Neurobiol 2013; 47:790-810. [PMID: 23339020 DOI: 10.1007/s12035-012-8391-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | | | | | | |
Collapse
|
38
|
Abbass MM, Korany NS, Salama AH, Dmytryk JJ, Safiejko-Mroczka B. The relationship between receptor for advanced glycation end products expression and the severity of periodontal disease in the gingiva of diabetic and non diabetic periodontitis patients. Arch Oral Biol 2012; 57:1342-54. [DOI: 10.1016/j.archoralbio.2012.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/25/2012] [Accepted: 06/20/2012] [Indexed: 01/25/2023]
|
39
|
INHIBITORY ACTIVITY OF RANIBIZUMAB, SORAFENIB, AND PAZOPANIB ON LIGHT-INDUCED OVEREXPRESSION OF PLATELET-DERIVED GROWTH FACTOR AND VASCULAR ENDOTHELIAL GROWTH FACTOR A AND THE VASCULAR ENDOTHELIAL GROWTH FACTOR A RECEPTORS 1 AND 2 AND NEUROPILIN 1 AND 2. Retina 2012; 32:1652-63. [DOI: 10.1097/iae.0b013e318240a558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
A novel source of methylglyoxal and glyoxal in retina: implications for age-related macular degeneration. PLoS One 2012; 7:e41309. [PMID: 22829938 PMCID: PMC3400616 DOI: 10.1371/journal.pone.0041309] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Aging of retinal pigment epithelial (RPE) cells of the eye is marked by accumulations of bisretinoid fluorophores; two of the compounds within this lipofuscin mixture are A2E and all-trans-retinal dimer. These pigments are implicated in pathological mechanisms involved in some vision-threatening disorders including age-related macular degeneration (AMD). Studies have shown that bisretinoids are photosensitive compounds that undergo photooxidation and photodegradation when irradiated with short wavelength visible light. Utilizing ultra performance liquid chromatography (UPLC) with electrospray ionization mass spectrometry (ESI-MS) we demonstrate that photodegradation of A2E and all-trans-retinal dimer generates the dicarbonyls glyoxal (GO) and methylglyoxal (MG), that are known to modify proteins by advanced glycation endproduct (AGE) formation. By extracellular trapping with aminoguanidine, we established that these oxo-aldehydes are released from irradiated A2E-containing RPE cells. Enzyme-linked immunosorbant assays (ELISA) revealed that the substrate underlying A2E-containing RPE was AGE-modified after irradiation. This AGE deposition was suppressed by prior treatment of the cells with aminoguanidine. AGE-modification causes structural and functional impairment of proteins. In chronic diseases such as diabetes and atherosclerosis, MG and GO modify proteins by non-enzymatic glycation and oxidation reactions. AGE-modified proteins are also components of drusen, the sub-RPE deposits that confer increased risk of AMD onset. These results indicate that photodegraded RPE bisretinoid is likely to be a previously unknown source of MG and GO in the eye.
Collapse
|
41
|
Ueta T, Inoue T, Yuda K, Furukawa T, Yanagi Y, Tamaki Y. Intense physiological light upregulates vascular endothelial growth factor and enhances choroidal neovascularization via peroxisome proliferator-activated receptor γ coactivator-1α in mice. Arterioscler Thromb Vasc Biol 2012; 32:1366-71. [PMID: 22516064 DOI: 10.1161/atvbaha.112.248021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Toxicity of intense light to facilitate the development of neovascular age-related macular degeneration has been a health concern although the mechanism remains unclear. METHODS AND RESULTS Effects of intense, but within physiological range, light on retinal pigment epithelium, a major pathogenic origin of age-related macular degeneration were studied in mice. Intense physiological light upregulated vascular endothelial growth factor (VEGF) expression in retinal pigment epithelium, independent of circadian rhythm, which resulted in enhancement of choroidal neovascularization. In rd1/rd1 mice or Crx(-/-) mice that do not possess outer segment structure, light exposure did not induce VEGF, indicating that VEGF upregulation by light depended on increased outer segment phagocytosis by retinal pigment epithelium. In retinal pigment epithelium cells phagocytosing increased amount of outer segment, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) not hypoxia-inducible factor-1α was induced, leading to VEGF upregulation. The VEGF upregulation and choroidal neovascularization enhancement were abrogated in PGC-1α(-/-) mice and estrogen-related receptor-α(-/-) mice, indicating the involvement of PGC-1α/estrogen-related receptor-α pathway. CONCLUSIONS Intense physiological light is involved in choroidal neovascularization through excess outer segment phagocytosis and VEGF upregulation mediated by PGC-1α in vivo.
Collapse
Affiliation(s)
- Takashi Ueta
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Sparrow JR, Ueda K, Zhou J. WITHDRAWN: Complement dysregulation in AMD: RPE-Bruch's membrane-choroid. Mol Aspects Med 2012:S0098-2997(12)00040-4. [PMID: 22542573 DOI: 10.1016/j.mam.2012.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 12/01/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.mam.2012.03.011. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
43
|
Sparrow JR, Ueda K, Zhou J. Complement dysregulation in AMD: RPE-Bruch's membrane-choroid. Mol Aspects Med 2012; 33:436-45. [PMID: 22504022 DOI: 10.1016/j.mam.2012.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 01/01/2023]
Abstract
The question as to why the macula of the retina is prone to an aging disease (age-related macular degeneration) remains unanswered. This unmet challenge has implications since AMD accounts for approximately 54% of blindness in the USA (Swaroop, Chew, Bowes Rickman and Abecasis, 2009). While AMD has onset in the elder years, it likely develops over time. Genetic discovery to date has accounted for approximately 50% of the inheritable component of AMD. The polymorphism that has been most widely studied is the Y402H allele in the complement factor H gene. The implication of this genetic association is that in a subset of AMD cases, unregulated complement activation is permissive for AMD. Given that this gene variant results in an amino acid substitution, it is assumed that this change will have functional consequences although the precise mechanisms are still unknown. Genetic predisposition is not the only factor however, since in this complex disease there is substantial evidence that lifestyle factors such as diet and smoking contribute to risk. Here we provide an overview of current knowledge with respect to factors involved in AMD pathogenesis. Interwoven with these issues is a discussion of the significant role played by aging processes, some of which are unique to the retina and retinal pigment epithelium. One recurring theme is the potential for disease promotion by diverse types of oxidation products.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
44
|
The 5HT1a receptor agonist 8-Oh DPAT induces protection from lipofuscin accumulation and oxidative stress in the retinal pigment epithelium. PLoS One 2012; 7:e34468. [PMID: 22509307 PMCID: PMC3317995 DOI: 10.1371/journal.pone.0034468] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/02/2012] [Indexed: 12/14/2022] Open
Abstract
Age-related macular degeneration (AMD), a major cause of blindness in the elderly, is associated with oxidative stress, lipofuscin accumulation and retinal degeneration. The aim of this study was to determine if a 5-HT(1A) receptor agonist can reduce lipofuscin accumulation, reduce oxidative damage and prevent retinal cell loss both in vitro and in vivo. Autophagy-derived and photoreceptor outer segment (POS)-derived lipofuscin formation was assessed using FACS analysis and confocal microscopy in cultured retinal pigment epithelial (RPE) cells in the presence or absence of the 5-HT(1A) receptor agonist, 8-OH DPAT. 8-OH DPAT treatment resulted in a dose-dependent reduction in both autophagy- and POS-derived lipofuscin compared to control. Reduction in autophagy-induced lipofuscin was sustained for 4 weeks following removal of the drug. The ability of 8-OH DPAT to reduce oxidative damage following exposure to 200 µM H(2)O(2) was assessed. 8-OH DPAT reduced superoxide generation and increased mitochondrial superoxide dismutase (MnSOD) levels and the ratio of reduced glutathione to the oxidized form of glutathione in H(2)O(2)-treated cells compared to controls and protected against H(2)O(2)-initiated lipid peroxidation, nitrotyrosine levels and mitochondrial damage. SOD2 knockdown mice, which have an AMD-like phenotype, received daily subcutaneous injections of either saline, 0.5 or 5.0 mg/kg 8-OH DPAT and were evaluated at monthly intervals. Systemic administration of 8-OH DPAT improved the electroretinogram response in SOD2 knockdown eyes of mice compared to knockdown eyes receiving vehicle control. There was a significant increase in the ONL thickness in mice treated with 8-OH DPAT at 4 months past the time of MnSOD knockdown compared to untreated controls together with a 60% reduction in RPE lipofuscin. The data indicate that 5-HT(1A) agonists can reduce lipofuscin accumulation and protect the retina from oxidative damage and mitochondrial dysfunction. 5-HT(1A) receptor agonists may have potential as therapeutic agents in the treatment of retinal degenerative disease.
Collapse
|
45
|
Glenn JV, Mahaffy H, Dasari S, Oliver M, Chen M, Boulton ME, Xu H, Curry WJ, Stitt AW. Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate. Graefes Arch Clin Exp Ophthalmol 2011; 250:349-59. [PMID: 22081232 DOI: 10.1007/s00417-011-1856-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) and underlying Bruch's membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell-substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch's membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this "aged" substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. METHODS Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. RESULTS Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. CONCLUSIONS This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch"s membrane could play a significant role in age-related dysfunction of the RPE.
Collapse
Affiliation(s)
- J V Glenn
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bergmann M, Holz F, Kopitz J. Lysosomal stress and lipid peroxidation products induce VEGF-121 and VEGF-165 expression in ARPE-19 cells. Graefes Arch Clin Exp Ophthalmol 2011; 249:1477-83. [PMID: 21509530 DOI: 10.1007/s00417-011-1682-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/25/2011] [Accepted: 03/06/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pathologically increased VEGF-A expression is considered a major pathogenic factor in exudative AMD. Since VEGF-A can exist in isoforms with different individual functions, for a detailed understanding of the role of VEGF-A in normal and disease associated processes, in particular in wet AMD, the expression pattern of VEGF-A isoforms has to be taken into account. Therefore in the present study, adressing the effects of lysosomal dysfunction on VEGF expression and secretion by RPE cells induced by lipid peroxidation products and an inhibitor of lysosomal acidification, we applied quantitative methods discriminating the major VEGF-A isoforms. METHODS ARPE-19 cells were treated with the primary lipid peroxidation products 4-hydroxynonenal (HNE), malondialdehyde (MDA) or the lysosomal inhibitor bafilomycin A. VEGF-A isoforms were determined by splice-variant-specific RT-PCR. For detection of protein levels, a protein prefractionation strategy based on the strikingly different isoelectric points of VEGF isoforms was used prior to quantification of VEGF-A 121, -165, -189 and -206 expression by ELISA. RESULTS On mRNA level, VEGF-A 165 represents the major isoform (60%), VEGF-A 121 accounts for about one-third, and VEGF-A 189 for about 10% of total mRNA detected in untreated cells. No VEGF-A 206 mRNA was detected. Treatment with bafilomycin A increased VEGF-A 121 and VEGF-A 165 mRNA levels. VEGF-A 189 expression remained unaffected, and no induction of VEGF-A 206 mRNA was detectable. Similar effects were observed when cells were stressed with HNE or MDA. On protein level, bafilomycin A as well as the lipid peroxidation products caused an increase of total VEGF-A protein secretion into the culture medium. In analysis of VEGF-A for different splice variants, only VEGF-A 121 and VEGF-A 165 were detected, the latter representing the major secreted isoform, with the ratio of both isoforms being slightly changed in favour of VEGF-A 165 secretion. CONCLUSION Lysosomal dysfunction and lipid peroxidation damage might be an inducer of VEGF-A 121 and VEGF-A 165 expression in the retina. Furthermore, the novel technique used to analyze the protein expression pattern of VEGF- A isoforms in biological samples may represent a valuable tool in future analyses of specific VEGF-A isoforms in normal and pathogenic functions.
Collapse
Affiliation(s)
- Marion Bergmann
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
47
|
Vidro-Kotchan E, Yendluri BB, Le-Thai T, Tsin A. NBHA reduces acrolein-induced changes in ARPE-19 cells: possible involvement of TGFβ. Curr Eye Res 2011; 36:370-8. [PMID: 21309688 DOI: 10.3109/02713683.2010.549601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Acrolein, a toxic, reactive aldehyde formed metabolically and environmentally, has been implicated in the damage to and dysfunction of the retinal pigment epithelium (RPE) that accompanies age-related macular degeneration (AMD). Our purpose was to investigate the potential of acrolein to influence the release of transforming growth factor beta-2 (TGFβ2) and vascular endothelial growth factor (VEGF), to assess the ability of N-benzylhydroxylamine (NBHA) to prevent the effect of acrolein on cytokine release and reduction of viable cells, and to explore the pathway by which acrolein might be causing the increase of VEGF. MATERIALS AND METHODS Confluent ARPE-19 cells were treated with acrolein and/or NBHA. They were also pretreated with SIS3, a specific inhibitor of SMAD 3, and ZM39923, a JAK3 inhibitor, before being treated with acrolein. Viable cells were counted; ELISA was used to measure the TGFβ2 and/or VEGF in the conditioned media. RESULTS Acrolein was shown to reduce the number of viable ARPE-19 cells and to upregulate the release of the proangiogenic cytokines TGFβ2 and VEGF. Co-treatment with 200 μM NBHA significantly reduced the effects of acrolein on viable cell number and TGFβ2 release. Pretreatment of the cells with SIS3 partially blocked the action of acrolein on decreased viable cell number and VEGF upregulation, suggesting that part of the effects of acrolein are mediated by the increased levels of TGFβ and its signaling. CONCLUSIONS Our results suggest that the action of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells is partially mediated by TGFβ2. By reducing the effects of acrolein, NBHA and SIS3 could be potential pharmacological agents in the prevention and progression of acrolein-induced damage to the RPE that relates to AMD.
Collapse
|
48
|
The pathogenic role of Maillard reaction in the aging eye. Amino Acids 2010; 42:1205-20. [DOI: 10.1007/s00726-010-0778-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 12/31/2022]
|
49
|
Abstract
The glycemic index (GI) indicates how fast blood glucose is raised after consuming a carbohydrate-containing food. Human metabolic studies indicate that GI is related to patho-physiological responses after meals. Compared with a low-GI meal, a high-GI meal is characterized with hyperglycemia during the early postprandial stage (0-2h) and a compensatory hyperlipidemia associated with counter-regulatory hormone responses during late postprandial stage (4-6h). Over the past three decades, several human health disorders have been related to GI. The strongest relationship suggests that consuming low-GI foods prevents diabetic complications. Diabetic retinopathy (DR) is a complication of diabetes. In this aspect, GI appears to be useful as a practical guideline to help diabetic people choose foods. Abundant epidemiological evidence also indicates positive associations between GI and risk for type 2 diabetes, cardiovascular disease, and more recently, age-related macular degeneration (AMD) in people without diabetes. Although data from randomized controlled intervention trials are scanty, these observations are strongly supported by evolving molecular mechanisms which explain the pathogenesis of hyperglycemia. This wide range of evidence implies that dietary hyperglycemia is etiologically related to human aging and diseases, including DR and AMD. In this context, these diseases can be considered as metabolic retinal diseases. Molecular theories that explain hyperglycemic pathogenesis involve a mitochondria-associated pathway and four glycolysis-associated pathways, including advanced glycation end products formation, protein kinase C activation, polyol pathway, and hexosamine pathway. While the four glycolysis-associated pathways appear to be universal for both normoxic and hypoxic conditions, the mitochondria-associated mechanism appears to be most relevant to the hyperglycemic, normoxic pathogenesis. For diseases that affect tissues with highly active metabolism and that frequently face challenge from low oxygen tension, such as retina in which metabolism is determined by both glucose and oxygen homeostases, these theories appear to be insufficient. Several lines of evidence indicate that the retina is particularly vulnerable when hypoxia coincides with hyperglycemia. We propose a novel hyperglycemic, hypoxia-inducible factor (HIF) pathway, to complement the current theories regarding hyperglycemic pathogenesis. HIF is a transcription complex that responds to decrease oxygen in the cellular environment. In addition to playing a significant role in the regulation of glucose metabolism, under hyperglycemia HIF has been shown to increase the expression of HIF-inducible genes, such as vascular endothelial growth factor (VEGF) leading to angiogenesis. To this extent, we suggest that HIF can also be described as a hyperglycemia-inducible factor. In summary, while management of dietary GI appears to be an effective intervention for the prevention of metabolic diseases, specifically AMD and DR, more interventional data is needed to evaluate the efficacy of GI management. There is an urgent need to develop reliable biomarkers of exposure, surrogate endpoints, as well as susceptibility for GI. These insights would also be helpful in deciphering the detailed hyperglycemia-related biochemical mechanisms for the development of new therapeutic agents.
Collapse
|
50
|
Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factors 2010; 28:211-20. [PMID: 20166888 DOI: 10.3109/08977191003604505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Growth factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and placenta growth factor (PlGF) are key players in the development of diabetic retinopathy, age-related macular degeneration, and other retinal neovascular diseases. Glial cells provide a significant source of retinal growth factor production under physiologic and pathologic conditions. Cumulative light exposure has been linked to increased retinal growth factor expression. Previous reports indicate that sorafenib, an oral multikinase inhibitor, might have a beneficial effect on retinal neovascularization. This study was designed to investigate the effects of sorafenib on light-induced overexpression of growth factors in human retinal glial cells. METHODS Primary human optic nerve head astrocytes (ONHAs) were exposed to white light and incubated with sorafenib. Viability, expression, and secretion of VEGF-A, PDGF-BB, and PlGF and their mRNA were determined by reverse transcription-polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Light exposure decreased cell viability and increased VEGF-A, PDGF-BB, and PlGF expression and secretion. These light-induced effects were significantly reduced when cells were treated with sorafenib at a concentration of 1 microg/ml. CONCLUSION Sorafenib significantly reduced light-induced overexpression of VEGF-A, PDGF-BB, and PlGF in primary human ONHAs. Sorafenib has promising properties as a potential supportive treatment for retinal neovascularization.
Collapse
Affiliation(s)
- M Kernt
- Department of Ophthalmology, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|