1
|
Nama ASA, Sandeepa GM, Buddolla V, Mastan A. Advances in understanding therapeutic mechanisms of probiotics in cancer management, with special emphasis on breast cancer: A comprehensive review. Eur J Pharmacol 2025; 995:177410. [PMID: 39986595 DOI: 10.1016/j.ejphar.2025.177410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The increasing global prevalence of cancer, particularly breast cancer, necessitates the development of innovative therapeutic strategies. Probiotics, proficient in promoting gut health, have emerged as promising candidates for cancer treatment due to their immunomodulatory and potential anticancer properties. This review focuses on the therapeutic mechanisms of probiotics in breast cancer, examining their anticancer efficacy through metabolic, immune, and molecular mechanisms. Probiotics enhance cancer therapies, minimize side effects, and offer new adjuvant approaches in oncology. Recent advancements discussed in the review include the utilization of probiotics as oncolytic gene expression systems and drug delivery vectors, as well as personalized probiotic interventions aimed at optimizing cancer therapy. Clinical studies are critically evaluated, highlighting both the outcomes and limitations of probiotic use in cancer patients, particularly those suffering from breast cancer. Additionally, the review explores factors influencing anticancer effects of probiotics, focusing on their role in modulating the tumor microenvironment. Challenges in translating preclinical findings to clinical practice are discussed, along with future research directions, focusing on the relationship between probiotics, the microbiome, and cancer treatment. Ultimately, this review advocates for further investigation into the therapeutic potential of probiotics in breast cancer, aiming to harness their benefits in oncology.
Collapse
Affiliation(s)
- A S Angel Nama
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India
| | - G Mary Sandeepa
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India.
| | - Viswanath Buddolla
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India
| | - Anthati Mastan
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India.
| |
Collapse
|
2
|
Luca BGD, Almeida PP, Junior RR, Soares DJS, Frantz EDC, Miranda-Alves L, Stockler-Pinto MB, Machado Dos Santos C, Magliano DC. Environmental contamination by bisphenols: From plastic production to modulation of the intestinal morphophysiology in experimental models. Food Chem Toxicol 2025; 197:115280. [PMID: 39923829 DOI: 10.1016/j.fct.2025.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Bisphenols are frequently found in a range of plastic products and have been associated with the development of diseases such as diabetes mellitus type 2 and obesity. These compounds are known as endocrine disruptors and have led to restrictions on their use due to their presence in the environment and their association with non-communicable chronic diseases. The gastrointestinal tract, being the primary site of food and water absorption, is particularly vulnerable to the effects of bisphenols. For this reason, a review of studies showing associations between bisphenols exposure and adverse effects in the gut microbiota, morphology tissue, gut permeability, and on the enteric nervous system was carried out. We have included perinatal studies and in different adult experimental models. The effects of bisphenol exposure on the gut microbiota are complex and varied. Bisphenol exposure generally leads to a decrease in microbial diversity and may impact the integrity of the intestinal barrier, resulting in elevated levels of inflammation, changes in morphological and metabolic characteristics of the gut, modifications in tight junction expression, and changes in goblet cell expression. In addition, bisphenol exposure in the perinatal phase can lead to important intestinal changes, including increased colonic inflammation and decreased colonic paracellular permeability.
Collapse
Affiliation(s)
- Beatriz Gouvêa de Luca
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil; Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Patricia Pereira Almeida
- Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Nutrition Sciences Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Reinaldo Röpke Junior
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Débora Júlia Silva Soares
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Cardiovascular Sciences Graduate Program, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil; Pharmacology and Medicinal Chemistry Graduate Program, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Brazil; Morphological Sciences Graduate Program, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Nutrition Sciences Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
| | - Clarice Machado Dos Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Federal Fluminense University, Niteroi, RJ, Brazil; Pathology Graduate Program, Federal Fluminense University (UFF), Niteroi, RJ, Brazil; Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Graduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Brazil.
| |
Collapse
|
3
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
4
|
Ji X, Wang L, Luan P, Liang J, Cheng W. The impact of dietary fiber on colorectal cancer patients based on machine learning. Front Nutr 2025; 12:1508562. [PMID: 39927282 PMCID: PMC11802429 DOI: 10.3389/fnut.2025.1508562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Objective This study aimed to evaluate the impact of enteral nutrition with dietary fiber on patients undergoing laparoscopic colorectal cancer (CRC) surgery. Methods Between January 2023 and August 2024, 164 CRC patients were randomly assigned to two groups at our hospital. The control group received standard nutritional intervention, while the observation group received enteral nutritional support containing dietary fiber. Both groups were subjected to intervention and continuously observed until the 14th postoperative day. An observational analysis assessed the impact of dietary fiber intake on postoperative nutritional status in CRC patients. The study compared infection stress index, inflammatory factors, nutritional status, intestinal function recovery, and complication incidence between groups. Additionally, four machine learning models-Logistic Regression (LR), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM)-were developed based on nutritional and clinical indicators. Results In the observation group, levels of procalcitonin (PCT), beta-endorphin (β-EP), C-reactive protein (CRP), interleukin-1 (IL-1), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α) were significantly lower compared to the control group (p < 0.01). Conversely, levels of albumin (ALB), hemoglobin (HB), transferrin (TRF), and prealbumin (PAB) in the observation group were significantly higher than those in the control group (p < 0.01). Furthermore, LR, RF, NN, and SVM models can effectively predict the effects of dietary fiber on the immune function and inflammatory response of postoperative CRC patients, with the NN model performing the best. Through the screening of machine learning models, four key predictors for CRC patients were identified: PCT, PAB, ALB, and IL-1. Conclusion Postoperative dietary fiber administration in colorectal cancer enhances immune function, reduces disease-related inflammation, and inhibits tumor proliferation. Machine learning-based CRC prediction models hold clinical value.
Collapse
Affiliation(s)
| | | | | | | | - Weicai Cheng
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
5
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Miao C, Wang L, Wang H, Shen Y, Man C, Zhang W, Zhang Y, Zhao Q, Jiang Y. Lacticaseibacillus plantarum postbiotics prepared by the combined technique of pasteurization and ultrasound: effective measures to alleviate obesity based on the SCFAs-GPR41/GPR43 signaling pathway. Food Funct 2024; 15:11005-11019. [PMID: 39420807 DOI: 10.1039/d4fo03591g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Postbiotics have recently garnered substantial research attention, especially in obesity research. In this study, upon comparing the proliferative effects of three food-derived media-skim milk, soy milk, and almond milk-on Lactiplantibacillus plantarum J26 (L. plantarum J26), skim milk was found to be the most effective. The metabolomic analysis further unveiled that the metabolites produced by the strain cultured in skim milk influenced the greatest number of lipid metabolism-associated pathways. Additionally, to better preserve heat-sensitive substances, ultrasound and pasteurization were combined and used here for inactivation. L. plantarum J26 postbiotics, prepared through pasteurization combined with 400 W ultrasound treatment for 30 min, exhibited the most effectiveness at inhibiting cellular triglyceride accumulation, reducing its level to 0.99 mg per 104 CFU. The prepared postbiotics significantly reduced the increase in multiple indicators, including body weight, blood lipids, and adipokines in obese mice (p < 0.05). Following treatment, liver tissue damage as well as white and brown adipose tissue damage were also markedly improved in obese mice. According to gut microbiota sequencing, the postbiotic intervention increased Lactobacillus and Bifidobacterium abundances but reduced the abundances of obesity-associated Faecalibacterium and Erysipelotrichaceae. Additionally, the postbiotics elevated the acetate, propionate, and butyrate levels by 14.95%, 23.89%, and 8.31%, respectively. High postbiotic doses significantly upregulated the expression of GPR41/GPR43, short-chain fatty acid (SCFA) receptor genes, in the liver and adipose tissues (p < 0.05), thus correcting the obesity-induced anomalies in the SCFAs-GPR41/GPR43 signaling pathway. This research offers compelling evidence supporting the use of edible postbiotics in targeted obesity regulation.
Collapse
Affiliation(s)
- Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Linge Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Huabing Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| |
Collapse
|
7
|
Wei L, Wang B, Bai J, Zhang Y, Liu C, Suo H, Wang C. Postbiotics are a candidate for new functional foods. Food Chem X 2024; 23:101650. [PMID: 39113733 PMCID: PMC11304867 DOI: 10.1016/j.fochx.2024.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Accumulating studies have highlighted the great potential of postbiotics in alleviating diseases and protecting host health. Compared with traditional functional foods (such as probiotics and prebiotics), postbiotics have the advantages of a single composition, high physiological activity, long shelf life, easy absorption, and high targeting, etc. The development of postbiotics has led to a wide range of potential applications in functional food and drug development. However, the lack of clinical trial data, mechanism analyses, safety evaluations, and effective regulatory frameworks has limited the application of postbiotic products. This review describes the definition, classification, sources, and preparation methods of postbiotics, the progress and mechanism of preclinical and clinical research in improving host diseases, and their application in food. Strengthen understanding of the recognition and development of related products to lay a theoretical foundation.
Collapse
Affiliation(s)
- Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
9
|
Wasiak J, Głowacka P, Pudlarz A, Pieczonka AM, Dzitko K, Szemraj J, Witusik-Perkowska M. Lactic Acid Bacteria-Derived Postbiotics as Adjunctive Agents in Breast Cancer Treatment to Boost the Antineoplastic Effect of a Conventional Therapeutic Comprising Tamoxifen and a New Drug Candidate: An Aziridine-Hydrazide Hydrazone Derivative. Molecules 2024; 29:2292. [PMID: 38792153 PMCID: PMC11124249 DOI: 10.3390/molecules29102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.
Collapse
Affiliation(s)
- Joanna Wasiak
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Adam M. Pieczonka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Str., 91-403 Lodz, Poland;
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Str., 90-237 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| |
Collapse
|
10
|
Morańska K, Englert-Golon M, Durda-Masny M, Sajdak S, Grabowska M, Szwed A. Why Does Your Uterus Become Malignant? The Impact of the Microbiome on Endometrial Carcinogenesis. Life (Basel) 2023; 13:2269. [PMID: 38137870 PMCID: PMC10744771 DOI: 10.3390/life13122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation cycle, pregnancy maintenance, and immune system support. However, bacteria in the uterus could stimulate inflammation, which when chronic results in malignancy. An altered gut microbiota initiates an inflammatory response through microorganism-associated molecular patterns, which leads to intensified steroidogenesis in the ovaries and cancers. Moreover, intestinal bacteria secreting the enzyme β-glucuronidase may increase the level of circulating estrogen and, as a result, be influential in gynecological cancers. Both the uterine and the gut microbiota play a pivotal role in immune modulation, which is why there is a demand for further investigation from both the diagnostic and the therapeutic perspectives.
Collapse
Affiliation(s)
- Katarzyna Morańska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Monika Englert-Golon
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Magdalena Durda-Masny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Stefan Sajdak
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marlena Grabowska
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Anita Szwed
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| |
Collapse
|
11
|
Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother 2023; 166:115320. [PMID: 37595427 DOI: 10.1016/j.biopha.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome. We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Biao Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
12
|
Cabrita ARJ, Guilherme-Fernandes J, Spínola M, Maia MRG, Yergaliyev T, Camarinha-Silva A, Fonseca AJM. Effects of microalgae as dietary supplement on palatability, digestibility, fecal metabolites, and microbiota in healthy dogs. Front Vet Sci 2023; 10:1245790. [PMID: 37829353 PMCID: PMC10565105 DOI: 10.3389/fvets.2023.1245790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The current trend of dog owners increasingly favoring the functional value of food to assure preventive health and wellbeing of their pets has been raising the interest in microalgae as natural additives with bioactive properties. However, scientific studies addressing the effects of microalgae supplementation in diets for dogs are scarce. This study aimed to evaluate the effects of dietary supplementation with three microalgae species (Chlorella vulgaris, Nannochloropsis oceanica, and Tetradesmus obliquus) on diet palatability, total tract digestibility, metabolizable energy content, fecal metabolites and microbiota of dogs. Twelve adult Beagle dogs were used in three two-bowl tests to compare the palatability of a commercial complete diet for adult dogs without (reference diet) and with 1.5% supplementation of each microalgae. From the results obtained, three digestibility trials were performed according to a replicated Latin square 3 × 3, with six adult Beagle dogs, three experimental periods of 10 days each, and three dietary supplementation levels of microalgae (0.5, 1.0, and 1.5%). In each trial, effects of microalgae supplementation levels on total tract digestibility, metabolizable energy content, fecal metabolites and microbiota of dogs were evaluated. First diet approached or tasted was not significantly affected by microalgae inclusion, but dogs showed a preference for the reference diet over the diets with 1.5% inclusion of C. vulgaris and N. oceanica, no difference being observed with 1.5% T. obliquus. In all digestibility trials, dietary supplementation with microalgae up to 1.5% did not greatly affected the dietary chemical composition and kept unaffected food intake, fecal output and metabolites, and digestibility of nutrients and energy. Compared with the reference diet, supplementation with C. vulgaris increased protein digestibility. Fecal characteristics and metabolites were affected by microalgae supplementation, being the effects dependent on the species. Fecal microbiota composition of dogs fed with microalgae-supplemented diets was modified by promoting the beneficial Turicibacter and Peptococcus genera associated with gut health and activation of the immune system. Overall, the results support C. vulgaris, N. oceanica, and T. obliquus as sustainable functional supplements that potentially enhance gastrointestinal health of dogs through the selective stimulation of microbiota without detrimental effects on food intake and digestibility.
Collapse
Affiliation(s)
- Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Maria Spínola
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Timur Yergaliyev
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Taufer CR, Rampelotto PH. The Role of Bifidobacterium in COVID-19: A Systematic Review. Life (Basel) 2023; 13:1847. [PMID: 37763251 PMCID: PMC10532519 DOI: 10.3390/life13091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using "Bifidobacterium" and "COVID-19" or "SARS-CoV-2" as key terms to assess the relationship of the genus to COVID-19. After the selection steps, 25 articles were analyzed. Of these, eighteen were observational, and seven were interventional articles that evaluated the use of Bifidobacterium alone or in mix as probiotics for additional treatment of patients with COVID-19. All stages and severities were contemplated, including post-COVID-19 patients. Overall, Bifidobacterium was associated with both protective effects and reduced abundance in relation to the disease. The genus has been found to be abundant in some cases and linked to disease severity. The studies evaluating the use of Bifidobacterium as probiotics have demonstrated the potential of this genus in reducing symptoms, improving pulmonary function, reducing inflammatory markers, alleviating gastrointestinal symptoms, and even contributing to better control of mortality. In summary, Bifidobacterium may offer protection against COVID-19 through its ability to modulate the immune response, reduce inflammation, compete with pathogenic microbes, and maintain gut barrier function. The findings provide valuable insights into the relationship between the disease and the genus Bifidobacterium, highlighting the potential of microbiota modulation in the treatment of COVID-19.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
14
|
Li Y, Huang Y, Liang H, Wang W, Li B, Liu T, Huang Y, Zhang Z, Qin Y, Zhou X, Wang R, Huang T. The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer. Front Nutr 2023; 10:1243390. [PMID: 37614742 PMCID: PMC10442828 DOI: 10.3389/fnut.2023.1243390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Dietary fibers (DFs) and their metabolites attract significant attention in research on health and disease, attributing to their effects on regulating metabolism, proliferation, inflammation, and immunity. When fermented by gut microbiota, DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid. As the essential nutrients for intestinal epithelial cells, SCFAs maintain intestinal homeostasis and play essential roles in a wide range of biological functions. SCFAs have been found to inhibit histone deacetylase, activate G protein-coupled receptors, and modulate the immune response, which impacts cancer and anti-cancer treatment. Notably, while extensive studies have illuminated the roles of SCFAs in colorectal cancer development, progression, and treatment outcomes, limited evidence is available for other types of cancers. This restricts our understanding of the complex mechanisms and clinical applications of SCFAs in tumors outside the intestinal tract. In this study, we provide a comprehensive summary of the latest evidence on the roles and mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived from microbial fermentation of DFs in cancer. Additionally, we recapitulate the clinical applications of SCFAs in cancer treatments and offer our perspectives on the challenges, limitations, and prospects of utilizing SCFAs in cancer research and therapy.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yaxuan Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haili Liang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Wen Wang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Bo Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Liu
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- The First School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tingting Huang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
15
|
Kaunang TMD, Setiawan AA, Mayulu N, Leonita I, Wijaya A, Yusuf VM, Mahira MFNA, Yudisthira D, Gunawan WB, Taslim NA, Purnomo AF, Sabrina N, Amalia N, Permatasari HK, Nurkolis F. Are probiotics beneficial for obese patients with major depressive disorder? Opinion for future implications and strategies. Front Nutr 2023; 10:1205434. [PMID: 37324742 PMCID: PMC10264610 DOI: 10.3389/fnut.2023.1205434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Theresia M. D. Kaunang
- Department of Mental Health Sciences, Faculty of Medicine, Sam Ratulangi University-Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | | | - Nelly Mayulu
- Department of Nutrition, Universitas Muhammadiyah Manado, Manado, Indonesia
| | - Ivena Leonita
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Afredo Wijaya
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | | | - Dewangga Yudisthira
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - William Ben Gunawan
- Alumnus of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Athaya Febriantyo Purnomo
- Department of Urology, Faculty of Medicine, Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nindy Sabrina
- Nutrition Program, Faculty of Food Technology and Health, Sahid University of Jakarta, South Jakarta, Indonesia
| | - Nurlinah Amalia
- Biomedical Science Master Program, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
16
|
Wu X, Huang X, Ma W, Li M, Wen J, Chen C, Liu L, Nie S. Bioactive polysaccharides promote gut immunity via different ways. Food Funct 2023; 14:1387-1400. [PMID: 36633119 DOI: 10.1039/d2fo03181g] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Numerous kinds of bioactive polysaccharides are identified as having intestinal immunomodulatory activity; however, the ways in which the different polysaccharides work differ. Therefore, we selected nine representative bioactive polysaccharides, including xanthan gum, inulin, guar gum, arabinogalactan, carrageenan, glucomannan, araboxylan, xylan, and fucoidan, and compared their intestinal immunomodulatory mechanisms. A cyclophosphamide (CTX)-induced immunosuppressed model was used in this experiment, and the effects of these polysaccharides on the number of T cells in the intestinal mucosa, expression of transcription factors and inflammatory factors, intestinal metabolome and gut microbiota were compared and discussed. The results revealed that the nine polysaccharides promote intestinal immunity in different ways. In detail, guar gum, inulin and glucomannan better alleviated immune suppression in intestinal mucosal T cells. Inulin improved the intestinal microenvironment by significantly upregulating the abundance of Lactobacillus and Monoglobus and promoted short chain fatty acid (SCFA) production. Fucoidan and carrageenan promoted the colonization of the beneficial bacteria Rikenella and Roseburia. In addition, fucoidan, inulin and carrageenan inhibited the colonization of harmful bacteria Helicobacter, upregulated the abundance of Clostridia_UCG-014 and alleviated the accumulation of amino acids, bile acids and indoles in the large intestine. In conclusion, our study uncovered the different intestinal immunomodulatory mechanisms of the different polysaccharides and provided a guideline for the development of superior intestinal immunomodulatory polysaccharides.
Collapse
Affiliation(s)
- Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Liandi Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
17
|
Xie NN, Wu CY, Ge Q, Zhou J, Long F, Mao Q, Li SL, Shen H. Structure-specific antitumor effects and potential gut microbiota-involved mechanisms of ginseng polysaccharides on B16F10 melanoma-bearing mice. Food Funct 2023; 14:796-809. [PMID: 36607268 DOI: 10.1039/d2fo03383f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ginseng polysaccharides (GPs) have shown gut microbiota-related antitumor effects. However, the relation between their structures and antitumor functions remains unknown. Here, crude polysaccharide (GP-c) and its fractions neutral polysaccharide (GP-n) and pectin (GP-a) were prepared for structure characterization and anti-B16F10 melanoma effect evaluation, and their influence on gut microbiota diversities and short-chain fatty acids (SCFAs) were also analyzed. Spearman correlations among the altered gut microbiota, SCFAs, and antitumor effects were conducted to elucidate the structure-function relationships. It was shown that the structures of GP-c, GP-n, and GP-a varied in monosaccharide composition and molecular weight distribution. GP-n and GP-c showed anti-melanoma effects, whereas GP-a promoted its growth slightly. GP-n and GP-c restored SCFAs levels such as acetic acid and butyric acid; moreover, it improved the gut microbiota ecosystem by upregulating the abundance of Allobaculum and Bifidobacterium. However, the restoration effect of GP-a was weak, or even worse. In addition, these two bacteria were negatively correlated with the tumor weight and related with the altered SCFAs. In conclusion, GP-n is essential for the anti-melanoma effects of GP, and the potential mechanisms might be related with its specific regulation of Allobaculum and Bifidobacterium abundance, and tumor-associated SCFAs levels. The outcomes highlighted here enable a deeper insight into the structure-function relationship of GP and propose new opinions on its antitumor effect.
Collapse
Affiliation(s)
- Ni-Na Xie
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China.
| | - Cheng-Ying Wu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| | - Qiong Ge
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China.
| | - Jing Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| | - Fang Long
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| | - Song-Lin Li
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| | - Hong Shen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China.
| |
Collapse
|
18
|
Lim SJ, Kwon HC, Shin DM, Choi YJ, Han SG, Kim YJ, Han SG. Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods 2023; 12:foods12010189. [PMID: 36613403 PMCID: PMC9818824 DOI: 10.3390/foods12010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
Pistachio milk (PM), an extraction product of pistachio, is protein- and fat-dense food. Short-chain fatty acids (SCFAs) are known for inducing cytotoxicity and apoptosis in colon carcinoma cells. This study aimed to find an optimal combination of probiotics that can produce a higher amount of SCFAs in PM. In addition, the anti-cancer effect of fermented PM on human colon carcinoma cells (Caco-2) was determined. The combinations of probiotics were as follows: Streptococcus thermophilus + Lactobacillus bulgaricus (C); C + Lactobacillus acidophilus (C-La); C + Lactobacillus gasseri (C-Lg); C + Bifidobacterium bifidum (C-Bb). The results indicated that fermented PM was produced after a short fermentation time in all the probiotics combinations. C-Bb produced up to 1.5-fold more acetate than the other probiotics combinations did. A significant amount of cytotoxicity, i.e., 78, 56, and 29% cell viability was observed in Caco-2 cells by C-Bb-fermented PM at 1, 2.5 and 5%, respectively. C-Bb-fermented PM (5%) induced early and late apoptosis up to 6-fold. Additionally, Caco-2 cells treated with C-Bb-fermented PM significantly induced the downregulation of α-tubulin and the upregulation of cleaved caspase-3, as well as nuclear condensation and fragmentation. Our data suggest that fermented PM, which is rich in acetate, may have the potential as a functional food possessing anti-colon cancer properties.
Collapse
Affiliation(s)
- Su-Jin Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong-Jun Choi
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seo-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
19
|
Wei G, Chitrakar B, Regenstein JM, Sang Y, Zhou P. Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Res Int 2023; 163:112183. [PMID: 36596125 DOI: 10.1016/j.foodres.2022.112183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
20
|
Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol Ther 2022; 239:108273. [DOI: 10.1016/j.pharmthera.2022.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
|
21
|
Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022; 11:2863. [PMID: 36140990 PMCID: PMC9498509 DOI: 10.3390/foods11182863] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and their metabolites could play an important role in health and diseases of human beings. Short-chain fatty acids (SCFAs) are mainly produced by gut microbiome fermentation of dietary fiber and could also be produced by bacteria of the skin and vagina. Acetate, propionate, and butyrate are three major SCFAs, and their bioactivities have been widely studied. The SCFAs have many health benefits, such as anti-inflammatory, immunoregulatory, anti-obesity, anti-diabetes, anticancer, cardiovascular protective, hepatoprotective, and neuroprotective activities. This paper summarizes health benefits and side effects of SCFAs with a special attention paid to the mechanisms of action. This paper provides better support for people eating dietary fiber as well as ways for dietary fiber to be developed into functional food to prevent diseases.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Liangkai W, Gaifeng H, Cimin L, Fengming C, Xinliang B, Rui L, Yulong Y. Dietary silymarin ameliorating reproductive and lactation performance of sows via regulating body antioxidant and metabolism. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
24
|
Zhang Y, Feng D, Zeng Y, Zhang H, Du X, Fu Y, Wang X, Lian D, Wang R, Xiao H, Wei N, Zhai F, Liu H. Xuedan Sustained Release Pellets Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis in Rats by Targeting Gut Microbiota and MAPK Signaling Pathways. Front Pharmacol 2022; 13:833972. [PMID: 35652042 PMCID: PMC9149600 DOI: 10.3389/fphar.2022.833972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cucurbitacins have a variety of bioactivities, such as anticancer, anti-inflammatory, antidepressant-like, and antiviral effects, but their pharmacological effect in ulcerative colitis (UC) has not been reported until now. Thus, this study aims to investigate the preventive effects of Xuedan sustained release pellets (XSPs) on UC rats and the underlying mechanisms. XSPs were prepared by extracting cucurbitacins from Hemsleya. Experimental UC rats were induced by the intake of 4% dextran sulfate sodium (DSS) for a week and treated with different doses of XSP (0.95, 1.90, and 3.8 mg/kg). The body weight, colon length, disease activity index (DAI), and histological changes of colonic tissue were measured. In addition, the expressions of pro-inflammatory cytokines were detected by using the enzyme-linked immunosorbent assay. Pathways involved in the intestinal inflammation were targeted by RNA-sequencing. Moreover, the changes of gut microbial diversity and composition were analyzed by the 16SrNA analysis and the contents of short-chain fatty acids (SCFAs) were detected by GC-MS. The results revealed that XSP intervention greatly restored the weight loss and colonic shortening (p < 0.05) and reduced the raised DAI scores, myeloperoxidase, and nitric oxide activities in UC in rats (p < 0.05). XSP administration also downregulated the protein levels of pro-inflammatory factors IL-1β, IL-6, and TNF-α. Notably, it was found that XSP considerably suppressed the activation of the MAPK signaling pathway. In addition, XSP treatment improved the balance of gut microbiota that was disturbed by DSS. The beneficial bacteria Lachnospiraceae_NK4A136 group and Lactobacillus at the genus level significantly increased in the XSP group, which had decreased with the use of DSS (p < 0.05). Pathogenic bacteria including Escherichia-Shigella and Bacteroides in UC in rats were reduced by XSP intervention. Furthermore, XSP significantly elevated the production of SCFAs in UC in rats (p < 0.05). These alterations in inflammatory status were accompanied with changes in gut microbiota diversity and SCFA production. In conclusion, XSP exhibited protective effects against DSS-induced UC in rats. XSP treatment decreased inflammation via modulation of gut microbiota composition and SCFA production.
Collapse
Affiliation(s)
- Yingchun Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Dan Feng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yue Zeng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xiaohong Du
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yang Fu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xinhui Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Dingyue Lian
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Ruikang Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Hongyu Xiao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Ning Wei
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Fuqiang Zhai
- Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hanru Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Li XL, Cui JJ, Zheng WS, Zhang JL, Li R, Ma XL, Lin M, Guo HH, Li C, Yu XY, Du P, Zhao LM, He S, Lan P, Jiang JD, Che Y, Wang LL. Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105021. [PMID: 35088527 DOI: 10.1002/smll.202105021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.
Collapse
Affiliation(s)
- Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Jin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Miao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Peng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shuwang He
- College of Pharmacy, Shandong University, Beijing, 250012, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
26
|
Petit J, de Bruijn I, Goldman MRG, van den Brink E, Pellikaan WF, Forlenza M, Wiegertjes GF. β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Front Immunol 2022; 12:761820. [PMID: 35069532 PMCID: PMC8770818 DOI: 10.3389/fimmu.2021.761820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Dietary supplementation of fish with β-glucans has been commonly associated with immunomodulation and generally accepted as beneficial for fish health. However, to date the exact mechanisms of immunomodulation by β-glucan supplementation in fish have remained elusive. In mammals, a clear relation between high-fibre diets, such as those including β-glucans, and diet-induced immunomodulation via intestinal microbiota and associated metabolites has been observed. In this study, first we describe by 16S rRNA sequencing the active naive microbiota of common carp intestine. Based on the abundance of the genus Bacteroides, well known for their capacity to degrade and ferment carbohydrates, we hypothesize that common carp intestinal microbiota could ferment dietary β-glucans. Indeed, two different β-glucan preparations (curdlan and MacroGard®) were both fermented in vitro, albeit with distinct fermentation dynamics and distinct production of short-chain fatty acids (SCFA). Second, we describe the potential immunomodulatory effects of the three dominant SCFAs (acetate, butyrate, and propionate) on head kidney leukocytes, showing effects on both nitric oxide production and expression of several cytokines (il-1b, il-6, tnfα, and il-10) in vitro. Interestingly, we also observed a regulation of expression of several gpr40L genes, which were recently described as putative SCFA receptors. Third, we describe how a single in vivo oral gavage of carp with MacroGard® modulated simultaneously, the expression of several pro-inflammatory genes (il-1b, il-6, tnfα), type I IFN-associated genes (tlr3.1, mx3), and three specific gpr40L genes. The in vivo observations provide indirect support to our in vitro data and the possible role of SCFAs in β-glucan-induced immunomodulation. We discuss how β-glucan-induced immunomodulatory effects can be explained, at least in part, by fermentation of MacroGard® by specific bacteria, part of the naive microbiota of common carp intestine, and how a subsequent production of SFCAs could possibly explain immunomodulation by β-glucan via SCFA receptors present on leukocytes.
Collapse
Affiliation(s)
- Jules Petit
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology-The Royal Netherlands Academy of Arts and Sciences, (NIOO-KNAW), Wageningen, Netherlands
| | - Mark R G Goldman
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erik van den Brink
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wilbert F Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
27
|
Huang Y, Zhu N, Zheng X, Liu Y, Lu H, Yin X, Hao H, Tan Y, Wang D, Hu H, Liang Y, Li X, Hu Z, Yin Y. Intratumor Microbiome Analysis Identifies Positive Association Between Megasphaera and Survival of Chinese Patients With Pancreatic Ductal Adenocarcinomas. Front Immunol 2022; 13:785422. [PMID: 35145519 PMCID: PMC8821101 DOI: 10.3389/fimmu.2022.785422] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Human tumors harbor a plethora of microbiota. It has been shown that the composition and diversity of intratumor microbiome are significantly associated with the survival of patients with pancreatic ductal adenocarcinoma (PDAC). However, the association in Chinese patients as well as the effect of different microorganisms on inhibiting tumor growth are unclear. In this study, we collected tumor samples resected from long-term and short-term PDAC survivors and performed 16S rRNA amplicon sequencing. We found that the microbiome in samples with different survival time were significantly different, and the differential bacterial composition was associated with the metabolic pathways in the tumor microenvironment. Furthermore, administration of Megasphaera, one of the differential bacteria, induced a better tumor growth inhibition effect when combined with the immune checkpoint inhibitor anti-programmed cell death-1 (anti-PD-1) treatment in mice bearing 4T1 tumor. These results indicate that specific intratumor microbiome can enhance the anti-tumor effect in the host, laying a foundation for further clarifying the underlying detailed mechanism.
Collapse
Affiliation(s)
- Yu Huang
- Department of General Surgery, No.903 Hospital of People’s Liberation Army Joint Logistic Support Forcel, Hangzhou, China
| | - Ning Zhu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xing Zheng
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yanhong Liu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Haopeng Lu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xiaochen Yin
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Huaijie Hao
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yan Tan
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Dongjie Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Hu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yong Liang
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xinxing Li
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqian Hu
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yiming Yin
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| |
Collapse
|
28
|
|
29
|
|
30
|
Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J Immunol Res 2021; 2021:8030297. [PMID: 34337079 PMCID: PMC8324359 DOI: 10.1155/2021/8030297] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.
Collapse
|
31
|
Liao JX, Chen YW, Shih MK, Tain YL, Yeh YT, Chiu MH, Chang SKC, Hou CY. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int J Mol Sci 2021; 22:5273. [PMID: 34067838 PMCID: PMC8156118 DOI: 10.3390/ijms22105273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Resveratrol can affect the physiology or biochemistry of offspring in the maternal-fetal animal model. However, it exhibits low bioavailability in humans and animals. Fifteen-week SD pregnant female rats were orally administered bisphenol A (BPA) and/or resveratrol butyrate ester (RBE), and the male offspring rats (n = 4-8 per group) were evaluated. The results show that RBE treatment (BPA + R30) compared with the BPA group can reduce the damage caused by BPA (p < 0.05). RBE enhanced the expression of selected genes and induced extramedullary hematopoiesis and mononuclear cell infiltration. RBE increased the abundance of S24-7 and Adlercreutzia in the intestines of the male offspring rats, as well as the concentrations of short-chain fatty acids (SCFAs) in the feces. RBE also increased the antioxidant capacity of the liver by inducing Nrf2, promoting the expression of HO-1, SOD, and CAT. It also increased the concentration of intestinal SCFAs, enhancing the barrier formed by intestinal cells, thereby preventing BPA-induced metabolic disruption in the male offspring rats, and reduced liver inflammation. This study identified a potential mechanism underlying the protective effects of RBE against the liver damage caused by BPA exposure during the peri-pregnancy period, and the influence of the gut microbiota on the gut-liver axis in the offspring.
Collapse
Affiliation(s)
- Jin-Xian Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, 812301 No.1, Songhe Rd., Xiaogang Dist., Kaohsiung 833, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Min-Hsi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA;
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| |
Collapse
|
32
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
33
|
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2020; 62:3345-3369. [PMID: 33356449 DOI: 10.1080/10408398.2020.1865260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive micro- and macro-molecules (postbiotics) derived from gut beneficial microbes are among natural chemical compounds with medical significance. Currently, a unique therapeutic strategy has been developed with an emphasis on the small molecular weight biomolecules that are made by the microbiome, which endow the host with several physiological health benefits. A large number of postbiotics have been characterized, which due to their unique pharmacokinetic properties in terms of controllable aspects of the dosage and various delivery routes, could be employed as promising medical tools since they exert both prevention and treatment strategies in the host. Nevertheless, there are still main challenges for the in vivo delivery of postbiotics. Currently, scientific literature confirms that targeted delivery systems based on nanoparticles, due to their appealing properties in terms of high biocompatibility, biodegradability, low toxicity, and significant capability to carry both hydrophobic and hydrophilic postbiotics, can be used as a novel and safe strategy for targeted delivery or/and release of postbiotics in various (oral, intradermal, and intravenous) in vivo models. The in vivo delivery of postbiotics are in their emerging phase and require massive investigation and randomized double-blind clinical trials if they are to be applied extensively as treatment strategies. This manuscript provides an overview of the various postbiotic metabolites derived from the gut beneficial microbes, their potential therapeutic activities, and recent progressions in the drug delivery field, as well as concisely giving an insight on the main in vivo delivery routes of postbiotics.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hajipour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|