1
|
Flatschacher D, Eschlböck A, Pierson S, Schreiner U, Stock V, Schiller A, Ruso D, Doppler M, Ruzsanyi V, Gründlinger M, Büschl C, Schuhmacher R, Zeilinger S. Linking a polyketide synthase gene cluster to 6-pentyl-alpha-pyrone, a Trichoderma metabolite with diverse bioactivities. Microb Cell Fact 2025; 24:89. [PMID: 40259335 PMCID: PMC12010586 DOI: 10.1186/s12934-025-02718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Members of the fungal genus Trichoderma are well-known for their mycoparasitic and plant protecting activities, rendering them important biocontrol agents. One of the most significant specialized metabolites (SMs) produced by various Trichoderma species is the unsaturated lactone 6-pentyl-alpha-pyrone (6-PP). Although first identified more than 50 years ago and having pronounced antifungal and plant growth-promoting properties, the biosynthetic pathway of 6-PP still remains unresolved. RESULTS Here, we demonstrate that 6-PP is biosynthesized via the polyketide biosynthesis pathway. We identified Pks1, an iterative type I polyketide synthase, as crucial for its biosynthesis in Trichoderma atroviride, a species recognized for its prominent 6-PP production abilities. Phylogenetic and comparative genomic analyses revealed that the pks1 gene is part of a biosynthetic gene cluster conserved in those Trichoderma species that are known to produce 6-PP. Deletion of pks1 caused a complete loss of 6-PP production in T. atroviride and a significant reduction in antifungal activity against Botrytis cinerea and Rhizoctonia solani. Surprisingly, the absence of pks1 led to enhanced lateral root formation in Arabidopsis thaliana during interaction with T. atroviride. Transcriptomic analysis revealed co-regulation of pks1 with adjacent genes, including candidates coding for a C3H1-type zinc finger protein and lytic polysaccharide monooxygenase, suggesting coordination between 6-PP biosynthesis and environmental response mechanisms. CONCLUSION Our findings establish pks1 as an essential gene for 6-PP biosynthesis in T. atroviride, providing novel insights into the production of one of the most significant compounds of this mycoparasite. These findings may pave the way for the development of improved biocontrol agents and the application of 6-PP as potent biopesticide contributing to an eco-friendly and sustainable way of plant disease management.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Siebe Pierson
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Valentina Stock
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Arne Schiller
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - David Ruso
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Maria Doppler
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Mario Gründlinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Christoph Büschl
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Fernandes KRP, de Souza AQL, Barbosa AN, Souza Rodrigues RD, Sevalho EDS, de Oliveira MR, de Alencar LF, Bianco EA, Vasconcelos ADS, Melo LDS, Araújo da Silva FM, Couceiro PRDC, Silva GFD, Cruz JCD, Sousa TF, de Queiroz CA, Silva FHD, Evangelista DE, Pereira JO, Hanada RE, Filho ER, de Souza ADL. Chemotaxonomic Profiling of Trichoderma Species From the Brazilian Amazon. Chem Biodivers 2025:e202500395. [PMID: 40192275 DOI: 10.1002/cbdv.202500395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Trichoderma is a genus of interest to researchers from various areas due to its species diversity, biotechnological importance, and applications. The present study aimed at the grouping and characterization of 37 Trichoderma species through morphological, molecular, and chemotaxonomic analysis of the fungus obtained in different tropical habitats. The lineages were evaluated with concatenated phylogenetic analysis through the sequences of internal transcribed spacer (ITS) regions and portions of the translation elongation factor 1-α gene (TEF1-α). From the 37 strains of Trichoderma, 9 species groups were obtained, namely, T. asperellum (2), T. harzianum (9), T. lentiforme (12), T. spirale (1), T. koningiopsis (2), T. atroviride (3), T. asperelloides (2), T. afroharzianum (4), and T. reesei (2). A Clonostachys rosea strain was used as an outgroup. T. lentiforme and T. harzianum stood out, with more than 50% of all strains studied and identified. The work done indicates the high diversity of Trichoderma species from the Amazon. The chemometric data showed the chemical correlations and intraspecific similarities among the species of Trichoderma through its intracellular and extracellular metabolites, as the main ions are in common and chemical proximity between species of the same clade.
Collapse
Affiliation(s)
- Kamila Rangel Primo Fernandes
- Programa de Pós-Graduação em Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antonia Queiroz Lima de Souza
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Anderson Nogueira Barbosa
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Rafael De Souza Rodrigues
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Elison de Souza Sevalho
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marta Rodrigues de Oliveira
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Lane Firmino de Alencar
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Eliana Amaro Bianco
- Programa de Pós-Graduação em Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | - Laryssa da Silva Melo
- Laboratório de Fitopatologia, Instituto Nacional de Pesquisas na Amazônia, Manaus, Amazonas, Brazil
| | | | | | | | | | | | | | - Flavio Henrique da Silva
- Laboratório de Bioquímica Micromolecular de Microrganismos (LaBioMMi), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - José Odair Pereira
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Rogério Eiji Hanada
- Laboratório de Fitopatologia, Instituto Nacional de Pesquisas na Amazônia, Manaus, Amazonas, Brazil
| | - Edson Rodrigues Filho
- Laboratório de Bioquímica Micromolecular de Microrganismos (LaBioMMi), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Laboratório de Bioensaios e Microrganismos da Amazônia (LaBMicrA), Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Hurtado-Navarro M, Garcia-Ibañez P, Pascual JA, Carvajal M. Interaction of beneficial microorganisms and phenolic compounds in hydroponically cultivated tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109793. [PMID: 40106932 DOI: 10.1016/j.plaphy.2025.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The combined effects of applying extracts derived from plant debris and biostimulant microorganisms have not been thoroughly investigated. Furthermore, the interaction between these components and plants remains poorly understood. Utilizing the commercial cherry tomato (Solanum lycopersicum cv. Unidarkwin) as a study model, we conducted a hydroponic experiment in a controlled growth chamber to assess the impact of foliar application of phenolic compounds extracted from Vitis vinifera leaves, combined with the inoculation of Trichoderma harzianum or Bacillus velezensis via roots. Plant growth, gas exchange and root architecture were measured and mineral nutrients, chlorophylls and phenolic compounds were analysed. The results showed that phenolic compounds produced an increase in root fresh weight, by the enhanced root length. This could be related to the improved transpiration rate, sub-stomatal CO2 concentration, phosphorus and iron concentration in the roots. A positive effect was also found by B. velezensis application in root length development that could be related to the increase in hydraulic conductance. However, T. harzianum inoculation only showed higher root diameter and volume in combination to phenolic application, but with no effect on growth. The absence of caffeic acid and sinapic acid in the Hoagland solution used in the B. velezensis treatments and of chlorogenic acid in all treatments with added microorganisms suggested their metabolization. Therefore, our findings establish that the phenolic exudation could regulate the interaction of microorganism with plants resulting in beneficial physiological changes.
Collapse
Affiliation(s)
- María Hurtado-Navarro
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain; Enzymology and Bioremediation of Soils and Organic Waste Group, Soil and Water Conservation and Organic Waste Management Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Jose Antonio Pascual
- Enzymology and Bioremediation of Soils and Organic Waste Group, Soil and Water Conservation and Organic Waste Management Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Evren G, Korkom Y, Saboori A, Cakmak I. Exploring the potential of Trichoderma secondary metabolites against Tetranychus urticae (Acari: Tetranychidae). J Invertebr Pathol 2025; 211:108299. [PMID: 40064463 DOI: 10.1016/j.jip.2025.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to determine 1) the effects of fungal filtrates containing secondary metabolites from five different isolates of four different Trichoderma species (Trichoderma afroharzianum, T. guizhouense, T. harzianum, and T. virens) grown in different liquid media [malt extract broth (MEB), potato dextrose broth (PDB), yeast peptone glucose (YPG), minimal medium (MM), czapek-dox broth (CDB)] on Tetranychus urticae female, and 2) the effects of Trichoderma filtrates obtained from YPG liquid media on the different biological stages of T. urticae in Petri dish and pot experiments. Results showed that the Trichoderma filtrates produced in the YPG medium exhibited the highest mortality rate of 67.6-83.1 % against T. urticae females at 7 days post-application (dpa) compared to other media. In Petri dish experiments, the mortality rates of Trichoderma filtrates on egg, larva, protonymph and deutonymph stages of T. urticae at 7 dpa were 54.0-57.8 %, 71.5-76.0 %, 72.5-79.8 % and 72.8-80.8 %, respectively. Significant differences were observed between the Trichoderma species and control (P < 0.01) but not among the Trichoderma species (P > 0.05). Trichoderma afroharzianum (83 %) and T. virens (84 %) showed the highest mortality rate on T. urticae adult females at 7 dpa and statistically significant differences were observed among Trichoderma species. Pot experiments revealed that the number of viable T. urticae eggs and mobile stages was significantly lower for T. afroharzianum (110.3 eggs, 105.8 mobile stages) and T. virens (118.5 eggs, 115.3 mobile stages) compared to the control (518.9 eggs, 452.5 mobile stages) at 7 dpa. Significant differences were observed between Trichoderma species and control, but not between T. afroharzianum and T. virens. These findings suggest that Trichoderma secondary metabolites are highly effective against economically important pest such as T. urticae, demonstrating their potential as bio-acaricides. Future research should focus on identifying the specific acaricidal compound(s) within these filtrates.
Collapse
Affiliation(s)
- Gökçenur Evren
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| | - Yunus Korkom
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| | - Alireza Saboori
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye; University of Tehran, Faculty of Agriculture, Department of Plant Protection, Jalal Afshar Zoological Museum, Karaj, Iran.
| | - Ibrahim Cakmak
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| |
Collapse
|
5
|
Zhou X, Liao L, Chen K, Yin Y, Qiu L, Li X, Li Q, Yang S. Diversity and composition of soil microbial communities in the rhizospheres of late blight-resistant tomatoes after Phytophthora infestans inoculation. FRONTIERS IN PLANT SCIENCE 2025; 16:1556928. [PMID: 40123946 PMCID: PMC11925920 DOI: 10.3389/fpls.2025.1556928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Late blight caused by the oomycete Phytophthora infestans poses a severe threat to global tomato (Solanum lycopersicum L.) production. While genetic resistance forms the cornerstone of disease control, the mechanisms underlying cultivar-specific resistance, particularly their interactions with rhizosphere microbiomes, remain poorly understood. To elucidate the mechanisms of tomato cultivar resistance to late blight and screen out antagonistic microorganisms against P. infestans, we investigated the microbial compositions in the rhizospheres of tomato cultivars with different late blight-resistance levels under both natural and P. infestans-inoculated conditions. Considerable differences in soil microbial diversity and composition of rhizospheres were found between late blight-resistant and -susceptible tomato cultivars. Under natural conditions, the resistant tomato cultivar exhibited higher bacterial diversity and lower fungal diversity than that of the susceptible cultivar. Additionally, after P. infestans inoculation, both the resistant and susceptible cultivars showed enrichment of microorganisms with potential antagonistic effects in the rhizospheres. Among them, bacterial genera, such as Pseudomonas, Azospirillum, and Acidovorax, and fungal genera, including Phoma, Arthrobotrys, Pseudallescheria, and Pseudolabrys, were enriched in the rhizospheres of the late blight-resistant tomato cultivar. In contrast, bacterial genera, including Flavobacterium, Pseudolabrys, and Burkholderia-Caballeronia-Paraburkholderia, and the Trichoderma fungal genus were enriched in the rhizospheres of the late blight-susceptible tomato cultivar. Simultaneously, the enrichment of pathogenic microorganisms, such as Neocosmospora and Plectosphaerella, was also detected in the rhizospheres of the susceptible tomato cultivar. Moreover, no enrichment of pathogenic microorganisms occurred in the late blight-resistant tomato cultivar after P. infestans inoculation. These findings suggest that these traits serve as effective defense mechanisms against pathogen invasion in resistant tomato cultivar. Overall, this study provides a comprehensive analysis of the rhizosphere microbial community structures in late blight-resistant and -susceptible tomato cultivars under natural conditions and their response following pathogen inoculation. Additionally, potential antagonistic microorganisms against late blight were also identified. The findings offer valuable insights for effective late blight management in tomatoes and contribute to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shangdong Yang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National
Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Roopkhan N, Chaianunporn T, Chareonsudjai S, Chaianunporn K. Inhibitory effects of Trichoderma asperellum culture filtrates on pathogenic bacteria, Burkholderia pseudomallei. PeerJ 2025; 13:e19051. [PMID: 40034672 PMCID: PMC11874947 DOI: 10.7717/peerj.19051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Background Burkholderia pseudomallei is a soil- and water-dwelling bacterium that causes the life-threatening infection melioidosis. Patients typically acquire this infection through environmental exposure, so reducing B. pseudomallei levels in the environment could mitigate the risk of infection. Trichoderma asperellum is a biological control agent that synthesizes a diverse range of antimicrobial substances targeting other microorganisms. This study therefore examined the antibacterial and anti-biofilm activities of T. asperellum culture filtrate against B. pseudomallei. Methods The antibacterial activities of T. asperellum culture filtrates, collected at various time intervals, were assessed against B. pseudomallei using the agar well diffusion method. Subsequently, the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and anti-biofilm activities of the culture filtrate exhibiting the highest inhibitory effect were determined. Bactericidal efficacy was further evaluated via a time-kill assay. The mechanisms underlying inhibition were then investigated using scanning electron microscopy and crystal violet uptake assays. Results Filtrate collected from 7-day old cultures of T. asperellum (TD7) exhibited the strongest inhibitory effect on B. pseudomallei, with an inhibition zone of 30.33 ± 0.19 mm. The MIC of TD7 against B. pseudomallei was 7.81 ± 0.00 mg/mL and the MBC ranged from 7.81 ± 0.00 to 11.72 ± 1.75 mg/mL. Time-kill studies with TD7 confirmed its bactericidal activity, with complete elimination of B. pseudomallei occurring within 30 min treatment at 62.48 mg/mL (8xMIC) and 24 h treatment at 7.81 mg/mL (1xMIC). At a concentration of 7.81 mg/mL, TD7 also significantly reduced B. pseudomallei biofilm formation. Scanning electron microscopy revealed surface roughening and cell shrinkage of TD7-treated B. pseudomallei. TD7-treated bacteria were also found to absorb more crystal violet dye than untreated cells, indicating that TD7 might inhibit and kill B. pseudomallei by disrupting cell membrane permeability. Conclusions Our findings demonstrate that T. asperellum culture filtrates possess bactericidal activity and effectively disrupt biofilm formation by B. pseudomallei. This suggests that T. asperellum could potentially be used to reduce the presence of B. pseudomallei in the environment and, consequently, lower the incidence of melioidosis.
Collapse
Affiliation(s)
- Naritsara Roopkhan
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thotsapol Chaianunporn
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | |
Collapse
|
7
|
Feng Y, Shuai X, Chen J, Zhang Q, Jia L, Sun L, Su Y, Su Y, Dong G, Liu T, Long G. Unveiling the Genomic Features and Biocontrol Potential of Trichoderma hamatum Against Root Rot Pathogens. J Fungi (Basel) 2025; 11:126. [PMID: 39997420 PMCID: PMC11856919 DOI: 10.3390/jof11020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium species are among the most significant pathogens causing root rot in Panax notoginseng. In this study, a strain of Trichoderma hamatum was isolated from the rhizosphere soil of P. notoginseng and subjected to whole-genome sequencing. Plate confrontation experiments were conducted to investigate the antagonistic effects of T. hamatum against Fusarium oxysporum, Fusarium solani, and Fusarium acutatum, the primary Fusarium species causing root rot. Whole-genome sequencing revealed 10,774 predicted genes in T. hamatum, of which 454 were associated with carbohydrate-active enzymes (CAZymes) involved in fungal cell wall degradation. Additionally, 11 biosynthetic gene clusters (BGCs) associated with antimicrobial production were identified, highlighting the biocontrol potential of T. hamatum. In plate confrontation experiments, T. hamatum showed substantial inhibition rates of 68.07%, 70.63%, and 66.12% against F. oxysporum, F. solani, and F. acutatum, respectively. Scanning electron microscopy suggested the hyperparasitism of T. hamatum against F. solani, which was characterized by spore production that adhered to the pathogen, thereby inhibiting its growth. These findings provide a theoretical foundation to enhance understanding of the biological control mechanisms of T. hamatum, supporting its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhou Feng
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Xinyi Shuai
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Jili Chen
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Qing Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Lijie Jia
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Luzhi Sun
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Yunxia Su
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Yanyan Su
- Amway China Botanical R&D Center, Wuxi 214115, China; (Y.S.); (G.D.)
| | - Gangqiang Dong
- Amway China Botanical R&D Center, Wuxi 214115, China; (Y.S.); (G.D.)
| | - Tao Liu
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Díaz de la Osa A, Almenares Casanova M, Fernández Millares B, Aguado Casas ME, Rojas L, Zeilinger S, Hernández-Rodríguez A. Secondary metabolites and extracellular proteases contribute to the antagonistic action of indigenous Trichoderma strains against Botrytis cinerea. Fungal Biol 2025; 129:101530. [PMID: 39826978 DOI: 10.1016/j.funbio.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
The aim of this work is to evaluate different molecular strategies deployed by indigenous isolates of Trichoderma in their interaction with the phytopathogen Botrytis cinerea. In vitro antagonism assays, determination of volatile and diffusible compounds, and the relative expression of the prb1 gene, which codes for an extracellular protease, before and during the stage of direct contact between the two fungi, were carried out; the characterization of this protease was also performed. All 17 Trichoderma strains tested showed high levels of inhibition against B. cinerea growth in dual culture, with overgrowth of antagonist colonies on top of pathogen colonies being observed in most cases. Pathogen growth inhibition by antagonist-released volatile compounds ranged from 17 to 100 %, while the inhibition linked to the production of diffusible compounds ranged from 13 to 100 %. The prb1 gene was shown to be three-fold upregulates compared to growth alone before direct contact between the two fungi was established and then its transcript levels declined again at the direct contact stage. In the Trichoderma culture supernatant, the presence of elastase-type serine proteases (SP) associated with the initiation of the mycoparasitism process could be observed.
Collapse
Affiliation(s)
- A Díaz de la Osa
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, San Lázaro & L, Vedado, Havana, Cuba
| | - M Almenares Casanova
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, San Lázaro & L, Vedado, Havana, Cuba
| | - B Fernández Millares
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, San Lázaro & L, Vedado, Havana, Cuba
| | - M E Aguado Casas
- Protein Studies Centre, Faculty of Biology, University of Havana, 25th st. #455, Vedado, Havana, Cuba
| | - L Rojas
- Protein Studies Centre, Faculty of Biology, University of Havana, 25th st. #455, Vedado, Havana, Cuba
| | - S Zeilinger
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria, 9
| | - A Hernández-Rodríguez
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, San Lázaro & L, Vedado, Havana, Cuba.
| |
Collapse
|
9
|
Gu A, Lin FL, Lu CK, Yeh TW, Chen YF, Wu HC, Lee TH. New acorane-sesequiterpenes and anti-retinoblastoma constituents from the marine algicolous fungus Trichoderma harzianum NTU2180 guided by molecular networking strategy. BOTANICAL STUDIES 2025; 66:2. [PMID: 39808245 PMCID: PMC11732828 DOI: 10.1186/s40529-024-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study. RESULTS The feature-based molecular networking (FBMN) analysis showed that T. harzianum NTU2180 fermented on germinated brown rice (GBR) produced more terpenoids. Here, two new acorane-sesequiterpenes, trichospirols A (1) and B (2), and 12 known compounds (3 - 14) were isolated from the EtOAc layer of T. harzianum NTU2180 fermentation on GBR. Structures of these compounds were determined through NMR, UV, IR, and MS analyses. The absolute configuration of trichospirols A (1) was also elucidated by x-ray with Cu K-α radiation. Among them, six compounds (1, 2, 3, 4, 5, and 11) were annotated as terpenoids by the NPClassifier on FBMN. 5-Hydroxy-3-hydroxmethyl-2-methyl-7-methoxychromone (7) and ergosterol peroxide (11) showed significant anti-angiogenic activity in ex vivo experiments with respective 0.57 ± 0.12- and 0.20 ± 0.12-fold changes. In addition, compound 11 displayed cytotoxicity against Y79 retinoblastoma cells with IC50 value of 35.3 ± 6.9 µM. CONCLUSIONS The current study utilizes FBMN concept with OSMAC approach to accelerate the exploration of potential metabolites of the fungus Trichoderma harzianum NTU2180. Through a series of FBMN-guided isolation and purification, two new acorane-sesequiterpenes and 12 known compounds were obtained. The ex vivo and in vitro experiments were evaluated to assess anticancer isolates. It is worth noting that compound 11 was identified as a dual inhibitor targeting both angiogenesis and proliferation of retinoblastomas. Altogether, the results revealed the novel potential of T. harzianum for developing natural therapeutics against retinoblastomas.
Collapse
Affiliation(s)
- Andrea Gu
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist, Taipei, 106319, Taiwan (R.O.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung, 807378, Taiwan
| | - Fan-Li Lin
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112304, Taiwan
| | - Tz-Wei Yeh
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist, Taipei, 106319, Taiwan (R.O.C.)
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112304, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung, 807378, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan (R.O.C.).
| | - Tzong-Huei Lee
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist, Taipei, 106319, Taiwan (R.O.C.).
| |
Collapse
|
10
|
Goh ABH, Ling JG, Kamaruddin S, Murad AMA, Abu Bakar FD. Identification and expression of a hydrophobic carboxylic acid reductase from Trichoderma virens. FEMS Microbiol Lett 2025; 372:fnaf021. [PMID: 39919763 DOI: 10.1093/femsle/fnaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025] Open
Abstract
Carboxylic acid reductases (CARs) have been garnering attention in applications for the sustainable synthesis of aldehydes. Despite numerous discoveries, not all characteristics of CAR enzymes have been extensively studied or understood. Herein, we report the discovery and expression of a new CAR enzyme (TvirCAR2) from the ascomycetous fungus, Trichoderma virens. Tvircar2 is one of the five putative CARs identified from analyses of the T. virens genome. In silico, analyses showed that TvirCAR2 has a high hydrophobicity index and that its corresponding gene is part of a biosynthetic gene cluster predicted to synthesize hybrid polyketide synthases-nonribosomal peptide synthetase secondary metabolites. TvirCAR2 was highly expressed as soluble and insoluble forms in an Escherichia coli expression host. The solubility of the purified TvirCAR2 necessitated the addition of glycerol in the purification and assay buffers. Substrate screening via molecular docking showed that benzoic acid was a suitable substrate candidate. The TvirCAR2 enzyme catalyzed the reduction of benzoic acid with a specific activity of around 1.4 µmol/h/mg. Homologs, which are predicted to exhibit similar hydrophobicity, are the CARs from Stachybotrys bisbyi (StbB), which is involved in the production of the meroterpenoid, ilicicolin B, and Trichoderma reesei (TrCAR), which is part of a similar but still uncharacterized biosynthetic gene cluster.
Collapse
Affiliation(s)
- Andrew B H Goh
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Jonathan G Ling
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shazilah Kamaruddin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Abdul M A Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Farah D Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Esquivel-Naranjo EU, Mancilla-Diaz H, Marquez-Mazlin R, Alizadeh H, Kandula D, Hampton J, Mendoza-Mendoza A. Light Regulates Secreted Metabolite Production and Antagonistic Activity in Trichoderma. J Fungi (Basel) 2024; 11:9. [PMID: 39852429 PMCID: PMC11767173 DOI: 10.3390/jof11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Secondary metabolism is one of the main mechanisms Trichoderma uses to explore and colonize new niches, and 6-pentyl-α-pyrone (6-PP) is an important secondary metabolite in this process. This work focused on standardizing a method to investigate the production of 6-PP. Ethanol and ethyl acetate were both effective solvents for quantifying 6-PP in solution and had limited solubility in potato-dextrose-broth media. The 6-PP extraction using ethyl acetate provided a rapid and efficient process to recover this metabolite. The 6-PP was readily produced during the development of Trichoderma atroviride growing in the dark, but light suppressed its production. The 6-PP was purified, and its spectrum by nuclear magnetic resonance and mass spectroscopy was identical to that of commercial 6-PP. Light also induced or suppressed other unidentified metabolites in several other species of Trichoderma. The antagonistic activity of T. atroviride was influenced by light, as suppression of plant pathogens was greater in the dark. The secreted metabolite production on potato-dextrose-agar was differentially regulated by light, indicating that Trichoderma produced several metabolites with antagonistic activity against plant pathogens. Light has an important influence on the secondary metabolism and antagonistic activity of Trichoderma, and this trait is of key relevance for selecting antagonistic Trichoderma strains for plant protection.
Collapse
Affiliation(s)
- Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.A.); (D.K.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - Hector Mancilla-Diaz
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand; (H.M.-D.); (R.M.-M.)
| | - Rudi Marquez-Mazlin
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand; (H.M.-D.); (R.M.-M.)
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.A.); (D.K.)
| | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.A.); (D.K.)
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.A.); (D.K.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (H.A.); (D.K.)
| |
Collapse
|
12
|
Chen Q, Song Y, An Y, Lu Y, Zhong G. Mechanisms and Impact of Rhizosphere Microbial Metabolites on Crop Health, Traits, Functional Components: A Comprehensive Review. Molecules 2024; 29:5922. [PMID: 39770010 PMCID: PMC11679325 DOI: 10.3390/molecules29245922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Current agricultural practices face numerous challenges, including declining soil fertility and heavy reliance on chemical inputs. Rhizosphere microbial metabolites have emerged as promising agents for enhancing crop health and yield in a sustainable manner. These metabolites, including phytohormones, antibiotics, and volatile organic compounds, play critical roles in promoting plant growth, boosting resistance to pathogens, and improving resilience to environmental stresses. This review comprehensively outlines the mechanisms through which rhizosphere microbial metabolites influence crop health, traits, functional components, and yield. It also discusses the potential applications of microbial secondary metabolites in biofertilizers and highlights the challenges associated with their production and practical use. Measures to overcome these challenges are proposed, alongside an exploration of the future development of the functional fertilizer industry. The findings presented here provide a scientific basis for utilizing rhizosphere microbial metabolites to enhance agricultural sustainability, offering new strategies for future crop management. Integrating these microbial strategies could lead to increased crop productivity, improved quality, and reduced dependence on synthetic chemical inputs, thereby supporting a more environmentally friendly and resilient agricultural system.
Collapse
Affiliation(s)
- Qingxia Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Nazir A, Puthuveettil AR, Hussain FHN, Hamed KE, Munawar N. Endophytic fungi: nature's solution for antimicrobial resistance and sustainable agriculture. Front Microbiol 2024; 15:1461504. [PMID: 39726956 PMCID: PMC11669676 DOI: 10.3389/fmicb.2024.1461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes. The present study investigates the potential of endophytic fungi as a source of novel bioactive chemicals with antibacterial capabilities. These fungi synthesize secondary metabolites such as polyketides and peptides via polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways. Notable substances, like prenylated indole alkaloids and fumaric acid, have shown promising antibacterial and antifungal properties against multidrug-resistant infectious agents. This review also emphasizes the symbiotic link between endophytes and their host plants, which is critical for secondary metabolite production. The study focuses on the significance of isolation methods for endophytes and proposes their use in for sustainable agriculture, bioremediation, and medicine. Future research combining endophytic biodiversity analysis with next-generation sequencing (NGS) and nanotechnology could provide novel techniques for combating AMR and contributing to sustainability across multiple industries.
Collapse
Affiliation(s)
- Asiya Nazir
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Abdul R. Puthuveettil
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | - Khalid E. Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Nayla Munawar
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Malik MA, Ahmad N, Bhat MY. The green shield: Trichoderma's role in sustainable agriculture against soil-borne fungal threats. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100313. [PMID: 39649407 PMCID: PMC11621600 DOI: 10.1016/j.crmicr.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Soil-borne pathogenic fungi are a major agricultural concern, leading to significant decreases in plant yield. Chemically controlling these plants imposes environmental threats that could potentially endanger both humans and other animals. Therefore, employing biological methods in plant disease control represents a more effective alternative approach. The objective of this study was to isolate Trichoderma species from soil samples and evaluate their in vitro biocontrol efficacy against fungal pathogens viz. Fusarium oxysporum, Aspergillus niger, Rhizoctonia solani, Cladosporium cladosporioides, Alternaria alternata, Penicillium citrinum, Curvularia lunata, Fusarium metavorans, Aspergillus flavus, Penicillium chrysogenum, Nigrospora sphaerica, and Fusarium solani. The biocontrol testing efficacy of the isolates against various fungal pathogens was assessed using the dual culture technique. In this investigation various Trichoderma species were isolated from 25 soil samples and were tested against 12 soil borne fungal pathogens. The radial growth inhibition of Trichoderma harzanium and Trichoderma viride varied between (20.18% to 58.13% t), (07.01% to 67.16%) respectively. Furthermore, the culture filtrates of Trichoderma species at different concentrations (5%, 10%, 15%, and 20%) caused a significant reduction in the mycelial growth of all the tested fungal pathogens. The radial growth inhibition was more by higher concentrations in comparison to low concentrations. In the light of these observations, native Trichoderma species seems to be competent biocontrol agents and provide as a sustainable method against disease caused by soil borne plant pathogens.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Nusrat Ahmad
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Mohd Yaqub Bhat
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
15
|
Arteaga-Ríos IG, Méndez-Rodríguez KB, Ocampo-Pérez R, Guerrero-González MDLL, Rodríguez-Guerra R, Delgado-Sánchez P. Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100312. [PMID: 39717210 PMCID: PMC11665370 DOI: 10.1016/j.crmicr.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Currently, the use of bio-inputs is increasing due to the need to reduce the use of agrochemicals. However, one of the limitations is to preserve the viability of the living microorganisms, so it is important to find an alternative that allows us to obtain different metabolites to produce it. We evaluated three different interactions (contact, diffusible and volatile compounds) in vitro in Arabidopsis thaliana (At) seedlings with the strain Cytobacillus firmus M10 and its filtered secondary metabolites (M10F). The results showed that the seedlings inoculated by contact with the filtrate (AtM10F) presented increases in root length (30 %) and leaf area (33 %), as well as in the volatile interaction (At/M10F) with respect to the uninoculated treatment. For both interactions, the seedlings inoculated with the bacteria by contact (AtM10) and volatile (At/M10) obtained greater biomass (48 and 57 %). Subsequently, an evaluation at the end of the A. thaliana cycle showed that the treatments obtained by contact and distance when reinoculated with the bacteria and the filtrate (AtM10, At-M10 and AtM10F) obtained 50 % more seed yield than the control treatment, while AtM10F presented 72 %, while At/M10F presented the highest no. of siliques and seeds, which increased the yield by 65 %. In the Solanum lycopersicum (Sl) experiment, the filtrate (SlM10F) showed significant differences in seedling height, leaf length and width (23, 24 and 36 %, respectively). It also promoted an increase in fresh and dry weight, producing a greater root area and larger leaves compared to the control (Sl) and the bacteria (SlM10). We performed a qualitative characterization of the secondary metabolites present in the filtrate, where we found 2,4-DTBP, sylvopinol, isophthaladehyde, and eicosane of interest with possible growth-promoting effects on A. thaliana and tomato. We identified volatile compounds present in plant-microorganism and plant-filtrate interactions as possible precursors in the induction of plant growth, among which phenols, alcohols, aldehydes, alkanes, and alkenes stand out. Most of the analyzed compounds have not been found in the literature with reports of growth promoters, is important to mention that due to their characteristic functional groups they can derive and trigger the synthesis of new molecules with agronomic application.
Collapse
Affiliation(s)
- Itzel G Arteaga-Ríos
- Facultad de Agronomía y Veterinaria. Universidad Autónoma de San Luis Potosí. Soledad de Graciano Sánchez, SLP, CP, 78321. México
| | - Karen Beatriz Méndez-Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, CP, 78210, México
| | - Raul Ocampo-Pérez
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. San Luis Potosí, SLP, CP, 78210, México
| | | | - Raúl Rodríguez-Guerra
- Campo Experimental General Terán, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Cd. General Terán. NL, CP, 67400, México
| | - Pablo Delgado-Sánchez
- Facultad de Agronomía y Veterinaria. Universidad Autónoma de San Luis Potosí. Soledad de Graciano Sánchez, SLP, CP, 78321. México
| |
Collapse
|
16
|
Huang L, Bian Q, Liu M, Hu Y, Chen L, Gu Y, Zu Q, Wang G, Guo D. Structure and Fungicidal Activity of Secondary Metabolites Isolated from Trichoderma hamatum b-3. J Fungi (Basel) 2024; 10:755. [PMID: 39590674 PMCID: PMC11595493 DOI: 10.3390/jof10110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Two new harziane diterpenes (1-2), five undescribed cyclonerane sesquiterpenes (3-7), and three known compounds, 11-cycloneren-3, 7, 10-triol (8), harziandione (9), and dehydroacetic acid (10), were isolated from Trichoderma hamatum b-3. Their structures were elucidated via comprehensive inspection of spectral evidence in HRESIMS and 1D and 2D NMR, and the absolute configuration of 1-8 was confirmed by NMR, ECD calculation, as well as Mosher's method. In vitro fungicidal activity showed that some compounds showed great inhibitory activity against pathogenic fungi, including Fusarium graminearum, Sclerotinia sclerotiorum, Botrytis cinerea, and Rhizoctonia solani, among which compound 10 showed 100% inhibition of S. sclerotiorum and B. cinerea. The in vivo activity test showed that compound 10 was 65.8% effective against B. cinerea and compound 10 can be used as a lead compound for the development of biopesticides that inhibit B. cinerea. This study elucidated the bioactivity of secondary metabolites of T. hamatum and indicated the direction for the subsequent development of the biological control activity of T. hamatum.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Mengdan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yucheng Gu
- Syngenta Jealott’s Hill International Research Centre, Syngenta, Berkshire RG42 6EY, UK
| | - Qiwei Zu
- Department of Biochemistry, College of Art & Science, Baylor University, Waco, TX 76706, USA
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
17
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
18
|
Battaglia D, Mang SM, Caccavo V, Fanti P, Forlano P. The Belowground-Aboveground Interactions of Zucchini: The Effects of Trichoderma afroharzianum Strain T22 on the Population and Behavior of the Aphid Aphis gossypii Glover and Its Endoparasitoid Aphidius colemani Viereck. INSECTS 2024; 15:690. [PMID: 39336658 PMCID: PMC11431884 DOI: 10.3390/insects15090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Fungi belonging to the genus Trichoderma have received high consideration in agriculture due to their beneficial effects on crops from their plant promotion effects and protection from disease. A role of Trichoderma fungi in triggering plant defense mechanisms against insect pests, either directly or by natural enemy attraction, has been proposed, even if the results in different studies are controversial. In this present study, using zucchini plants as a model species, we investigated the effects of Trichoderma afroharzianum strain T22 plant inoculation on the cotton aphid Aphis gossypii and its endoparasitoid Aphidius colemani. Our results showed that the inoculation with T. afroharzianum T22 promotes A. gossypii population growth and makes zucchini more attractive to the aphid. The higher abundance of aphids on Trichoderma-inoculated zucchini was compensated for by a higher presence of the mummies of Aphidius colemani. In this present study, we recorded a higher zucchini biomass, thereby confirming that Trichoderma can act as a plant growth inducer.
Collapse
Affiliation(s)
- Donatella Battaglia
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Stefania Mirela Mang
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Vittoria Caccavo
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Paolo Fanti
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Pierluigi Forlano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
19
|
Gouit S, Chair I, Belabess Z, Legrifi I, Goura K, Tahiri A, Lazraq A, Lahlali R. Harnessing Trichoderma spp.: A Promising Approach to Control Apple Scab Disease. Pathogens 2024; 13:752. [PMID: 39338943 PMCID: PMC11434917 DOI: 10.3390/pathogens13090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Apple scab, caused by the pathogenic fungus Venturia inaequalis, can result in significant economic losses. The frequent use of fungicidal products has led to the emergence of isolates resistant to commonly used active substances. Therefore, biological control offers a sustainable alternative for managing apple scab. In this study, eight Trichoderma isolates were evaluated against five different isolates of V. inaequalis isolated from the Fes-Meknes region. The biocontrol potential of these Trichoderma isolates had previously been demonstrated against other pathogens. The results indicated that the inhibition rate of mycelial growth of V. inaequalis obtained with Trichoderma spp. isolates ranged from 50% to 81%, with significant differences observed among the pathogenic isolates after 5 and 12 days of incubation. In addition, the in vitro tests with Trichoderma cell-free filtrates showed inhibition rates ranging from 2% to 79%, while inhibition rates ranged from 5% to 78% for volatile compound tests. Interestingly, the inhibition of spore germination and elongation was approximately 40-50%, suggesting the involvement of antifungal metabolites in their biocontrol activities. The in vivo bioassay on detached apple leaves confirmed the biocontrol potential of these Trichoderma isolates and demonstrated their ability to preventively control apple scab disease. However, their efficacies were still lower than those of the fungicidal product difenoconazole. These findings could contribute to the development of an effective biofungicide based on these Trichoderma isolates for reliable and efficient apple scab control.
Collapse
Affiliation(s)
- Safae Gouit
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Ismahane Chair
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
| | - Zineb Belabess
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknès, National Institute of Agricultural Research, Km 13, Rte Haj Kaddour, BP 578, Meknès 50001, Morocco
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Khadija Goura
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
- Laboratory of Biotechnology and Valorization of Phyto-Resources, Faculty of Sciences, Moulay Ismail University of Meknes, Avenue Zitoune, Meknès 50000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.G.); (I.C.); (Z.B.); (I.L.); (K.G.); (A.T.)
| |
Collapse
|
20
|
Zhang J, Liu H, Yao J, Ma C, Yang W, Lei Z, Li R. Plant-derived citronellol can significantly disrupt cell wall integrity maintenance of Colletotrichum camelliae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106087. [PMID: 39277400 DOI: 10.1016/j.pestbp.2024.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Anthracnose, a fungal disease, commonly infects tea plants and severely impacts the yield and quality of tea. One method for controlling anthracnose is the application of citronellol, a plant extract that exhibits broad-spectrum antimicrobial activity. Herein, the physiological and biochemical mechanism by which citronellol controls anthracnose caused by Colletotrichum camelliae was investigated. Citronellol exhibited excellent antifungal activity based on direct and indirect mycelial growth inhibition assays, with EC50 values of 76.88 mg/L and 29.79 μL/L air, respectively. Citronellol also exhibited good control effects on C. camelliae in semi-isolated leaf experiments. Optical and scanning electron microscopy revealed that citronellol caused C. camelliae mycelia to thin, fracture, fold and deform. Transmission electron microscopy revealed that the mycelial cell walls collapsed inward and separated, and the organelles became blurred after treatment with citronellol. The sensitivity of C. camelliae to calcofluor white staining was significantly enhanced by citronellol, while PI staining showed minimal fluorescence, and the relative conductivity of mycelia were not significantly different. Under citronellol treatment, the expression levels of β-1,3-glucanase, chitin synthase, and chitin deacetylase-related genes were significantly decreased, while the expression levels of chitinase genes were increased, leading to lower chitinase activity and increased β-1,3-glucanase activity. Therefore, citronellol disrupted the cell wall integrity of C. camelliae and inhibited normal mycelial growth.
Collapse
Affiliation(s)
- Jiying Zhang
- College of Tea Science, and Institute of Crop Protection, Guizhou University, Guiyang 550025, China
| | - Huifang Liu
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Jianmei Yao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chiyu Ma
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wen Yang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zhiwei Lei
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Rongyu Li
- College of Tea Science, and Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region Guizhou University, Guiyang 550025, China.
| |
Collapse
|
21
|
Andreata MFL, Afonso L, Niekawa ETG, Salomão JM, Basso KR, Silva MCD, Alves LC, Alarcon SF, Parra MEA, Grzegorczyk KG, Chryssafidis AL, Andrade G. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2246. [PMID: 39204682 PMCID: PMC11360115 DOI: 10.3390/plants13162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The increasing need for sustainable agricultural practices, combined with the demand for enhanced crop productivity, has led to a growing interest in utilizing microorganisms for biocontrol of diseases and pests, as well as for growth promotion. In Brazilian agriculture, the use of plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) has become increasingly prevalent, with a corresponding rise in the number of registered microbial inoculants each year. PGPR and PGPF occupy diverse niches within the rhizosphere, playing a crucial role in soil nutrient cycling and influencing a wide range of plant physiological processes. This review examines the primary mechanisms employed by these microbial agents to promote growth, as well as the strategy of co-inoculation to enhance product efficacy. Furthermore, we provide a comprehensive analysis of the microbial inoculants currently available in Brazil, detailing the microorganisms accessible for major crops, and discuss the market's prospects for the research and development of novel products in light of current challenges faced in the coming years.
Collapse
Affiliation(s)
- Matheus F. L. Andreata
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leandro Afonso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Erika T. G. Niekawa
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Julio M. Salomão
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Clara D. Silva
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Stefani F. Alarcon
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Eugenia A. Parra
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kathlen Giovana Grzegorczyk
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| |
Collapse
|
22
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
23
|
Zanfaño L, Carro-Huerga G, Rodríguez-González Á, Mayo-Prieto S, Cardoza RE, Gutiérrez S, Casquero PA. Trichoderma carraovejensis: a new species from vineyard ecosystem with biocontrol abilities against grapevine trunk disease pathogens and ecological adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1388841. [PMID: 38835860 PMCID: PMC11148300 DOI: 10.3389/fpls.2024.1388841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.
Collapse
Affiliation(s)
- Laura Zanfaño
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Guzmán Carro-Huerga
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Álvaro Rodríguez-González
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Sara Mayo-Prieto
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Rosa E Cardoza
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Santiago Gutiérrez
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Pedro A Casquero
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| |
Collapse
|
24
|
Lee D, Pan JH, Kim D, Heo W, Shin EC, Kim YJ, Shim YY, Reaney MJT, Ko SG, Hong SB, Cho HT, Kim TG, Lee K, Kim JK. Mycoproteins and their health-promoting properties: Fusarium species and beyond. Compr Rev Food Sci Food Saf 2024; 23:e13365. [PMID: 38767863 DOI: 10.1111/1541-4337.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.
Collapse
Affiliation(s)
- Daseul Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Arinbasarova AY, Botin AS, Medentsev AG, Makrushin KV, Vetcher AA, Stanishevskiy YM. Synthesis of Extracellular L-lysine-α-oxidase along with Degrading Enzymes by Trichoderma cf. aureoviride Rifai VKM F-4268D: Role in Biocontrol and Systemic Plant Resistance. J Fungi (Basel) 2024; 10:323. [PMID: 38786678 PMCID: PMC11121954 DOI: 10.3390/jof10050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
When cultivating on wheat bran or deactivated fungal mycelium as a model of "natural growth", the ability of Trichoderma to synthesize extracellular L-lysine-α-oxidase (LysO) simultaneously with cell-wall-degrading enzymes (proteases, xylanase, glucanases, chitinases, etc.), responsible for mycoparasitism, was shown. LysO, in turn, causes the formation of H2O2 and pipecolic acid. These compounds are known to be signaling molecules and play an important role in the induction and development of systemic acquired resistance in plants. Antagonistic effects of LysO have been demonstrated against phytopathogenic fungi and Gram-positive or Gram-negative bacteria with dose-dependent cell death. The antimicrobial effect of LysO decreased in the presence of catalase. The generating intracellular ROS in the presence of LysO was also shown in both bacteria and fungi, which led to a decrease in viable cells. These results suggest that the antimicrobial activity of LysO is due to two factors: the formation of exogenous hydrogen peroxide as a product of the enzymatic oxidative deamination of L-lysine and the direct interaction of LysO with the cell wall of the micro-organisms. Thus, LysO on its own enhances the potential of the producer in the environment; namely, the enzyme complements the strategy of the fungus in biocontrol and indirectly participates in inducing SAR and regulating the relationship between pathogens and plants.
Collapse
Affiliation(s)
- Anna Yu. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.G.M.); (K.V.M.)
| | - Alexander S. Botin
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia na. P.Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.S.B.); (Y.M.S.)
- N.V. Sklifosovsky Institute of Emergency Medicine, 129090 Moscow, Russia
| | - Alexander G. Medentsev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.G.M.); (K.V.M.)
| | - Kirill V. Makrushin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.G.M.); (K.V.M.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia na. P.Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.S.B.); (Y.M.S.)
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia na. P.Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.S.B.); (Y.M.S.)
| |
Collapse
|
26
|
Sidhoum W, Dib S, Alim Y, Anseur S, Benlatreche S, Belaidouni ZM, Chamouma FEZ. Growth-promoting effects of Aspergillus Elegans and the dark septate endophyte (DSE) Periconia macrospinosa on cucumber. Arch Microbiol 2024; 206:226. [PMID: 38642120 DOI: 10.1007/s00203-024-03958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Cucurbits are subject to a variety of stresses that limit their sustainable production, despite their important role in ensuring food security and nutrition. Plant stress tolerance can be enhanced through fungal endophytes. In this study, two endophytes isolated from wild plant roots, were tested to determine their effect on the growth promotion of cucumber (Cucumis sativus L.) plants. The phylogenetic analysis revealed that the designated isolates were Aspergillus elegans and Periconia macrospinosa. The results of the Plant Growth Promoting Fungal (PGPF) tests showed that both Aspergillus elegans and Periconia macrospinosa have a zinc solubilizing capacity, especially A. elegans, with a solubilization index higher than 80%. Also, both have a high salt tolerance (10-15% NaCl for P. macrospinosa and A. elegans, respectively), cellulolytic activity, and inhibition indices of 40-64.53%. A. elegans and P. macrospinosa had antagonistic effects against the cucumber phytopathogenic fungi Verticillium dahliae and Fusarium oxysporum, respectively. However, A. elegans and P. macrospinosa didn't exhibit certain potential plant benefits, such as the production of hydrogen cyanide (HCN) and phosphate solubilization. The chlorophyll content and growth parameters of two-month-old cucumber plants inoculated with the fungal species were significantly better than those of the controls (non-inoculated); the shoot dry weights of inoculated plants were increased by 138% and 170% for A. elegans and P. macrospinosa, respectively; and the root colonization by fungal endophytes has also been demonstrated. In addition to the fact that P. macrospinosa has long been known as PGPF, this is the first time that the ability of A. elegans to modulate host plant growth has been demonstrated, with the potential to be used as a biofertilizer in sustainable agriculture.
Collapse
Affiliation(s)
- Warda Sidhoum
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie.
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie.
| | - Soulef Dib
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Yousra Alim
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sarra Anseur
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sabrina Benlatreche
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | | | - Fatiha El Zahra Chamouma
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie
| |
Collapse
|
27
|
Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, Larsen J. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol Res 2024; 281:127621. [PMID: 38295679 DOI: 10.1016/j.micres.2024.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/26/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake. Generally, plant growth promotion by Trichoderma is a consequence of the activity of potent fungal signaling metabolites diffused in soil with hormone-like activity, including indolic compounds as indole-3-acetic acid (IAA) produced at concentrations ranging from 14 to 234 μg l-1, and volatile organic compounds such as sesquiterpene isoprenoids (C15), 6-pentyl-2H-pyran-2-one (6-PP) and ethylene (ET) produced at levels from 10 to 120 ng over a period of six days, which in turn, might impact plant endogenous signaling mechanisms orchestrated by plant hormones. Plant growth stimulation occurs without the need of physical contact between both organisms and/or during root colonization. When associated with plants Trichoderma may cause significant biochemical changes in plant content of carbohydrates, amino acids, organic acids and lipids, as detected in Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum) and barley (Hordeum vulgare), which may improve the plant health status during the complete life cycle. Trichoderma-induced plant beneficial effects such as mechanisms of defense and growth are likely to be inherited to the next generations. Depending on the environmental conditions perceived by the fungus during its interaction with plants, Trichoderma can reprogram and/or activate molecular mechanisms commonly modulated by IAA, ET and abscisic acid (ABA) to induce an adaptative physiological response to abiotic stress, including drought, salinity, or environmental pollution. This review, provides a state of the art overview focused on the canonical mechanisms of these beneficial fungi involved in plant growth promotion traits under different environmental scenarios and shows new insights on Trichoderma metabolites from different chemical classes that can modulate specific plant growth aspects. Also, we suggest new research directions on Trichoderma spp. and their secondary metabolites with biological activity on plant growth.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| | - Monika Schmoll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Blanca Alicia Esquivel-Ayala
- Laboratorio de Entomología, Facultad de Biología, Edificio B4, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| | - Carlos E González-Esquivel
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Victor Rocha-Ramírez
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - John Larsen
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| |
Collapse
|
28
|
Speckbacher V, Flatschacher D, Martini-Lösch N, Ulbrich L, Baldin C, Bauer I, Ruzsanyi V, Zeilinger S. The histone deacetylase Hda1 affects oxidative and osmotic stress response as well as mycoparasitic activity and secondary metabolite biosynthesis in Trichoderma atroviride. Microbiol Spectr 2024; 12:e0309723. [PMID: 38334386 PMCID: PMC10913545 DOI: 10.1128/spectrum.03097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The mycoparasitic fungus Trichoderma atroviride is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state. Therefore, histone modifications are crucial for the regulation of secondary metabolism. Here, we functionally investigated the role of the class II histone deacetylase encoding gene hda1 of T. atroviride by targeted gene deletion, phenotypic characterization, and multi-omics approaches. Deletion of hda1 did not result in obvious phenotypic alterations but led to an enhanced inhibitory activity of secreted metabolites and reduced mycoparasitic abilities of T. atroviride against the plant-pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The ∆hda1 mutants emitted altered amounts of four volatile organic compounds along their development, produced different metabolite profiles upon growth in liquid culture, and showed a higher susceptibility to oxidative and osmotic stress. Moreover, hda1 deletion affected the expression of several notable gene categories such as polyketide synthases, transcription factors, and genes involved in the HOG MAPK pathway.IMPORTANCEHistone deacetylases play crucial roles in regulating chromatin structure and gene transcription. To date, classical-Zn2+ dependent-fungal histone deacetylases are divided into two classes, of which each comprises orthologues of the two sub-groups Rpd3 and Hos2 and Hda1 and Hos3 of yeast, respectively. However, the role of these chromatin remodelers in mycoparasitic fungi is poorly understood. In this study, we provide evidence that Hda1, the class II histone deacetylases of the mycoparasitic fungus Trichoderma atroviride, regulates its mycoparasitic activity, secondary metabolite biosynthesis, and osmotic and oxidative stress tolerance. The function of Hda1 in regulating bioactive metabolite production and mycoparasitism reveals the importance of chromatin-dependent regulation in the ability of T. atroviride to successfully control fungal plant pathogens.
Collapse
Affiliation(s)
| | | | | | - Laura Ulbrich
- Umweltmonitoring und Forensische Chemie, Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Clara Baldin
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Ferreira NCDF, Ramos MLG, Gatto A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms 2024; 12:237. [PMID: 38399641 PMCID: PMC10893047 DOI: 10.3390/microorganisms12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/25/2024] Open
Abstract
Forest production has great relevance in the Brazilian economy, characterized by several production sectors, including the production of seedlings. With the focus on maximizing the capacity of survival, development, and adaptation of seedlings, Trichoderma is highlighted as a potentially useful genus of microorganisms for promoting growth and higher product quality. In this sense, this review aims to describe the main mechanisms of fungi action in forest seedlings' production. The different species of the genus Trichoderma have specific mechanisms of action, and the current scenario points to more advances in the number of species. The interaction process mediated by different mechanisms of action begins in the communication with plants, from the colonization process. After the interaction, chemical dialogues allow the plant to develop better because, from colonization, the forest seedlings can maximize height and increase shoot and root development. Fungi promote solubilization and availability of nutrients to seedlings, which show numerous benefits to the development. The use of beneficial microorganisms, such as fungi of the genus Trichoderma, has become a sustainable strategy to enhance seedling development, reducing the use of agrochemicals and industrial fertilizers.
Collapse
Affiliation(s)
| | | | - Alcides Gatto
- Department of Forestry Engineering, Faculty of Technology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
30
|
Jemo M, Nkenmegne S, Buernor AB, Raklami A, Ambang Z, Souleyamanou A, Ouhdouch Y, Hafidi M. Mycorrhizas and Trichoderma fungi increase the accumulation of secondary metabolites in grain legume leaves and suppress foliar diseases in field-grown conditions of the humid forest of Cameroon. BMC PLANT BIOLOGY 2023; 23:582. [PMID: 37986040 PMCID: PMC10662906 DOI: 10.1186/s12870-023-04587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal and Trichoderma fungi alter the synthesis of secondary metabolites of plants and confer tolerance from pathogens attacks. However, there is less supportive evidence from on-field studies confirming the above-mentioned hypothesis, particularly for the humid forest zone of Cameroon where pathogens are important sources of yield losses for legumes such as soybean and common bean. MATERIALS AND METHODS We evaluated the impacts of mycorrhiza isolates of Rhizophagus intraradices (Ri) and Trichoderma asperellum (Ta) fungi and their co-inoculations (Ta x Ri) in the synthetizing of leaves secondary metabolites, foliar disease symptoms, growth, N and P uptake, and yields of three genotypes of soybean (TGx 1485-1D, TGx 1990-93 F, and TGx 1990-97 F) and common beans (NUA-99, DOR-701, and PNN) under field conditions of Cameroon. RESULTS We found that common bean plants showed a lower foliar infection rate but a higher increase in root colonization intensity, shoot dry weight, and N and P uptakes than soybeans when inoculated with Ri and Ta treatment. However, the grain yield of soybean soybean was higher (2000 kg ha 1) than the common bean plants for the Ri × Ta treatment. The soybean genotype TGx 1990-93F had increased root colonization intensity and the lowest foliar infection rate, making it stronger and tolerant to pathogen attacks when co-inoculated with Ri × Ta fungi (F). Bean plants inoculated with Ri and the co-inoculated with Ri × Ta demonstrated lower symptoms of foliar attack, and increased root colonization, particularly the PNN variety. The total amino acid and proline accumulations were higher for soybean than common bean plants due to fungi inoculations, and soybean genotypes accumulated more excellent contents of amino acid and proline in the control (10.1 mg g- 1 fwt) that significantly increased under the Ri × Ta inoculation (13.4 mg g- 1 fwt). CONCLUSIONS Common bean plants inoculated with Ta and Ri fungi accumulated higher phenolic compounds in their leaves that aided them in overcoming the pathogen attacks than soybean plants.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Program, College of Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco.
| | - Severin Nkenmegne
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
| | - Alfred Balenor Buernor
- AgroBiosciences Program, College of Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Anas Raklami
- AgroBiosciences Program, College of Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Zachee Ambang
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
| | - Adamou Souleyamanou
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
| | - Yedir Ouhdouch
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, BP 2390, Morocco
| | - Mohamed Hafidi
- AgroBiosciences Program, College of Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, BP 2390, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, 7000, Morocco
| |
Collapse
|
31
|
Sefer Ö, Özsoy E, Yörük E, Özkale E. Determining the biocontrol capacities of Trichoderma spp. originating from Turkey on Fusarium culmorum by transcriptional and antagonistic analyses. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1278525. [PMID: 38025898 PMCID: PMC10679392 DOI: 10.3389/ffunb.2023.1278525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
In this study aiming to investigate potential fungal biocontrol agents for Fusarium culmorum, several isolates of Trichoderma spp. were evaluated for their antagonistic effects by means of transcriptional analyses. At first, 21 monosporic Trichoderma spp. isolates were obtained from natural wood debris and wood area soils in Manisa, Turkey. Trichoderma spp. Isolates were identified as belonging to four different species (T. atroviride, T. harzianum, T. koningii, and T. brevicompactum) by tef1-α sequencing. Then, the linear growth rate (LGR) of each species was calculated and determined to be in a range between 13.22 ± 0.71 mm/day (T. atroviride TR2) and 25.06 ± 1.45 mm/day (T. harzianum K30). Inter-simple sequence repeat (ISSR) genotyping validated the tef1-α sequencing results by presenting two sub-clusters in the dendrogram. We determined the genetically most similar (TR1 & TR2; 97.77%) and dissimilar (K9 & K17; 40.40%) individuals belonging to the same and different species, respectively. Dual sandwich culture tests (which are useful for antagonism studies) revealed that T. harzianum K21 (the least suppressive) and T. brevicompactum K26 (the most suppressive) isolates suppressed F. culmorum with growth rates of 3% and 46%, respectively. Expressions of genes previously associated with mycoparasitism-plant protection-secondary metabolism (nag1, tgf-1, and tmk-1) were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in both those isolates. While there were no significant differences (p>0.05) in expression that were present in the K21 isolate, those three genes were upregulated with fold change values of 2.69 ± 0.26 (p<0.001), 2.23 ± 0.16 (p<0.001), and 5.38 ± 2.01 (p<0.05) in K26, meaning that the presence of significant alteration in the physiological processes of the fungus. Also, its mycoparasitism potential was tested on Triticum aestivum L. cv Basribey in planta, which was infected with the F. culmorum FcUK99 strain. Results of the trials, including specific plant growth parameters (weight or length of plantlets), confirmed the mycoparasitic potential of the isolate. It can be concluded that (i) nag1, tgf-1, and tmk-1 genes could be approved as reliable markers for evaluation of BCA capacities of Trichoderma spp. and (ii) the T. brevicompactum K26 strain can be suggested as a promising candidate for combating in F. culmorum diseases following the necessary procedures to ensure it is non-hazardous and safe.
Collapse
Affiliation(s)
- Özlem Sefer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Graduate School of Science and Engineering, Programme of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Türkiye
| | - Esma Özsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Institute of Graduate Studies in Sciences, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Türkiye
| | - Emre Yörük
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Evrim Özkale
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
32
|
Ji H, Yu R, Liu H, Zhang H, Wang X, Chen J, Li Y. Metabolic Features of a Novel Trichoderma asperellum YNQJ1002 with Potent Antagonistic Activity against Fusarium graminearum. Metabolites 2023; 13:1144. [PMID: 37999240 PMCID: PMC10673152 DOI: 10.3390/metabo13111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Trichoderma, a well-known and extensively studied fungal genus, has gained significant attention for its remarkable antagonistic abilities against a wide range of plant pathogens. In this study, a total of 108 Trichoderma isolates were screened through in vitro dual antagonistic assays and culture filtrate inhibition against Fusarium graminearum. Of these, the YNQJ1002 displayed noteworthy inhibitory activities along with thermal stability. To validate the metabolic differences between YNQJ1002 and GZLX3001 (with strong and weak antagonism, respectively), UPLC-TOF-MS/MS mass spectrometry was employed to analyze and compare the metabolite profiles. We identified 12 significantly up-regulated metabolites in YNQJ1002, which include compounds like Trigoneoside, Torvoside, trans,trans-hepta-2,4,6-trienoic acid, and Chamazulene. These metabolites are known for their antimicrobial properties or signaling roles as components of cell membranes. Enriched KEGG analysis revealed a significant enrichment in sphingolipid metabolism and linoleic acid metabolism, as well as autophagy. The results demonstrated that YNQJ1002's abundance of antimicrobial substances, resulting from specific metabolic pathways, enhanced its superior antagonistic activity against F. graminearum. Finally, YNQJ1002 was identified using the ITS, tef1-1α, and rpb2 regions, with MIST system sequence matching confirming its classification within the species. Overall, we have obtained a novel strain, T. asperellum YNQJ1002, which is rich in metabolites and shows potential antagonistic activity against F. graminearum. This study has opened promising prospects for the development of innovative Trichoderma-derived antifungal compounds, featuring a unique mechanism against pathogens.
Collapse
Affiliation(s)
- Huimin Ji
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruohan Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Yang K, Li H, Li L, Zhao Z, Hu J, Wei Y, Yang H, Li J. Metabolomics reveal metabolic variation caused by co-culture of Arthrobacter ureafaciens and Trichoderma harzianum and their impacts on wheat germination. Int Microbiol 2023; 26:723-739. [PMID: 36564574 DOI: 10.1007/s10123-022-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Arthrobacter ureafaciens DnL1-1 is a bacterium used for atrazine degradation, while Trichoderma harzianum LTR-2 is a widely used biocontrol fungus. In this study, a liquid co-cultivation of these two organisms was initially tested. The significant changes in the metabolome of fermentation liquors were investigated based on cultivation techniques (single-cultured and co-cultured DnL1-1 and LTR-2) using an UPLC-QTOF-MS in an untargeted metabolomic approach. Principle components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) supervised modelling revealed modifications of the metabolic profiles in fermentation liquors as a function of interactions between different strains. Compared with pure-cultivation of DnL1-1, 51 compounds were altered during the cocultivation, with unique and significant differences in the abundance of organic nitrogen compounds (e.g. carnitine, acylcarnitine 4:0, acylcarnitine 5:0, 3-dehydroxycarnitine and O-acetyl-L-carnitine) and trans-zeatin riboside. Nevertheless, compared with pure-cultivation of LTR-2, the abundance of 157 compounds, including amino acids, soluble sugars, organic acids, indoles and derivatives, nucleosides, and others, changed significantly in the cocultivation. Among them, the concentration of tryptophan, which is a precursor to indoleacetic acid, indoleacetic acid, aspartic acid, and L-glutamic acid increased while that of most soluble sugars decreased upon cocultivation. The fermentation filtrates of co-cultivation of LTR-2 and DnL1-1 showed significant promoting effects on germination and radicle length of wheat. A subsequent experiment demonstrated synergistic effects of differential metabolites caused by co-cultivation of DnL1-1 and LTR-2 on wheat germination. Comprehensive metabolic profiling may provide valuable information on the effects of DnL1-1 and LTR-2 on wheat growth.
Collapse
Affiliation(s)
- Kai Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Ling Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Zhongjuan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Hetong Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
34
|
Carrell AA, Clark M, Jawdy S, Muchero W, Alexandre G, Labbé JL, Rush TA. Interactions with microbial consortia have variable effects in organic carbon and production of exometabolites among genotypes of Populus trichocarpa. PLANT DIRECT 2023; 7:e544. [PMID: 38028650 PMCID: PMC10660807 DOI: 10.1002/pld3.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Poplar is a short-rotation woody crop frequently studied for its significance as a sustainable bioenergy source. The successful establishment of a poplar plantation partially depends on its rhizosphere-a dynamic zone governed by complex interactions between plant roots and a plethora of commensal, mutualistic, symbiotic, or pathogenic microbes that shape plant fitness. In an exploratory endeavor, we investigated the effects of a consortium consisting of ectomycorrhizal fungi and a beneficial Pseudomonas sp. strain GM41 on plant growth (including height, stem girth, leaf, and root growth) and as well as growth rate over time, across four Populus trichocarpa genotypes. Additionally, we compared the level of total organic carbon and plant exometabolite profiles across different poplar genotypes in the presence of the microbial consortium. These data revealed no significant difference in plant growth parameters between the treatments and the control across four different poplar genotypes at 7 weeks post-inoculation. However, total organic carbon and exometabolite profiles were significantly different between the genotypes and the treatments. These findings suggest that this microbial consortium has the potential to trigger early signaling responses in poplar, influencing its metabolism in ways crucial for later developmental processes and stress tolerance.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Miranda Clark
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Sara Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | | | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of Tennessee‐KnoxvilleKnoxvilleTennesseeUSA
| | - Jesse L. Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Present address:
Technology HoldingSalt Lake CityUtahUSA
| | - Tomás A. Rush
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
35
|
Pereira-Dias L, Oliveira-Pinto PR, Fernandes JO, Regalado L, Mendes R, Teixeira C, Mariz-Ponte N, Gomes P, Santos C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol Adv 2023; 68:108223. [PMID: 37536466 DOI: 10.1016/j.biotechadv.2023.108223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Paulo R Oliveira-Pinto
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Juliana O Fernandes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rafael Mendes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Lodi RS, Peng C, Dong X, Deng P, Peng L. Trichoderma hamatum and Its Benefits. J Fungi (Basel) 2023; 9:994. [PMID: 37888250 PMCID: PMC10607699 DOI: 10.3390/jof9100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Trichoderma hamatum (Bonord.) Bainier (T. hamatum) belongs to Hypocreaceae family, Trichoderma genus. Trichoderma spp. are prominently known for their biocontrol activities and plant growth promotion. Hence, T. hamatum also possess several beneficial activities, such as antimicrobial activity, antioxidant activity, insecticidal activity, herbicidal activity, and plant growth promotion; in addition, it holds several other beneficial properties, such as resistance to dichlorodiphenyltrichloroethane (DDT) and degradation of DDT by certain enzymes and production of certain polysaccharide-degrading enzymes. Hence, the current review discusses the beneficial properties of T. hamatum and describes the gaps that need to be further considered in future studies, such as T. hamatum's potentiality against human pathogens and, in contrast, its role as an opportunistic human pathogen. Moreover, there is a need for substantial study on its antiviral and antioxidant activities.
Collapse
Affiliation(s)
| | | | | | | | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (R.S.L.); (C.P.); (X.D.); (P.D.)
| |
Collapse
|
37
|
Bolzonello A, Morbiato L, Tundo S, Sella L, Baccelli I, Echeverrigaray S, Musetti R, De Zotti M, Favaron F. Peptide Analogs of a Trichoderma Peptaibol Effectively Control Downy Mildew in the Vineyard. PLANT DISEASE 2023; 107:2643-2652. [PMID: 36724095 DOI: 10.1094/pdis-09-22-2064-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 μM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 μM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.
Collapse
Affiliation(s)
- Angela Bolzonello
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Laura Morbiato
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino I-50019, Italy
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil
| | - Rita Musetti
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| |
Collapse
|
38
|
Shi ZZ, Yin XL, Ji NY. Trichoderols B-G, Six New Lipids from the Marine Algicolous Fungus Trichoderma sp. Z43. Mar Drugs 2023; 21:453. [PMID: 37623734 PMCID: PMC10456296 DOI: 10.3390/md21080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Six new lipids, trichoderols B-G (1-6), along with a known one, triharzianin B (7), were isolated from the culture of Trichoderma sp. Z43 obtained from the surface of the marine brown alga Dictyopteris divaricata. Their structures and relative configurations were identified by interpretation of 1D/2D NMR and MS data. Compounds 1-7 were assayed for inhibiting the growth of three phytopathogenic fungi (Fusarium graminearum, Gaeumannomyces graminis, and Glomerella cingulata), four marine phytoplankton species (Amphidinium carterae, Heterocapsa circularisquama, Heterosigma akashiwo, and Prorocentrum donghaiense), and one marine zooplankton (Artemia salina). Compounds 1, 4, and 7 exhibited weak antifungal activities against three phytopathogenic fungi tested with MIC ≥ 64 μg/mL. All compounds displayed moderate antimicroalgal activity with IC50 ≥ 15 μg/mL and low toxicity to the brine shrimp Artemia salina.
Collapse
Affiliation(s)
- Zhen-Zhen Shi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Z.-Z.S.); (X.-L.Y.)
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Z.-Z.S.); (X.-L.Y.)
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Z.-Z.S.); (X.-L.Y.)
- Shandong Saline-Alkaline Land Modern Agriculture Company, Dongying 257345, China
| |
Collapse
|
39
|
Saldaña-Mendoza SA, Pacios-Michelena S, Palacios-Ponce AS, Chávez-González ML, Aguilar CN. Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. World J Microbiol Biotechnol 2023; 39:269. [PMID: 37532771 DOI: 10.1007/s11274-023-03695-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Currently, the food and economic losses generated by the attack of phytopathogens on the agricultural sector constitute a severe problem. Conventional crop protection techniques based on the application of synthetic pesticides to combat these undesirable microorganisms have also begun to represent an inconvenience since the excessive use of these substances is associated with contamination problems and severe damage to the health of farmers, consumers, and communities surrounding the fields, as well as the generation of resistance by the phytopathogens to be combated. Using biocontrol agents such as Trichoderma to mitigate the attack of phytopathogens represents an alternative to synthetic pesticides, safe for health and the environment. This work explains the mechanisms of action through which Trichoderma exerts biological control, some of the beneficial aspects that it confers to the development of crops through its symbiotic interaction with plants, and the bioremedial effects that it presents in fields contaminated by synthetic pesticides. Also, detail the production of spore-based biopesticides through fermentation processes and formulation development.
Collapse
Affiliation(s)
- Salvador A Saldaña-Mendoza
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Sandra Pacios-Michelena
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Arturo S Palacios-Ponce
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mónica L Chávez-González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Cristóbal N Aguilar
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México.
| |
Collapse
|
40
|
Missbach K, Flatschacher D, Bueschl C, Samson JM, Leibetseder S, Marchetti-Deschmann M, Zeilinger S, Schuhmacher R. Light-Induced Changes in Secondary Metabolite Production of Trichoderma atroviride. J Fungi (Basel) 2023; 9:785. [PMID: 37623556 PMCID: PMC10456024 DOI: 10.3390/jof9080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.
Collapse
Affiliation(s)
- Kristina Missbach
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | | | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Jonathan Matthew Samson
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Stefan Leibetseder
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria; (S.L.)
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| |
Collapse
|
41
|
Bansal R, Sahoo SA, Barvkar VT, Srivastava AK, Mukherjee PK. Trichoderma virens exerts herbicidal effect on Arabidopsis thaliana via modulation of amino acid metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111702. [PMID: 37030329 DOI: 10.1016/j.plantsci.2023.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana. Under axenic conditions, rosette-biomass of seedlings co-cultivated with ΔHAS (HASR) and ΔGAPDH (GAPDHR) was higher than WT-Trichoderma (WTR) as well as non-colonized control (NoTR), even though the root colonization ability was reduced. However, HASR biomass was still higher than those of GAPDHR, indicating that blocking volatiles will not provide any additional contribution over non-volatile metabolites for Trichoderma-induced herbicidal activity. LC-MS analysis revealed that loss of herbicidal activity of ΔHAS/ΔGAPDH was associated with an increase in the levels of amino acids, which coincided with reduced expression levels of amino-acid catabolism and anabolism related genes in HASR/GAPDHR. RNAi-mediated suppression of an oxidoreductase gene, VDN5, specifically prevented viridin-to-viridiol conversion. Additionally, vdn5 mimics ΔHAS, in terms of amino-acid metabolism gene expression and partially abolishes the herbicidal property of WT-Trichoderma. Thus, the study provides mechanistic frame-work for better utilization of Trichoderma virens for biocontrol purposes, balancing between plant growth promotion and herbicidal activity.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Sripati Abhiram Sahoo
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - Prasun Kumar Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
42
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
43
|
Rubio MB, Monti MM, Gualtieri L, Ruocco M, Hermosa R, Monte E. Trichoderma harzianum Volatile Organic Compounds Regulated by the THCTF1 Transcription Factor Are Involved in Antifungal Activity and Beneficial Plant Responses. J Fungi (Basel) 2023; 9:654. [PMID: 37367590 DOI: 10.3390/jof9060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor THCTF1 from Trichoderma harzianum, previously linked to the production of 6-pentyl-2H-pyran-2-one (6-PP) derivatives and antifungal activity against Fusarium oxysporum, has been related in this study to conidiation, production of an array of volatile organic compounds (VOCs) and expression of methyltransferase genes. VOCs emitted by three T. harzianum strains (wild type T34, transformant ΔD1-38 that is disrupted in the Thctf1 gene encoding the transcription factor THCTF1, and ectopic integration transformant ΔJ3-16) were characterized by Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-Qi-TOF-MS). Thctf1 disruption affected the production of numerous VOCs such as the antifungal volatiles 2-pentyl furan and benzaldehyde which were under-emitted, and acetoine, a plant systemic defense inductor, which was over-emitted. Biological assays show that VOCs regulated by THCTF1 are involved in the T. harzianum antifungal activity against Botrytis cinerea and in the beneficial effects leading to Arabidopsis plant development. The VOC blend from the disruptant ΔD1-38: (i) inhibited Arabidopsis seed germination for at least 26 days and (ii) when applied to Arabidopsis seedlings resulted in increased jasmonic acid- and salicylic acid-dependent defenses.
Collapse
Affiliation(s)
- María Belén Rubio
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| |
Collapse
|
44
|
Pasquoto-Stigliani T, Guilger-Casagrande M, Campos EVR, Germano-Costa T, Bilesky-José N, Migliorini BB, Feitosa LO, Sousa BT, de Oliveira HC, Fraceto LF, Lima R. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. J Nanobiotechnology 2023; 21:166. [PMID: 37231443 PMCID: PMC10210372 DOI: 10.1186/s12951-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.
Collapse
Affiliation(s)
- Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Tais Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Natalia Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bianca B Migliorini
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Leandro O Feitosa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bruno T Sousa
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Halley C de Oliveira
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Renata Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
45
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
46
|
Ferreira AM, da Silva Sena I, Curti J, de Souza AA, dos Santos Lima PC, Rodrigues ABL, da Silva Ramos R, de Souza Pinheiro WB, Ferreira IM, Carvalho JCT. Trichoderma asperellum Extract Isolated from Brazil Nuts ( Bertholletia excelsa BONPL): In Vivo and In Silico Studies on Melanogenesis in Zebrafish. Microorganisms 2023; 11:1089. [PMID: 37110512 PMCID: PMC10146319 DOI: 10.3390/microorganisms11041089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi are those that present part of their life cycle in healthy tissues of different plant hosts in symbiosis without causing harm. At the same time, fungus-plant symbiosis makes it possible for microorganisms to synthesize their own bioactive secondary metabolites while in the stationary stage. To accomplish this, the endophytic fungus Trichoderma asperellum was isolated from Bertholletia excelsa (Brazil nut) almonds. The fungus was cultivated and extracted with ethyl acetate, obtaining AM07Ac. Then, using HPTLC (High-performance thin-layer chromatography) and nuclear magnetic resonance (1H NMR), β-amyrin, kaempferol, and brucine were identified as major compounds. Further in vivo assays in zebrafish demonstrated the activity of AM07Ac on melanogenesis by producing a concentration-response inhibitory effect, which, through an in silico study, proved to be related to the noted major compounds known to inhibit tyrosinase activity. The inhibition of tyrosinase prevents melanin accumulation in skin. Therefore, these results imply the importance of investigating microorganisms and their pharmacological activities, in particular the endophytic fungus Trichoderma asperellum as a generator of active metabolites for melanogenesis modulation.
Collapse
Affiliation(s)
- Adriana Maciel Ferreira
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Iracirema da Silva Sena
- Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact Sciences, Chemistry Course, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Jhone Curti
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Agerdânio Andrade de Souza
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Paulo Cesar dos Santos Lima
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Alex Bruno Lobato Rodrigues
- Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact Sciences, Chemistry Course, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Ryan da Silva Ramos
- Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact Sciences, Chemistry Course, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - Wandson Braamcamp de Souza Pinheiro
- Central Extraction Laboratory, Graduate Program in Chemistry, Federal University of Pará, R. Augusto Corrêa, Guamá, 01, Belém 66075-110, Brazil
| | - Irlon Maciel Ferreira
- Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact Sciences, Chemistry Course, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| | - José Carlos Tavares Carvalho
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Brazil
| |
Collapse
|
47
|
Caracciolo R, Sella L, De Zotti M, Bolzonello A, Armellin M, Trainotti L, Favaron F, Tundo S. Efficacy of Trichoderma longibrachiatum Trichogin GA IV Peptaibol analogs against the Black Rot Pathogen Xanthomonas campestris pv. campestris and other Phytopathogenic Bacteria. Microorganisms 2023; 11:microorganisms11020480. [PMID: 36838445 PMCID: PMC9967956 DOI: 10.3390/microorganisms11020480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Black rot caused by the Gram-negative bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is considered one of the most destructive diseases affecting crucifers. Xcc is a seedborne pathogen able to infect the host at any growth stage. The management of the pathogen mainly relies on the use of copper-based products with possible negative effects on human health and the environment. Searching for protection alternatives is crucial for achieving a sustainable management of Xcc. Trichoderma spp. has been largely used as a biocontrol agent against several phytopathogens. Among Trichoderma species, Trichoderma longibrachiatum produces the peptaibol trichogin GA IV, a secondary metabolite with antimicrobial activity against Gram-positive bacteria, as well as filamentous and yeast-like fungi. In this work, we tested, at micromolar concentrations, 25 synthetic analogs of the peptaibol trichogin GA IV for their bacteriostatic and bactericidal activity toward the bacterium Xcc. One of the most effective peptides (4r) was also tested against the Gram-negative bacteria Xanthomonas arboricola, Pseudomonas corrugata, Pseudomonas savastanoi pv. savastanoi, Agrobacterium tumefaciens, Ralstonia solanacearum, and Erwinia carotovora subsp. carotovora, as well as the Gram-positive bacterium Bacillus subtilis. The peptide 4r reduced black rot symptoms on cauliflower plants when administered both before and 24 h after inoculation with Xcc. The cytotoxic activity of the peptide 4r was also evaluated towards suspensions of tobacco cells by Evans Blue assay.
Collapse
Affiliation(s)
- Rocco Caracciolo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Angela Bolzonello
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Marco Armellin
- Department of Biology (DiBio), University of Padova, 35121 Padova, Italy
| | - Livio Trainotti
- Department of Biology (DiBio), University of Padova, 35121 Padova, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
48
|
Characterization of Peptaibols Produced by a Marine Strain of the Fungus Trichoderma endophyticum via Mass Spectrometry, Genome Mining and Phylogeny-Based Prediction. Metabolites 2023; 13:metabo13020221. [PMID: 36837841 PMCID: PMC9961477 DOI: 10.3390/metabo13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.
Collapse
|
49
|
The Effect of Trichoderma harzianum Hypovirus 1 (ThHV1) and Its Defective RNA ThHV1-S on the Antifungal Activity and Metabolome of Trichoderma koningiopsis T-51. J Fungi (Basel) 2023; 9:jof9020175. [PMID: 36836290 PMCID: PMC9959424 DOI: 10.3390/jof9020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mycoviruses widely exist in filamentous fungi and sometimes cause phenotypic changes in hosts. Trichoderma harzianum hypovirus 1 (ThHV1) and its defective RNA ThHV1-S were found in T. harzianum and exhibited high transmissibility. In our previous study, ThHV1 and ThHV1-S were transferred to an excellent biological control agent T. koningiopsis T-51 to form a derivative strain 51-13. In this study, we assessed the metabolic changes in strain 51-13 and antifungal activity of its culture filtrate (CF) and volatile organic compounds (VOCs). The antifungal activity of CF and VOCs of T-51 and 51-13 was different. Compared with the CF of T-51, that of 51-13 exhibited high inhibitory activity against B. cinerea, Sclerotinia sclerotiorum, and Stagonosporopsis cucurbitacearum but low inhibitory activity against Leptosphaeria biglobosa and Villosiclava virens. The VOCs of 51-13 exhibited high inhibitory activity against F. oxysporum but low inhibitory activity against B. cinerea. The transcriptomes of T-51 and 51-13 were compared; 5531 differentially expressed genes (DEGs) were identified in 51-13 with 2904 up- and 2627 downregulated genes. In KEGG enrichment analysis, 1127 DEGs related to metabolic pathways (57.53%) and 396 DEGs related to biosynthesis of secondary metabolites (20.21%) were clearly enriched. From the CF of T-51 and 51-13, 134 differential secondary metabolites (DSMs) were detected between T-51 and 51-13 with 39 up- and 95 downregulated metabolites. From these, 13 upregulated metabolites were selected to test their antifungal activity against B. cinerea. Among them, indole-3-lactic acid and p-coumaric acid methyl ester (MeCA) exhibited strong antifungal activity. The IC50 of MeCA was 657.35 μM and four genes possibly related to the synthesis of MeCA exhibited higher expression in 51-13 than in T-51. This study revealed the mechanism underlying the increase in antifungal activity of T-51 because of the mycovirus and provided novel insights in fungal engineering to obtain bioactive metabolites via mycoviruses.
Collapse
|
50
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|