1
|
Zancan AM, da Silva JL, Stradiotto NR. Limonene monitoring in citrus industry wastewater using molecularly imprinted voltammetric sensor. Talanta 2025; 292:127831. [PMID: 40073820 DOI: 10.1016/j.talanta.2025.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The present work reports the development of a novel molecularly imprinted polymer (MIP) electrochemical sensor for limonene determination in orange industry wastewater. MIP sensor was constructed through the pyrrole electropolymerization in the presence of limonene on glassy carbon electrode surface (GCE/MIP). Electrode surface as characterized by electrochemical, spectroscopy and microscopic techniques. The analysis was performed using differential pulse voltammetry, employing hexacyanoferrate as the electrochemically active probe. Under optimized conditions, the proposed GCE/MIP sensor displayed linear range from 1.0 to 100 pmol L-1 with a high sensitivity (0.92 nA L pmol-1) and low detection limit (0,87 pmol L-1), as well as excellent storage stability, repeatability and reproducibility. The imprinted factor found for the sensor was 4.1 with high selectivity. The applicability of the sensor was successfully evaluated by limonene determination in yellow water sample. GCE/MIP showed recovery from 97 to 105 %. The results, altogether, indicate that the GCE/MIP sensor can provide a sensitive and selective method for limonene determination with accuracy and precision.
Collapse
Affiliation(s)
- Aléxia Massinatore Zancan
- Department of Analytical, Physical-chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil; Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil
| | - José Luiz da Silva
- Department of Analytical, Physical-chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil; Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil.
| | - Nelson Ramos Stradiotto
- Department of Analytical, Physical-chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil; Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara, 14800-060, São Paulo State, Brazil
| |
Collapse
|
2
|
Chen H, Zhou X, Du J, Ma Y, Zhong Y, Chen W, Qian H, Huang D. Solvent screening and extraction conditions prediction of subcritical extraction based on improved model: Extraction of lycopene as a case. Food Chem 2025; 475:143257. [PMID: 39952171 DOI: 10.1016/j.foodchem.2025.143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In recent years, subcritical extraction has developed rapidly due to its environmental friendliness and high efficiency. In the extraction of low-polar and non-polar active substances, the addition of green low-polar solvents to subcritical extraction solvents can increase the yield of active substances. However, solvent screening and extraction conditions prediction are still a challenge. In this study, we employed the Williams formula to incorporate temperature and pressure correction into the Hansen solubility parameter to screen solvent under subcritical conditions by energetic spatial distance Ra between the solvent and solute. Then, an improved model along with corresponding dissolution factor e was established which allowed the prediction of optimum extraction condition range under subcritical conditions. Eventually, we chose the thermosensitive and non-polar substance lycopene as experimental case. Results showed that an e of 0.71 under experimental optimum extraction condition was within the predicted high extraction range, indicating the accuracy of the model predictions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingwei Du
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Xiao Y, Xia W, Yang Z, Zhou J, Luo J. Advances in the analysis and application of metabolites from tropical plants. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102728. [PMID: 40279843 DOI: 10.1016/j.pbi.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Tropical regions are characterized by a rich diversity of plant species and unique growth environments, resulting in the production of numerous important medicinal metabolites. This review summarizes the recent progress in the analysis of metabolites from tropical plants. These plants have developed specific metabolites that aid their adaptation to challenging environments, and these compounds hold significant medicinal value. The review further examines the genetic biosynthetic pathways that contribute to the production of these compounds, providing insights into the mechanisms of their synthesis. Additionally, it discusses future prospects for the utilization of these metabolites, exploring potential advancements in biotechnological approaches to enhance their production and application. By emphasizing the significance of tropical plants as reservoirs of bioactive substances, this review aims to encourage further exploration and sustainable use of these important natural resources in the field of medicine and beyond.
Collapse
Affiliation(s)
- Yong Xiao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Wei Xia
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Zhuang Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Junjie Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China.
| |
Collapse
|
4
|
Dehghani Tafti R, Farjani Kish G, Raisi A, Davoodi F, Tadayon Far R, Abbasi M, Torabi Feijani M, Ghiasvand A, Moradi S. Investigation of the healing effects of D-limonene on ovarian ischemia and reperfusion injury. Tissue Cell 2025; 95:102912. [PMID: 40267848 DOI: 10.1016/j.tice.2025.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Ovarian ischemia, most commonly caused by torsion, represents a critical gynecological emergency. Oxidative stress is central to ischemia-reperfusion injury (IRI), highlighting the importance of investigating antioxidant therapies such as D-limonene. This study evaluates the protective effects of D-limonene in a rat model of ovarian IRI. Twenty-four adult female Wistar albino rats were assigned to four groups: Sham (laparotomy only), Ischemia/Reperfusion (IR; laparotomy followed by 2-h ischemia and 2-h reperfusion), Limonene 50 mg/kg (L50; laparotomy followed by 2-h ischemia, administration of 50 mg/kg D-limonene 30 min before reperfusion, and 2-hour reperfusion), and Limonene 100 mg/kg (L100; same protocol with 100 mg/kg D-limonene). Ovarian samples were collected 2 h after reperfusion for oxidative stress parameters (TAS, TOS, OSI, MDA, SOD, NO), histopathological, and TUNEL assay evaluations. MDA and TOS levels were significantly lower in the treatment groups compared to the IR group (p < 0.05). SOD, NO, and TAS levels were higher in the treatment groups than in the IR group, although these differences were not statistically significant (p > 0.05). Histopathological evaluations demonstrated reduced edema, vascular congestion, hemorrhage, leukocyte infiltration, and follicular degeneration in the treatment groups compared to the IR group. TUNEL assays revealed fewer apoptotic cells in the treatment groups. In conclusion, D-limonene significantly reduces ovarian injury caused by ischemia and reperfusion, exerting antioxidant effects and protecting against apoptosis.
Collapse
Affiliation(s)
- Roohollah Dehghani Tafti
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Ghasem Farjani Kish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Reza Tadayon Far
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mohammadhossein Abbasi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mobina Torabi Feijani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Amirhossein Ghiasvand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Sahand Moradi
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
von Domaros M, Tobias DJ. Molecular Dynamics Simulations of the Interactions of Organic Compounds at Indoor Relevant Surfaces. Annu Rev Phys Chem 2025; 76:231-250. [PMID: 39899840 DOI: 10.1146/annurev-physchem-083122-123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
With markedly different reaction conditions compared to the chemistry of the outside atmosphere, indoor air chemistry poses new challenges to the scientific community that require combined experimental and computational efforts. Here, we review molecular dynamics simulations that have contributed to the mechanistic understanding of the complex dynamics of organic compounds at indoor surfaces and their interplay with experiments and indoor air models. We highlight the rich interactions between volatile organic compounds and silica and titanium dioxide surfaces, serving as proxies for glasses and paints, as well as the dynamics of skin oil lipids and their oxidation products, which sensitively affect the quality of indoor air in crowded environments. As the studies we review here are pioneering in the rapidly emerging field of indoor chemistry, we provide suggestions for increasing the potentially important role that molecular simulations can continue to play.
Collapse
Affiliation(s)
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, USA;
| |
Collapse
|
6
|
Budama-Kilinc Y, Kurtur OB, Gok B, Kecel-Gunduz S, Alpay-Karaoglu S, Yılmaz Atalı P, Kartal M. Production of Prophylactic Nanoformulation for Dental Caries and Investigation of Its Effectiveness by In Vitro and In Silico Methods. Pharmaceutics 2025; 17:167. [PMID: 40006534 PMCID: PMC11859156 DOI: 10.3390/pharmaceutics17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aimed to develop cinnamon bark essential oil (CEO), orange peel essential oil(OEO) and the combination of these two essential oils (OEO-CEO) loaded PLGA nanoparticles to prevent dental caries and to investigate their effectiveness in silico and in vitro methods. Methods: EO loaded PLGA nanoparticles were produced by single emulsion method. Detailed characterization studies were performed using different methods, and the controlled release profile was obtained. The antibacterial activity of the developed formulations was investigated on S. mutans and L. casei strains by in vitro and in silico methods. Additionally, the interaction mechanisms of EOs with DNA were evaluated. Results: Our findings showed that the average droplet size of EO-loaded PLGA nanoparticles varied between 243.1 ± 0.60 nm and 219 ± 4.49 nm, while PdI values varied between 0.069 ± 0.039 and 0.032 ± 0.01. In addition, the developed nanoparticles had high encapsulation efficiency (85.14% to 66.28%) and released the active ingredient in a continuous and controlled manner. Ames test showed that the genotoxicity of EOs was eliminated due to the encapsulation of EOs in PLGA nanoparticles and antibacterial tests showed that OEO-CEO-loaded PLGA nanoparticles were effective on L. casei and S. mutans. The antibacterial activity of EOs was also supported by in silico studies. Finally, it was revealed that EOs showed potential as antibacterial agents by interacting with DNA. Conclusions: The results showed that OEO-CEO-loaded PLGA nanoparticles have the potential to be a suitable nanoformulation for developing mouthwash or toothpaste for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey;
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkey;
| | - Ozan Baris Kurtur
- Department of Bioengineering, Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Bahar Gok
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey;
| | | | - Pınar Yılmaz Atalı
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkey;
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, 34854 Istanbul, Turkey
| | - Murat Kartal
- Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey;
| |
Collapse
|
7
|
Wu CC, Fang YW, Wang C, Lin CY. Positive Correlation Between Serum Limonene Levels and Muscle Health in a Representative Adult Population in the United States. Pharmaceuticals (Basel) 2025; 18:74. [PMID: 39861137 PMCID: PMC11768618 DOI: 10.3390/ph18010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Monoterpenes, a class of organic compounds with the molecular formula C10H16, have garnered significant attention for their potential medicinal benefits. Emerging evidence suggests they may positively influence skeletal muscle function. However, the impact of monoterpene exposure on muscle strength and mass in humans remains unclear. Methods: To explore this relationship, we analyzed data from 1202 adults (aged ≥ 18 years) who participated in the 2013-2014 National Health and Nutrition Examination Survey (NHANES), focusing on serum levels of three specific monoterpenes-α-pinene, β-pinene, and limonene-and their association with hand grip strength and lean muscle mass. Results: Our analysis revealed that, except for test 2 of hand 1, all grip strength measures showed a positive correlation with ln-limonene levels. The β coefficient for combined grip strength was 2.409 (S.E. = 0.891, p = 0.015). Positive associations were also found between serum limonene levels and lean muscle mass. The β coefficient for the Appendicular Skeletal Muscle Mass Index (ASMI) was 0.138 (S.E. = 0.041, p = 0.004). Furthermore, combined grip strength and ASMI significantly increased across limonene quintiles (p for trend = 0.005 and 0.006, respectively). However, none of the three monoterpene levels showed a significant association with clinically defined low muscle mass or low muscle strength. Conclusions: Our findings suggest a plausible association between exposure to limonene, hand grip strength, and lean muscle mass among adults in the United States. Further investigation is needed to fully understand the underlying mechanisms and medical significance of this association.
Collapse
Affiliation(s)
- Chang-Chin Wu
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City 237, Taiwan
| |
Collapse
|
8
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
9
|
Jochum TK, Stegmüller S, Richling E. Substance depletion of volatile monoterpenes - A confounding factor for toxicity testing in the Ames fluctuation test. Toxicology 2024; 509:153993. [PMID: 39537009 DOI: 10.1016/j.tox.2024.153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In in vitro toxicology, reported test results are typically based on nominal concentrations, i.e., the calculated amounts of a substance added to a defined volume of the test system. Consequently, if a test system does not respond to a certain endpoint, the assay is interpreted as negative and the test substance is deemed to exert no toxicity at the tested nominal concentration. However, depending on the physicochemical properties of the test substance and assay setup, the actual exposure may differ widely from nominal concentrations due to different depletion processes. (R)-(+)-Limonene (RLIM), β-myrcene (βMYR) and linalool (LIN) are naturally occurring terpenes that are permitted as flavoring agents in the European Union without limitations based on their low toxicity. Nevertheless, their hydrophobicity and high volatility classifies them as difficult to test chemicals, which has not been considered in previous in vitro tests. To exclude possible false negative results, in the present study, we assessed the cytotoxic and mutagenic potential of the latter substances toward Salmonella Typhimurium in the Ames fluctuation test using different incubation setups to minimize possible substance losses due to sorption or volatilization. Actual substance concentrations during incubation were verified analytically at different time points via headspace gas chromatography-mass spectrometry (HS-GC-MS). Possible substance depletion due to sorption to well-plate material or volatilization was minimized using a polystyrene-free and headspace-free incubation setup, respectively. The results showed complete volatilization of the monoterpenes RLIM and βMYR in the conventional Ames fluctuation test, which may confound mutagenicity testing. The headspace-free incubation setup greatly improved substance exposure and showed cytotoxicity in low micromolar concentrations, but no signs of mutagenicity were observed.
Collapse
Affiliation(s)
- Tobias Karl Jochum
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, Kaiserslautern D-67663, Germany
| | - Simone Stegmüller
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, Kaiserslautern D-67663, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, Kaiserslautern D-67663, Germany.
| |
Collapse
|
10
|
Fu Z, Guo S, Xie HB, Zhou P, Boy M, Yao M, Hu M. A Near-Explicit Reaction Mechanism of Chlorine-Initiated Limonene: Implications for Health Risks Associated with the Concurrent Use of Cleaning Agents and Disinfectants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19762-19773. [PMID: 39231115 DOI: 10.1021/acs.est.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Limonene, a key volatile chemical product (VCP) commonly found in personal care and cleaning agents, is emerging as a major indoor air pollutant. Recently, elevated levels of reactive chlorine species during bleach cleaning and disinfection have been reported to increase indoor oxidative capacity. However, incomplete knowledge of the indoor transformation of limonene, especially the missing chlorine chemistry, poses a barrier to evaluating the environmental implications associated with the concurrent use of cleaning agents and disinfectants. Here, we investigated the reaction mechanisms of chlorinated limonene peroxy radicals (Cl-lim-RO2•), key intermediates in determining the chlorine chemistry of limonene, and toxicity of transformation products (TPs) using quantum chemical calculations and toxicology modeling. The results indicate that Cl-lim-RO2• undergoes a concerted autoxidation process modulated by RO2• and alkoxy radicals (RO•), particularly emphasizing the importance of RO• isomerization. Following this generalized autoxidation mechanism, Cl-lim-RO2• can produce low-volatility precursors of secondary organic aerosols. Toxicological findings further indicate that the majority of TPs exhibit increased respiratory toxicity, mutagenicity, and eye/skin irritation compared to limonene, presenting an occupational hazard for indoor occupants. The proposed near-explicit reaction mechanism of chlorine-initiated limonene significantly enhances our current understanding of both RO2• and RO• chemistry while also highlighting the health risks associated with the concurrent use of cleaning agents and disinfectants.
Collapse
Affiliation(s)
- Zihao Fu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Choudhury A, Lenka SS, Gupta A, Mandal D, Sinha A, Saha U, Naser SS, Singh D, Simnani FZ, Ghosh A, Kumari S, Kirti A, Parija T, Chauhan RS, Kaushik NK, Suar M, Verma SK. Controlled in vivo intrinsic detrimental effect of d-Limonene channelized by influential proximal interaction through apoptosis and steatosis in embryonic zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175243. [PMID: 39098420 DOI: 10.1016/j.scitotenv.2024.175243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Bioaccumulation of d-Limonene in environment due to the aggrandised usage of their natural sources like citrus food wastes and industrial day to day life products has raised concern to their biotoxicity to environment biotic health. Moreover, their after-usage discharge to aquatic system has enhanced the distress of posing threat and needs attention. This study entails mechanistic and molecular evaluation of in-vivo biotoxicity of d-Limonene in zebrafish embryo models. Experimental analysis excavated the controlled concentration-dependent morphological, physiological and cellular in-vivo impact of d-Limonene in zebrafish embryos through significant changes in oxidative stress, steatosis and apoptosis regulated via 6-fold and 5-fold mRNA expression change in p53 and Sod1 genes. Computational evaluation deduced the cellular mechanism of d-limonene biotoxicity as irregularities in oxidative stress, apoptosis and steatosis due of their intrinsic interaction with metabolic proteins like Zhe1a (-4.8 Kcal/mol), Sod1(-5.3 Kcal/mol), p53, caspase3 and apoa1 leading to influential change in structural and functional integrity of the metabolic proteins. The study unravelled the measured in-vivo biotoxicity of d-Limonene at cellular and molecular level to advocate the controlled usage of d-Limonene related natural and industrial product for a sustainable environmental health.
Collapse
Affiliation(s)
- Anmol Choudhury
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sudakshya S Lenka
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Abha Gupta
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Deepa Mandal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Dibyangshee Singh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shalini Kumari
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825001, India
| | - Apoorv Kirti
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Tithi Parija
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Raghuraj Singh Chauhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Teixeira-Fonseca JL, Orts DJBY, Silva PLD, Conceição MRDL, Hermes H, Prudencio CR, Roman-Campos D. In Vivo Anti-Inflammatory Activity of D-Limonene in a Rat Model of Monocrotaline-Induced Pulmonary Hypertension: Implications to the Heart Function. Arq Bras Cardiol 2024; 121:e20240195. [PMID: 39699454 DOI: 10.36660/abc.20240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND D-limonene (D-L) is the major monocyclic monoterpene in citrus plants with anti-inflammatory properties. Pulmonary hypertension (PH) can cause right heart dysfunction and increases the risk of death, partially due to inflammatory response in the heart. OBJECTIVE To evaluate the possible protective effect of D-L on cardiac function in a rat model of monocrotaline-induced PH (MCT-PH). METHODS Electrocardiogram was monitored in vivo. Masson Trichrome technique was deployed to verify fibrosis in the heart. Contractility function of isolated atrial tissue was studied using organ bath chamber. Real-time quantitative PCR was applied to quantify inflammation in the right ventricle. RESULTS The MCT-PH group showed electrical and structural heart remodeling, with the presence of fibrosis in the cardiac tissue and in vivo electrocardiographic changes. Treatment with D-L partially prevented the development of tissue fibrosis and the increase in P wave duration in the MCT-PH group. The contraction and relaxation velocity of isolated right and left atrium were accelerated in CTR and MCT-PH animals treated with D-L. Finally, D-L was able to prevent the abnormal expression of the key inflammatory cytokines (interleukin 1-β, interleukin 6 and tumor necrosis factor-α) in the right ventricle of MCT-PH animals. D-L was able to enhance the production of the anti-inflammatory cytokine Interleukin-10. CONCLUSION Our results showed that in vivo administration of D-L partially prevented the molecular, structural and functional remodeling of the heart in the MCT-PH model with attenuation of the inflammatory response in the heart.
Collapse
Affiliation(s)
| | | | | | | | - Hernan Hermes
- Instituto Adolfo Lutz, São Paulo, SP - Brasil
- Universidade São Paulo, São Paulo, SP - Brasil
| | - Carlos R Prudencio
- Instituto Adolfo Lutz, São Paulo, SP - Brasil
- Universidade São Paulo, São Paulo, SP - Brasil
| | | |
Collapse
|
13
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
14
|
Santos JS, Galvão JG, Mendonça MRC, Costa AMB, Silva ARST, Oliveira DS, Santos ADJ, Lira AAM, Scher R, Sales Júnior PA, Pereira VRA, Formiga FR, Nunes RS. Encapsulation of Citrus sinensis essential oil and R-limonene in lipid nanocarriers: A potential strategy for the treatment of leishmaniasis. Int J Pharm 2024; 662:124464. [PMID: 39033939 DOI: 10.1016/j.ijpharm.2024.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Leishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis. The influence of surface-modified NLCs using chitosan was also examined. The NLCs were prepared using a warm microemulsion method, and surface modification with chitosan was achieved through electrostatic interaction. These nanocarriers were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). In vitro cytotoxicity was assessed in L929 and RAW 264.7 cells, and leishmanicidal activity was evaluated against promastigote and amastigote forms. The NLCs were spherical, with particle sizes ranging from 97.9 nm to 111.3 nm. Chitosan-coated NLCs had a positive surface charge, with zeta potential values ranging from 45.8 mV to 59.0 mV. Exposure of L929 cells to NLCs resulted in over 70 % cell viability. Conversely, surface modification significantly reduced the viability of promastigotes (93 %) compared to free compounds. Moreover, chitosan-coated NLCs presented a better IC50 against the amastigote forms than uncoated NLCs. Taken together, these findings demonstrate the feasibility of using NLCs to overcome the limitations of current leishmaniasis treatments, warranting further research.
Collapse
Affiliation(s)
- Jeferson S Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.
| | - Juliana G Galvão
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Marcos R C Mendonça
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Amanda M B Costa
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Audrey R S T Silva
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Daniela S Oliveira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriana de J Santos
- Process Engineering Program, University of Tiradentes (UNIT), Aracaju, SE 49032-490, Brazil
| | - Ana Amélia M Lira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Ricardo Scher
- Departament of Morphology, Federal University of Sergipe, São Cristóovão 49100-000, Sergipe, Brazil
| | | | | | - Fábio Rocha Formiga
- Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 52171-011 Recife, PE, Brazil
| | - Rogéria S Nunes
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
15
|
Du Z, Jin Y, Yang X, Xia K, Chen Z. Multi-omics analyses and botanical perfumer hypothesis provide insights into the formation and maintenance of aromatic characteristics of Dendrobium loddigesii flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108891. [PMID: 38959568 DOI: 10.1016/j.plaphy.2024.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dendrobium loddigesii, a member of the Orchidaceae family, is a valuable horticultural crop known for its aromatic qualities. However, the mechanisms responsible for the development of its aromatic characteristics remain poorly understood. To elucidate these underlying mechanisms, we assembled the first chromosome-level reference genome of D. loddigesii using PacBio HiFi-reads, Illumina short-reads, and Hi-C data. The assembly comprises 19 pseudochromosomes with N50 contig and N50 scaffold sizes of 55.15 and 89.94 Mb, respectively, estimating the genome size to be 1.68 Gb, larger than that of other sequenced Dendrobium species. During the flowering stages, we conducted a comprehensive analysis combining volatilomics and transcriptomics to understand the characteristics and biosynthetic mechanisms pathways of the floral scent. Our findings emphasize the significant contribution of aromatic terpenoids, especially monoterpenoids, in defining the floral aroma. Furthermore, we identified two crucial terpene synthase (TPS) genes that play a key role in maintaining the aroma during flowering. Through the integration volatilomics data with catalytic assays of DlTPSbs proteins, we identified specific compounds responsible for the aromatic characteristics of D. loddigesii. This integrated analysis of the genome, transcriptome, and volatilome, offers valuable insights into the development and preservation of D. loddigesii's aromatic characteristics, setting the stage for further exploration of the botanical perfumer hypothesis.
Collapse
Affiliation(s)
- Zhihui Du
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Yuxuan Jin
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Xiyu Yang
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Zhilin Chen
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China.
| |
Collapse
|
16
|
Fang YW, Wang CK, Lin CY. The relationship between serum monoterpene levels and bone health: a retrospective cross-sectional analysis from the National Health and Nutrition Examination Survey (NHANES) data. Front Public Health 2024; 12:1436415. [PMID: 39171315 PMCID: PMC11335497 DOI: 10.3389/fpubh.2024.1436415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Monoterpenes, a subset of the terpene family composed of two isoprene units, have garnered significant attention in research circles owing to their potential medicinal benefits. Recent experimental studies indicate that they might exert positive effects on bone health. Nevertheless, the impact of monoterpenes exposure on bone health remains unexplored in humans. Methods We examined 748 adults (age ≥ 40 years) from the National Health and Nutrition Examination Survey (NHANES) 2013-2014 to explore the correlation between three monoterpenes (α-pinene, β-pinene, and limonene), bone mineral density (BMD) in the total lumbar spine and proximal femur, FRAX® scores, and prior bone fracture history. Results and discussion Our analysis unveiled a significant inverse association between a one-unit increase in the natural logarithm (ln) of α-pinene and limonene and total proximal femur BMD (ß = -0.027, S.E. = 0.008, P = 0.004 and ß = -0.019, S.E. = 0.007, P = 0.016, respectively). As serum α-pinene levels ascended across quintiles, there was a notable decrease in total proximal femur BMD (P for trend = 0.025). The inverse relationship between ln α-pinene levels and total proximal femur BMD was more pronounced in women, especially pre-menopausal women. Compared to subjects with α-pinene and limonene levels at or below the 50th percentiles, those exceeding this threshold exhibited the lowest mean value of total proximal femur BMD (0.8628 g/cm2, S.E. = 0.026, P = 0.009). However, the trend was not statistically significant (P = 0.070). Additionally, all three monoterpenes were linked to a higher prevalence of previous spine fractures, whereas β-pinene showed a reduced incidence of other types of fractures. In this comprehensive survey of American adults aged 40 and above, higher serum levels of α-pinene and limonene correlated with decreased total proximal femur BMD. Furthermore, our findings suggest a potential combined effect of α-pinene and limonene on total proximal femur BMD. Further investigation is essential to elucidate the clinical relevance and causative nature of our findings.
Collapse
Affiliation(s)
- Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
17
|
Jiang L, Hao Y, Li Q, Dai Z. Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. Int J Mol Sci 2024; 25:6694. [PMID: 38928404 PMCID: PMC11203607 DOI: 10.3390/ijms25126694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 μM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 μM cinnamic acid, indolelactic acid (ILA), and 10 μM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 μM IAld or 100 μM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 μM CGA or 100 μM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Qianjun Li
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| |
Collapse
|
18
|
Weng YX, Wang HC, Chu YL, Wu YZ, Liao JA, Su ZY. Essential oil from Citrus depressa peel exhibits antimicrobial, antioxidant and cancer chemopreventive effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3982-3991. [PMID: 38252712 DOI: 10.1002/jsfa.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), β-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 μg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Xiang Weng
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Hsiao-Chi Wang
- Department of Oral Hygiene and Healthcare, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan, ROC
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung County, Taiwan, ROC
| | - Yun-Zhen Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Jie-An Liao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| |
Collapse
|
19
|
Novais MHG, Farias NS, Dos Santos AG, Fonseca VJA, Ribeiro-Filho J, De Menezes IRA, Coutinho HDM, Morais-Braga MFB. Pharmacological potential of limonene against opportunistic fungi: Impact on Candida virulence. Acta Trop 2024; 253:107168. [PMID: 38432404 DOI: 10.1016/j.actatropica.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The present article aims to evaluate the antifungal and antivirulence effect of the phytoconstituent Limonene against Candida spp. Antifungal assays were performed, where the concentration capable of inhibiting 50 % of fungal growth, the growth inhibition curve, the minimum fungicidal concentration, the evaluation of the modifying effect with fluconazole, the inhibitory effect of the substances on the morphological transition of Candida spp. and the statistical analysis of the results were determined. With this study, it was seen that limonene demonstrated growth inhibition for the strains tested and when associated the natural compound with Fluconazole, there was potentiation of the effect of the drug, since the inhibition of growth by the combination occurred at lower concentrations against all strains tested, when compared to the drug alone, which inhibited growth at the highest concentration. In the test to determine the Minimum Fungicidal Concentration of the products tested alone and in combination, it was found that in the case of Candida strains, growth inhibition by limonene occurred at a concentration of 1024 μg/mL. For Fluconazole, growth impairment ranged from > 1024 μg/mL to 256 μg/mL for the strains. And when combined, limonene potentiated the action of FCZ, making fungal colonization unfeasible at concentrations below 1024 μg/mL. Regarding the morphological transition from yeast to hyphae, limonene was used at concentrations of 1024 μg/mL and 512 μg/mL, and it was found that, for CA and CK, the filaments were reduced in number and size at the highest concentration and against CT, the morphological transition from yeast to hyphae/pseudohyphae was totally inhibited, and if compared to the growth control, limonene was able to reduce fungal growth at concentrations greater than 512 μg/mL. This compound has antimicrobial activity described, due to its ability to interfere in the gene expression of the fungus, the limited therapeutic options and the recent emergence of multidrug-resistant Candida species represent a significant challenge for human medicine and highlight the need for new therapeutic approaches, and in this study a great potential of limonene was revealed in relation to the perspective of increasing the efficiency of commercial drug. This work can bring an important contribution to the scientific database, while emphasizing that in-depth studies and tests on the subject, in order to better investigate its effectiveness and mechanisms by which they exert their effects, are still necessary.
Collapse
|
20
|
Rydel-Ciszek K. DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes. Molecules 2024; 29:1579. [PMID: 38611858 PMCID: PMC11013946 DOI: 10.3390/molecules29071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Nowadays, the effective processing of natural monoterpenes that constitute renewable biomass found in post-production waste into products that are starting materials for the synthesis of valuable compounds is a way to ensure independence from non-renewable fossil fuels and can contribute to reducing global carbon dioxide emissions. The presented research aims to determine, based on DFT calculations, the activity and reactivity of limonene, an organic substrate used in previous preparative analyses, in comparison to selected monoterpenes such as cymene, pinene, thymol, and menthol. The influence of the solvent model was also checked, and the bonds most susceptible to reaction were determined in the examined compounds. With regard to EHOMO, it was found that limonene reacts more easily than cymene or menthol but with more difficultly than thymol and pienene. The analysis of the global chemical reactivity descriptors "locates" the reactivity of limonene in the middle of the studied monoterpenes. It was observed that, among the tested compounds, the most reactive compound is thymol, while the least reactive is menthol. The demonstrated results can be a reference point for experimental work carried out using the discussed compounds, to focus research on those with the highest reactivity.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
21
|
Huang J, Fang Z, Bai C, Mo Y, Liu D, Yang B, Jia X, Feng L. Novel nano-encapsulated limonene: Utilization of drug-in-cyclodextrin-in-liposome formulation to improve the stability and enhance the antioxidant activity. Int J Pharm 2024; 653:123914. [PMID: 38373597 DOI: 10.1016/j.ijpharm.2024.123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Drug-in-cyclodextrin-in-liposome (DCL) combines advantages of cyclodextrin and liposome. Here, DCL formulation was successfully prepared to encapsulate limonene (Lim), whose characterization revealed that particle size was 147.5 ± 1.3 nm and zeta potential was -48.7 ± 0.8 mV. And the complexation mechanism of Lim/HP-β-CD inclusion complex (the intermediate of DCL) was analyzed by molecular dynamics simulation, showing that Lim was entrapped into the cavity of HP-β-CD through electrostatic and hydrophobic interaction with a molar ratio of 1:1. Notably, DCL formulation not only reduced Lim volatilization in 25℃, but also enhanced the free radical (DPPH· and ABTS·+) scavenging ability of Lim. In summary, Lim-DCL formulation improved the stability and enhanced the antioxidant activity of Lim. DCL nanocarrier system is suitable to preserve volatile and hydrophobic compounds, enlarging their application in pharmaceutics industries.
Collapse
Affiliation(s)
- Junming Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhanmin Fang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chun Bai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yulin Mo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Dingkun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
22
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
23
|
Henrique Fontoura B, Cristina Perin E, Paula Buratto A, Francisco Schreiner J, Menezes Cavalcante K, Dias Teixeira S, Manica D, Antônio Narzetti R, Bruno da Silva G, Dulce Bagatini M, Luiza Cadorin Oldoni T, Teresinha Carpes S. Chemical profile and biological properties of the Piper corcovadense C.DC. essential oil. Saudi Pharm J 2024; 32:101993. [PMID: 38384478 PMCID: PMC10879029 DOI: 10.1016/j.jsps.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
The essential oil from Piper corcovadense D.DC. (EOPc), an important plant belonging to the Piperaceae family, which is commonly found in the northern region of Brazil and poorly explored scientifically, was used in this study. Thus, the EOPc was characterized chemically by Gas Chromatography/Mass Spectrometry (GC/MS) and the antioxidant and antimicrobial activities and their potential effects on cutaneous melanoma (SK-MEL-28) and healthy peripheral blood mononuclear (PBMC) cells were determined. The major compounds identified in the EOPc were: trans-sesquisabinene hydrate, trans-caryophyllene, β-pinene, trans-β-farnesene, 14-hydroxycaryophyllene, limonene and p-cymene. The EOPc demonstrated antioxidant activity as evaluated by Folin-Ciocalteu reagent (FC) reducing capacity, DPPH, and ABTS methods. The values found were respectively 5.41 ± 0.17 mg GAE mL-1 (GAE: Gallic acid equivalent), 2.88 ± 0.17 µmol TE mL-1 (TE: Trolox equivalent) and 6.26 ± 0.02 µmol TE mL-1. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for different bacterial strains. The EOPc at a concentration of 2.61 µg mL-1 exhibited both bactericidal and bacteriostatic properties against Escherichia coli. The EOPc showed potential antitumor activity as it reduced the cell viability of human cutaneous melanoma cells SK-MEL-28. Besides, the EOPc did not exhibit cytotoxic activity against healthy PBMCs, indicating that it does not harm healthy cells at the tested concentrations. The EOPc increased the levels of ROS at concentrations of 250 µg mL-1. The EOPc also did not stimulate the mobilization of endogenous antioxidant defenses, as assessed by total thiol (PSH) and non-protein thiols (NPSH). Thus, the study suggests that the EOPc has antioxidant and antimicrobial properties due to the presence of specific compounds. It also exhibits antitumor potential against cutaneous melanoma cells while showing no cytotoxicity to healthy PBMCs. It directly influenced ROS levels at the highest tested concentration in the cells, suggesting an antitumor effect related to the intrinsic apoptosis pathway. Nevertheless, while the study has initial findings, the results are promising and indicate an attractive biological potential of P. corcovadense, mainly in human cutaneous melanoma cells.
Collapse
Affiliation(s)
- Bruno Henrique Fontoura
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Ellen Cristina Perin
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Ana Paula Buratto
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Jucemar Francisco Schreiner
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Kamyla Menezes Cavalcante
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Sirlei Dias Teixeira
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Antônio Narzetti
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tatiane Luiza Cadorin Oldoni
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Solange Teresinha Carpes
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| |
Collapse
|
24
|
Dzhoglova V, Ivanov K, Benbassat N, Georgieva-Dimova Y, Ardasheva R, Karcheva-Bahchevanska D, Ivanova S. Crithmum maritimum L.-Study on the Histochemical Localization of Essential Oil. PLANTS (BASEL, SWITZERLAND) 2024; 13:550. [PMID: 38498561 PMCID: PMC10892170 DOI: 10.3390/plants13040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Crithmum maritimum L. is a perennial halophyte plant that is a medicinal herb known by people from different cultures since ancient times. However, the therapeutic potential of this halophyte has not been completely investigated, and the scientific data on it are limited. The purpose of the present study was to estimate the chemical composition of the essential oil (EO) obtained from the aerial parts of Crithmum maritimum L. growing wild in Bulgaria, as well as the histolocalization of secretory structures for the synthesis and accumulation of volatile oils. The results obtained on the EO composition of Bulgarian Crithmum maritimum L. provide an opportunity to reveal potential future applications in various fields, such as medicine, pharmacy, agriculture, food, and the cosmetic industry. Gas chromatography with mass spectrometry was performed to assess the chemical profile of the isolated EO. The phenylpropanoid dillapiole was identified as the major compound in the EO, accounting for 34.09% of the total EO. Monoterpene hydrocarbons represented 62.07% of the total oil composition. γ-Terpinene, D-limonene, and β-pinene were the most abundant monoterpene hydrocarbons in the composition of the EO. In addition, histochemical localization of EO in the stem and leaves of Crithmum maritimum L. was carried out. The secretory structures were located in the cortical region of the stem and in the mesophyll tissues of the leaves in the form of secretory ducts. The performed histochemical analysis confirmed the lipophilic nature of the secretion from the duct cells. This is the first report related to the histolocalization and chemical composition of the EO from Bulgarian Crithmum maritimum L. Furthermore, our data indicate some potential possibilities for the evaluation of the therapeutic activity of the EO obtained from this plant species and outline its future applications as a therapeutic agent. Also, the EO from the studied halophyte plant has prominent potential to be used as a biopesticide, which is an environmentally friendly option compared to standard pesticides.
Collapse
Affiliation(s)
- Velina Dzhoglova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva-Dimova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rayna Ardasheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
25
|
Chiang CY, Chang CH, Tseng TY, Nguyen VAT, Su PY, Truong TTT, Chen JY, Huang CC, Huang HJ. Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. PLANT & CELL PHYSIOLOGY 2024; 65:199-215. [PMID: 37951591 DOI: 10.1093/pcp/pcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.
Collapse
Affiliation(s)
- Chih-Yun Chiang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tzu-Yun Tseng
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Van-Anh Thi Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, 704 Phan Dinh Phung Street, Kontum City, Kontum Province, 580000 Vietnam
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Chung-Chih Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| |
Collapse
|
26
|
Zhang Q, Cho S, Kim B, Kim IH. Pinecone oil supplemented to multiparous sows from 107 days prenatal to 21 days postpartum improves reproductive performance and milk composition and affects serum parameters. J Anim Physiol Anim Nutr (Berl) 2024; 108:226-233. [PMID: 37697667 DOI: 10.1111/jpn.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Pinecone oil (PO) of Pinus koraiensis mainly contains α-pinene, β-pinene, and limonene that may ameliorate animal well-being and growth performance. This study evaluated its effects on feed intake, milk composition and yield, serum parameters, and litter growth of sows. Twenty-seven pregnant sows (parity 2-4) were distributed to three dietary treatments. The trial started on Day 107 of gestation and ended on Day 21 of lactation. Sows were given either a basal diet or the basal diet + 200 or 400 mg/kg PO. Each treatment contained nine sows and each sow was considered an experimental unit. Results showed that the average daily gain and weaned body weight of piglets from the sows fed 400 mg/kg PO supplements were higher (p < 0.05) than the piglets from the control sows. Lactose content in colostrum samples and fat content in milk samples were higher (p < 0.05) in 400 mg/kg PO-treated sows, respectively, than those from the sows fed basal diet. Additionally, cortisol concentration and aspartate aminotransferase concentration in sow serum was lowered (p < 0.05) by 400 mg/kg PO on Day 21 of lactation. In conclusion, supplementation of 400 mg/kg PO during late gestation and lactation contributed to greater offspring growth performance, possibly by enhanced milk quality and alleviated maternal stress.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Baeyoung Kim
- Department of Chemistry Engineering, Dankook University, Yongin-si, Gyeonggi-do, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
27
|
Rossi A, Spagnoli E, Tralli F, Marzocchi M, Guidi V, Fabbri B. New Approach for the Detection of Sub-ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:6291. [PMID: 37514586 PMCID: PMC10383529 DOI: 10.3390/s23146291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
R-(+)-limonene, one of the major constituents of citrus oils, is a monoterpene that is widely used as a fragrance additive in cosmetics, foods, and industrial solvents. Nowadays, its detection mainly relies on bulky and expensive analytical methods and only a few research works proved its revelation through affordable and portable sensors, such as electrochemical and quartz crystal microbalance sensors. In response to the demand for effective miniaturized sensing devices to be integrated into Internet of Things systems, this study represents a pioneering investigation of chemoresistive gas sensor capabilities addressed to R-(+)-limonene detection. An array of seven metal-oxide sensors was exploited to perform a complete electrical characterization of the target analyte. The experimental evidence allowed us to identify the WO3-based sensor as the most promising candidate for R-(+)-limonene detection. The material was highly sensitive already at sub-ppm concentrations (response of 2.5 at 100 ppb), consistent with applicative parameters, and it resulted in selective vs. different gases at a lower operating temperature (200 °C) than the other sensors tested. Furthermore, it exhibited a humidity-independent behavior under real-life conditions (relative humidity > 20%). Finally, the WO3 sensor also demonstrated a remarkable cross-selectivity, thus enabling its exploitation in cutting-edge applications.
Collapse
Affiliation(s)
- Arianna Rossi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Elena Spagnoli
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Francesco Tralli
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Marco Marzocchi
- Sacmi Imola S.C., Olfactory Systems, Via Selice Prov.le, 17/a, 40026 Imola, Italy
| | - Vincenzo Guidi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Barbara Fabbri
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| |
Collapse
|
28
|
Roosen M, Van Laere T, Decottignies V, Morel L, Schnitzler JL, Schneider J, Schlummer M, Lase IS, Dumoulin A, De Meester S. Tracing the origin of VOCs in post-consumer plastic film bales. CHEMOSPHERE 2023; 324:138281. [PMID: 36868415 PMCID: PMC10041343 DOI: 10.1016/j.chemosphere.2023.138281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Volatile organic compounds (VOCs), including odors, are still a key issue in plastic recycling, especially in case of flexible packaging. Therefore, this study presents a detailed qualitative and quantitative VOC analysis by applying gas chromatography on 17 categories of flexible plastic packaging that are manually sorted from bales of post-consumer flexible packaging (e.g., beverage shrink wrap, packaging for frozen food, packaging for dairy products, etc.). A total of 203 VOCs are identified on packaging used for food products, while only 142 VOCs are identified on packaging used for non-food products. Especially, more oxygenated compounds (e.g., fatty acids, esters, aldehydes) are identified on food packaging. With more than 65 VOCs, the highest number of VOCs is identified on packaging used for chilled convenience food and ready meals. The total concentration of 21 selected VOCs was also higher on packaging used for food products (totally 9187 μg/kg plastic) compared to packaging used for non-food packaging (totally 3741 μg/kg plastic). Hence, advanced sorting of household plastic packaging waste, e.g., via tracer-based sorting or watermarking, could open the door towards sorting on other properties than polymer type, such as mono- versus multi-material packaging, food versus non-food packaging or even their VOC profile, which might allow for tailoring washing procedures. Potential scenarios showed that sorting the categories with the lowest VOC load, which corresponds to half of the total mass of flexible packaging, could result in a VOC reduction of 56%. By producing less contaminated plastic film fractions and by tailoring washing processes recycled plastics can ultimately be used in a broader market segment.
Collapse
Affiliation(s)
- Martijn Roosen
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Tine Van Laere
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | | | - Ludivine Morel
- SUEZ, CIRSEE, Rue du Président Wilson 38, 78230, Le Pecq, France
| | | | - Johannes Schneider
- Fraunhofer Institute for Process Engineering and Packaging IVV, Process Development for Polymer Recycling, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Martin Schlummer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Process Development for Polymer Recycling, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Irdanto Saputra Lase
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Ann Dumoulin
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium.
| |
Collapse
|
29
|
Venkatachalam K, Charoenphun N, Srean P, Yuvanatemiya V, Pipatpanukul C, Pakeechai K, Parametthanuwat T, Wongsa J. Phytochemicals, Bioactive Properties and Commercial Potential of Calamondin ( Citrofortunella microcarpa) Fruits: A Review. Molecules 2023; 28:molecules28083401. [PMID: 37110643 PMCID: PMC10146261 DOI: 10.3390/molecules28083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The calamondin (Citrofortunella microcarpa) is a hybrid citrus fruit resulting from the crossing of a mandarin orange with a kumquat. It is a small, round-shaped fruit with thin, smooth skin ranging from orange to dark red. The aroma of the fruit is distinctive and unique. Calamondin is an excellent source of Vitamin C, D-Limonene, and essential oils, providing benefits to the immune system, as well as anti-inflammatory, anti-cancer, anti-diabetic, anti-angiogenic, and anti-cancer properties, and it exhibits various therapeutic effects. It also contains a good amount of dietary fiber from pectin. Its distinctive flavor and high juice content make calamondin juice a popular ingredient in many international cuisines. The juice also contains bioactive compounds, such as phenolics and flavonoids, which are a potential source of antioxidant properties. All parts of the calamondin fruit, including the juice, pulp, seeds, and peel, can be used in various applications, from food products like juices, powders, and candies to non-food uses in herbal medicine and cosmetics, showcasing their versatility and unique properties. This review will examine various bioactive components of calamondin and their related medicinal effects, and provide guidelines for their utilization, processing, and value addition on a commercial scale.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang 84000, Surat Thani, Thailand
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Thamai 22170, Chanthaburi, Thailand
| | - Pao Srean
- Faculty of Agriculture and Food Processing, National University of Battambang, Battambang 020101, Cambodia
| | - Vasin Yuvanatemiya
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Thamai 22170, Chanthaburi, Thailand
| | | | - Kanokporn Pakeechai
- Faculty of Business Administration and Information Technology, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, Phranakhon Si Ayutthaya, Thailand
| | - Thanya Parametthanuwat
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
- KMUTNB Techno Park Prachinburi, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
| | - Jittimon Wongsa
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
- Food and Agro-Industry Research Center, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| |
Collapse
|
30
|
Tundis R, Xiao J, Silva AS, Carreiró F, Loizzo MR. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. PLANTS (BASEL, SWITZERLAND) 2023; 12:991. [PMID: 36903853 PMCID: PMC10005512 DOI: 10.3390/plants12050991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
| | - Filipa Carreiró
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
31
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
32
|
Changes in quality properties and volatile compounds of different cultivars of green plum (Prunus mume Sieb. et Zucc.) during ripening. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
33
|
Bartkiene E, Tolpeznikaite E, Klupsaite D, Starkute V, Bartkevics V, Skrastina A, Pavlenko R, Mockus E, Lele V, Batkeviciute G, Budrikyte A, Janulyte R, Jomantaite I, Kybartaite A, Knystautaite K, Valionyte A, Ruibys R, Rocha JM. Bio-Converted Spirulina for Nutraceutical Chewing Candy Formulations Rich in L-Glutamic and Gamma-Aminobutyric Acids. Microorganisms 2023; 11:microorganisms11020441. [PMID: 36838408 PMCID: PMC9959499 DOI: 10.3390/microorganisms11020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
This study aimed at evaluating changes of microalgae Spirulina during its fermentation with Lactiplantibacillus plantarum No. 122 strain, and further at incorporating Spirulina bio-converted for nutraceuticals rich in L-glutamic (L-Glu) and gamma-aminobutyric acids (GABA) into sucrose-free chewing candy (gummy) preparations. Fermented Spirulina had higher b* (yellowness) coordinates than untreated (non-fermented), and fermentation duration (24 and 48 h) had a statistically significant effect on colour coordinates. The highest contents of L-glutamic and gamma-aminobutyric acids (4062 and 228.6 mg/kg, respectively) were found in 24 and 48 h-fermented Spirulina, respectively. Fermentation increased the content of saturated fatty acids and omega-3 in Spirulina, while monounsaturated fatty acids and omega-6 were reduced. The addition of fermented Spirulina (FSp) significantly affected hardness, decreased lightness and yellowness, and increased the greenness of chewing candies. All chewing candy samples (with xylitol) prepared with 3 and 5 g of FSp and 0.2 µL of Citrus paradise essential oil received the highest scores for overall acceptability, and the highest intensity (0.052) of emotion "happy" was elicited by the sample group containing xylitol, agar, ascorbic acid, 3 g of FSp, and 0.1 µL of Mentha spicata essential oil. As an outcome of this research, one may conclude that fermented Spirulina has significant potential as an innovative ingredient in the production of healthier sucrose-free nutraceutical chewing candies.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-601-35837
| | - Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Anna Skrastina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gabija Batkeviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ausrine Budrikyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rusne Janulyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ieva Jomantaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Auguste Kybartaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Karolina Knystautaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aiste Valionyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, 44307 Kaunas, Lithuania
| | - João Miguel Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto (FEUP), Rua Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
34
|
Jian Y, Chen X, Ma H, Zhang C, Luo Y, Jiang J, Yin Y. Limonene formulation exhibited potential application in the control of mycelial growth and deoxynivalenol production in Fusarium graminearum. Front Microbiol 2023; 14:1161244. [PMID: 37125209 PMCID: PMC10131186 DOI: 10.3389/fmicb.2023.1161244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Preventing grain from fungi and subsequent mycotoxins contamination has attracted notable attention. Present study demonstrated the limonene-formulated product Wetcit®, might be a biocontrol agent and potential alternative to synthetic fungicides to control Fusarium graminearum growth and deoxynivalenol (DON) production. The limonene formulation exhibited antifungal activity against F. graminearum with the EC50 at 1.40 μl/ml, electron microscopy and staining analysis showed limonene formulation could significantly decrease the quantity, length and septa of conidia, caused hyphal break and shrink, damaged the structures of cell membrane, cell wall, vacuoles and organelles in the hypha. Further study revealed the antifungal and antitoxic mechanism of limonene formulation against F. graminearum, limonene formulation significantly inhibited the toxisome and DON formation, was associated with the down-regulation of trichothecenes biosynthesis genes expression and many energy metabolism pathways as well as the inhibition of lipid droplets, the disturbed energy homeostasis and intracellular structures might ultimately inhibit fungal growth and DON production. In addition, limonene formulation enhanced the antifungal activity of triazole fungicides tebuconazole and mefentrifluconazole against F. graminearum, indicated limonene formulation has valuable potential as a bio-alternative fungicide and eco-friendly compound preparation for the effective management of F. graminearum and DON contamination in agriculture.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiqin Ma
- Oro Agri International Ltd, Fresno, CA, United States
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Jinhua Jiang, ; Yanni Yin,
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jinhua Jiang, ; Yanni Yin,
| |
Collapse
|
35
|
Zhao Y, Bai T, Liu Y, Lv Y, Zhou Z, Shen Y, Jiang L. Encapsulation of Volatile Monoterpene Fragrances in Mesoporous Organosilica Nanoparticles and Potential Application in Fruit Preservation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:104. [PMID: 36616014 PMCID: PMC9823477 DOI: 10.3390/nano13010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In this work, we synthesized mesoporous silica nanoparticles (MSNs) and periodic mesoporous organosilica nanoparticles containing bridging groups of ethylene (E-PMO) and phenylene (P-PMO) and compared their adsorption properties using D-limonene (Lim), myrcene (Myr), and cymene (Cym) as model guest molecules. For the selected nanoparticles of ~100 nm in diameter, the loading capacity to the volatile fragrances was in the order of P-PMO < E-PMO < MSN, consistent with the trend of increasing total pore volume. For example, P-PMO, E-PMO, and MSN had a Lim uptake of 42.2 wt%, 47.3 wt%, and 62.7 wt%, respectively, which was close to their theoretical adsorption capacity. Under isothermal thermogravimetric analysis conditions (30 °C, a N2 flow of 1 mL min−1), the lowest fragrance release of ~56% over 24 h was observed for P-PMO, followed by E-PMO (74−80%), and MSN (~89%). The release kinetics of the fragrant molecules from MSN and PMO materials can be well described by first-order and Weibull models, respectively. Moreover, the incorporation of Lim-loaded P-PMO NPs in an aqueous solution of regenerated silk fibroin provided a composite coating material suitable for perishable fruit preservation. The active layer deposited on fruit peels using dip coating showed good preservation efficacy, enabling the shelf-life of mangoes in a highly humid and hot atmosphere (30−35 °C, 75−85% RH) to be extended to 6 days.
Collapse
Affiliation(s)
- Yuanjiang Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yichao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Leite-Andrade MC, de Araújo Neto LN, Buonafina-Paz MDS, de Assis Graciano dos Santos F, da Silva Alves AI, de Castro MCAB, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Baj T, Neves RP. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against Candida parapsilosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248884. [PMID: 36558017 PMCID: PMC9788451 DOI: 10.3390/molecules27248884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Yeasts from the Candida parapsilosis complex are clinically relevant due to their high virulence and pathogenicity potential, such as adherence to epithelial cells and emission of filamentous structures, as well as their low susceptibility to antifungals. D-limonene, a natural compound, emerges as a promising alternative with previously described antibacterial, antiparasitic, and antifungal activity; however, its mechanisms of action and antivirulence activity against C. parapsilosis complex species have not been elucidated. Therefore, in the present study, we aimed to evaluate the antifungal and antivirulence action, as well as the mechanism of action of D-limonene against isolates from this complex. D-limonene exhibited relevant antifungal activity against C. parapsilosis complex yeasts, as well as excellent antivirulence activity by inhibiting yeast morphogenesis and adherence to the human epithelium. Furthermore, the apoptotic mechanism induced by this compound, which is not induced by oxidative stress, represents an important target for the development of new antifungal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratório de Parasitologia e Laboratório de Imunologia IAM, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Edna Mori
- Faculdade CECAPE College, São José, Juazeiro do Norte 63024-015, CE, Brazil
| | | | - Isaac Moura Araújo
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
- Correspondence: (H.D.M.C.); (T.B.)
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
- Correspondence: (H.D.M.C.); (T.B.)
| | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
37
|
AlSaffar RM, Rashid S, Ahmad SB, Rehman MU, Hussain I, Parvaiz Ahmad S, Ganaie MA. D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl 4-induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep 2022; 27:92-99. [PMID: 35435141 PMCID: PMC9037211 DOI: 10.1080/13510002.2022.2062947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.
Collapse
Affiliation(s)
- Rana M AlSaffar
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sheikh Parvaiz Ahmad
- Department of Statics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology , College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
38
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
39
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Inactivating Food Microbes by High-Pressure Processing and Combined Nonthermal and Thermal Treatment: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5797843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-pressure processing (HPP) is a mild technology alternative to thermal pasteurization and sterilization of different food products. HPP has emerged to provide enormous benefits to consumers, i.e., mildly processed food and additive-free food. It effectively retains bioactive compounds and extends the shelf life of food commodities by inactivating bacteria, yeast, mold, and virus. The limitation of HPP in inactivating spores can be overcome by using other thermal and nonthermal processing sequentially or simultaneously with HPP. This review summarizes the applications of HPP in the fruits and vegetables, dairy, meat, fish, and poultry sector. It also emphasizes microbial food safety and the effectiveness of HPP in the load reduction of microorganisms. Comprehensive information about the synergistic effect of HPP with different techniques and their effectiveness in ensuring food safety is reported. The summarized data would be handy to interested researchers and industry personnel.
Collapse
|
41
|
Faccia M, Maggiolino A, Natrella G, Zizzadoro C, Mazzone A, Poulopoulou I, Bragaglio A, De Palo P. Ingested versus inhaled limonene in sheep: A pilot study to explore potential different transfer to the mammary gland and effects on milk and Caciotta cheese aroma. J Dairy Sci 2022; 105:8143-8157. [PMID: 36028343 DOI: 10.3168/jds.2022-22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Concentration is a key determinant in the overall positive impact of terpenes on milk and cheese aroma; additionally, route of intake may affect the achievable concentrations of dietary terpenes in milk and cheese. In this study, we explored the possibility that the amount of the monoterpene limonene transferred to sheep milk and its corresponding cheese could differ depending on the route of intake and that the aroma profile of these products could also differ. To this aim, 12 lactating dairy ewes were repeatedly exposed to limonene by the oral or respiratory route during a 48-h test period, according to a 3 × 3 Latin square experimental design. Limonene content was measured in individual and bulk milk samples, in 1-d-old and 15-d-old Caciotta cheese obtained from that milk, in the related whey and curd, and in the air inhaled by the ewes in the respiratory treatment group (to obtain an estimate of the dose actually supplied by this route). Bulk milk and fresh (1-d-old) cheese underwent sensory analysis by ortho-olfactory evaluation. Both intake routes demonstrated transfer of limonene to milk, but the respiratory route transferred limonene with greater efficiency than the oral route. Moreover, according to the protocol used in this study, a short period of respiratory exposure induced a slightly higher limonene content in milk compared with oral exposure. As to the fate of limonene during cheesemaking, an important part of it was lost into the whey, perhaps through volatilization. The differences between milk and cheese tended to dissipate in curd and fresh cheese and disappeared completely after 15 d of ripening. Finally, it was possible to distinguish between the 2 routes of limonene intake using sensory analysis, even though no direct relationship was identified between the different aroma profiles of milks and cheeses from the oral and respiratory groups and their respective limonene contents. Overall, our results expand current knowledge on the biological pathways of terpene transfer from feed to sheep milk and cheese, as well as on the role played by terpenes in the formation of aroma in these products. Our observations may contribute to future development of strategies for external control and better standardization of the presence of odor compounds in milk and cheese from dairy ruminants.
Collapse
Affiliation(s)
- M Faccia
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70121 Bari, Italy
| | - A Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy.
| | - G Natrella
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70121 Bari, Italy
| | - C Zizzadoro
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - A Mazzone
- Order of Chemists of Bari, 70121 Bari, Italy
| | - I Poulopoulou
- Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - A Bragaglio
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - P De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| |
Collapse
|
42
|
Development and validation of a method for determining d-limonene and its oxidation products in vegetables and soil using GC–MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Ma Q, Xu Y, Xiao H, Mariga AM, Chen Y, Zhang X, Wang L, Li D, Li L, Luo Z. Rethinking of botanical volatile organic compounds applied in food preservation: Challenges in acquisition, application, microbial inhibition and stimulation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
45
|
Lebedev AT, Detenchuk EA, Latkin TB, Bavcon Kralj M, Trebše P. Aqueous Chlorination of D-Limonene. Molecules 2022; 27:2988. [PMID: 35566337 PMCID: PMC9099452 DOI: 10.3390/molecules27092988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) is one of the most widespread monocyclic terpenes, being both a natural and industrial compound. It is widely present in the environment, including in water supplies. Therefore, it may be subjected to aqueous chlorination at water treatment stations during drinking water preparation. Besides, being a component of numerous body care and cosmetic products, it may present at high levels in swimming pool waters and could also be subjected to aqueous chlorination. Laboratory experiments with aqueous chlorination of D-limonene demonstrated the prevalence of the conjugated electrophilic addition of HOCl molecule to the double bonds of the parent molecule as the primary reaction. The reaction obeys the Markovnikov rule, as the levels of the corresponding products were higher than those of the alternative ones. Fragmentation pattern in conditions of electron ionization enabled the assigning of the structures for four primary products. The major products of the chlorination are formed by the addition of two HOCl molecules to limonene. The reactions of electrophilic addition are usually accompanied by the reactions of elimination. Thus, the loss of water molecules from the products of various generations results in the reproduction of the double bond, which immediately reacts further. Thus, a cascade of addition-elimination reactions brings the most various isomeric polychlorinated species. At a ratio of limonene/active chlorine higher than 1:10, the final products of aqueous chlorination (haloforms) start forming, while brominated haloforms represent a notable portion of these products due to the presence of bromine impurities in the used NaOCl. It is worth mentioning that the bulk products of aqueous chlorination are less toxic in the bioluminescence test on V. fischeri than the parent limonene.
Collapse
Affiliation(s)
- Albert T. Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
- MASSECO d.o.o., 6230 Postojna, Slovenia
| | - Elena A. Detenchuk
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Tomas B. Latkin
- Core Facility Arktika, Northern Arctic Federal University, 163002 Arkhangelsk, Russia;
| | - Mojca Bavcon Kralj
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| |
Collapse
|
46
|
Marinho YY, P. Silva EA, Oliveira JY, Santos DM, Lima BS, Souza DS, Macedo FN, Santos AC, Araujo AA, Vasconcelos CM, Santos LA, Batista MV, Quintans JS, Quintans-Junior LJ, de Santana-Filho VJ, Barreto AS, Santos MR. Preparation, physicochemical characterization, docking and antiarrhythmic effect of d-limonene and d-limonene hydroxypropyl-β-cyclodextrin complex. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Akermi S, Smaoui S, Elhadef K, Fourati M, Louhichi N, Chaari M, Chakchouk Mtibaa A, Baanannou A, Masmoudi S, Mellouli L. Cupressus sempervirens Essential Oil: Exploring the Antibacterial Multitarget Mechanisms, Chemcomputational Toxicity Prediction, and Safety Assessment in Zebrafish Embryos. Molecules 2022; 27:2630. [PMID: 35565980 PMCID: PMC9103706 DOI: 10.3390/molecules27092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.
Collapse
Affiliation(s)
- Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Nacim Louhichi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Aissette Baanannou
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| |
Collapse
|
48
|
Anisakicidal Effects of R (+) Limonene: An Alternative to Freezing Treatment in the Industrial Anchovy Marinating Process. Foods 2022; 11:foods11081121. [PMID: 35454708 PMCID: PMC9028723 DOI: 10.3390/foods11081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Anisakiasis is a fish-borne zoonotic disease caused by the ingestion of raw/undercooked fishes or cephalopods parasitized by members of the genus Anisakis. Freezing ensures the inactivation of viable Anisakis larvae; however, since it affects the organoleptic properties of food, essential oils and their compounds were proposed as an alternative. In this study, fresh anchovy fillets were experimentally parasitized with L3 Anisakis larvae to test the anisakicidal efficacy of R (+) limonene (LMN) in marinated fishery products. The anisakicidal effectiveness and organoleptic influence of several LMN concentrations (0.5%, 1%, and 5%) were tested during the marinating process (MS) and storage in sunflower seed oil (SO) of marinated anchovy fillets. Double treatment (DT) with 1% LMN was also performed both during marination and subsequent storage in oil. MS treatment resulted only in a reduction in larvae viability after 48 h, while a complete inactivation was observed in SO after 8, 10, and 20 days of treatment with 5%, 1%, and 0.5% LMN, respectively. DT was the most effective with complete larval inactivation after 7 days. Only 5% LMN influenced the sensory characteristics of the fillets, resulting, however, in a pleasant lemon-like odor and taste. Considering the results obtained, LMN might be a suitable natural alternative to manage Anisakis risk in the fishery industry.
Collapse
|
49
|
Huang C, Zhou W, Bian C, Wang L, Li Y, Li B. Degradation and Pathways of Carvone in Soil and Water. Molecules 2022; 27:molecules27082415. [PMID: 35458614 PMCID: PMC9027270 DOI: 10.3390/molecules27082415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Carvone is a monoterpene compound that has been widely used as a pesticide for more than 10 years. However, little is known regarding the fate of carvone, or its degradation products, in the environment. We used GC-MS (gas chromatography–mass spectrometry) to study the fate of carvone and its degradation and photolysis products under different soil and light conditions. We identified and quantified three degradation products of carvone in soil and water samples: dihydrocarvone, dihydrocarveol, and carvone camphor. In soil, dihydrocarveol was produced at very low levels (≤0.067 mg/kg), while dihydrocarvone was produced at much higher levels (≤2.07 mg/kg). In water exposed to differing light conditions, carvone was degraded to carvone camphor. The photolysis rate of carvone camphor under a mercury lamp was faster, but its persistence was lower than under a xenon lamp. The results of this study provide fundamental data to better understand the fate and degradation of carvone and its metabolites in the environment.
Collapse
Affiliation(s)
- Chenyu Huang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Wenwen Zhou
- College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Chuanfei Bian
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Long Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Yuqi Li
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
- Correspondence: ; Tel.: +86-15179409965
| |
Collapse
|
50
|
Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations. Sci Pharm 2022. [DOI: 10.3390/scipharm90010014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oils, including essential oils and their constituents, are widely reported to have penetration enhancement activity and have been incorporated into a wide range of pharmaceutical formulations. This study sought to determine if there is an evidence base for the selection of appropriate oils for particular applications and compare their effectiveness across different formulation types. A systematic review of the data sources, consisting of Google Scholar, EMBASE, PubMed, Medline, and Scopus, was carried out and, following screening and quality assessment, 112 articles were included within the analysis. The research was classified according to the active pharmaceutical ingredient, dosage form, in vitro/in vivo study, carrier material(s), penetration enhancers as essential oils, and other chemical enhancers. The review identified four groups of oils used in the formulation of skin preparations; in order of popularity, these are terpene-type essential oils (63%), fatty acid-containing essential oils (29%) and, finally, 8% of essential oils comprising Vitamin E derivatives and miscellaneous essential oils. It was concluded that terpene essential oils may have benefits over the fatty acid-containing oils, and their incorporation into advanced pharmaceutical formulations such as nanoemulsions, microemulsions, vesicular systems, and transdermal patches makes them an attractive proposition to enhance drug permeation through the skin.
Collapse
|