1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Lan H, Tan XHM, Le MTT, Chien HY, Zheng R, Rowat AC, Teitell MA, Chiou PY. Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406389. [PMID: 39614709 PMCID: PMC11710979 DOI: 10.1002/smll.202406389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/01/2024]
Abstract
A new device termed "Optomagnetic Micromirror Arrays" (OMA) is demonstrated capable of mapping the stiffness distribution of biomimetic materials across a 5.1 mm × 7.2 mm field of view with cellular resolution. The OMA device comprises an array of 50 000 magnetic micromirrors with optical grating structures embedded beneath an elastic PDMS film, with biomimetic materials affixed on top. Illumination of a broadband white light beam onto these micromirrors results in the reflection of microscale rainbow light rays on each micromirror. When a magnetic field is applied, it causes each micromirror to tilt differently depending on the local stiffness of the biomimetic materials. Through imaging these micromirrors with low N.A. optics, a specific narrow band of reflection light rays from each micromirror is captured. Changing a micromirror's tilt angle also alters the color spectrum it reflects back to the imaging system and the color of the micromirror image it represents. As a result, OMA can infer the local stiffness of the biomimetic materials through the color change detected on each micromirror. OMA offers the potential for high-throughput stiffness mapping at the tissue-level while maintaining spatial resolution at the cellular level.
Collapse
Affiliation(s)
- Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Republic of Singapore
| | - Minh-Tam Tran Le
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hao-Yu Chien
- Department of Electrical and Computer Enigeering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ruoda Zheng
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Sabaghi Y, PourFarzad F, Zolghadr L, Bahrami A, Shojazadeh T, Farasat A, Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem Biophys Res Commun 2024; 690:149219. [PMID: 37995451 DOI: 10.1016/j.bbrc.2023.149219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.
Collapse
Affiliation(s)
- Yalda Sabaghi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Shojazadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclnal Antibodi Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Bahrami A, Farasat A, Zolghadr L, Sabaghi Y, PourFarzad F, Gheibi N. The anticancer impacts of free and liposomal caffeic acid phenethyl ester (CAPE) on melanoma cell line (A375). Cell Biochem Funct 2024; 42:e3900. [PMID: 38111127 DOI: 10.1002/cbf.3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.
Collapse
Affiliation(s)
- Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Leila Zolghadr
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Yalda Sabaghi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
5
|
Park JS, Chung IJ, Kim HR, Jun CD. The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption. Immune Netw 2023; 23:e29. [PMID: 37416932 PMCID: PMC10320417 DOI: 10.4110/in.2023.23.e29] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023] Open
Abstract
Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
6
|
Aghamohammadi M, Zolghadr L, Nezhad NS, Ahmadpour Yazdi H, Esfahani AJ, Gheibi N. Investigating the effects of quercetin fatty acid esters on apoptosis, mechanical properties, and expression of ERK in melanoma cell line (A375). Life Sci 2022; 310:121007. [PMID: 36181863 DOI: 10.1016/j.lfs.2022.121007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Malignant melanoma (MM) is the most fatal skin cancer with a critical increase in the number of cases in the last decades. Recent studies have shown the antitumor potential of active biological phytochemical structures of flavonoids for the prevention and treatment of cancerous cells. In this study, two quercetin fatty acid esters (α-linolenic acid (ALA) and linoleic acid (LA)) compounds were evaluated in terms of inducing apoptotic human melanoma cells (A375) death in vitro. MAIN METHODS The MTT assay was utilized for comparing the effects of quercetin, ALA, and LA on A375 cell viability concentrations of 5, 25, 35, 50, and 100μg/mL for 24 and 48 h to obtain IC50. To detect the effects on apoptosis and to determine p-ERK/ERK apoptosis-related signaling pathway proteins level, flow-cytometry and western blot were used. Finally, the nano-mechanical properties of the melanoma A375 membrane structure containing elastic modulus value and cell-cell adhesion forces were investigated using Atomic Force Microscopy (AFM). Statistical data was analyzed in GraphPad v.8.0.0. KEY FINDINGS The most significant A375 cell viability amplified effect of Q-LA was observed with a half-maximal inhibitory concentration (IC50 = 35 μg/ml, 48 h), proportional to dose. Ester compounds, especially Q-LA, showed the highest cell proliferation inhibition with improved elastic modulus, cell-cell adhesion forces (253 ± 11.2), and elevated apoptosis-inducing effect (p < 0.01**). Moreover, Q-LA significantly decreased the mean levels of p-ERK phosphorylation (0.1439) and, subsequently, apoptosis in A375 cells. SIGNIFICANCE The data presented in this study confirmed the antitumor activity of ester compounds against A375 cells, high-lighting the ability of the tested compounds to induce apoptosis.
Collapse
Affiliation(s)
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | | | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
7
|
Bodenschatz JFE, Ajmail K, Skamrahl M, Vache M, Gottwald J, Nehls S, Janshoff A. Epithelial cells sacrifice excess area to preserve fluidity in response to external mechanical stress. Commun Biol 2022; 5:855. [PMID: 35995827 PMCID: PMC9395404 DOI: 10.1038/s42003-022-03809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Viscoelastic properties of epithelial cells subject to shape changes were monitored by indentation-retraction/relaxation experiments. MDCK II cells cultured on extensible polydimethylsiloxane substrates were laterally stretched and, in response, displayed increased cortex contractility and loss of excess surface area. Thereby, the cells preserve their fluidity but inevitably become stiffer. We found similar behavior in demixed cell monolayers of ZO-1/2 double knock down (dKD) cells, cells exposed to different temperatures and after removal of cholesterol from the plasma membrane. Conversely, the mechanical response of single cells adhered onto differently sized patches displays no visible rheological change. Sacrificing excess surface area allows the cells to respond to mechanical challenges without losing their ability to flow. They gain a new degree of freedom that permits resolving the interdependence of fluidity β on stiffness [Formula: see text]. We also propose a model that permits to tell apart contributions from excess membrane area and excess cell surface area.
Collapse
Affiliation(s)
- Jonathan F E Bodenschatz
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Karim Ajmail
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Mark Skamrahl
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Marian Vache
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jannis Gottwald
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Stefan Nehls
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Sommi P, Vitali A, Coniglio S, Callegari D, Barbieri S, Casu A, Falqui A, Vigano’ L, Vigani B, Ferrari F, Anselmi-Tamburini U. Microvilli Adhesion: An Alternative Route for Nanoparticle Cell Internalization. ACS NANO 2021; 15:15803-15814. [PMID: 34585565 PMCID: PMC8552441 DOI: 10.1021/acsnano.1c03151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 05/31/2023]
Abstract
The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.
Collapse
Affiliation(s)
- Patrizia Sommi
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Agostina Vitali
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Stefania Coniglio
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Sofia Barbieri
- Department
of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alberto Casu
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Andrea Falqui
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Lorenzo Vigano’
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
9
|
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat Commun 2021; 12:3872. [PMID: 34162836 PMCID: PMC8222282 DOI: 10.1038/s41467-021-23792-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.
Collapse
Affiliation(s)
- Yunmin Jung
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Cebecauer M. Role of Lipids in Morphogenesis of T-Cell Microvilli. Front Immunol 2021; 12:613591. [PMID: 33790891 PMCID: PMC8006438 DOI: 10.3389/fimmu.2021.613591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
T cells communicate with the environment via surface receptors. Cooperation of surface receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane protrusions, microvilli, have been demonstrated to play a role in the organization of receptors and, hence, T-cell activation. However, little is known about the morphogenesis of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the option that clustering of sphingolipids with phosphoinositides at the plasma membrane results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical actin opening and bundling of actin fibres to support the growing of microvilli. Critical regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several candidates with a potential to organize proteins and lipids in these structures.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences (CAS), Prague, Czechia
| |
Collapse
|
11
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
12
|
Liu X, Wei Y, Li W, Li B, Liu L. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy. J Cell Physiol 2020; 236:3725-3733. [PMID: 33169846 DOI: 10.1002/jcp.30110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
The cytoskeleton acts as a scaffold for membrane protrusion, such as microvilli. However, the relationship between the characteristics of microvilli and cytoskeleton remains poorly understood under the physiological state. To investigate the role of the cytoskeleton in regulating microvilli and cellular mechanical properties, atomic force microscopy (AFM) was used to detect the dynamic characteristics of microvillus morphology and elastic modulus of living HeLa cells. First, HeLa and MCF-7 cell lines were stained with Fluor-488-phalloidin and microtubules antibody. Then, the microvilli morphology was analyzed by high-resolution images of AFM in situ. Furthermore, changes in elastic modulus were investigated by the force curve of AFM. Fluorescence microscopy and AFM results revealed that destroyed microfilaments led to a smaller microvilli size, whereas the increase in the aggregation and number of microfilaments led to a larger microvilli size. The destruction and aggregation of microfilaments remarkably affected the mechanical properties of HeLa cells. Microtubule-related drugs induced the change of microtubule, but we failed to note significant differences in microvilli morphology and mechanical properties of cells. In summary, our results unraveled the relationship between microfilaments and the structure of microvilli and Young's modulus in living HeLa cells, which would contribute to the further understanding of the physiological function of the cytoskeleton in vivo.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China
| | - Yuhui Wei
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| | - Bin Li
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lin Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Hebbar S, Schuhmann K, Shevchenko A, Knust E. Hydroxylated sphingolipid biosynthesis regulates photoreceptor apical domain morphogenesis. J Cell Biol 2020; 219:211460. [PMID: 33048164 PMCID: PMC7557679 DOI: 10.1083/jcb.201911100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Apical domains of epithelial cells often undergo dramatic changes during morphogenesis to form specialized structures, such as microvilli. Here, we addressed the role of lipids during morphogenesis of the rhabdomere, the microvilli-based photosensitive organelle of Drosophila photoreceptor cells. Shotgun lipidomics analysis performed on mutant alleles of the polarity regulator crumbs, exhibiting varying rhabdomeric growth defects, revealed a correlation between increased abundance of hydroxylated sphingolipids and abnormal rhabdomeric growth. This could be attributed to an up-regulation of fatty acid hydroxylase transcription. Indeed, direct genetic perturbation of the hydroxylated sphingolipid metabolism modulated rhabdomere growth in a crumbs mutant background. One of the pathways targeted by sphingolipid metabolism turned out to be the secretory route of newly synthesized Rhodopsin, a major rhabdomeric protein. In particular, altered biosynthesis of hydroxylated sphingolipids impaired apical trafficking via Rab11, and thus apical membrane growth. The intersection of lipid metabolic pathways with apical domain growth provides a new facet to our understanding of apical growth during morphogenesis.
Collapse
|
14
|
Chtcheglova LA, Ohlmann A, Boytsov D, Hinterdorfer P, Priglinger SG, Priglinger CS. Nanoscopic Approach to Study the Early Stages of Epithelial to Mesenchymal Transition (EMT) of Human Retinal Pigment Epithelial (RPE) Cells In Vitro. Life (Basel) 2020; 10:E128. [PMID: 32751632 PMCID: PMC7460373 DOI: 10.3390/life10080128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
The maintenance of visual function is supported by the proper functioning of the retinal pigment epithelium (RPE), representing a mosaic of polarized cuboidal postmitotic cells. Damage factors such as inflammation, aging, or injury can initiate the migration and proliferation of RPE cells, whereas they undergo a pseudo-metastatic transformation or an epithelial to mesenchymal transition (EMT) from cuboidal epithelioid into fibroblast-like or macrophage-like cells. This process is recognized as a key feature in several severe ocular pathologies, and is mimicked by placing RPE cells in culture, which provides a reasonable and well-characterized in vitro model for a type 2 EMT. The most obvious characteristic of EMT is the cell phenotype switching, accompanied by the cytoskeletal reorganization with changes in size, shape, and geometry. Atomic force microscopy (AFM) has the salient ability to label-free explore these characteristics. Based on our AFM results supported by the genetic analysis of specific RPE differentiation markers, we elucidate a scheme for gradual transformation from the cobblestone to fibroblast-like phenotype. Structural changes in the actin cytoskeletal reorganization at the early stages of EMT lead to the development of characteristic geodomes, a finding that may reflect an increased propensity of RPE cells to undergo further EMT and thus become of diagnostic significance.
Collapse
Affiliation(s)
- Lilia A. Chtcheglova
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Andreas Ohlmann
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Danila Boytsov
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Siegfried G. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Claudia S. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| |
Collapse
|
15
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
16
|
Bui VC, Nguyen TH. Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy. J Mol Recognit 2020; 33:e2847. [PMID: 32212218 DOI: 10.1002/jmr.2847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023]
Abstract
Mechanical characteristics of individual cells play a vital role in many biological processes and are considered as indicators of the cells' states. Disturbances including methyl-β-cyclodextrin (MβCD) and cytochalasin D (cytoD) are known to significantly affect the state of cells, but little is known about the real-time response of single cells to these drugs in their physiological condition. Here, nanoindentation-based atomic force microscopy (AFM) was used to measure the elasticity of human embryonic kidney cells in the presence and absence of these pharmaceuticals. The results showed that depletion of cholesterol in the plasma membrane with MβCD resulted in cell stiffening whereas depolymerization of the actin cytoskeleton by cytoD resulted in cell softening. Using AFM for real-time measurements, we observed that cells mechanically responded right after these drugs were added. In more detail, the cell´s elasticity suddenly increased with increasing instability upon cholesterol extraction while it is rapidly decreased without changing cellular stability upon depolymerizing actin cytoskeleton. These results demonstrated that actin cytoskeleton and cholesterol contributed differently to the cell mechanical characteristics.
Collapse
Affiliation(s)
- Van-Chien Bui
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,ZIK HIKE, University of Greifswald, Greifswald, Germany
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany
| |
Collapse
|
17
|
Murshid A, Borges TJ, Bonorino C, Lang BJ, Calderwood SK. Immunological Outcomes Mediated Upon Binding of Heat Shock Proteins to Scavenger Receptors SCARF1 and LOX-1, and Endocytosis by Mononuclear Phagocytes. Front Immunol 2020; 10:3035. [PMID: 31998315 PMCID: PMC6968791 DOI: 10.3389/fimmu.2019.03035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Heat shock proteins (HSP) are a highly abundant class of molecular chaperones that can be released into the extracellular milieu and influence the immune response. HSP release can occur when cells undergo necrosis and exude their contents. However, HSPs are also secreted from intact cells, either in free form or in lipid vesicles including exosomes to react with receptors on adjacent cells. Target cells are able recognize extracellular HSPs through cell surface receptors. These include scavenger receptors (SR) such as class E member oxidized low-density lipoprotein receptor-1 (LOX-1, aka OLR1, Clec8A, and SR-E1) and scavenger receptor class F member 1 (SCARF1, aka SREC1). Both receptors are expressed by dendritic cells (DC) and macrophages. These receptors can bind HSPs coupled to client binding proteins and deliver the chaperone substrate to the pathways of antigen processing in cells. SR are able to facilitate the delivery of client proteins to the proteasome, leading to antigen processing and presentation, and stimulation of adaptive immunity. HSPs may also may be involved in innate immunity through activation of inflammatory signaling pathways in a mechanism dependent on SR and toll-like receptor 4 (TLR4) on DC and macrophages. We will discuss the pathways by which HSPs can facilitate uptake of protein antigens and the receptors that regulate the ensuing immune response.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Thiago J Borges
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,Renal Division, Schuster Family Transplantation Research Center, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Cristina Bonorino
- Laboratório de Immunoterapia, Departmento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Liu L, Wei Y, Liu J, Wang K, Zhang J, Zhang P, Zhou Y, Li B. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy. Cell Prolif 2019; 53:e12670. [PMID: 31568631 PMCID: PMC6985672 DOI: 10.1111/cpr.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the heterogeneous feature of actin filaments (ACFs) associated with the cellular membrane in HeLa and HCT‐116 cells at the nanoscale level. Materials and Methods Fluorescence microscopy coupled with atomic force microscopy (AFM) was used to identify and characterize ACFs of cells. The distribution of ACFs was detected by Fluor‐488‐phalloidin–labelled actin. The morphology of the ACFs was probed by AFM images. The spatial correlation of the microvilli and ACFs was explored with different forces of AFM loading on cells. Results Intricate but ordered structures of the actin cytoskeletons associated with cellular membrane were characterized and revealed. Two different layers of ACFs with distinct structural organizations were directly observed in HCT‐116 and HeLa cells. Bundle‐shaped ACFs protruding the cellular membrane forming the microvilli, and the network ACFs underneath the cellular membrane were resolved with high resolution under near‐physiological conditions. Approximately 14 nm lateral resolution was achieved when imaging single ACF beneath the cellular membrane. On the basis of the observed spatial distribution of the ultrastructure of the ACF organization, a model for this organization of ACFs was proposed. Conclusions We revealed the two layers of the ACF organization in Hela and HCT‐116 cells. The resolved heterogeneous structures at the nanoscale level provide a spatial view of the ACFs, which would contribute to the understanding of the essential biological functions of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lin Liu
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Wei
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jingyuan Liu
- Fourth Military Medical University, Xi'an, China
| | - Kaizhe Wang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Starvation effect on the morphology of microvilli in HeLa cells. Biochem Biophys Res Commun 2019; 514:1238-1243. [DOI: 10.1016/j.bbrc.2019.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023]
|
20
|
Hönig E, Ringer K, Dewes J, von Mach T, Kamm N, Kreitzer G, Jacob R. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells. J Cell Sci 2018; 131:jcs.213199. [PMID: 29748377 DOI: 10.1242/jcs.213199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Epithelial cells require a precise intracellular transport and sorting machinery to establish and maintain their polarized architecture. This machinery includes β-galactoside-binding galectins for targeting of glycoprotein to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analysed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, knockout of galectin-3 results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells.
Collapse
Affiliation(s)
- Ellena Hönig
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Jenny Dewes
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Tobias von Mach
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY 10031, USA
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
21
|
Franz J, Grünebaum J, Schäfer M, Mulac D, Rehfeldt F, Langer K, Kramer A, Riethmüller C. Rhombic organization of microvilli domains found in a cell model of the human intestine. PLoS One 2018; 13:e0189970. [PMID: 29320535 PMCID: PMC5761853 DOI: 10.1371/journal.pone.0189970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Symmetry is rarely found on cellular surfaces. An exception is the brush border of microvilli, which are essential for the proper function of transport epithelia. In a healthy intestine, they appear densely packed as a 2D-hexagonal lattice. For in vitro testing of intestinal transport the cell line Caco-2 has been established. As reported by electron microscopy, their microvilli arrange primarily in clusters developing secondly into a 2D-hexagonal lattice. Here, atomic force microscopy (AFM) was employed under aqueous buffer conditions on Caco-2 cells, which were cultivated on permeable filter membranes for optimum differentiation. For analysis, the exact position of each microvillus was detected by computer vision; subsequent Fourier transformation yielded the type of 2D-lattice. It was confirmed, that Caco-2 cells can build a hexagonal lattice of microvilli and form clusters. Moreover, a second type of arrangement was discovered, namely a rhombic lattice, which appeared at sub-maximal densities of microvilli with (29 ± 4) microvilli / μm2. Altogether, the findings indicate the existence of a yet undescribed pattern in cellular organization.
Collapse
Affiliation(s)
- Jonas Franz
- Faculty of Physics, Georg-August-Universität, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Theoretical Neurophysics, Göttingen, Germany
| | - Jonas Grünebaum
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Marcus Schäfer
- nanoAnalytics GmbH, Centre for Nanotechnology, Münster, Germany
| | - Dennis Mulac
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Klaus Langer
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Armin Kramer
- Serend-ip GmbH, Centre for Nanotechnology, Münster, Germany
| | | |
Collapse
|
22
|
Laskowski PR, Pfreundschuh M, Stauffer M, Ucurum Z, Fotiadis D, Müller DJ. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS NANO 2017; 11:8292-8301. [PMID: 28745869 DOI: 10.1021/acsnano.7b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| |
Collapse
|
23
|
Brahami A, Levy H, Zlotkin-Rivkin E, Melamed-Book N, Tal N, Lev D, Yeshua T, Fedosyeyev O, Aroeti B, Lewis A. Live cell near-field optical imaging and voltage sensing with ultrasensitive force control. OPTICS EXPRESS 2017; 25:12131-12143. [PMID: 28786571 DOI: 10.1364/oe.25.012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.
Collapse
|
24
|
Ida H, Takahashi Y, Kumatani A, Shiku H, Matsue T. High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli. Anal Chem 2017; 89:6015-6020. [DOI: 10.1021/acs.analchem.7b00584] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroki Ida
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
| | - Yasufumi Takahashi
- Division
of Electrical Engineering and Computer Science, Kakuma-machi, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akichika Kumatani
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
- Advanced
Institute for Material Research (AIMR), Tohoku University, Sendai, Miyagi 980-8576, Japan
| | - Hitoshi Shiku
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
- Advanced
Institute for Material Research (AIMR), Tohoku University, Sendai, Miyagi 980-8576, Japan
| |
Collapse
|
25
|
Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Müller DJ. Nanomechanical mapping of first binding steps of a virus to animal cells. NATURE NANOTECHNOLOGY 2017; 12:177-183. [PMID: 27798607 DOI: 10.1038/nnano.2016.228] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/18/2016] [Indexed: 05/23/2023]
Abstract
Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.
Collapse
Affiliation(s)
- David Alsteens
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
- Université Catholique de Louvain, Institute of Life Sciences, 1348 Louvain-La-Neuve, Belgium
| | - Richard Newton
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Rajib Schubert
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - David Martinez-Martin
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Martin Delguste
- Université Catholique de Louvain, Institute of Life Sciences, 1348 Louvain-La-Neuve, Belgium
| | - Botond Roska
- Friedrich Miescher Institute (FMI), 4058 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland
| | - Daniel J Müller
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Cascione M, de Matteis V, Rinaldi R, Leporatti S. Atomic force microscopy combined with optical microscopy for cells investigation. Microsc Res Tech 2016; 80:109-123. [DOI: 10.1002/jemt.22696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Valeria de Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Stefano Leporatti
- CNR Nantotec-Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecoteckne, Via Monteroni; 73100, Lecce Italy
| |
Collapse
|
27
|
Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog 2016; 8:5. [PMID: 26893616 PMCID: PMC4758167 DOI: 10.1186/s13099-016-0088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sphingolipids are important for innate immune response to eliminate infected pathogens and involved in autophagy. On the other hand, nucleotide-binding oligomerization domain-containing protein 2 (NOD2) served as an intracellular pattern recognition receptor to enhance host defense by inducing autophagy and the production of antimicrobial peptides, such as human beta-defensin-2 (hBD-2). However, the role of sphingolipids in Salmonella-induced autophagy and hBD-2 response in intestinal epithelial cells has not been previously elucidated. METHODS Salmonella typhimurium wild-type strain SL1344 was used to infect SW480, an intestinal epithelial cell. hBD-2 and interleukin-8 (IL-8) mRNA expressions were assessed in SW480 cells using RT-PCR, and intracellular signaling pathways and autophagy protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. RESULTS We demonstrated that inhibition of de novo sphingolipid synthesis repressed the membrane recruitment of NOD2 and autophagy-related protein 16-like 1 (Atg16L1), suppressed Salmonella-induced autophagic protein LC3-II expression, and reduced NOD2-mediated hBD-2 response in Salmonella-infected SW480 cells. Contrasting to the utilization of membrane cholesterol on maintenance of Salmonella-containing vacuoles and anti-inflammation by Salmonella, sphingolipids act on epithelial defense against the invasive pathogen. CONCLUSIONS Our results offer mechanistic insights on the role of de novo sphingolipid synthesis in the innate immunity of intestinal epithelial cells to Salmonella infection. The pharmaceuticals enhancing or diet enriched with sphingolipids may induce the dual anti-bacterial mechanisms. The role of de novo sphingolipid synthesis on inflammatory bowel disease is deserved to be further investigated.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-pei Road, Niao-sung District, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE. PeakForce Tapping resolves individual microvilli on living cells. J Mol Recognit 2016; 29:95-101. [PMID: 26414320 PMCID: PMC5054848 DOI: 10.1002/jmr.2510] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany
| | - Izhar Medalsy
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Shuiqing Hu
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Andrea L Slade
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - James E Shaw
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| |
Collapse
|
29
|
Elastic properties of epithelial cells probed by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3075-82. [PMID: 26193077 DOI: 10.1016/j.bbamcr.2015.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022]
Abstract
Cellular mechanics plays a crucial role in many biological processes such as cell migration, cell growth, embryogenesis, and oncogenesis. Epithelia respond to environmental cues comprising biochemical and physical stimuli through defined changes in cell elasticity. For instance, cells can differentiate between certain properties such as viscoelasticity or topography of substrates by adapting their own elasticity and shape. A living cell is a complex viscoelastic body that not only exhibits a shell architecture composed of a membrane attached to a cytoskeleton cortex but also generates contractile forces through its actomyosin network. Here we review cellular mechanics of single cells in the context of epithelial cell layers responding to chemical and physical stimuli. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
30
|
Klingner C, Cherian AV, Fels J, Diesinger PM, Aufschnaiter R, Maghelli N, Keil T, Beck G, Tolić-Nørrelykke IM, Bathe M, Wedlich-Soldner R. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells. ACTA ACUST UNITED AC 2015; 207:107-21. [PMID: 25313407 PMCID: PMC4195824 DOI: 10.1083/jcb.201402037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apical membrane organization of nonconfluent epithelial cells is driven by a dynamic network of actin and myosin II filaments. Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization.
Collapse
Affiliation(s)
- Christoph Klingner
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Anoop V Cherian
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes Fels
- Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Philipp M Diesinger
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Roland Aufschnaiter
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Thomas Keil
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Gisela Beck
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Iva M Tolić-Nørrelykke
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mark Bathe
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Roland Wedlich-Soldner
- Cellular Dynamics and Cell Patterning and Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany Institute of Cell Dynamics and Imaging and Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
31
|
Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv 2014; 11:1237-53. [PMID: 24809228 DOI: 10.1517/17425247.2014.917078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
Collapse
Affiliation(s)
- Constanze Lamprecht
- University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany
| | | | | |
Collapse
|
32
|
Ikenouchi J, Hirata M, Yonemura S, Umeda M. Sphingomyelin clustering is essential for the formation of microvilli. J Cell Sci 2013; 126:3585-92. [PMID: 23690544 DOI: 10.1242/jcs.122325] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular architectures require regulated mechanisms to correctly localize the appropriate plasma membrane lipids and proteins. Microvilli are dynamic filamentous-actin-based protrusions of the plasma membrane that are found in the apical membrane of epithelial cells. However, it remains poorly understood how their formation is regulated. In the present study, we found that sphingomyelin clustering underlies the formation of microvilli. Clustering of sphingomyelin is required for the co-clustering of the sialomucin membrane protein podocalyxin-1 at microvilli. Podocalyxin-1 recruits ezrin/radixin/moesin (ERM)-binding phosphoprotein-50 (EBP50; also known as NHERF1), which recruits ERM proteins and phosphatidylinositol 4-phosphate 5-kinase β (PIP5Kβ). Thus, clustering of PIP5Kβ leads to local accumulation of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], which enhances the accumulation of ERM family proteins and induces the formation of microvilli. The present study revealed novel interactions between sphingomyelin and the cytoskeletal proteins from which microvilli are formed, and it clarified the physiological importance of the chemical properties of sphingomyelin that facilitate cluster formation.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
33
|
Singh RD, Schroeder AS, Scheffer L, Holicky EL, Wheatley CL, Marks DL, Pagano RE. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis. Biochem Biophys Res Commun 2013; 434:466-72. [PMID: 23583380 DOI: 10.1016/j.bbrc.2013.03.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. AIM To characterize the effects of Prom-2 expression on PM microdomain organization. METHODS Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. RESULTS Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. CONCLUSIONS Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.
Collapse
Affiliation(s)
- Raman Deep Singh
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Parmryd I, Onfelt B. Consequences of membrane topography. FEBS J 2013; 280:2775-84. [PMID: 23438106 DOI: 10.1111/febs.12209] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
The surface of mammalian cells is neither smooth nor flat and cells have several times more plasma membrane than the minimum area required to accommodate their shape. We discuss the biological function of this apparent excess membrane that allows the cells to migrate and undergo shape changes and probably plays a role in signal transduction. Methods for studying membrane folding and topography--atomic force microscopy, scanning ion conductance microscopy, fluorescence polarization microscopy and linear dichroism--are described and evaluated. Membrane folding and topography is frequently ignored when interpreting microscopy data. This has resulted in several misconceptions regarding for instance colocalization, membrane organization and molecular clustering. We suggest simple ways to avoid these pitfalls and invoke Occam's razor--that simple explanations are preferable to complex ones. Topography, i.e. deviations from a smooth surface, should always be ruled out as the cause of anomalous data before other explanations are presented.
Collapse
Affiliation(s)
- Ingela Parmryd
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | |
Collapse
|
35
|
Jensen E. Types of imaging, Part 3: Atomic force microscopy. Anat Rec (Hoboken) 2012; 296:179-83. [PMID: 23074163 DOI: 10.1002/ar.22605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022]
|
36
|
Wang DC, Chen KY, Tsai CH, Chen GY, Chen CH. AFM membrane roughness as a probe to identify oxidative stress-induced cellular apoptosis. J Biomech 2011; 44:2790-4. [PMID: 21937047 DOI: 10.1016/j.jbiomech.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/21/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The morphological change of cellular apoptosis initiates from the change of membrane roughness. In order to identify cellular apoptosis in its early stage, atomic force microscope was adapted to reveal the change of membrane roughness in unprecedented details, providing an image in nanometer-scaled resolution. The mouse monocyte/macrophage cell line RAW 264.7 was the subject studied and subjected to apoptotic induction by hydrogen peroxide. A finding of the qualitative correlation between cell membrane roughness and oxidative stress level is disclosed stating that roughness is increasing with the increasing level of oxidative stress.
Collapse
Affiliation(s)
- Dau-Chung Wang
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, Taiwan.
| | | | | | | | | |
Collapse
|
37
|
Schwan C, Nölke T, Kruppke AS, Schubert DM, Lang AE, Aktories K. Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT). J Biol Chem 2011; 286:29356-29365. [PMID: 21705797 DOI: 10.1074/jbc.m111.261925] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Clostridium difficile toxin (CDT) is a binary actin-ADP-ribosylating toxin that causes depolymerization of the actin cytoskeleton and formation of microtubule-based membrane protrusions, which are suggested to be involved in enhanced bacterial adhesion and colonization of hypervirulent C. difficile strains. Here, we studied the involvement of membrane lipid components of human colon adenocarcinoma (Caco-2) cells in formation of membrane protrusions. Depletion of cholesterol by methyl-β-cyclodextrin inhibited protrusion formation in a concentration-dependent manner but had no major effect on the toxin-catalyzed modification of actin in target cells. Repletion of cholesterol reconstituted formation of protrusions and increased velocity and total amount of protrusion formation. Methyl-β-cyclodextrin had no effect on the CDT-induced changes in the dynamics of microtubules. Formation of membrane protrusions was also inhibited by the cholesterol-binding polyene antibiotic nystatin. Degradation or inhibition of synthesis of sphingolipids by sphingomyelinase and myriocin, respectively, blocked CDT-induced protrusion formation. Benzyl alcohol, which increases membrane fluidity, prevented protrusion formation. CDT-induced membrane protrusions were stained by flotillin-2 and by the fluorescent-labeled lipid raft marker cholera toxin subunit B, which selectively interacts with GM1 ganglioside mainly located in lipid microdomains. The data suggest that formation and especially the initiation of CDT-induced microtubule-based membrane protrusions depend on cholesterol- and sphingolipid-rich lipid microdomains.
Collapse
Affiliation(s)
- Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Thilo Nölke
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Anna S Kruppke
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Daniel M Schubert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Alexander E Lang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
38
|
The transmembrane domain of podoplanin is required for its association with lipid rafts and the induction of epithelial-mesenchymal transition. Int J Biochem Cell Biol 2011; 43:886-96. [DOI: 10.1016/j.biocel.2011.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 11/18/2022]
|
39
|
Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells. Anal Bioanal Chem 2010; 399:2369-78. [DOI: 10.1007/s00216-010-4407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/11/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
|
40
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
41
|
The secretory pathway Ca(2+)-ATPase 1 is associated with cholesterol-rich microdomains of human colon adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1512-21. [PMID: 20363212 DOI: 10.1016/j.bbamem.2010.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/20/2022]
Abstract
Lipid rafts are often considered as microdomains enriched in sphingomyelin and cholesterol, predominantly residing in the plasma membrane but which originate in earlier compartments of the cellular secretory pathway. Within this pathway, the membranes of the Golgi complex represent a transition stage between the cholesterol-poor membranes of the endoplasmic reticulum (ER) and the cholesterol-rich plasma membrane. The rafts are related to detergent-resistant membranes, which because of their ordered structure are poorly penetrated by cold non-ionic detergents and float in density gradient centrifugation. In this study the microdomain niche of the Golgi-resident SPCA Ca(2+)/Mn(2+) pumps was investigated in HT29 cells by Triton X-100 detergent extraction and density-gradient centrifugation. Similarly to cholesterol and the raft-resident flotillin-2, SPCA1 was found mainly in detergent-resistant fractions, while SERCA3 was detergent-soluble. Furthermore, cholesterol depletion of cells resulted in redistribution of flotillin-2 and SPCA1 to the detergent-soluble fractions of the density gradient. Additionally, the time course of solubilization by Triton X-100 was investigated in live COS-1 and HT29 cells expressing fluorescent SERCA2b, SPCA1d or SPCA2. In both cell types, the ER-resident SERCA2b protein was gradually solubilized, while SPCA1d resisted to detergent solubilization. SPCA2 was more sensitive to detergent extraction than SPCA1d. To investigate the functional impact of cholesterol on SPCA1, ATPase activity was monitored. Depletion of cholesterol inhibited the activity of SPCA1d, while SERCA2b function was not altered. From these results we conclude that SPCA1 is associated with cholesterol-rich domains of HT29 cells and that the cholesterol-rich environment is essential for the functioning of the pump.
Collapse
|
42
|
Hofer M, Adamsmaier S, van Zanten TS, Chtcheglova LA, Manzo C, Duman M, Mayer B, Ebner A, Moertelmaier M, Kada G, Garcia-Parajo MF, Hinterdorfer P, Kienberger F. Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy. Ultramicroscopy 2010; 110:605-11. [PMID: 20226591 DOI: 10.1016/j.ultramic.2010.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrate simultaneous transverse dynamic force microscopy and molecular recognition imaging using tuning forks as piezoelectric sensors. Tapered aluminum-coated glass fibers were chemically functionalized with biotin and anti-lysozyme molecules and attached to one of the prongs of a 32kHz tuning fork. The lateral oscillation amplitude of the tuning fork was used as feedback signal for topographical imaging of avidin aggregates and lysozyme molecules on mica substrate. The phase difference between the excitation and detection signals of the tuning fork provided molecular recognition between avidin/biotin or lysozyme/anti-lysozyme. Aggregates of avidin and lysozyme molecules appeared as features with heights of 1-4nm in the topographic images, consistent with single molecule atomic force microscopy imaging. Recognition events between avidin/biotin or lysozyme/anti-lysozyme were detected in the phase image at high signal-to-noise ratio with phase shifts of 1-2 degrees. Because tapered glass fibers and shear-force microscopy based on tuning forks are commonly used for near-field scanning optical microscopy (NSOM), these results open the door to the exciting possibility of combining optical, topographic and biochemical recognition at the nanometer scale in a single measurement and in liquid conditions.
Collapse
Affiliation(s)
- Manuel Hofer
- University of Linz, Institute for Biophysics, Altenbergerstr. 69, Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
44
|
Abstract
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico-Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM-confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.
Collapse
|
45
|
Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Renal Physiol 2009; 298:F266-78. [PMID: 19923410 DOI: 10.1152/ajprenal.00359.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.
Collapse
Affiliation(s)
- G Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 2008; 8:192-205. [PMID: 18095356 DOI: 10.1002/pmic.200700612] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix vesicles (MVs) are extracellular organelles that initiate mineral formation, accumulating inorganic phosphate (P(i)) and calcium leading to the formation of hydroxyapatite (HA) crystals, the main mineral component of bones. MVs are produced during bone formation, as well as during the endochondral calcification of cartilage. MVs are released into the extracellular matrix from osseous cells such as osteoblasts and hypertrophic chondrocytes. In this report, using 1-D SDS-PAGE, in-gel tryptic digestion and an LC-MS-MS/MS protein identification protocol, we characterized the proteome of MVs isolated from chicken embryo (Gallus gallus) bones and cartilage. We identified 126 gene products, including proteins related to the extracellular matrix and ion transport, as well as enzymes, cytoskeletal, and regulatory proteins. Among the proteins recognized for the first time in MVs were aquaporin 1, annexin A1 (AnxA1), AnxA11, glycoprotein HT7, G(i) protein alpha2, and scavenger receptor type B. The pathways for targeting the identified proteins into MVs and their particular functions in the biomineralization process are discussed. Obtaining a knowledge of the functions and roles of these proteins during embryonic mineralization is a prerequisite for the overall understanding of the initial mineral formation mechanisms.
Collapse
Affiliation(s)
- Marcin Balcerzak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
47
|
Reich A, Lehmann B, Meurer M, Muller DJ. Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy. Exp Dermatol 2008; 16:1007-15. [PMID: 18031460 DOI: 10.1111/j.1600-0625.2007.00623.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We applied atomic force microscopy (AFM) to visualize ultrastructural changes of the keratinocyte morphology after narrow-band ultraviolet B (NB-UVB) irradiation. Immortalized human keratinocytes were cultured under standard conditions, irradiated with NB-UVB light at doses ranging from 50 to 800 mJ/cm2 and imaged by AFM mounted on an inverted optical microscope. It was observed, that NB-UVB irradiation provoked dose-dependent alterations of the keratinocyte morphology. While the surface of non-irradiated cells exhibited homogenously distributed crest-like shaped protrusions (height 0.16 +/- 0.05 microm), cells irradiated with a dose of 800 mJ/cm2 in addition showed round shaped protrusions (height 0.14 +/- 0.06 microm) distributed predominantly around the nucleus and bleb-like protrusions irregularly distributed on the cell surface (height 0.95 +/- 0.29 microm). These irradiated cells easily detached from the supporting glass surface, showed impaired contact with adjacent keratinocytes and significantly rearranged their cytoskeleton network. We hypothesize that these structural and functional alterations reflect ongoing apoptosis in UVB treated cells.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | |
Collapse
|
48
|
Wegmann S, Miesbauer M, Winklhofer KF, Tatzelt J, Muller DJ. Observing fibrillar assemblies on scrapie-infected cells. Pflugers Arch 2008; 456:83-93. [DOI: 10.1007/s00424-007-0433-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 11/29/2022]
|
49
|
AFM as a tool to probe and manipulate cellular processes. Pflugers Arch 2007; 456:61-70. [DOI: 10.1007/s00424-007-0414-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
50
|
Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys J 2007; 94:1326-40. [PMID: 17933878 DOI: 10.1529/biophysj.107.114108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although different detergents can give rise to detergent-resistant membranes of different composition, it is unclear whether this represents domain heterogeneity in the original membrane. We compared the mechanism of action of five detergents on supported lipid bilayers composed of equimolar sphingomyelin, cholesterol, and dioleoylphosphatidylcholine imaged by atomic force microscopy, and on raft and nonraft marker proteins in live cells imaged by confocal microscopy. There was a marked correlation between the detergent solubilization of the cell membrane and that of the supported lipid bilayers. In both systems Triton X-100 and CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) distinguished between the nonraft liquid-disordered (l(d)) and raft liquid ordered (l(o)) lipid phases by selectively solubilizing the l(d) phase. A higher concentration of Lubrol was required, and not all the l(d) phase was solubilized. The solubilization by Brij 96 occurred by a two-stage mechanism that initially resulted in the solubilization of some l(d) phase and then progressed to the solubilization of both l(d) and l(o) phases simultaneously. Octyl glucoside simultaneously solubilized both l(o) and l(d) phases. These data show that the mechanism of membrane solubilization is unique to an individual detergent. Our observations have significant implications for using different detergents to isolate membrane rafts from biological systems.
Collapse
|