1
|
St-Cyr G, Garneau D, Gévry N, Blouin R. Quantitative phosphoproteomics reveals that nestin is a downstream target of dual leucine zipper kinase during retinoic acid-induced neuronal differentiation of Neuro-2a cells. BMC Mol Cell Biol 2025; 26:10. [PMID: 40140778 PMCID: PMC11938613 DOI: 10.1186/s12860-025-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Dual leucine zipper kinase (DLK) is critical for neurite outgrowth in the developing nervous system and during nerve regeneration, but the underlying mechanisms remain largely unknown. To address this issue, we generated stable shRNA-mediated DLK-depleted Neuro-2a cell lines and analyzed their phosphoproteome after induction of neuronal differentiation by retinoic acid (RA). RESULTS Here, we report the identification of 32 phosphopeptides that exhibited significant differences in relative abundance between control and DLK-depleted cells. Two of the most downregulated phosphopeptides identified after DLK depletion were derived from nestin, a type VI intermediate filament (IF) protein typically expressed in neural progenitor cells. The reduced abundance of these phosphopeptides in response to DLK knockdown was validated using parallel reaction monitoring (PRM)-based quantitative proteomics and paired with a concomitant reduction in nestin mRNA and protein expression, indicating that the decrease in nestin phosphorylation was due to a decrease in total nestin in DLK-depleted cells compared to control cells. This DLK-mediated regulation of nestin expression had no apparent effect on neurite formation because nestin knockdown alone was not sufficient to impair RA-induced neurite extension in parental Neuro-2a cells, and nestin overexpression failed to rescue the neurite outgrowth defect observed in DLK-depleted Neuro-2a cells. CONCLUSIONS Together, these results demonstrate that nestin is a novel downstream target of DLK signaling but not a mediator of its ability to promote neurite outgrowth during neuronal differentiation.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniel Garneau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
2
|
Fang Q, Tian GG, Wang Q, Liu M, He L, Li S, Wu J. YTHDF1 phase separation triggers the fate transition of spermatogonial stem cells by activating the IκB-NF-κB-CCND1 axis. Cell Rep 2023; 42:112403. [PMID: 37060562 DOI: 10.1016/j.celrep.2023.112403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/29/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
N6-methyladenosine (m6A) modification controls cell fate determination. Here, we show that liquid-liquid phase separation (LLPS) of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a pivotal m6A "reader" protein, promotes the transdifferentiation of spermatogonial stem cells (SSCs) into neural stem cell-like cells by activating the IκB-nuclear factor κB (NF-κB)-CCND1 axis. The inhibition of IκBα/β mRNA translation mediated by YTHDF1 LLPS is the key to the activation of the IκB-NF-κB-CCND1 axis. Disrupting either YTHDF1 LLPS or NF-κB activation inhibits transdifferentiation efficiency. Moreover, overexpression of the YTH domain of YTHDF1 inhibits the activation of the IκB-NF-κB-CCND1 axis by promoting IκBα/β mRNA translation. Overexpression of the tau-YTH fusion protein reactivates IκB-NF-κB-CCND1 axis by inhibiting the translation of IκBα/β mRNAs, and tau LLPS is observed, which can restore transdifferentiation efficiency. Our findings demonstrate that the protein-RNA LLPS plays essential roles in cell fate transition and provide insights into translational medicine and the therapy of neurological diseases.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Wang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyao Liu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin He
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengtian Li
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Jung KM, Park KJ, Kim YM, Han JY. Efficient gene delivery into the embryonic chicken brain using neuron-specific promoters and in ovo electroporation. BMC Biotechnol 2022; 22:25. [PMID: 36056347 PMCID: PMC9440574 DOI: 10.1186/s12896-022-00756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background The chicken in ovo model is an attractive system to explore underlying mechanisms of neural and brain development, and it is important to develop effective genetic modification techniques that permit analyses of gene functions in vivo. Although electroporation and viral vector-mediated gene delivery techniques have been used to introduce exogenous DNA into chicken embryonic cells, transducing neurons efficiently and specifically remains challenging.
Methods In the present study, we performed a comparative study of the ubiquitous CMV promoter and three neuron-specific promoters, chicken Ca2+/calmodulin-dependent kinase (cCaMKII), chicken Nestin (cNestin), and human synapsin I. We explored the possibility of manipulating gene expression in chicken embryonic brain cells using in ovo electroporation with the selected promoters.
Results Transgene expression by two neuron-specific promoters (cCaMKII and cNestin) was preliminarily verified in vitro in cultured brain cells, and in vivo, expression levels of an EGFP transgene in brain cells by neuron-specific promoters were comparable to or higher than those of the ubiquitous CMV promoter. Overexpression of the FOXP2 gene driven by the cNestin promoter in brain cells significantly affected expression levels of target genes, CNTNAP2 and ELAVL4. Conclusion We demonstrated that exogenous DNA can be effectively introduced into neuronal cells in living embryos by in ovo electroporation with constructs containing neuron-specific promoters. In ovo electroporation offers an easier and more efficient way to manipulate gene expression during embryonic development, and this technique will be useful for neuron-targeted transgene expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00756-4.
Collapse
Affiliation(s)
- Kyung Min Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
5
|
Schuck BW, MacArthur R, Inglese J. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 79:5.32.1-5.32.27. [PMID: 28398644 PMCID: PMC5510169 DOI: 10.1002/cpns.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reporter-biased artifacts-i.e., compounds that interact directly with the reporter enzyme used in a high-throughput screening (HTS) assay and not the biological process or pharmacology being interrogated-are now widely recognized to reduce the efficiency and quality of HTS used for chemical probe and therapeutic development. Furthermore, narrow or single-concentration HTS perpetuates false negatives during primary screening campaigns. Titration-based HTS, or quantitative HTS (qHTS), and coincidence reporter technology can be employed to reduce false negatives and false positives, respectively, thereby increasing the quality and efficiency of primary screening efforts, where the number of compounds investigated can range from tens of thousands to millions. The three protocols described here allow for generation of a coincidence reporter (CR) biocircuit to interrogate a biological or pharmacological question of interest, generation of a stable cell line expressing the CR biocircuit, and qHTS using the CR biocircuit to efficiently identify high-quality biologically active small molecules. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brittany W Schuck
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Lindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5. Methods Enzymol 2015; 568:509-35. [PMID: 26795482 DOI: 10.1016/bs.mie.2015.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research utilizes the specific expression pattern of intermediate filaments (IF) for identifying cellular state and origin, as well as for the purpose of disease diagnosis. Nestin is commonly utilized as a specific marker and driver for CNS progenitor cell types, but in addition, nestin can be found in several mesenchymal progenitor cells, and it is constitutively expressed in a few restricted locations, such as muscle neuromuscular junctions and kidney podocytes. Alike most other members of the IF protein family, nestin filaments are dynamic, constantly being remodeled through posttranslational modifications, which alter the solubility, protein levels, and signaling capacity of the nestin filaments. Through its interactions with kinases and other signaling executors, resulting in a complex and bidirectional regulation of cell signaling events, nestin has the potential to determine whether cells divide, differentiate, migrate, or stay in place. In this review, the broad and similar roles of IFs as dynamic signaling scaffolds, is exemplified by observations of nestin functions and its interaction with the cyclin- dependent kinase 5, the atypical kinase in the family of cyclin-dependent kinases.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Num Wistbacka
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
7
|
Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1. Cell Mol Neurobiol 2015; 36:955-964. [PMID: 26456684 DOI: 10.1007/s10571-015-0281-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Slit2 is a neural axon guidance and chemorepellent protein that stimulates motility in a variety of cell types. The role of Slit2 in neural development and neoplastic growth and migration has been well established, while the genetic mechanisms underlying regulation of the Slit2 gene have not. We identified the core and proximal promoter of Slit2 by mapping multiple transcriptional start sites, analyzing transcriptional activity, and confirming sequence homology for the Slit2 proximal promoter among a number of species. Deletion series and transient transfection identified the Slit2 proximal promoter as within 399 base pairs upstream of the start of transcription. A crucial region for full expression of the Slit2 proximal promoter lies between 399 base pairs and 296 base pairs upstream of the start of transcription. Computer modeling identified three transcription factor-binding consensus sites within this region, of which only site-directed mutagenesis of one of the two identified Sp1 consensus sites inhibited transcriptional activity of the Slit2 proximal promoter (-399 to +253). Bioinformatics analysis of the Slit2 proximal promoter -399 base pair to -296 base pair region shows high sequence conservation over twenty-two species, and that this region follows an expected pattern of sequence divergence through evolution.
Collapse
|
8
|
Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci 2015; 106:803-11. [PMID: 25940879 PMCID: PMC4520630 DOI: 10.1111/cas.12691] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
The crucial role of cancer stem cells (CSCs) in the pathology of malignant diseases has been extensively studied during the last decade. Nestin, a class VI intermediate filament protein, was originally detected in neural stem cells during development. Its expression has also been reported in different tissues under various pathological conditions. Specifically, nestin has been shown to be expressed in transformed cells of various human malignancies, and a correlation between its expression and the clinical course of some diseases has been proved. Furthermore, the coexpression of nestin with other stem cell markers was described as a CSC phenotype that was subsequently verified using tumorigenicity assays. The primary aim of this review is to summarize the recent findings regarding nestin expression in CSCs, its possible role in CSC phenotypes, particularly with respect to capacity for self-renewal, and its utility as a putative marker of CSCs.
Collapse
Affiliation(s)
- Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 2015; 8:14. [PMID: 26041987 PMCID: PMC4434958 DOI: 10.3389/fnmol.2015.00014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.
Collapse
Affiliation(s)
- Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | | | - Lucia Schoderboeck
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Rachel J. Sizemore
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Stephanie M. Hughes
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| |
Collapse
|
10
|
Tschaharganeh DF, Xue W, Calvisi DF, Evert M, Michurina TV, Dow LE, Banito A, Katz SF, Kastenhuber ER, Weissmueller S, Huang CH, Lechel A, Andersen JB, Capper D, Zender L, Longerich T, Enikolopov G, Lowe SW. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 2014; 158:579-92. [PMID: 25083869 PMCID: PMC4221237 DOI: 10.1016/j.cell.2014.05.051] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/21/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protein nestin in an Sp1/3 transcription-factor-dependent manner and that Nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer.
Collapse
Affiliation(s)
- Darjus F Tschaharganeh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wen Xue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Diego F Calvisi
- Institute of Pathology, University of Medicine, Greifswald 17487, Germany
| | - Matthias Evert
- Institute of Pathology, University of Medicine, Greifswald 17487, Germany
| | | | - Lukas E Dow
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana Banito
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah F Katz
- Department of Internal Medicine I, University of Ulm, Ulm 89070, Germany
| | - Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Susann Weissmueller
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chun-Hao Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andre Lechel
- Department of Internal Medicine I, University of Ulm, Ulm 89070, Germany
| | - Jesper B Andersen
- Laboratory of Experimental Carcinogenesis, NCI/CCR, NIH, Bethesda, MD 20892, USA; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark
| | - David Capper
- Institute of Pathology, University Hospital Heidelberg and Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Lars Zender
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
11
|
Svachova H, Kryukov F, Kryukova E, Sevcikova S, Nemec P, Greslikova H, Rihova L, Kubiczkova L, Hajek R. Nestin expression throughout multistep pathogenesis of multiple myeloma. Br J Haematol 2013; 164:701-9. [PMID: 24329895 DOI: 10.1111/bjh.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/13/2013] [Indexed: 12/12/2022]
Abstract
The stem cell marker nestin (NES) is found in dividing cells of developing and regenerating tissues. Upon terminal differentiation, NES expression is diminished but may be re-expressed following injury or in cancer. Surprisingly, we recently confirmed NES as a tumour-specific marker for mature CD138(+) 38(+) plasma cells (PC) in multiple myeloma (MM). The present study analysed NES expression throughout the spectrum of MM developmental stages, starting with individuals with no haematological malignancy, through monoclonal gammopathy of undetermined significance (MGUS) and MM to plasma cell leukaemia (PCL) and MM cell lines. NES was analysed in bone marrow PC of 163 MM, four PCL and nine MGUS patients, 10 individuals with no haematological malignancy and 6 myeloma cell lines (OPM-2, RPMI-8226, MOLP-8, U-266, EJM, NCI-H929) by flow cytometry and/or real-time polymerase chain reaction or immunochemistry. We observed a tendency of increased NES expression in parallel with disease progression. NES was evaluated as a reliable marker for accurate discrimination between MM patients and the control group. High NES levels were strongly associated with the presence of 1q21 gain. For the first time, NES was demonstrated to predict worse response to conventional therapy/novel agents. These results suggest that NES might become a useful clinical parameter with an important role in MM pathogenesis.
Collapse
Affiliation(s)
- Hana Svachova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun MZ, Kim JM, Oh MC, Safaee M, Kaur G, Clark AJ, Bloch O, Ivan ME, Kaur R, Oh T, Fouse SD, Phillips JJ, Berger MS, Parsa AT. Na⁺/K⁺-ATPase β2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells. Neuro Oncol 2013; 15:1518-31. [PMID: 23887941 DOI: 10.1093/neuonc/not099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mechanisms of glioma invasion remain to be fully elucidated. Glioma cells within glioblastoma multiforme (GBM) range from well-differentiated tumor cells to less-differentiated brain tumor-initiating cells (BTICs). The β2-subunit of Na(+)/K(+)-ATPase, called the adhesion molecule on glia (AMOG), is highly expressed in normal glia but is thought to be universally downregulated in GBM. To test our hypothesis that expression of AMOG is heterogeneous in GBM and confers a less invasive phenotype, we compared it between BTICs and differentiated cells from patient-matched GBM and then tested GBM invasion in vitro after AMOG overexpression. METHODS Immunohistochemistry, immunoblotting, and real-time PCR were used to characterize AMOG protein and mRNA expression in tumor samples, BTICs, and differentiated cells. Matrigel invasion assay, scratch assay, and direct cell counting were used for testing in vitro invasion, migration, and proliferation, respectively. RESULTS While AMOG expression is heterogeneous in astrocytomas of grades II-IV, it is lost in most GBM. BTICs express higher levels of AMOG mRNA and protein compared with patient-matched differentiated tumor cells. Overexpression of AMOG decreased GBM cell and BTIC invasion without affecting migration or proliferation. Knockdown of AMOG expression in normal human astrocytes increased invasion. CONCLUSIONS AMOG expression inhibits GBM invasion. Its downregulation increases invasion in glial cells and may also represent an important step in BTIC differentiation. These data provide compelling evidence implicating the role of AMOG in glioma invasion and provide impetus for further investigation.
Collapse
Affiliation(s)
- Matthew Z Sun
- Corresponding Author: Andrew T. Parsa, MD, PhD, Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., San Francisco, CA 94117.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang KW, Huang YL, Wong ZR, Su PH, Huang BM, Ju TK, Yang HY. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells. Biochem Biophys Res Commun 2013; 434:854-60. [PMID: 23611784 DOI: 10.1016/j.bbrc.2013.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR-MAPK-ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene 2012; 32:3119-29. [PMID: 22945648 DOI: 10.1038/onc.2012.331] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tumor stem cells, postulated to be the source cells for malignancies, have been identified in several cancers using cell-surface expression of markers including CD133, a pentaspan membrane protein. CD133+ve cells form neurospheres, exhibit self-renewal and differentiation, and are tumorigenic. However, despite its association with stem cells, a causal relationship of CD133 to tumorigenesis remains to be defined. Hypothesizing that specific epigenetic and transcription factors implicated in driving the stem cell state may concurrently regulate CD133 expression in stem cells, we analyzed the structure and regulation of CD133 promoter in glioma stem cells and glioma cell lines. Initially, a minimal promoter region was identified by analyzing the activity of CD133 promoter-driven luciferase-expressing 5'-and 3'-deletion-constructs upstream of the transcription start site. This region contained a CpG island that was hypermethylated in CD133-ve glioma stem cells (GSC) and glioma cells but unmethylated in CD133+ve ones. Of several predicted TF-binding sites in this region, the role of tandem Sp1 (-242 and -221) and two Myc (-541 and -25)-binding sites were examined. Overexpression of Sp1 or Myc increased CD133 minimal promoter-driven luciferase activity and CD133 levels in GSC and in glioma cell line. Mithramycin, a Sp1 inhibitor, decreased minimal promoter activity and downregulated CD133 levels in GSC. Gel-shift assays demonstrated direct binding of Sp1 to their predicted sites that was competitively inhibited by oligonucleotide-binding-site sequences and supershifted by anti-Sp1 confirming the interaction. Sp1 and Myc-antibody chromatin immunoprecipitation (ChIP) analysis in GSC showed enrichment of regions with Sp1 and Myc-binding sites. In CD133-ve cells, ChIP analysis showed binding of the methyl-DNA-binding proteins, MBD1, MBD2 and MeCP2 to the methylated CpG island and repression of transcription. These results demonstrate that Sp1 and Myc regulate CD133 transcription in GSC and that promoter methylation and methyl-DNA-binding proteins cause repression of CD133 by excluding transcription-factor binding.
Collapse
|
15
|
Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene 2012. [PMID: 22945648 DOI: 10.1038/onc.2012.331.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor stem cells, postulated to be the source cells for malignancies, have been identified in several cancers using cell-surface expression of markers including CD133, a pentaspan membrane protein. CD133+ve cells form neurospheres, exhibit self-renewal and differentiation, and are tumorigenic. However, despite its association with stem cells, a causal relationship of CD133 to tumorigenesis remains to be defined. Hypothesizing that specific epigenetic and transcription factors implicated in driving the stem cell state may concurrently regulate CD133 expression in stem cells, we analyzed the structure and regulation of CD133 promoter in glioma stem cells and glioma cell lines. Initially, a minimal promoter region was identified by analyzing the activity of CD133 promoter-driven luciferase-expressing 5'-and 3'-deletion-constructs upstream of the transcription start site. This region contained a CpG island that was hypermethylated in CD133-ve glioma stem cells (GSC) and glioma cells but unmethylated in CD133+ve ones. Of several predicted TF-binding sites in this region, the role of tandem Sp1 (-242 and -221) and two Myc (-541 and -25)-binding sites were examined. Overexpression of Sp1 or Myc increased CD133 minimal promoter-driven luciferase activity and CD133 levels in GSC and in glioma cell line. Mithramycin, a Sp1 inhibitor, decreased minimal promoter activity and downregulated CD133 levels in GSC. Gel-shift assays demonstrated direct binding of Sp1 to their predicted sites that was competitively inhibited by oligonucleotide-binding-site sequences and supershifted by anti-Sp1 confirming the interaction. Sp1 and Myc-antibody chromatin immunoprecipitation (ChIP) analysis in GSC showed enrichment of regions with Sp1 and Myc-binding sites. In CD133-ve cells, ChIP analysis showed binding of the methyl-DNA-binding proteins, MBD1, MBD2 and MeCP2 to the methylated CpG island and repression of transcription. These results demonstrate that Sp1 and Myc regulate CD133 transcription in GSC and that promoter methylation and methyl-DNA-binding proteins cause repression of CD133 by excluding transcription-factor binding.
Collapse
|
16
|
Yuan H, Hu A, Zhang L, Zhu X. Investigation of neural stem cell-specific regulatory promoter elements. Exp Ther Med 2012. [PMID: 23181108 PMCID: PMC3503543 DOI: 10.3892/etm.2012.614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate neural stem cell (NSC)-specific regulatory promoter elements. PCR was employed to amplify the full sequence (4,000 bp) and core sequence (400 bp) of the promoter and intron-2 of the mouse nestin gene. pcDNA3.1 was used as a template to construct 6 different recombinant plasmids. CMV, CMV + intron-2, the full sequence of the nestin gene promoter, the full sequence of the nestin gene promoter + intron-2, the core sequence of the nestin gene promoter and the core sequence of the nestin gene promoter + intron-2 were independently used as promoters to regulate EGFP expression. The 6 recombinant plasmids were independently used to transfect nestin-positive and nestin-negative cells, and the expression of EGFP was observed under a fluorescence microscope. At the same time, flow cytometry was carried out to measure the proportion of cells positive for EGFP. The results showed that the full sequence and core sequence of the nestin gene promoter non-specifically regulated EGFP expression in cells and exhibit potent regulatory potency. The full sequence or core sequence of the nestin gene promoter which was fused with intron-2 can only regulate the EGFP expression in nestin-positive cells. CMV + intron-2 have non-specific regulation of EGFP alone. Thus, we conclude that the full sequence of the nestin gene promoter which is fused with intron-2 can specifically regulate the expression of exogenous genes in nestin-positive cells.
Collapse
|
17
|
Ishiwata T, Matsuda Y, Naito Z. Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World J Gastroenterol 2011; 17:409-18. [PMID: 21274370 PMCID: PMC3027007 DOI: 10.3748/wjg.v17.i4.409] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023] Open
Abstract
Nestin is a class VI intermediate filament protein that was originally described as a neuronal stem cell marker during central nervous system (CNS) development, and is currently widely used in that capacity. Nestin is also expressed in non-neuronal immature or progenitor cells in normal tissues. Under pathological conditions, nestin is expressed in repair processes in the CNS, muscle, liver, and infarcted myocardium. Furthermore, increased nestin expression has been reported in various tumor cells, including CNS tumors, gastrointestinal stromal tumors, pancreatic cancer, prostate cancer, breast cancer, malignant melanoma, dermatofibrosarcoma protuberances, and thyroid tumors. Nestin is reported to correlate with aggressive growth, metastasis, and poor prognosis in some tumors; however, the roles of nestin in cancer cells have not been well characterized. Furthermore, nestin is more specifically expressed in proliferating small-sized tumor vessels in glioblastoma and gastric, colorectal, and prostate cancers than are other tumor vessel markers. These findings indicate that nestin may be a marker for newly synthesized tumor vessels and a therapeutic target for tumor angiogenesis. It has received a lot of attention recently as a cancer stem cell marker in various cancer cells including brain tumors, malignant rhabdoid tumors, and uterine, cervical, prostate, bladder, head and neck, ovarian, testicular, and pancreatic cancers. The purpose of this review is to clarify the roles of nestin in cancer cells and in tumor angiogenesis, and to examine the association between nestin and cancer stem cells. Nestin has the potential to serve as a molecular target for cancers with nestin-positive cancer cells and nestin-positive tumor vasculature.
Collapse
|
18
|
Walker DJ, Suetterlin P, Reisenberg M, Williams G, Doherty P. Down-regulation of diacylglycerol lipase-alpha during neural stem cell differentiation: identification of elements that regulate transcription. J Neurosci Res 2010; 88:735-45. [PMID: 19798744 DOI: 10.1002/jnr.22251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The diacylglycerol lipases (DAGLalpha and DAGLbeta) synthesize 2-arachidonoylglycerol (2-AG), a full agonist at cannabinoid receptors. Dynamic regulation of DAGL expression underpins its role in axonal growth and guidance during development, retrograde synaptic signalling at mature synapses, and maintenance of adult neurogenesis. We show here that DAGLalpha expression is dramatically down-regulated when neural stem (NS) cells are differentiated toward a gamma-aminobutyric acidergic neuronal phenotype. To understand how DAGLalpha expression might be controlled, we sought to identify the core promoter region and regulatory elements within it. The core promoter was identified and shown to contain both an enhancer and a suppressor region. Deletion analysis identified two elements, including a GC-box, that specifically promote expression in NS cells. Bioinformatic analysis identified three candidate transcription factors that might regulate DAGLalpha expression in NS cells by binding to the GC box; these were specificity protein 1 (Sp1), early growth response element 1 (EGR1), and zinc finger DNA-binding protein 89 (ZBP-89). However, Sp1 was the only factor that could bind to the GC-box. A specific mutation within the GC-box that inhibited Sp1 binding reduced DAGLalpha promoter activity in NS cells. Likewise, a dominant negative Sp1 was shown to bind to the GC-box and to suppress DAGLalpha promoter activity specifically in NS cells. Finally, like DAGLalpha, Sp1 was down-regulated during neuronal differentiation. A full characterization of the DAGLalpha promoter will help to elucidate the upstream pathways that regulate DAGLalpha expression in NS cells and their progeny.
Collapse
Affiliation(s)
- Deborah J Walker
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Expression profiles of nestin in vascular smooth muscle cells in vivo and in vitro. Exp Cell Res 2009; 316:940-50. [PMID: 19896481 DOI: 10.1016/j.yexcr.2009.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 12/29/2022]
Abstract
Nestin is an intermediate filament protein expressed in neural and mesenchymal stem cells. Here, we investigated the expression of nestin in vascular smooth muscle cells (VSMCs) in vivo and in vitro. In the developing arteries, medial VSMCs were found to express nestin; its expression was prominent in embryos but was down-regulated after birth (3-6 weeks) in a region-dependent manner; its expression was abolished in the adult. Thus, the expression of nestin is specific to developing VSMCs. In primary VMSC cultures, nestin expression was induced by serum, but was independent of cell-cycle progression. Signaling analyses revealed that the serum-induced nestin expression depended on the extracellular signal-regulated kinase (ERK) and protein kinase B (PKB)(Akt) pathways, via the platelet derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Nestin expression was closely related to the up-regulation and activation of Sp1 and Sp3. Among major serum growth factors and cytokines, PDGF-BB was the most potent inducer of nestin expression. Nestin was also up-regulated in arteries undergoing vascular remodeling following balloon injury. Its expression was particularly strong in the cells lining the lumen of the neointima, suggesting a possible correlation between nestin expression and the progression of vascular remodeling.
Collapse
|
20
|
Han DW, Do JT, Araúzo-Bravo MJ, Lee SH, Meissner A, Lee HT, Jaenisch R, Schöler HR. Epigenetic hierarchy governing Nestin expression. Stem Cells 2009; 27:1088-97. [PMID: 19415779 DOI: 10.1002/stem.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nestin is an intermediate filament protein expressed specifically in neural stem cells and progenitor cells of the central nervous system. DNA demethylation and histone modifications are two types of epigenetic modifications working in a coordinate or synergistic manner to regulate the expression of various genes. This study investigated and elucidated the epigenetic regulation of Nestin gene expression during embryonic differentiation along the neural cell lineage. Nestin exhibits differential DNA methylation and histone acetylation patterns in Nestin-expressing and nonexpressing cells. In P19 embryonic carcinoma cells, activation of Nestin expression is mediated by both trichostatin A and 5-aza-2'-deoxycytidine treatment, concomitant with histone acetylation, but not with DNA demethylation. Nestin transcription is also mediated by treatment with retinoic acid, again in the absence of DNA demethylation. Thus, histone acetylation is sufficient to mediate the activation of Nestin transcription. This study proposed that the regulation of Nestin gene expression can be used as a model to study the epigenetic regulation of gene expression mediated by histone acetylation, but not by DNA demethylation.
Collapse
Affiliation(s)
- Dong Wook Han
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jin Z, Liu L, Bian W, Chen Y, Xu G, Cheng L, Jing N. Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem 2009; 284:8160-73. [PMID: 19147497 PMCID: PMC2658109 DOI: 10.1074/jbc.m805632200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/26/2008] [Indexed: 12/17/2022] Open
Abstract
Nestin is a molecular marker for neural progenitor cells. Rat and human nestin genes possess a central nervous system-specific enhancer within their second introns. However, the transcription factors that bind to the nestin enhancer have not been fully elucidated. Here, we show that the second intron of the mouse nestin gene is sufficient to drive reporter gene expression in the developing nervous system. The core sequence of this central nervous system-specific enhancer localizes to the 3' 320-bp region. The cis-elements for Sox and POU family transcription factors and the hormone-responsive element are essential for nestin expression during embryonic carcinoma P19 cell neural differentiation and in the developing chick neural tube. Interestingly, different transcription factors bind to the nestin enhancer at different stages of P19 cell neural differentiation and central nervous system development. Sox2 and SF1 may mediate basal nestin expression in undifferentiated P19EC cells, whereas Sox2, Brn1, and Brn2 bind to the enhancer in P19 neural progenitor cells. Similarly, in vivo, Oct1 binds to the nestin enhancer in embryonic day 8.5 (E8.5) mouse embryos, and Oct1, Brn1, and Brn2 bind to this enhancer in E10.5 and E12.5 mouse embryos. Our studies therefore suggest a temporal coordination of transcription factors in determining nestin gene expression.
Collapse
Affiliation(s)
- Zhigang Jin
- Laboratory of Molecular Cell Biology and State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell Signal 2009; 21:954-68. [PMID: 19245830 DOI: 10.1016/j.cellsig.2009.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/20/2022]
Abstract
Regulation of nestin gene expression is largely unknown despite that it is widely used as a progenitor cell marker. In this study, we showed that nestin expression is regulated by the thrombin-mediated EGFR transactivation in serum-deprived primary cultures of rat vascular smooth muscle cells (VSMCs). This resulted from the direct binding of thrombin to PAR-1 rather than indirectly affecting through the binding to thrombomodulin, as demonstrated by thrombomodulin RNAi. In this process, the PAR-1-induced c-Src plays a critical role through two routes; one was the direct intracellular phosphorylation of EGFR and the other was the extracellular activation of the MMP-2-mediated shedding of HB-EGF. The transactivated EGFR then led to the downstream Ras-Raf-ERK signaling axis, but not the p38 or JNK pathways. In addition, the EMSA experiment showed that the transcriptional factor Sp1 is critical for the thrombin-induced nestin expression in rat VSMCs. Furthermore, RNAi of nestin attenuated the thrombin-induced cell proliferation, indicating that thrombin-induced nestin expression and cell proliferation share the same EGFR transactivation mechanism. This study also suggested that nestin may play an important role in cell proliferation induced by the thrombin-mediated EGFR transactivation.
Collapse
|
23
|
Kawamoto M, Ishiwata T, Cho K, Uchida E, Korc M, Naito Z, Tajiri T. Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol 2009; 40:189-98. [PMID: 18799194 PMCID: PMC2654248 DOI: 10.1016/j.humpath.2008.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 10/21/2022]
Abstract
Nestin was first described as an intermediate filament protein expressed in neuroepithelial stem cells. Nestin expression has also been reported in brain tumors, schwannomas, gastrointestinal stromal tumors, and melanomas. In the pancreas, Nestin expression has been detected in exocrine and mesenchymal cells, including stellate cells, pericytes, and endothelial cells. In the present study, we examined Nestin expression in human pancreatic ductal adenocarcinoma and sought to determine its role in this malignancy. Reverse transcription-polymerase chain reaction analysis demonstrated the presence of Nestin mRNA in all 10 tested pancreatic cancer cell lines, and quantitative reverse transcription-polymerase chain reaction revealed that Nestin mRNA levels were highest in PANC-1 cells and lowest in PK-8 cells. Immunofluorescent analysis revealed that Nestin localized in the outer cytoplasm of PANC-1 cells. Nestin immunoreactivity was present in the cancer cells in 20 (33.3%) of 60 cancer cases, and its expression was confirmed by in situ hybridization. Nestin expression was also increased in peripheral nerve fibers adjacent to cancer cells and in peripheral nerve fibers invaded by cancer cells. Clinicopathologically, there was a statistically significant association between Nestin expression in pancreatic cancer cells and nerve invasion (P = .010) and the presence of cancer cells in the tumor resection margins (P = .003). Nestin-positive cases exhibited similar survival after resection by comparison with Nestin-negative cases, irrespective of whether they were given adjuvant therapy. These findings indicate that Nestin expression in pancreatic cancer cells may contribute to nerve and stromal invasion in this malignancy.
Collapse
Affiliation(s)
- Masao Kawamoto
- Surgery for Organ and Biological Regulation (Department of Surgery I), Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Toshiyuki Ishiwata
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Kazumitsu Cho
- Surgery for Organ and Biological Regulation (Department of Surgery I), Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Eiji Uchida
- Surgery for Organ and Biological Regulation (Department of Surgery I), Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Murray Korc
- Department of Medicine, Dartmouth Medical School and Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Zenya Naito
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takashi Tajiri
- Surgery for Organ and Biological Regulation (Department of Surgery I), Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
24
|
Abstract
One of the major challenges in the field of neurobiology is to elucidate the molecular machinery that underlies the formation and storage of memories. For many decades, genetic studies in the fruit fly (Drosophila melanogaster) have provided insight into the role of specific genes underlying memory storage. Although these pioneering studies were groundbreaking, a transition to a mammalian system more closely resembling the human brain is critical for the translation of basic research findings into therapeutic strategies in humans. Because the mouse (Mus musculus) shares the complex genomic and neuroanatomical organization of mammals and there is a wealth of molecular tools that are available to manipulate gene function in mice, the mouse has become the primary model for research into the genetic basis of mammalian memory. Another major advantage of mouse research is the ability to examine in vivo electrophysiological processes, such as synaptic plasticity and neuronal firing patterns during behavior (e.g., the analysis of place cell activity). The focus on mouse models for memory research has led to the development of sophisticated behavioral protocols capable of exploring the role of particular genes in distinct phases of learning and memory formation, which is one of the major accomplishments of the past decade. In this chapter, we will give an overview of several state of the art genetic approaches to study gene function in the mouse brain in a spatially and temporally restricted fashion.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Zhong H, Jin Z, Chen Y, Zhang T, Bian W, Cui X, Jing N. First intron of nestin gene regulates its expression during C2C12 myoblast differentiation. Acta Biochim Biophys Sin (Shanghai) 2008; 40:526-32. [PMID: 18535751 DOI: 10.1111/j.1745-7270.2008.00428.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells. We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.
Collapse
Affiliation(s)
- Hua Zhong
- Shan Dong University Medical School, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N. Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. J Biol Chem 2008; 283:17721-30. [PMID: 18436531 PMCID: PMC2427353 DOI: 10.1074/jbc.m800013200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.
Collapse
Affiliation(s)
- Chengyong Shen
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Bai G, Sheng N, Xie Z, Bian W, Yokota Y, Benezra R, Kageyama R, Guillemot F, Jing N. Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 2007; 13:283-97. [PMID: 17681138 DOI: 10.1016/j.devcel.2007.05.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/24/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Negative bHLH transcription factor Hes1 can inhibit neural stem cells (NSCs) from precocious neurogenesis through repressing proneural gene expression; therefore, sustenance of Hes1 expression is crucial for NSC pool maintenance. Here we find that Ids, the dominant-negative regulators of proneural proteins, are expressed prior to proneural genes and share an overlapping expression pattern with Hes1 in the early neural tube of chick embryos. Overexpression of Id2 in the chick hindbrain upregulates Hes1 expression and inhibits proneural gene expression and neuronal differentiation. By contrast, Hes1 expression decreases, proneural gene expression expands, and neurogenesis occurs precociously in Id1;Id3 double knockout mice and in Id1-3 RNAi-electroporated chick embryos. Mechanistic studies show that Id proteins interact directly with Hes1 and release the negative feedback autoregulation of Hes1 without interfering with its ability to affect other target genes. These results indicate that Id proteins participate in NSC maintenance through sustaining Hes1 expression in early embryos.
Collapse
Affiliation(s)
- Ge Bai
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xia C, Wang C, Zhang K, Qian C, Jing N. Induction of a high population of neural stem cells with anterior neuroectoderm characters from epiblast-like P19 embryonic carcinoma cells. Differentiation 2007; 75:912-27. [PMID: 17573917 DOI: 10.1111/j.1432-0436.2007.00188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epiblast, derived from the inner cell mass (ICM), represents the final embryonic founder cell population of mouse embryo and can give rise to all germ layer lineages including the neuroectoderm. The generation of neural stem cells from epiblast-like cells is of great value for studying the mechanism of neural determination during gastrulation stages of embryonic development. Mouse embryonic carcinoma (EC) P19 cells are equivalent to the epiblast of early post-implantation blastocysts. In this study, we establish a feasible induction system that allows rapid and efficient derivation of a high percentage ( approximately 95%) of neural stem cells from P19 EC cell in N2B27 serum-free medium. The induced neural stem cells bear anterior neuroectoderm characters, and can be efficiently caudalized by retinoic acid (RA). These neural stem cells have multilineage potential to differentiate into neurons, astrocytes, and oligodendrocytes. Mechanistic analysis indicates that inhibition of the bone morphogenetic protein (BMP) pathway may be the main reason for N2B27-neural induction, and that fibroblast growth factor (FGF) signaling is also involved in this process. This method will provide an in vitro system to dissect the molecular mechanisms involved in neural induction of early mouse embryos.
Collapse
Affiliation(s)
- Caihong Xia
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Baumgärtel K, Fernández C, Johansson T, Mansuy IM. Conditional transgenesis and recombination to study the molecular mechanisms of brain plasticity and memory. Handb Exp Pharmacol 2007:315-45. [PMID: 17203661 DOI: 10.1007/978-3-540-35109-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the postgenomic era, a primary focus of mouse genetics is to elucidate the role of individual genes in vivo. However, in the nervous system, studying the contribution of specific genes to brain functions is difficult because the brain is a highly complex organ with multiple neuroanatomical structures, orchestrating virtually every function in the body. Further, higher-order brain functions such as learning and memory simultaneously recruit several signaling cascades in different subcellular compartments and have highly fine-tuned spatial and temporal components. Conditional transgenic and gene targeting methodologies, however, now offer valuable tools with improved spatial and temporal resolution for appropriate studies of these functions. This chapter provides an overview of these tools and describes how they have helped gain better understanding of the role of candidate genes such as the NMDA receptor, the protein kinase CaMKIIIalpha, the protein phosphatases calcineurin and PP1, or the transcription factor CREB, in the processes of learning and memory. This review illustrates the broad and innovative applicability of these methodologies to the study of brain plasticity and cognitive functions.
Collapse
Affiliation(s)
- K Baumgärtel
- Department of Biology, Swiss Federal Institute of Technology, Medical Faculty, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, Speth M, Diep D, Krauss S, Kozmik Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem 2006; 282:1225-37. [PMID: 17090534 DOI: 10.1074/jbc.m605851200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/beta-catenin signaling regulates many processes during vertebrate development. To study transcriptional targets of canonical Wnt signaling, we used the conditional Cre/loxP system in mouse to ectopically activate beta-catenin during central nervous system development. We show that the activation of Wnt/beta-catenin signaling in the embryonic mouse telencephalon results in the up-regulation of Sp5 gene, which encodes a member of the Sp1 transcription factor family. A proximal promoter of Sp5 gene is highly evolutionarily conserved and contains five TCF/LEF binding sites that mediate direct regulation of Sp5 expression by canonical Wnt signaling. We provide evidence that Sp5 works as a transcriptional repressor and has three independent repressor domains, called R1, R2, and R3, respectively. Furthermore, we show that the repression activity of R1 domain is mediated through direct interaction with a transcriptional corepressor mSin3a. Finally, our data strongly suggest that Sp5 has the same DNA binding specificity as Sp1 and represses Sp1 target genes such as p21. We conclude that Sp5 transcription factor mediates the downstream responses to Wnt/beta-catenin signaling by directly repressing Sp1 target genes.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang C, Xia C, Bian W, Liu L, Lin W, Chen YG, Ang SL, Jing N. Cell aggregation-induced FGF8 elevation is essential for P19 cell neural differentiation. Mol Biol Cell 2006; 17:3075-84. [PMID: 16641368 PMCID: PMC1483041 DOI: 10.1091/mbc.e05-11-1087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/30/2006] [Accepted: 04/14/2006] [Indexed: 11/11/2022] Open
Abstract
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.
Collapse
Affiliation(s)
- Chen Wang
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caihong Xia
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Bian
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Liu
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Lin
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Ye-Guang Chen
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Siew-Lan Ang
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Naihe Jing
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
32
|
Jin ZG, Liu L, Zhong H, Zhang KJ, Chen YF, Bian W, Cheng LP, Jing NH. Second intron of mouse nestin gene directs its expression in pluripotent embryonic carcinoma cells through POU factor binding site. Acta Biochim Biophys Sin (Shanghai) 2006; 38:207-12. [PMID: 16518546 DOI: 10.1111/j.1745-7270.2006.00149.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Nestin, an intermediate filament protein, is expressed in the neural stem cells of the developing central nervous system. This tissue-specific expression is driven by the neural stem cell-specific enhancer in the second intron of the nestin gene. In this study, we showed that the mouse nestin gene was expressed in pluripotent embryonic carcinoma (EC) P19 and F9 cells, not in the differentiated cell types. This cell type-specific expression was conferred by the enhancer in the second intron. Mutation of the conserved POU factor-binding site in the enhancer abolished the reporter gene expression in EC cells. Oct4, a Class V POU factor, was found to be coexpressed with nestin in EC cells. Electrophoretic mobility-shift assays and supershift assays showed that a unique protein-DNA complex was formed specifically with nuclear extracts of EC cells, and Oct4 protein was included. Together, these results suggest the functional relevance between the conserved POU factor-binding site and the expression of the nestin gene in pluripotent EC cells.
Collapse
Affiliation(s)
- Zhi-Gang Jin
- Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|