1
|
Moiz A, Filion KB, Tsoukas MA, Yu OH, Peters TM, Eisenberg MJ. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am J Med 2025; 138:934-940. [PMID: 39892489 DOI: 10.1016/j.amjmed.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have become central in managing obesity and type 2 diabetes, primarily through appetite suppression and metabolic regulation. This review explores the mechanisms underlying GLP-1 RA-induced weight loss, focusing on central and peripheral pathways. Centrally, GLP-1 RAs modulate brain regions controlling appetite, influencing neurotransmitter and peptide release to regulate hunger and energy expenditure. Peripherally, GLP-1 RAs improve glycemic control by enhancing insulin secretion, reducing glucagon release, delaying gastric emptying, and regulating gut hormones. They also reduce triglycerides and low-density lipoprotein cholesterol, mitigate adipose tissue inflammation, and minimize ectopic fat deposition, promoting overall metabolic health. Emerging dual and triple co-agonists, targeting GLP-1 alongside glucose-dependent insulinotropic polypeptide, and glucagon pathways, may enhance weight loss and metabolic flexibility. Understanding these mechanisms is crucial as the therapeutic landscape evolves, offering clinicians and researchers insights to optimize the efficacy of current and future obesity treatments.
Collapse
Affiliation(s)
- Areesha Moiz
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Kristian B Filion
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Michael A Tsoukas
- Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Oriana Hy Yu
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Tricia M Peters
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Mark J Eisenberg
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Cardiology, Jewish General Hospital/McGill University, Canada.
| |
Collapse
|
2
|
Sanchez C, Nadal M, Cansell C, Laroui S, Descombes X, Rovère C, Debreuve É. Computational detection, characterization, and clustering of microglial cells in a mouse model of fat-induced postprandial hypothalamic inflammation. Methods 2025; 236:28-38. [PMID: 40021035 DOI: 10.1016/j.ymeth.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 h of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Understanding more precisely the kinetics of glial activation of two major brain cells (astrocytes and microglia) and their impact on eating behavior could prevent obesity and offer new prospects for therapeutic treatments. To understand the mechanisms pertaining to obesity-related neuroinflammation, we developed a fully automated algorithm, NutriMorph. Although some algorithms were developed in the past decade to detect and segment cells, they are highly specific, not fully automatic, and do not provide the desired morphological analysis. Our algorithm copes with these issues and performs the analysis of cells images (here, microglia of the hypothalamic arcuate nucleus), and the morphological clustering of these cells through statistical analysis and machine learning. Using the k-Means algorithm, it clusters the microglia of the control condition (healthy mice) and the different states of neuroinflammation induced by high-fat diets (obese mice) into subpopulations. This paper is an extension and re-analysis of a first published paper showing that microglial reactivity can already be seen after few hours of high-fat diet (Cansell et al., 2021 [5]). Thanks to NutriMorph algorithm, we unravel the presence of different hypothalamic microglial subpopulations (based on morphology) subject to proportion changes in response to already few hours of high-fat diet in mice.
Collapse
Affiliation(s)
- Clara Sanchez
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Morgane Nadal
- Université Côte d'Azur, CNRS, Inria, I3S, Team Morpheme, Sophia Antipolis, France
| | | | - Sarah Laroui
- Université Côte d'Azur, CNRS, Inria, I3S, Team Morpheme, Sophia Antipolis, France
| | - Xavier Descombes
- Université Côte d'Azur, CNRS, Inria, I3S, Team Morpheme, Sophia Antipolis, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Éric Debreuve
- Université Côte d'Azur, CNRS, Inria, I3S, Team Morpheme, Sophia Antipolis, France.
| |
Collapse
|
3
|
Romaní‐Pérez M, Líebana‐García R, Flor‐Duro A, Bonillo‐Jiménez D, Bullich‐Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní‐Pérez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Rebeca Líebana‐García
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Alejandra Flor‐Duro
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Daniel Bonillo‐Jiménez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Clara Bullich‐Vilarrubias
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Marta Olivares
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| |
Collapse
|
4
|
Thomou C, Nussbaumer M, Grammenou E, Komini C, Vlaikou AM, Papageorgiou MP, Filiou MD. Early Handling Exerts Anxiolytic Effects and Alters Brain Mitochondrial Dynamics in Adult High Anxiety Mice. Mol Neurobiol 2024; 61:10593-10612. [PMID: 38761326 PMCID: PMC11584496 DOI: 10.1007/s12035-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/09/2024] [Indexed: 05/20/2024]
Abstract
Early handling (EH), the brief separation of pups from their mother during early life, has been shown to exert beneficial effects. However, the impact of EH in a high anxiety background as well as the role of brain mitochondria in shaping EH-driven responses remain elusive.Here, we used a high (HAB) vs. normal (NAB) anxiety-related behavior mouse model to study how EH affects pup and dam behavior in divergent anxiety backgrounds. We also investigated EH-induced effects at the protein and mRNA levels in adult male HAB mice in the hypothalamus, the prefrontal cortex, and the hippocampus by examining the same mitochondrial/energy pathways and mitochondrial dynamics mechanisms (fission, fusion, biogenesis, and mitophagy) in all three brain regions.EH exerts anxiolytic effects in adult HAB but not NAB male mice and does not affect HAB or NAB maternal behavior, although basal HAB vs. NAB maternal behaviors differ. In adult HAB male mice, EH does not impact oxidative phosphorylation (OXPHOS) and oxidative stress in any of the brain regions studied but leads to increased protein expression of glycolysis enzymes and a correlation of anxiety-related behavior with Krebs cycle enzymes in HAB mice in the hypothalamus. Intriguingly, EH alters mitochondrial dynamics by increasing hypothalamic DRP1, OPA1, and PGC1a protein levels. At the mRNA level, we observe altered, EH-driven mitochondrial dynamics mRNA signatures which predominantly affect the prefrontal cortex.Taken together, our results show that EH exerts anxiolytic effects in adulthood in high anxiety and modulates mitochondrial dynamics pathways in a brain region-specific manner.
Collapse
Affiliation(s)
- Christina Thomou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Eleni Grammenou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece.
- Institute of Biosciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
5
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
6
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
7
|
Sanchez C, Colson C, Gautier N, Noser P, Salvi J, Villet M, Fleuriot L, Peltier C, Schlich P, Brau F, Sharif A, Altintas A, Amri EZ, Nahon JL, Blondeau N, Benani A, Barrès R, Rovère C. Dietary fatty acid composition drives neuroinflammation and impaired behavior in obesity. Brain Behav Immun 2024; 117:330-346. [PMID: 38309640 DOI: 10.1016/j.bbi.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.
Collapse
Affiliation(s)
- Clara Sanchez
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Cécilia Colson
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France; Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Nadine Gautier
- Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Pascal Noser
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Juliette Salvi
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Maxime Villet
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Caroline Peltier
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Pascal Schlich
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Frédéric Brau
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Ariane Sharif
- Université de Lille, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S 1172, Lille France
| | - Ali Altintas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Ez-Zoubir Amri
- Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Nicolas Blondeau
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Alexandre Benani
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Romain Barrès
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Carole Rovère
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France.
| |
Collapse
|
8
|
Kim YT, Park BS, Yang HR, Yi S, Nam-Goong IS, Kim JG. Exploring the potential hypothalamic role in mediating cisplatin-induced negative energy balance. Chem Biol Interact 2023; 385:110733. [PMID: 37769865 DOI: 10.1016/j.cbi.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.
Collapse
Affiliation(s)
- Yang Tae Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seon Yi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Il Seong Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea.
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
9
|
Thakkar P, Pauza AG, Murphy D, Paton JFR. Carotid body: an emerging target for cardiometabolic co-morbidities. Exp Physiol 2023; 108:661-671. [PMID: 36999224 PMCID: PMC10988524 DOI: 10.1113/ep090090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
NEW FINDINGS What is the topic of this review? Regarding the global metabolic syndrome crisis, this review focuses on common mechanisms for high blood sugar and high blood pressure. Connections are made between the homeostatic regulation of blood pressure and blood sugar and their dysregulation to reveal signalling mechanisms converging on the carotid body. What advances does it highlight? The carotid body plays a major part in the generation of excessive sympathetic activity in diabetes and also underpins diabetic hypertension. As treatment of diabetic hypertension is notoriously difficult, we propose that novel receptors within the carotid body may provide a novel treatment strategy. ABSTRACT The maintenance of glucose homeostasis is obligatory for health and survival. It relies on peripheral glucose sensing and signalling between the brain and peripheral organs via hormonal and neural responses that restore euglycaemia. Failure of these mechanisms causes hyperglycaemia or diabetes. Current anti-diabetic medications control blood glucose but many patients remain with hyperglycemic condition. Diabetes is often associated with hypertension; the latter is more difficult to control in hyperglycaemic conditions. We ask whether a better understanding of the regulatory mechanisms of glucose control could improve treatment of both diabetes and hypertension when they co-exist. With the involvement of the carotid body (CB) in glucose sensing, metabolic regulation and control of sympathetic nerve activity, we consider the CB as a potential treatment target for both diabetes and hypertension. We provide an update on the role of the CB in glucose sensing and glucose homeostasis. Physiologically, hypoglycaemia stimulates the release of hormones such as glucagon and adrenaline, which mobilize or synthesize glucose; however, these counter-regulatory responses were markedly attenuated after denervation of the CBs in animals. Also, CB denervation prevents and reverses insulin resistance and glucose intolerance. We discuss the CB as a metabolic regulator (not just a sensor of blood gases) and consider recent evidence of novel 'metabolic' receptors within the CB and putative signalling peptides that may control glucose homeostasis via modulation of the sympathetic nervous system. The evidence presented may inform future clinical strategies in the treatment of patients with both diabetes and hypertension, which may include the CB.
Collapse
Affiliation(s)
- Pratik Thakkar
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Audrys G. Pauza
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
10
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
11
|
Igual Gil C, Coull BM, Jonas W, Lippert RN, Klaus S, Ost M. Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior. Life Sci Alliance 2022; 5:5/11/e202201495. [PMID: 36271504 PMCID: PMC9449705 DOI: 10.26508/lsa.202201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle–brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
12
|
Zhang X, Chen H, Li Y, Tang N, Chen D, Li Z. The insulin gene as an energy homeostasis biomarker in Yangtze sturgeon (Acipenser dabryanus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:693-705. [PMID: 35501527 DOI: 10.1007/s10695-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Insulin plays an important role in maintaining energy homeostasis and has the potential to be an indicator of energy homeostasis in the Yangtze sturgeon, Acipenser dabryanus. In this study, the Yangtze sturgeon insulin (Adinsulin) was cloned and characterized. To evaluate the possibility of insulin as an energy state assessment indicator, quantification real-time PCR (qRT-PCR) was used to evaluate expression changes in different tissues (the whole brain, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, duodenum, valvula intestine, rectum, liver, pancreas, spleen, kidney, heart, muscle, gill and eye) from 6 fish (average weight 325.7 ± 22.3 g) and in three experiments including postprandial, fasting and re-feeding, and glucose tolerance treatment in which fish were divided into two groups including a group that administered a glucose solution (1 ul/g body weight) and another group that administered sterile water as control. In these three experiments, 6 fish were sampled, respectively, then been used to evaluate expression changes of insulin. All fish in feeding groups were fed in tanks (60.0 cm × 50.0 cm × 40.0 cm) with a commercial diet (crude protein ≥ 40%, crude fat ≥ 12%, coarse fiber ≤ 6%, crude ash ≤ 18%; TONGWEI CO., LTD, China) once a day at 16:00. The result showed that Adinsulin was highly expressed in the pancreas, which was the basis for the next experiment to use the pancreas as the test target. Adinsulin expression significantly increased 1 h after feeding and decreased rapidly after 3 h of feeding, but it was still significantly higher than that of the group without feeding (P < 0.01). Compared to the feeding group, the expression of Adinsulin was significantly reduced in the fasting group of 3 days (P < 0.01), 6 days (P < 0.01), 10 days (P < 0.05), 11 days (P < 0.05) and 13 days (P < 0.01) and was no significant difference in re-feeding for 1st day, 2nd day and 4th day, but there was difference between re-feeding group and fasting group. After glucose tolerance treatment, serum glucose levels increased significantly (P < 0.05), accompanied by a significant increase (P < 0.001) in insulin expression. This study result shows that insulin has the capacity to measure the energy homeostasis of Yangtze sturgeon. Further development of detection methods for sturgeon plasma or serum insulin will avoid slaughtering animals and is more practical in energy homeostasis assessment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Hainan 5, Haikou, China.
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
| |
Collapse
|
13
|
Son JE, Dou Z, Wanggou S, Chan J, Mo R, Li X, Huang X, Kim KH, Michaud JL, Hui CC. Ectopic expression of Irx3 and Irx5 in the paraventricular nucleus of the hypothalamus contributes to defects in Sim1 haploinsufficiency. SCIENCE ADVANCES 2021; 7:eabh4503. [PMID: 34705510 PMCID: PMC8550250 DOI: 10.1126/sciadv.abh4503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing neurons critical for feeding regulation. Sim1 haploinsufficiency results in hyperphagic obesity with disruption of PVH neurons, yet the molecular profiles of PVH neurons and the mechanism underlying the defects of Sim1 haploinsufficiency are not well understood. By single-cell RNA sequencing, we identified two major populations of Sim1+ PVH neurons, which are differentially affected by Sim1 haploinsufficiency. The Iroquois homeobox genes Irx3 and Irx5 have been implicated in the hypothalamic control of energy homeostasis. We found that Irx3 and Irx5 are ectopically expressed in the Sim1+ PVH cells of Sim1+/− mice. By reducing their dosage and PVH-specific deletion of Irx3, we demonstrate that misexpression of Irx3 and Irx5 contributes to the defects of Sim1+/− mice. Our results illustrate abnormal hypothalamic activities of Irx3 and Irx5 as a central mechanism disrupting PVH development and feeding regulation in Sim1 haploinsufficiency.
Collapse
Affiliation(s)
- Joe Eun Son
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengchao Dou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rong Mo
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kyoung-Han Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Chi-chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Abstract
Chronic metabolic diseases, including diabetes and obesity, have become a major global health threat of the twenty-first century. Maintaining glucose homeostasis is essential for survival in mammals. Complex and highly coordinated interactions between glucose-sensing mechanisms and multiple effector systems are essential for controlling glucose levels in the blood. The central nervous system (CNS) plays a crucial role in regulating glucose homeostasis. Growing evidence indicates that disruption of glucose sensing in selective CNS areas, such as the hypothalamus, is closely interlinked with the pathogenesis of obesity and type 2 diabetes mellitus. However, the underlying intracellular mechanisms of glucose sensing in the hypothalamus remain elusive. Here, we review the current literature on hypothalamic glucose-sensing mechanisms and discuss the impact of alterations of these mechanisms on the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina Diano
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Filatov E, Short LI, Forster MAM, Harris SS, Schien EN, Hughes MC, Cline DL, Appleby CJ, Gray SL. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. Am J Physiol Endocrinol Metab 2021; 320:E475-E487. [PMID: 33356993 DOI: 10.1152/ajpendo.00205.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.
Collapse
Affiliation(s)
- Ekaterina Filatov
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Simon S Harris
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Erik N Schien
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Malcolm C Hughes
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Colin J Appleby
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
16
|
Dalvi P, Loganathan N, Mcilwraith EK, Tran A, Belsham DD. Hypothalamic Cell Models. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:27-77. [DOI: 10.1016/b978-0-12-819801-8.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Bertocchi I, Oberto A, Longo A, Palanza P, Eva C. Conditional inactivation of Npy1r gene in mice induces sex-related differences of metabolic and behavioral functions. Horm Behav 2020; 125:104824. [PMID: 32755609 DOI: 10.1016/j.yhbeh.2020.104824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Sex hormone-driven differences in gene expression have been identified in experimental animals, highlighting brain neuronal populations implicated in dimorphism of metabolic and behavioral functions. Neuropeptide Y-Y1 receptor (NPY-Y1R) system is sexually dimorphic and sensitive to gonadal steroids. In the present study we compared the phenotype of male and female conditional knockout mice (Npy1rrfb mice), carrying the inactivation of Npy1r gene in excitatory neurons of the brain limbic system. Compared to their male control (Npy1r2lox) littermates, male Npy1rrfb mice exhibited hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis that is associated with anxiety and executive dysfunction, reduced body weight growth, after-fasting refeeding, white adipose tissue (WAT) mass and plasma leptin levels. Conversely, female Npy1rrfb mice displayed an anxious-like behavior but no differences in HPA axis activity, executive function and body weight, compared to control females. Moreover, conditional inactivation of Npy1r gene induced an increase of subcutaneous and gonadal WAT weight and plasma leptin levels and a compensatory decrease of Agouti-related protein immunoreactivity in the hypothalamic arcuate (ARC) nucleus in females, compared to their respective control littermates. Interestingly, Npy1r mRNA expression was reduced in the ARC and in the paraventricular hypothalamic nuclei of female, but not male mice. These results demonstrated that female mice are resilient to hormonal and metabolic effects of limbic Npy1r gene inactivation, suggesting the existence of an estrogen-dependent relay necessary to ensure the maintenance of the homeostasis, that can be mediated by hypothalamic Y1R.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43100 Parma, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy.
| |
Collapse
|
19
|
Cansell C, Stobbe K, Sanchez C, Le Thuc O, Mosser CA, Ben-Fradj S, Leredde J, Lebeaupin C, Debayle D, Fleuriot L, Brau F, Devaux N, Benani A, Audinat E, Blondeau N, Nahon JL, Rovère C. Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic protein-positive cells and microglia in male mice. Glia 2020; 69:42-60. [PMID: 32659044 DOI: 10.1002/glia.23882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.
Collapse
Affiliation(s)
- Céline Cansell
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Katharina Stobbe
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Clara Sanchez
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Ophélia Le Thuc
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Coralie-Anne Mosser
- Laboratory of Neurophysiology and New Microscopies, INSERM, Université Paris Descartes, Paris, France
| | - Selma Ben-Fradj
- CSGA, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Joris Leredde
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | | | - Delphine Debayle
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Lucile Fleuriot
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Frédéric Brau
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Nadège Devaux
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Alexandre Benani
- CSGA, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Nicolas Blondeau
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Jean-Louis Nahon
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| | - Carole Rovère
- IPMC, CNRS, Université Côte d'Azur, IPMC, CNRS, Valbonne, France
| |
Collapse
|
20
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
21
|
Expression of lysine-mediated neuropeptide hormones controlling satiety and appetite in broiler chickens. Poult Sci 2019; 99:1409-1420. [PMID: 32115028 PMCID: PMC7587822 DOI: 10.1016/j.psj.2019.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022] Open
Abstract
Lysine is the second most limiting amino acid after methionine and is considered the most limiting amino acid for growth in poultry. Lysine requirement for broiler chickens has changed over the years. Leptin and adiponectin represent 2 adipokines that mediate metabolism by eliciting satiety effects whereas ghrelin peptide hormone influences appetite. We hypothesize that this affects growth performance of chicks. This study evaluates the effect of varying dietary lysine homeostasis on performance of broiler chickens through satiety- and appetite-mediating hormones. In 3 replications, 270 one-day-old chicks were reared for 8 wk feeding on diets comprising 0.85, 1.14, and 1.42% lysine during the starter period and 0.75, 1.00, and 1.25% lysine during the grower period. These concentrations of lysine represent 75% (low lysine), 100% (control), and 125% (high lysine) of National Research Council recommendation for broiler chickens. Feed and water were provided for ad libitum consumption. At 8 wk of age, liver, pancreas, brain, and hypothalamus tissues were collected from 18 birds randomly selected from each treatment, snap frozen in liquid nitrogen, and stored at -80°C until use. Total RNA was extracted, and cDNA was synthesized for quantitative real-time PCR assays. Low lysine concentration caused slow growth and high mortality. There was significant upregulation of ghrelin in the hypothalamus and pancreas, and leptin and adiponectin in the hypothalamus and liver, and downregulation of ghrelin in the intestines. At low lysine concentrations, adiponectin was not expressed in both pancreas and intestines. High lysine concentration exhibited increased growth, upregulation of ghrelin in the liver, and downregulation of ghrelin in the intestines, and both adiponectin and leptin in the liver. The expression of ghrelin was negatively correlated with the expression of adiponectin and leptin (P < 0.05) in the liver, hypothalamus, and pancreas. Expression of leptin was positively correlated with adiponectin in the hypothalamus and liver (P < 0.05), exhibiting satiety effects when the concentrations of lysine were low.
Collapse
|
22
|
Rey M, Kruse MS, Magrini-Huamán RN, Coirini H. High-Fat Diets and LXRs Expression in Rat Liver and Hypothalamus. Cell Mol Neurobiol 2019; 39:963-974. [PMID: 31161476 PMCID: PMC11457829 DOI: 10.1007/s10571-019-00692-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Disturbances on lipid metabolism are associated with health disorders. High-fat diets (HFDs) consumption promotes cardiovascular and neurodegenerative diseases where cholesterol plays an important role. Among regulators of this steroid homeostasis, the liver X receptors (LXRs) induce genes that protect cells from cholesterol overload. We previously described how both hypothalamic LXRα and LXRβ are sensitive to a high-fructose diet, suggesting that these receptors trigger responses related to control of energy and food intake. The present work's main objective was to study the effect of different HFDs on LXRs expression (in hypothalamus and liver), and lipid profile. Male rats received control diet (CD), HFD1 (CD + bovine fat (BF)), HFD2 (CD + BF + cholic acid (CA)), HFD3 (CD + BF + cholesterol), or HFD4 (CD + BF + CA + cholesterol) for different time periods. Hypothalamic LXRβ, both hepatic LXRs subtypes, and total cholesterol (TC) raised after 2 weeks of HFDs. Four and 8 weeks of HFD3 and HFD4 increased the LXRs subtypes in both tissues and TC levels. Only HFD4 reduced triglycerides (TG) levels after 2 and 8 weeks. The TC and TG values correlated significantly with LXRs expression only in rats fed with HFD4. These data add relevant information about how diet composition can produce different scales of hypercholesterolemia states accompanied with central and peripheral changes in the LXRs expression.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Nahimé Magrini-Huamán
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ingenieria, Instituto de Biotecnologia, Universidad Nacional de San Juan, Av. Libertador Gral. San Martín 1109, J5400ARL, San Juan, Argentina
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina.
- Departamento de Bioquimica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5to Piso, C1121ABG, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Cachexia induced by Yoshida ascites hepatoma in Wistar rats is not associated with inflammatory response in the spleen or brain. J Neuroimmunol 2019; 337:577068. [PMID: 31606594 DOI: 10.1016/j.jneuroim.2019.577068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Recent data indicate that peripheral, as well as hypothalamic pro-inflammatory cytokines play an important role in the development of cancer cachexia. However, there are only a few studies simultaneously investigating the expression of inflammatory molecules in both the periphery and hypothalamic structures in animal models of cancer cachexia. Therefore, using the Yoshida ascites hepatoma rat's model of cancer cachexia we investigated the gene expression of inflammatory markers in the spleen along with the paraventricular and arcuate nuclei, two hypothalamic structures that are involved in regulating energy balance. In addition, we investigated the effect of intracerebroventricular administration of PS-1145 dihydrochloride (an Ikβ inhibitor) on the expression of selected inflammatory molecules in these hypothalamic nuclei and spleen. We observed significantly reduced food intake in tumor-bearing rats. Moreover, we found significantly decreased expression of IL-6 in the spleen as well as decreased NF-κB in the paraventricular nucleus of rats with Yoshida ascites hepatoma. Similarly, expression of TNF-α, IL-1β, NF-κB, and COX-2 in the arcuate nucleus was significantly reduced in tumor-bearing rats. Administration of PS-1145 dihydrochloride reduced only the gene expression of COX-2 in the hypothalamus. Based on our findings, we suggest that the growing Yoshida ascites hepatoma decreased food intake by mechanical compression of the gut and therefore this model is not suitable for investigation of the inflammation-related mechanisms of cancer cachexia development.
Collapse
|
24
|
Löfgren M, Holmberg E, Bäckström T, Egecioglu E, Dickson SL. The additive effect of allopregnanolone on ghrelin's orexigenic effect in rats. Neuropeptides 2019; 76:101937. [PMID: 31253440 DOI: 10.1016/j.npep.2019.101937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022]
Abstract
The progesterone metabolite, allopregnanolone (AlloP), is a GABAA receptor modulating steroid and is known to have orexigenic and pro-obesity effects. The neurobiological mechanisms underpinning these effects are most likely due to enhanced GABAergic signaling in the lateral arcuate nucleus (ARC) and medial paraventricular nucleus (PVN) of the hypothalamus. Inspired by the finding that GABAergic signaling is also important for the orexigenic effects of the circulating hormone, ghrelin, we sought to determine the extent to which AlloP (one of the most potent endogenous GABAA-receptor modulators) operates alongside ghrelin to enhance food intake. Male rats with ad libitum access to standard chow were injected intravenously with AlloP and/or ghrelin, alone or in combination. The intake of the standard chow was greater after AlloP 1 mg/kg together with ghrelin 30 μg/kg than with 30 μg/kg ghrelin alone. Food intake was also increased for the combined treatment of AlloP 0.5 mg/kg + ghrelin 10 μg/kg, AlloP 1 mg/kg + ghrelin 10 μg/kg, and AlloP 0.5 mg/kg + ghrelin 30 μg/kg. There was no significant difference in food intake between the two ghrelin doses or between the two doses of AlloP and the vehicle. In electrophysiological studies, physiologically relevant concentrations of AlloP prolonged the current decay time of spontaneous inhibitory post-synaptic current of dissociated cells of the ARC and PVN. We conclude that AlloP enhances the hyperphagic effect of ghrelin, findings of potential relevance for the hyperphagia associated with the luteal phase of the reproductive cycle.
Collapse
Affiliation(s)
- Magnus Löfgren
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden.
| | - Ellinor Holmberg
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden
| | - Torbjörn Bäckström
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden
| | - Emil Egecioglu
- Department of Experimental Medical Science, Appetite Regulation Unit, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Suzanne L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, P.O. Box 434, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
25
|
Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res 2019; 8:F1000 Faculty Rev-998. [PMID: 31316753 PMCID: PMC6611156 DOI: 10.12688/f1000research.17196.1] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key component of cellular metabolism that integrates nutrient sensing with cellular processes that fuel cell growth and proliferation. Although the involvement of the mTOR pathway in regulating life span and aging has been studied extensively in the last decade, the underpinning mechanisms remain elusive. In this review, we highlight the emerging insights that link mTOR to various processes related to aging, such as nutrient sensing, maintenance of proteostasis, autophagy, mitochondrial dysfunction, cellular senescence, and decline in stem cell function.
Collapse
Affiliation(s)
- David Papadopoli
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Karine Boulay
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Lawrence Kazak
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
| | - Michael Pollak
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Frédérick A. Mallette
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
26
|
Al-Zubaidi A, Heldmann M, Mertins A, Brabant G, Nolde JM, Jauch-Chara K, Münte TF. Impact of Hunger, Satiety, and Oral Glucose on the Association Between Insulin and Resting-State Human Brain Activity. Front Hum Neurosci 2019; 13:162. [PMID: 31178708 PMCID: PMC6544009 DOI: 10.3389/fnhum.2019.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
To study the interplay of metabolic state (hungry vs. satiated) and glucose administration (including hormonal modulation) on brain function, resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were obtained in 24 healthy normal-weight men in a repeated measurement design. Participants were measured twice: once after a 36 h fast (except water) and once under satiation (three meals/day for 36 h). During each session, rs-fMRI and hormone concentrations were recorded before and after a 75 g oral dose of glucose. We calculated the amplitude map from blood-oxygen-level-dependent (BOLD) signals by using the fractional amplitude of low-frequency fluctuation (fALFF) approach for each volunteer per condition. Using multiple linear regression analysis (MLRA) the interdependence of brain activity, plasma insulin and blood glucose was investigated. We observed a modulatory impact of fasting state on intrinsic brain activity in the posterior cingulate cortex (PCC). Strikingly, differences in plasma insulin levels between hunger and satiety states after glucose administration at the time of the scan were negatively related to brain activity in the posterior insula and superior frontal gyrus (SFG), while plasma glucose levels were positively associated with activity changes in the fusiform gyrus. Furthermore, we could show that changes in plasma insulin enhanced the connectivity between the posterior insula and SFG. Our results indicate that hormonal signals like insulin alleviate an acute hemostatic energy deficit by modifying the homeostatic and frontal circuitry of the human brain.
Collapse
Affiliation(s)
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Alfred Mertins
- Institute for Signal Processing, University of Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | - Kamila Jauch-Chara
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 2019; 92:11-25. [PMID: 30500561 DOI: 10.1016/j.metabol.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a debated concept. Thus, we will see that the set-point theory is highly challenged and that other models integrating an anticipative component, such as energy allostasis, seem more relevant to experimental reports and life preservation. Moreover, the current obesity epidemic suggests that EH is poorly efficient in the modern human dietary environment. Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. In this review, the apparent failed homeostatic responses to energy challenges such as exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, neuronal, and metabolic factors of energy intake or energy expenditure are briefly presented. Last, this review focuses on the contributions of two of the most pivotal and often overlooked determinants of EH: the availability of endogenous energy and the pattern of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Didier Chapelot
- Université Paris 13, Centre de Recherche en Epidémiologie et Statistique, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Inserm (U1153), Inra (U1125), Cnam, Bobigny, France.
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Brétigny-sur-Orge, France
| |
Collapse
|
28
|
Milano W, Capasso A. Psychopharmacological Options in the Multidisciplinary and Multidimensional Treatment of Eating Disorders. Open Neurol J 2019. [DOI: 10.2174/1874205x01913010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eating Disorders (ED) are a syndrome characterized by persistent alteration of eating behavior and the conditions that cause insufficient ingestion and/or adsorption of foods. There are three different ED diseases: Anorexia Nervosa (AN), Bulimia Nervosa (BN) and Binge Eating Disorders (BED). ED are complex conditions that arise from a combination of long-standing behavioral, emotional, psychological, interpersonal, and social factors. A common trait to all EDs is the incongruous diet, often based on arbitrary parameters, disconnected from physiological needs, with a strong alteration of the sensations of hunger and satiety, to which variations in weight, body composition, health status and quality of life of patients occur. Although EDs are relatively frequent psychiatric disorders in the general population, especially in adolescent and juvenile age groups, evidence based on the scientific evidence of the efficacy of the pharmacological treatment of EDAs remains modest. The currently available international guidelines related to the pharmacological treatment of EDs are currently few and not always adequately informative, as they are affected by the lack of studies on the subject. As a further consequence of this it is not surprising that, with the sole exception of fluoxetine for the treatment of Bulimia Nervosa (BN) symptoms, no psychopharmaceutical has been authorized by national and international regulators for the treatment of ED.
This narrative review focuses on the advantages and limitations of drugs used in the treatment of ED.
Collapse
|
29
|
Stress during Lactation Induces Insulin Resistance Associated with an Increase in Type 1 Cannabinoid Receptors in Liver and Adipose Tissue. J Nutr Metab 2019; 2019:2806519. [PMID: 30800481 PMCID: PMC6360041 DOI: 10.1155/2019/2806519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
Several reports have shown that stress during lactation causes long-term metabolic and hormonal disruptions. In this study, we designed experiments to evaluate the effects of stress during lactation on the abundance of Type 1 cannabinoid/endocannabinoid receptors (CB1R) in epididymal fat and liver and development of insulin resistance in adult mice. During the whole lactation, male mice pups were daily subcutaneously injected (days 1–21) with a saline solution to produce a soft nociceptive stress (NS). Mice body weight and food intake were periodically evaluated. Adult animals were subsequently subjected to an insulin tolerance test and some days later sacrificed to evaluate the amount of epididymal fat and abundance of CB1R and adipophilin in liver and epididymal adipose tissue. Lipoprotein lipase (LPL) activity and circulating levels of leptin, adiponectin, and corticosterone were also evaluated. In this model, NS during lactation significantly increased the amount of epididymal fat and induced insulin resistance in adult mice. In addition, a significantly increased abundance of CB1R and adipophilin in epididymal fat and liver was observed, together with elevated circulating levels of leptin and corticosterone. Adult NS animals also had low plasmatic adiponectin and, although nonsignificant, had a sustained trend to a greater LPL activity associated with epididymal fat. These results indicate that increased abundance of CB1R in liver and epididymal fat alters tissue functionality likely associated with development of systemic metabolic alterations such as insulin resistance in adult mice. All these pathophysiological facts are long-term consequences of nociceptive stress during lactation.
Collapse
|
30
|
Heindel JJ. History of the Obesogen Field: Looking Back to Look Forward. Front Endocrinol (Lausanne) 2019; 10:14. [PMID: 30761083 PMCID: PMC6362096 DOI: 10.3389/fendo.2019.00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Obesogen field developed from two separate scientific research areas, endocrine disruptors and the Developmental Origins of Health and Disease (DOHaD). Endocrine Disrupting Chemicals (EDCs) are exogenous chemicals or mixtures of chemicals that interfere with the action of hormones. Exposure to EDCs during early development (DOHaD) has been shown to increase susceptibility to a variety of diseases including infertility, asthma, breast and prostate cancer, early puberty, susceptibility to infections, heart disease, autoimmune disease, and attention deficit hyperactivity disorder/learning disability. The effects of EDCs on obesity and fat cell development first gained attention around the turn of the twenty-first century. In 2002 Dr. Paula Baillie-Hamilton wrote the first review article focusing on environmental chemicals and obesity. She suggested that the obesity epidemic correlated with the increased production of chemicals after World War II. Baillie-Hamilton identified studies showing that exposures to a variety of chemicals led to weight gain. Shortly after that a commentary on an article showing that nonylphenol would increase fat cell differentiation in vitro noted the Baillie-Hamilton article and made the point that perhaps obesity was due in part to exposure to EDCs. In 2006 the field of DOHaD/EDCs and obesity made a giant leap forward when Dr. Bruce Blumberg published a paper showing that tributyltin could lead to weight gain in mice and coined the term obesogen for a chemical that caused weight gain and lead to obesity. In 2011, the NIEHS developed the first funding initiative focused on obesogens. In the following years there have been several workshops focused on obesogens. This paper describes these early days that lead to the obesogen hypotheses and the growth of the field for a decade, leading to its prominence today, and provides some insight into where the field is moving.
Collapse
|
31
|
Mravec B, Horvathova L, Cernackova A. Hypothalamic Inflammation at a Crossroad of Somatic Diseases. Cell Mol Neurobiol 2019; 39:11-29. [PMID: 30377908 PMCID: PMC11469881 DOI: 10.1007/s10571-018-0631-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Various hypothalamic nuclei function as central parts of regulators that maintain homeostasis of the organism. Recently, findings have shown that inflammation in the hypothalamus may significantly affect activity of these homeostats and consequently participate in the development of various somatic diseases such as obesity, diabetes, hypertension, and cachexia. In addition, hypothalamic inflammation may also affect aging and lifespan. Identification of the causes and mechanisms involved in the development of hypothalamic inflammation creates not only a basis for better understanding of the etiopathogenesis of somatic diseases, but for the development of new therapeutic approaches for their treatment, as well.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia.
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Cernackova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
32
|
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018; 9:672. [PMID: 30532733 PMCID: PMC6266510 DOI: 10.3389/fendo.2018.00672] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its "incretin effect" in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease.
Collapse
Affiliation(s)
| | | | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
33
|
Lizarbe B, Cherix A, Duarte JMN, Cardinaux JR, Gruetter R. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int J Obes (Lond) 2018; 43:1295-1304. [PMID: 30301962 DOI: 10.1038/s41366-018-0224-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES High-fat diet consumption is known to trigger an inflammatory response in the hypothalamus, which has been characterized by an initial expression of pro-inflammatory genes followed by hypothalamic astrocytosis, microgliosis, and the appearance of neuronal injury markers. The specific effects of high-fat diet on hypothalamic energy metabolism and neurotransmission are however not yet known and have not been investigated before. SUBJECTS/METHODS We used 1H and 13C magnetic resonance spectroscopy (MRS) and immunofluorescence techniques to evaluate in vivo the consequences of high-saturated fat diet administration to mice, and explored the effects on hypothalamic metabolism in three mouse cohorts at different time points for up to 4 months. RESULTS We found that high-fat diet increases significantly the hypothalamic levels of glucose (P < 0.001), osmolytes (P < 0.001), and neurotransmitters (P < 0.05) from 2 months of diet, and alters the rates of metabolic (P < 0.05) and neurotransmission fluxes (P < 0.001), and the contribution of non-glycolytic substrates to hypothalamic metabolism (P < 0.05) after 10 weeks of high-fat feeding. CONCLUSIONS/INTERPRETATION We report changes that reveal a high-fat diet-induced alteration of hypothalamic metabolism and neurotransmission that is quantifiable by 1H and 13C MRS in vivo, and present the first evidence of the extension of the inflammation pathology to a localized metabolic imbalance.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Antoine Cherix
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João M N Duarte
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience (CNP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Jin S, Diano S. Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism. Endocrinology 2018; 159:3596-3604. [PMID: 30203064 PMCID: PMC6157417 DOI: 10.1210/en.2018-00667] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 01/22/2023]
Abstract
Mitochondria are cellular organelles that play an important role in bioenergetic processes. In the central nervous system, high energy-demanding neurons are critically dependent on mitochondria to fulfill their appropriate functions. The hypothalamus is a key brain area for maintaining glucose and energy homeostasis via the ability of hypothalamic neurons to sense, integrate, and respond to numerous metabolic signals. Mitochondrial function has emerged as an important component in the regulation of hypothalamic neurons controlling glucose and energy homeostasis. Although the underlying mechanisms are not fully understood, emerging evidence indicates that mitochondrial dysfunction in hypothalamic neurons may contribute to the development of various metabolic diseases, including obesity and type 2 diabetes mellitus (T2DM). In this review, we summarize recent studies demonstrating the link between mitochondria and hypothalamic neural control of glucose and energy homeostasis. Finally, this review provides an insight to understand how mitochondria in hypothalamic neurons may contribute to the development of metabolic disorders, such as T2DM and obesity.
Collapse
Affiliation(s)
- Sungho Jin
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| |
Collapse
|
35
|
Kobayashi M, Shimizu-Okabe C, Kim J, Kobayashi S, Matsushita M, Masuzaki H, Takayama C. Embryonic development of GABAergic terminals in the mouse hypothalamic nuclei involved in feeding behavior. Neurosci Res 2018; 134:39-48. [PMID: 29174921 DOI: 10.1016/j.neures.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022]
Abstract
The inhibitory neurotransmitter gamma-amino butyric acid (GABA) plays important roles in energy balance and feeding behavior in the hypothalamus. To reveal the time course of GABAergic network formation, we examined the immunohistochemical localization of glutamic acid decarboxylase (GAD), a GABAergic neuron marker, vesicular GABA transporter (VGAT), a marker of inhibitory terminals, and K+-Cl--cotransporter2 (KCC2), which shifts GABA action from excitation to inhibition, in the developing mouse hypothalamus. GABAergic terminals, seen as GAD- and VGAT-positive dots, increased in density during embryonic development. Moreover, the onset of KCC2 localization was almost concomitant with GABAergic terminal formation, and KCC2-positive profiles increased in density during development. This suggested that after the formation of GABAergic terminals, GABAergic action may change to inhibition in the hypothalamus. This maturation appears to proceed as follows: the lateral hypothalamus (LH) matures first, followed by the paraventricular nucleus (PVN) by the time of birth, while the ventromedial hypothalamus (VMH) and the arcuate nucleus (Arc) are not fully mature at the time of birth. Our findings suggest that GABAergic networks in the "feeding center" (LH) and the "exit" (PVN) may mature before birth, while those in the "satiety center" (VMH) and "higher control center" (Arc) may mature after birth.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan.
| |
Collapse
|
36
|
Tse EK, Salehi A, Clemenzi MN, Belsham DD. Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms. Am J Physiol Endocrinol Metab 2018; 315:E133-E140. [PMID: 29631363 DOI: 10.1152/ajpendo.00433.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The brain, specifically the hypothalamus, controls whole body energy and glucose homeostasis through neurons that synthesize specific neuropeptides, whereas hypothalamic dysfunction is linked directly to insulin resistance, obesity, and type 2 diabetes mellitus. Nutrient excess, through overconsumption of a Western or high-fat diet, exposes the hypothalamus to high levels of free fatty acids, which induces neuroinflammation, endoplasmic reticulum stress, and dysregulation of neuropeptide synthesis. Furthermore, exposure to a high-fat diet also disrupts normal circadian rhythms, and conversely, clock gene knockout models have symptoms of metabolic disorders. While whole brain/animal studies have provided phenotypic end points and important clues to the genes involved, there are still major gaps in our understanding of the intracellular pathways and neuron-specific components that ultimately control circadian rhythms and energy homeostasis. Because of its complexity and heterogeneous nature, containing a diverse mix cell types, it is difficult to dissect the critical hypothalamic components involved in these processes. Of significance, we have the capacity to study these individual components using an extensive collection of both embryonic- and adult-derived, immortalized hypothalamic neuronal cell lines from rodents. These defined neuronal cell lines have been used to examine the impact of nutrient excess, such as palmitate, on circadian rhythms and neuroendocrine signaling pathways, as well as changes in vital neuropeptides, leading to the development of neuronal inflammation; the role of proinflammatory molecules in this process; and ultimately, restoration of normal signaling, clock gene expression, and neuropeptide synthesis in disrupted states by beneficial anti-inflammatory compounds in defined hypothalamic neurons.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Ashkan Salehi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Matthew N Clemenzi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department Obstetrics and Gynaecology and Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
37
|
Perron IJ, Keenan BT, Chellappa K, Lahens NF, Yohn NL, Shockley KR, Pack AI, Veasey SC. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight. PLoS One 2018; 13:e0196743. [PMID: 29746501 PMCID: PMC5945034 DOI: 10.1371/journal.pone.0196743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.
Collapse
Affiliation(s)
- Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicole L. Yohn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sigrid C. Veasey
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
Flores-Bastías O, Karahanian E. Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: A novel hypothesis and new therapeutic avenues. Neuropharmacology 2018; 128:401-407. [DOI: 10.1016/j.neuropharm.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023]
|
39
|
Pinos H, Carrillo B, Díaz F, Chowen JA, Collado P. Differential vulnerability to adverse nutritional conditions in male and female rats: Modulatory role of estradiol during development. Front Neuroendocrinol 2018; 48:13-22. [PMID: 28754628 DOI: 10.1016/j.yfrne.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Abstract
Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized.
Collapse
Affiliation(s)
- Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain.
| |
Collapse
|
40
|
Evans MC, Anderson GM. Dopamine Neuron-Restricted Leptin Receptor Signaling Reduces Some Aspects of Food Reward but Exacerbates the Obesity of Leptin Receptor-Deficient Male Mice. Endocrinology 2017; 158:4246-4256. [PMID: 28938472 DOI: 10.1210/en.2017-00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/15/2017] [Indexed: 01/29/2023]
Abstract
The contribution of leptin-induced modulation of dopamine neurons to feeding behavior and energy homeostasis remains unclear. Midbrain dopamine neurons regulate the reward value of food, and direct leptin administration to the midbrain reduces food intake. However, selective deletion of leptin receptors (Leprs) from dopamine neurons has no effect on body weight, food intake, or hedonic responses, suggesting that leptin acts indirectly or demonstrating that sufficient compensation occurs to mask any direct leptin-dopamine effects. To further explore the role of direct Lepr-dopamine neuron signaling in the control of feeding behavior and energy homeostasis, we generated mice in which Leprs were expressed exclusively in dopamine transporter (DAT)-expressing neurons (LeprDAT). We then assessed weekly body weight, daily food intake, hyperphagic feeding, and leptin-induced suppression of feeding in the LeprDAT mice compared with their Lepr-deficient (LeprNULL) and wild-type control (LeprCON) littermates. We also used metabolic cages to characterize running wheel activity, home-cage activity, and total energy expenditure. As expected, LeprNULL mice exhibited increased body weight and food intake compared with LeprCON mice. LeprDAT male mice exhibited acute leptin-induced suppression of food intake and reduced hedonic feeding but also exhibited significantly increased postweaning body weight gain compared with the LeprNULL mice. This was associated with significantly reduced home-cage activity counts, although no differences in food intake were observed between the LeprDAT and LeprNULL mice. These data demonstrate that restoring Lepr signaling exclusively in dopamine neurons reduces some aspects of food reward and activity but does not ameliorate the obesity phenotype of Lepr-deficient mice.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, New Zealand
| |
Collapse
|
41
|
Suyama S, Lei W, Kubota N, Kadowaki T, Yada T. Adiponectin at physiological level glucose-independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus. Neuropeptides 2017; 65:1-9. [PMID: 28606559 DOI: 10.1016/j.npep.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Adiponectin regulates glucose and lipid metabolism, acting against atherosclerosis and metabolic syndrome. Accumulating evidences suggest that adiponectin acts on the brain including the arcuate nucleus of hypothalamus (ARC). The ARC contains orexigenic neuropeptide Y (NPY)/agouti related peptide (AgRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons, the first order neurons for feeding regulation. We recently reported that intracerebroventricular injection of adiponectin at low glucose level suppressed food intake, while at elevated glucose level it promoted food intake, exhibiting glucose-dependent reciprocal effects. As an underlying neuronal mechanism, physiological level of adiponectin at low glucose activated ARC POMC neurons and at high glucose inactivated them. Now, whether physiological level of adiponectin also affects NPY/AgRP neurons is essential for fully understanding the adiponectin action, but it remains to be clarified. We here report that a physiological dose of adiponectin, in both high and low glucose conditions, attenuated action potential firing without altering resting membrane potential in ARC NPY neurons. This adiponectin effect was abolished by GABAA receptor blockade. Adiponectin enhanced amplitude but not frequency of inhibitory postsynaptic current (IPSC) onto NPY neurons. These results demonstrate that adiponectin enhances IPSC onto NPY neurons to attenuate action potential firing in NPY neurons in a glucose-independent manner, being contrasted to its glucose-dependent effect on POMC neurons.
Collapse
Affiliation(s)
- Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - Wang Lei
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan.
| |
Collapse
|
42
|
Yi J, Yuan J, Gilbert ER, Siegel PB, Cline MA. Differential expression of appetite-regulating genes in avian models of anorexia and obesity. J Neuroendocrinol 2017; 29. [PMID: 28727208 DOI: 10.1111/jne.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Yuan
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
43
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
44
|
Li W, Wu X, Qu R, Wang W, Chen X, Cheng L, Liu Y, Guo L, Zhao Y, Liu C. Ghrelin protects against nucleus pulposus degeneration through inhibition of NF-κB signaling pathway and activation of Akt signaling pathway. Oncotarget 2017; 8:91887-91901. [PMID: 29190883 PMCID: PMC5696149 DOI: 10.18632/oncotarget.19695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of the present study was to examine the potential role of ghrelin in degeneration of nucleus pulposus (NP). Lower expression levels of ghrelin were found in human NP cells stimulated with interleukin-1β (IL-1β). Moreover, exogenous ghrelin suppressed IL-1β induced degeneration and inflammation associated biomarkers in human NP cells, including matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5, tumor necrosis factor-α and iNOS, which was possibly mediated by antagonization of NF-κB signaling. Moreover, ghrelin enhanced production of critical extracellular matrix of NP cells, including collagen 2, aggrecan, and Sox-9 in NP cells. Ghrelin also promoted NP tissue regeneration in a rabbit IVD degeneration model, which seems to be associated with growth hormone secretagogue receptor. Additionally, the protective role of ghrelin in anabolism potentially relies on activation of Akt signaling pathway. Taken together, ghrelin may represent a molecular target for prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xihai Wu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Ruize Qu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaomin Chen
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoge Liu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Linlin Guo
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery and Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
45
|
Carrillo B, Collado P, Díaz F, Chowen JA, Pérez-Izquierdo MÁ, Pinos H. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development. Nutr Neurosci 2017; 22:29-39. [PMID: 28696162 DOI: 10.1080/1028415x.2017.1349574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. OBJECTIVE Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. METHODS Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. RESULTS Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. DISCUSSION HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.
Collapse
Affiliation(s)
- Beatriz Carrillo
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Paloma Collado
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Francisca Díaz
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III , Avda. Menéndez Pelayo, N° 65, 28009 , Madrid
| | - Julie A Chowen
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III , Avda. Menéndez Pelayo, N° 65, 28009 , Madrid
| | - Mª Ángeles Pérez-Izquierdo
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Helena Pinos
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| |
Collapse
|
46
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 715] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
47
|
The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct Funct 2017; 222:2507-2525. [DOI: 10.1007/s00429-016-1353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/16/2016] [Indexed: 01/27/2023]
|
48
|
Tran DQ, Tse EK, Kim MH, Belsham DD. Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Mol Cell Endocrinol 2016; 438:18-26. [PMID: 27208620 DOI: 10.1016/j.mce.2016.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
Diet-induced obesity can lead to detrimental chronic disorders. The severity of this global epidemic has encouraged ongoing research to characterize the mechanisms underlying obesity and its comorbidities. Recent evidence suggests that saturated fatty acids (SFA) in high-fat diets rapidly generate inflammation in the arcuate nucleus of the hypothalamus (ARC), which centrally regulates whole-body energy homeostasis. Herein, we will review the roles of hypothalamic neurons and resident microglia in the initiation of SFA-induced hypothalamic inflammation. Particularly, we focus on neuronal and microglial free fatty acid-sensing and capacity to produce inflammatory signaling. We also outline a potential role of peripherally-derived monocytes in this inflammation. And finally, we explore synaptic plasticity as a mechanism through which hypothalamic inflammation can modulate ARC circuitry, and thus disrupt energy homeostasis.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mun Heui Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Sánchez-Hernández D, Anderson GH, Poon AN, Pannia E, Cho CE, Huot PS, Kubant R. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res 2016; 36:1045-1054. [DOI: 10.1016/j.nutres.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
50
|
Maruska KP, Butler JM, Field KE, Porter DT. Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2016; 525:610-638. [PMID: 27507772 DOI: 10.1002/cne.24092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 01/17/2023]
Abstract
Neural communication depends on release and reception of different neurotransmitters within complex circuits that ultimately mediate basic biological functions. We mapped the distribution of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish Astatotilapia burtoni using in situ hybridization to label vesicular glutamate transporters (vglut1, vglut2.1, vglut3), glutamate decarboxylases (gad1, gad2), and choline acetyltransferase (chat). Cells expressing the glutamatergic markers vgluts 1-3 show primarily nonoverlapping distribution patterns, with the most widespread expression observed for vglut2.1, and more restricted expression of vglut1 and vglut3. vglut1 is prominent in granular layers of the cerebellum, habenula, preglomerular nuclei, and several other diencephalic, mesencephalic, and rhombencephalic regions. vglut2.1 is widely expressed in many nuclei from the olfactory bulbs to the hindbrain, while vglut3 is restricted to the hypothalamus and hindbrain. GABAergic cells show largely overlapping gad1 and gad2 expression in most brain regions. GABAergic expression dominates nuclei of the subpallial ventral telencephalon, while glutamatergic expression dominates nuclei of the pallial dorsal telencephalon. chat-expressing cells are prominent in motor cranial nerve nuclei, and some scattered cells lie in the preoptic area and ventral part of the ventral telencephalon. A localization summary of these markers within regions of the conserved social decision-making network reveals a predominance of either GABAergic or glutamatergic cells within individual nuclei. The neurotransmitter distributions described here in the brain of a single fish species provide an important resource for identification of brain nuclei in other fishes, as well as future comparative studies on circuit organization and function. J. Comp. Neurol. 525:610-638, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen E Field
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|