1
|
Qu P, Yuan J, Wu Y, Tian S, Wu Z, Chen P, Pan M, Weng H, Mai K, Zhang W. Yellow mealworm (Tenebrio molitor) meal replacing dietary fishmeal alters the intestinal microbiota, anti-oxidation and immunity of large yellow croaker (Larimichthyscrocea). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110272. [PMID: 40081435 DOI: 10.1016/j.fsi.2025.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The present study investigated the impact of dietary fishmeal replacement with yellow mealworm (Tenebrio molitor) meal (TM) on the anti-oxidation, immunity and intestinal microbiota of large yellow croaker (Larimichthys crocea), with an initial body weight of 189.18 ± 0.13 g. Seven isonitrogenous and isolipidic diets were made using TM replacing the fishmeal at 0 % (TM0), 15 % (TM15), 30 % (TM30), 45 % (TM45), 60 % (TM60), 75 % (TM75) and 100 % (TM100), respectively. Each experimental diet was randomly assigned to three replicate groups of large yellow croaker (100 fish per group). After an 80-day feeding trial, it was showed that the activities of maltase, lysozyme and acid phosphatase in intestine, as well as serum albumin concentration and total anti-oxidative capacity in serum of fish fed diets with TM replacing fishmeal more than 60 % (P < 0.05). The intestinal muscularis thickness and perimeter-to-diameter ratio decreased significantly in TM75 and TM100 groups compared to the control (P < 0.05). At the transcriptional level, the mRNA expression of occludin, zonula occludens-1 (zo-1), oligopeptide transporter 1 (pept1), and oligopeptide transporter 2 (pept2) in the intestine, along with nuclear factor erythroid 2-related factor 2 (nrf2) and interleukin-10 (il-10) in both the intestine and liver, were linearly downregulated as the fishmeal replacement level increased (P < 0.05). While the relative expression levels of kelch-like ECH-associated protein 1 (keap-1), nuclear factor-κB (nf-κb) and tumor necrosis factor-α (tnf-α) in the intestine and liver were linearly upregulated with increasing dietary fishmeal replacement levels (P < 0.05). Besides, increasing dietary fishmeal replacement levels maintained intestinal microbiota alpha diversity (P > 0.05), while altering the intestinal microbial composition (P < 0.05). In conclusion, replacing 45 % of fishmeal with TM (equivalent to 25.57 % TM in diet) had no significant negative effects on the intestinal microflora, anti-oxidation and immunity of large yellow croaker.
Collapse
Affiliation(s)
- Peng Qu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Yuan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yang Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Shuangjie Tian
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Huasong Weng
- Ningde Fufa Fisheries Co. Ltd, Ningde, 352100, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Li Q, Lai X, Duan Y, Jiang F, Li Y, Huang Z, Liu S, Wang Y, Jiang C, Zhang C, Pan X. 3D nanofiber sponge based on natural insect quaternized chitosan/pullulan/citric acid for accelerating wound healing. Carbohydr Polym 2025; 348:122827. [PMID: 39562102 DOI: 10.1016/j.carbpol.2024.122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Extensive traumatic injuries and difficult-to-heal wounds, induced by many circumstances, impose a significant social and economic burden on an annual basis. Thus, innovative wound dressings that encourage wound healing are greatly needed. In this work, we prepared a novel insect chitosan (MCS) using waste pupal shells from housefly (Musca domestica L.) culture. After conducting comparative investigations with commercially available chitosan, it was shown that MCS exhibited comparable qualities and may be used as a substitute source of commercial chitosan. A quaternized chitosan/pullulan/citric acid three-dimensional nanofiber sponge (3D-NS) of natural origin was prepared by electrostatic spinning and gas foaming techniques after MCS was quaternized. In vitro, tests showed that the 3D-NS had a higher liquid absorption capacity than the two-dimensional nanofibrous membrane (2D-NM). Additionally, the 3D-NS showed improved hemostatic, pro-cell proliferation, antibacterial, and anti-inflammatory qualities. In vitro, tests demonstrated that 3D-NS could inhibit the release of inflammatory factors, promote angiogenesis, accelerate collagen deposition, and promote wound contraction. These effects considerably facilitated the healing process of wounds in rats with full-thickness skin damage. In conclusion, the great bioactivity and physicochemical properties of 3D-NS render it an optimal candidate for developing novel wound dressings.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaomin Lai
- Department of Plastic and Cosmetic Dermatology, Deyang People's Hospital, Deyang 618000, China
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingxi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Jiang
- Department of Plastic and Cosmetic Dermatology, Deyang People's Hospital, Deyang 618000, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Chen Y, Ma J, Yong YS, Chen Y, Chen B, Cao J, Peng K, Wang G, Huang H, Loh JY. Impacts of Black Soldier Fly ( Hermetia illucens) Larval Meal on Intestinal Histopathology and Microbiome Responses in Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂): A Comprehensive Analysis. Animals (Basel) 2024; 14:3596. [PMID: 39765499 PMCID: PMC11672651 DOI: 10.3390/ani14243596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This study examined the diversity and responses of intestinal microbiota in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) fed diets with varying levels of fishmeal replaced by black soldier fly larvae (BSFL). The 10% BSFL substitution (BSFL10) group showed the highest levels of trypsin and amylase. Substituting fishmeal with 30% and 50% BSFL weakened the intestinal wall, resulting in vacuoles, sparse striatal boundaries, and fewer villi. Microbiota diversity, measured through Shannon's index, was higher in the BSFL10 and BSFL50 groups than in the control. 16S rRNA amplicon data revealed the dominance of Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetota, and Verrucomicrobia phyla. The BSFL-replacement groups showed an increase in Proteobacteria, Bacteroidetes, and Spirochaetota compared to the control, but fewer Firmicutes. PICRUSt analysis indicated significant alterations in microbial function, particularly enhanced protein, carbohydrate, lipid, and energy metabolisms in the BSFL-fed group. Substituting 10% fishmeal with BSFL enhanced nutrient metabolism and gut microbiota in juvenile hybrid grouper. Further research is needed to explore factors affecting the efficacy of insect feed as a sustainable aquaculture diet.
Collapse
Affiliation(s)
- Yan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Yoong-Soon Yong
- R&D Quality Department, Osmosis Nutrition Sdn Bhd, Bandar Nilai Utama, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Yonggan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Bing Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Junming Cao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kai Peng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Guaxia Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Jiun-Yan Loh
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore
| |
Collapse
|
4
|
Hamed AA, Ali EA, Abdelhamid IA, Saad GR, Elsabee MZ. Synthesis of novel chitosan-Schiff bases nanoparticles for high efficiency Helicobacter pylori inhibition. Int J Biol Macromol 2024; 274:133499. [PMID: 38944085 DOI: 10.1016/j.ijbiomac.2024.133499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Two chitosan Schiff bases were synthesized by condensation of chitosan with 2-(4-formylphenoxy)-N-phenylacetamide and N-(4-bromophenyl)-2-(4-formylphenoxy) acetamide denoted as Cs-SBA and Cs-SBBr, respectively. The molecular structures of the resulting chitosan derivatives were characterized using FTIR and 1HNMR and their thermal properties were investigated by TGA. These derivatives were treated with sodium tripolyphosphate (TPP) to produce Cs Schiff base nanoparticles. The nanoparticles physicochemical properties were determined by FTIR, XRD, TEM, and zeta potential analysis. The antimicrobial action against Helicobacter pylori (H. pylori) was evaluated and the results indicated that the anti-H. pylori activity had minimal inhibitory concentration MIC values of 15.62 ± 0.05 and 3.9 ± 0.03 μg/mL for Cs-SBA and Cs-SBBr nanoparticles (Cs-SBA NPs and Cs-SBBr NPs), respectively. The better biologically active nanoparticles, Cs-SBBr NPs, were tested for their cyclooxygenases (COX-1 and COX-2) inhibitory potential. Cs-SBBr NPs demonstrated COX enzyme inhibition activity against COX-2 (IC50 4.5 ± 0.165 μg/mL) higher than the conventional Indomethacin (IC50 0.08 ± 0.003 μg/mL), and Celecoxib (IC50 0.79 ± 0.029 μg/mL). Additionally, the cytotoxicity test of Cs-SBBr NPs showed cytotoxic effect on Vero cells (CCL-81) with IC50 = 17.95 ± 0.12 μg/mL which is regarded as a safe compound. Therefore, Cs-SBBr NPs may become an alternative to cure H. pylori and prevent gastric cancer.
Collapse
Affiliation(s)
- Amira A Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Gamal R Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Maher Z Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
5
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
6
|
Shroff S, Haapakoski M, Tapio K, Laajala M, Leppänen M, Plavec Z, Haapala A, Butcher SJ, Ihalainen JA, Toppari JJ, Marjomäki V. Antiviral action of a functionalized plastic surface against human coronaviruses. Microbiol Spectr 2024; 12:e0300823. [PMID: 38226803 PMCID: PMC10846231 DOI: 10.1128/spectrum.03008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage.
Collapse
Affiliation(s)
- Sailee Shroff
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marjo Haapakoski
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kosti Tapio
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mira Laajala
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Miika Leppänen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Zlatka Plavec
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antti Haapala
- Sustainable Technologies group, Department of Chemistry, University of Eastern Finland, Joensuu, Finland
- FSCN Research Centre, Mid Sweden University, Sundsvall, Sweden
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Janne A. Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - J. Jussi Toppari
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
Sánchez-Estrada MDLL, Aguirre-Becerra H, Feregrino-Pérez AA. Bioactive compounds and biological activity in edible insects: A review. Heliyon 2024; 10:e24045. [PMID: 38293460 PMCID: PMC10825307 DOI: 10.1016/j.heliyon.2024.e24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
New strategies to combat hunger are a current and urgent demand. The increase in population has generated a high demand for products and services that affect food production, cultivation areas, and climate. Viable and sustainable alternative sources have been sought to meet food quality requirements. In this context, edible insects are a good source of macro-nutrients, and bioactive compounds confer biological properties that improve their nutritional aspects and benefit human health. This review aims to present the benefits and contributions of edible insects from the point of view of the biological contribution of macronutrients, and bioactive compounds, as well as consider some anti-nutritional aspects reported in edible insects. It was found that insects possess most of the macronutrients necessary for human life and are rich in bioactive compounds commonly found in plants. These bioactive compounds can vary significantly depending on the developmental stage, diet, and species of edible insects. However, they also contain phytochemicals in which anti-nutrients predominate, which can adversely affect humans with allergenic reactions or reduced nutrient viability when consumed in high amounts or for prolonged periods. Hydrocyanide, oxalates, soluble oxalate, and phytate are the most studied anti-nutrients. However, the doses at which they occur are far below the limits in foods. In addition, anti-nutrient levels decrease significantly in processing, such as oven-drying and defatting methods. However, there are few studies, so more trials are needed to avoid generalizing. Therefore, edible insects can be considered complete food.
Collapse
Affiliation(s)
- María de la Luz Sánchez-Estrada
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| |
Collapse
|
8
|
Rašeta M, Mišković J, Čapelja E, Zapora E, Petrović Fabijan A, Knežević P, Karaman M. Do Ganoderma Species Represent Novel Sources of Phenolic Based Antimicrobial Agents? Molecules 2023; 28:3264. [PMID: 37050027 PMCID: PMC10096548 DOI: 10.3390/molecules28073264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Ganoderma species have been recognized as potential antimicrobial (AM) agents and have been used in traditional Chinese medicine (TCM) for a long time. The aim of this study is to examine the AM potential of autochthonous Ganoderma species (G. applanatum, G. lucidum, G. pfeifferi and G. resinaceum) from Serbia. The extraction of fungal material was prepared in different solvents (ethanol-EtOH, water-H2O, chloroform-CHCl3). Antibacterial activity (ABA) was determined using disk-diffusion, agar-well diffusion, and micro-dilution method, while for antifungal properties disk-diffusion and pour plate method were applied. Antiviral activity was tested on model DNA virus LK3 and determined by plaque assay. Statistical PCA analysis was applied for detection of correlation effects of phenolics and AM activities, while LC-MS/MS was performed for phenolics quantification. G. resinaceum CHCl3 extract expressed the most potent ABA against P. aeruginosa (MIC = 6.25 mg/mL), probably due to presence of flavonoids and 2,5-dihydroxybenzoic acid. Among H2O extracts, the highest ABA was determined for G. pfeifferi against both E. coli and S. aureus (21 and 19 mm, respectively). EtOH extracts of G. pfeifferi and G. resinaceum were the most effective against A. niger (23.8 and 20.15 mm, respectively), with special impact of phenolic acids and flavonoid isorhamnetin, while C. albicans showed the lowest susceptibility. The most potent antiviral inhibitor was G. lucidum (70.73% growth inhibition) due to the high amount of phenolic acids. To the best of our knowledge, this is the first report of a methodical AM profile of G. pfeifferi and G. resinaceum from the Balkan region including PCA analysis.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Ewa Zapora
- Institute of Forest Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland
| | - Aleksandra Petrović Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Wang Q, Song Y, Kim M, Hahn SK, Jiang G. Effect of chitooligosaccharide on the inhibition of SARS-CoV-2 main protease. Biomater Res 2023; 27:13. [PMID: 36797775 PMCID: PMC9935244 DOI: 10.1186/s40824-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND The main protease (Mpro) is a crucial target for severe acute respiratory syndrome coronavirus (SARS-CoV-2). Chitooligosaccharide (CS) has broad-spectrum antiviral activity and can effectively inhibit the activity of SARS-CoV. Here, based on the high homology between SARS-CoV-2 and SARS-CoV, this study explores the effect and mechanism of CS with various molecular weights on the activity of SARS-CoV-2 Mpro. METHODS We used fluorescence resonance energy transfer (FRET), UV-Vis, synchronous fluorescence spectroscopy, circular dichroism (CD) spectroscopy and computational simulation to investigate the molecular interaction and the interaction mechanism between CS and SARS-CoV-2 Mpro. RESULTS Four kinds of CS with different molecular weights significantly inhibited the activity of Mpro by combining the hydrogen bonding and the salt bridge interaction to form a stable complex. Glu166 appeared to be the key amino acid. Among them, chitosan showed the highest inhibition effect on Mpro enzyme activity and the greatest impact on the spatial structure of protein. Chitosan would be one of the most potential anti-viral compounds. CONCLUSION This study provides the theoretical basis to develop targeted Mpro inhibitors for the screening and application of anti-novel coronavirus drugs.
Collapse
Affiliation(s)
- Qian Wang
- grid.440706.10000 0001 0175 8217Bioengineering College, Dalian University, 10 Xuefu Street, Jinzhou District, Dalian, 116600 Liaoning China
| | - Yuanyuan Song
- grid.440706.10000 0001 0175 8217Bioengineering College, Dalian University, 10 Xuefu Street, Jinzhou District, Dalian, 116600 Liaoning China
| | - Mungu Kim
- grid.49100.3c0000 0001 0742 4007Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784 Gyeongbuk Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Gyeongbuk, Korea.
| | - Ge Jiang
- Bioengineering College, Dalian University, 10 Xuefu Street, Jinzhou District, Dalian, 116600, Liaoning, China.
| |
Collapse
|
10
|
In Vitro Anti-HIV-1 Activity of Chitosan Oligomers N-Conjugated with Asparagine and Glutamine. BIOTECH 2023; 12:biotech12010018. [PMID: 36810445 PMCID: PMC9944945 DOI: 10.3390/biotech12010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Chitosan oligomers (COS) are polysaccharides obtained by the hydrolyzation of chitosan. They are water-soluble, biodegradable, and have a wide range of beneficial properties for human health. Studies have shown that COS and its derivatives possess antitumor, antibacterial, antifungal, and antiviral activities. The goal of the current study was to investigate the anti-human immunodeficiency virus-1 (HIV-1) potential of amino acid-conjugated COS compared to COS itself. The HIV-1 inhibitory effects of asparagine-conjugated (COS-N) and glutamine-conjugated (COS-Q) COS were evaluated by their ability to protect C8166 CD4+ human T cell lines from HIV-1 infection and infection-mediated death. The results show that the presence of COS-N and COS-Q was able to prevent cells from HIV-1-induced lysis. Additionally, p24 viral protein production was observed to be suppressed in COS conjugate-treated cells compared to COS-treated and untreated groups. However, the protective effect of COS conjugates diminished by delayed treatment indicated an early stage inhibitory effect. COS-N and COS-Q did not show any inhibitory effect on the activities of HIV-1 reverse transcriptase and protease enzyme. The results suggest that COS-N and COS-Q possess an HIV-1 entry inhibition activity compared to COS and further studies to develop different peptide and amino acid conjugates containing N and Q amino acids might yield more effective compounds to battle HIV-1 infection.
Collapse
|
11
|
Chen Y, Lu J, Feng K, Wan L, Ai H. Nutritional metabolism evaluation and image segmentation of the chicken muscle and internal organs for automatic evisceration. J Anim Physiol Anim Nutr (Berl) 2023; 107:228-237. [PMID: 35238075 DOI: 10.1111/jpn.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023]
Abstract
The chicken is rich in various proteins, fatty acids, polysaccharides, trace elements, and other human essential nutrients that contribute to its high nutritional value. In this study, the expression levels of nutrition-related genes (acetyl-CoA acyltransferase, ACAA) of native chicken breeds were investigated. The level of GgalACAA1-2 transcripts expression in the liver of chicken was significantly higher than that of muscle and heart. Moreover, three protein extracts were isolated from the muscle, heart, and liver tissues from the chicken, and their nutritional function was evaluated in the present study. These protein extracts had excellent DPPH and hydroxyl radical scavenging capacities and exhibited significant superoxide anion scavenging ability. Moreover, the protein extracts of muscle tissue showed an important mouse splenocyte proliferation activity and could be used as an immunomodulator of natural origin. In addition, this report presented an automatic visual inspection of chicken viscera using the active contour algorithms and the image processing method for eviscerating by the parallel robot. The recognition and positioning rate of chicken viscera obtained by the proposed method could reach 96.45%. These methods provided basic data for automated poultry slaughter and segmentation, avoiding unnecessary health risks by a pathogenic microorganism, such as avian influenza, Newcastle disease virus, and coronavirus. Moreover, the internal organs of the chicken could be fully harvested by the image segmentation of automatic evisceration, which also facilitated the processing value of these internal organs as by-products of poultry.
Collapse
Affiliation(s)
- Yan Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jianjian Lu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ke Feng
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lili Wan
- School of Electrical and electronic Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Ai
- School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
12
|
Zhou Y, Hu L, Chen Y, Liao L, Li R, Wang H, Mo Y, Lin L, Liu K. The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Ashbrook AR, Mikaelyan A, Schal C. Comparative Efficacy of a Fungal Entomopathogen with a Broad Host Range against Two Human-Associated Pests. INSECTS 2022; 13:774. [PMID: 36135475 PMCID: PMC9505452 DOI: 10.3390/insects13090774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 05/03/2023]
Abstract
The ability of a fungal entomopathogen to infect an insect depends on a variety of factors, including strain, host, and environmental conditions. Similarly, an insect’s ability to prevent fungal infection is dependent on its biology, environment, and evolutionary history. Synanthropic pests have adapted to thrive in the indoor environment, yet they arose from divergent evolutionary lineages and occupy different feeding guilds. The hematophagous bed bug (Cimex lectularius) and omnivorous German cockroach (Blattella germanica) are highly successful indoors, but have evolved different physiological and behavioral adaptations to cope with the human-built environment, some of which also reduce the efficacy of fungal biopesticides. In order to gain greater insight into the host barriers that prevent or constrain fungal infection in bed bugs and German cockroaches, we tested different doses of Beauveria bassiana GHA through surface contact, topical application, feeding, and injection. Bed bugs were generally more susceptible to infection by B. bassiana with the mode of delivery having a significant impact on infectivity. The German cockroach was highly resilient to infection, requiring high doses of fungal conidia (>8.8 × 104) delivered by injection into the hemocoel to cause mortality. Mortality occurred much faster in both insect species after exposure to surfaces dusted with dry conidia than surfaces treated with conidia suspended in water or oil. These findings highlight the importance of developing innovative delivery techniques to enhance fungal entomopathogens against bed bugs and cockroaches.
Collapse
|
14
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
15
|
LMWP (S3-3) from the Larvae of Musca domestica Alleviate D-IBS by Adjusting the Gut Microbiota. Molecules 2022; 27:molecules27144517. [PMID: 35889391 PMCID: PMC9324334 DOI: 10.3390/molecules27144517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Diarrhea-based Irritable Bowel Syndrome (D-IBS) and diarrhea are both associated with ecological imbalance of the gut microbiota. Low Molecular Weight Peptides (LMWP) from the larvae of Musca domestica have been shown to be effective in the treatment of diarrhea and regulation of gut microbiota. Meanwhile, the single polypeptide S3-3 was successfully isolated and identified from LMWP in our previous studies. It remains unclear exactly whether and how LMWP (S3-3) alleviate D-IBS through regulating gut microbiota. We evaluated the gut microbiota and pharmacology to determine the regulation of gut microbiota structure and the alleviating effect on D-IBS through LMWP (S3-3). The rates of loose stools, abdominal withdrawal reflex (AWR) and intestinal tract motility results revealed that LMWP (S3-3) from the larvae of Musca domestica had a regulating effect against diarrhea, visceral hypersensitivity and gastrointestinal (GI) dysfunction in D-IBS model mice. Additionally, 16S rRNA gene sequencing was utilized to examine the gut microbiota, which suggests that LMWP induce structural changes in the gut microbiota and alter the levels of the following gut microbiota: Bacteroidetes, Proteobacteria and Verrucomicrobia. LMWP putatively functioned through regulating 5-HT, SERT, 5-HT2AR, 5-HT3AR and 5-HT4R according to the results of ELISA, qRT-PCR and IHC. The findings of this study will contribute to further understanding how LMWP (S3-3) attenuate the effects of D-IBS on diarrhea, visceral hypersensitivity and GI dysfunction.
Collapse
|
16
|
Valenzuela-Ortiz G, Gaxiola-Camacho SM, San-Martín-Hernández C, Martínez-Téllez MÁ, Aispuro-Hernández E, Lizardi-Mendoza J, Quintana-Obregón EA. Chitosan Sensitivity of Fungi Isolated from Mango ( Mangifera indica L.) with Anthracnose. Molecules 2022; 27:1244. [PMID: 35209032 PMCID: PMC8876849 DOI: 10.3390/molecules27041244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
In Mexico, the mango crop is affected by anthracnose caused by Colletotrichum species. In the search for environmentally friendly fungicides, chitosan has shown antifungal activity. Therefore, fungal isolates were obtained from plant tissue with anthracnose symptoms from the state of Guerrero in Mexico and identified with the ITS and β-Tub2 genetic markers. Isolates of the Colletotrichum gloeosporioides complex were again identified with the markers ITS, Act, β-Tub2, GADPH, CHS-1, CaM, and ApMat. Commercial chitosan (Aldrich, lot # STBF3282V) was characterized, and its antifungal activity was evaluated on the radial growth of the fungal isolates. The isolated anthracnose-causing species were C. chrysophilum, C. fructicola, C. siamense, and C. musae. Other fungi found were Alternaria sp., Alternaria tenuissima, Fusarium sp., Pestalotiopsis sp., Curvularia lunata, Diaporthe pseudomangiferae, and Epicoccum nigrum. Chitosan showed 78% deacetylation degree and a molecular weight of 32 kDa. Most of the Colletotrichum species and the other identified fungi were susceptible to 1 g L-1 chitosan. However, two C. fructicola isolates were less susceptible to chitosan. Although chitosan has antifungal activity, the interactions between species of the Colletotrichum gloeosporioides complex and their effect on chitosan susceptibility should be studied based on genomic changes with molecular evidence.
Collapse
Affiliation(s)
- Griselda Valenzuela-Ortiz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Mexico; (G.V.-O.); (S.M.G.-C.)
| | - Soila Maribel Gaxiola-Camacho
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Mexico; (G.V.-O.); (S.M.G.-C.)
| | | | - Miguel Ángel Martínez-Téllez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo 83304, Mexico;
| | - Emmanuel Aispuro-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo 83304, Mexico;
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo 83304, Mexico;
| | - Eber Addí Quintana-Obregón
- Programa de Investigadoras e Investigadores por México del CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo 83304, Mexico
| |
Collapse
|
17
|
Bacterial Cellulose-A Remarkable Polymer as a Source for Biomaterials Tailoring. MATERIALS 2022; 15:ma15031054. [PMID: 35160997 PMCID: PMC8839122 DOI: 10.3390/ma15031054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Nowadays, the development of new eco-friendly and biocompatible materials using ‘green’ technologies represents a significant challenge for the biomedical and pharmaceutical fields to reduce the destructive actions of scientific research on the human body and the environment. Thus, bacterial cellulose (BC) has a central place among these novel tailored biomaterials. BC is a non-pathogenic bacteria-produced polysaccharide with a 3D nanofibrous structure, chemically identical to plant cellulose, but exhibiting greater purity and crystallinity. Bacterial cellulose possesses excellent physicochemical and mechanical properties, adequate capacity to absorb a large quantity of water, non-toxicity, chemical inertness, biocompatibility, biodegradability, proper capacity to form films and to stabilize emulsions, high porosity, and a large surface area. Due to its suitable characteristics, this ecological material can combine with multiple polymers and diverse bioactive agents to develop new materials and composites. Bacterial cellulose alone, and with its mixtures, exhibits numerous applications, including in the food and electronic industries and in the biotechnological and biomedical areas (such as in wound dressing, tissue engineering, dental implants, drug delivery systems, and cell culture). This review presents an overview of the main properties and uses of bacterial cellulose and the latest promising future applications, such as in biological diagnosis, biosensors, personalized regenerative medicine, and nerve and ocular tissue engineering.
Collapse
|
18
|
Mazzotta E, Muzzalupo R, Chiappetta A, Muzzalupo I. Control of the Verticillium Wilt on Tomato Plants by Means of Olive Leaf Extracts Loaded on Chitosan Nanoparticles. Microorganisms 2022; 10:microorganisms10010136. [PMID: 35056586 PMCID: PMC8781408 DOI: 10.3390/microorganisms10010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/23/2023] Open
Abstract
In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy;
| | - Rita Muzzalupo
- Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, 87036 Arcavacata di Rende, CS, Italy;
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria, Cubo 6B, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (A.C.); (I.M.)
| | - Innocenzo Muzzalupo
- Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy;
- Correspondence: (A.C.); (I.M.)
| |
Collapse
|
19
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
20
|
Pal K, Bharti D, Sarkar P, Anis A, Kim D, Chałas R, Maksymiuk P, Stachurski P, Jarzębski M. Selected Applications of Chitosan Composites. Int J Mol Sci 2021; 22:ijms222010968. [PMID: 34681625 PMCID: PMC8535947 DOI: 10.3390/ijms222010968] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
- Correspondence: (K.P.); (M.J.); Tel.: +91-824-924-7377 (K.P.); +48-535-255-775 (M.J.)
| | - Deepti Bharti
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang 25354, Gangwon-do, Korea;
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (R.C.); (P.M.)
| | - Paweł Maksymiuk
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (R.C.); (P.M.)
| | - Piotr Stachurski
- Chair and Department of Pediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznań, Poland
- Correspondence: (K.P.); (M.J.); Tel.: +91-824-924-7377 (K.P.); +48-535-255-775 (M.J.)
| |
Collapse
|
21
|
Pyrć K, Milewska A, Duran EB, Botwina P, Dabrowska A, Jedrysik M, Benedyk M, Lopes R, Arenas-Pinto A, Badr M, Mellor R, Kalber TL, Fernandez-Reyes D, Schätzlein AG, Uchegbu IF. SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Sci Rep 2021; 11:20012. [PMID: 34625610 PMCID: PMC8501059 DOI: 10.1038/s41598-021-99404-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of - 3 to - 4 at a concentration of 10-100 μg/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 μg/ mL (p < 0.05 compared to untreated controls). In vivo studies using transgenic mice expressing the ACE-2 receptor, dosed nasally with SARS-COV-2 (426,000 TCID50/mL) showed a trend for nasal GCPQ (20 mg/kg) to inhibit viral load in the respiratory tract and brain, although the study was not powered to detect statistical significance. GCPQ's electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 h after nasal dosing. With a no observed adverse effect level of 18 mg/kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.
Collapse
Affiliation(s)
- Krzysztof Pyrć
- Laboratory of Virology and ABSL3 Animal Facility at the Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Aleksandra Milewska
- Laboratory of Virology and ABSL3 Animal Facility at the Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Emilia Barreto Duran
- Laboratory of Virology and ABSL3 Animal Facility at the Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Paweł Botwina
- Laboratory of Virology and ABSL3 Animal Facility at the Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Agnieszka Dabrowska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Malwina Jedrysik
- Laboratory of Virology and ABSL3 Animal Facility at the Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Malgorzata Benedyk
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Rui Lopes
- Nanomerics Ltd., 6th Floor, 2 London Wall Place, London, EC2Y 5AU, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Alejandro Arenas-Pinto
- Centre for Clinical Research in Infection and Sexual Health, UCL Institute for Global Health, Mortimer Market Centre, off Capper Street, London, WC1E 6JB, UK
- MRC-Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, 90 High Holborn, London, WC1V 6LJ, UK
| | - Moutaz Badr
- Nanomerics Ltd., 6th Floor, 2 London Wall Place, London, EC2Y 5AU, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Ryan Mellor
- Nanomerics Ltd., 6th Floor, 2 London Wall Place, London, EC2Y 5AU, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, WC1E 6DD, UK
| | | | - Andreas G Schätzlein
- Nanomerics Ltd., 6th Floor, 2 London Wall Place, London, EC2Y 5AU, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- Nanomerics Ltd., 6th Floor, 2 London Wall Place, London, EC2Y 5AU, UK.
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
22
|
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int J Mol Sci 2021; 22:7449. [PMID: 34299068 PMCID: PMC8303267 DOI: 10.3390/ijms22147449] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023] Open
Abstract
The biomedical and therapeutic importance of chitosan and chitosan derivatives is the subject of interdisciplinary research. In this analysis, we intended to consolidate some of the recent discoveries regarding the potential of chitosan and its derivatives to be used for biomedical and other purposes. Why chitosan? Because chitosan is a natural biopolymer that can be obtained from one of the most abundant polysaccharides in nature, which is chitin. Compared to other biopolymers, chitosan presents some advantages, such as accessibility, biocompatibility, biodegradability, and no toxicity, expressing significant antibacterial potential. In addition, through chemical processes, a high number of chitosan derivatives can be obtained with many possibilities for use. The presence of several types of functional groups in the structure of the polymer and the fact that it has cationic properties are determinant for the increased reactive properties of chitosan. We analyzed the intrinsic properties of chitosan in relation to its source: the molecular mass, the degree of deacetylation, and polymerization. We also studied the most important extrinsic factors responsible for different properties of chitosan, such as the type of bacteria on which chitosan is active. In addition, some chitosan derivatives obtained by functionalization and some complexes formed by chitosan with various metallic ions were studied. The present research can be extended in order to analyze many other factors than those mentioned. Further in this paper were discussed the most important factors that influence the antibacterial effect of chitosan and its derivatives. The aim was to demonstrate that the bactericidal effect of chitosan depends on a number of very complex factors, their knowledge being essential to explain the role of each of them for the bactericidal activity of this biopolymer.
Collapse
Affiliation(s)
- Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300774 Timisoara, Romania;
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300774 Timisoara, Romania;
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Daniel Duda-Seiman
- University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Piața Eftimie Murgu, 300041 Timișoara, Romania
| | - Virgil Musta
- University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Piața Eftimie Murgu, 300041 Timișoara, Romania
| |
Collapse
|
23
|
Gao Y, Zhao YJ, Xu ML, Shi SS. Soybean hawkmoth ( Clanis bilineata tsingtauica) as food ingredients: a review. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1903082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, P.R. China
| | - Yi-Jin Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, P.R. China
| | - Meng-Lei Xu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, P.R. China
| | - Shu-Sen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, P.R. China
| |
Collapse
|
24
|
Pal P, Pal A, Nakashima K, Yadav BK. Applications of chitosan in environmental remediation: A review. CHEMOSPHERE 2021; 266:128934. [PMID: 33246700 DOI: 10.1016/j.chemosphere.2020.128934] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/18/2023]
Abstract
Environmental biotechnology is the use of biotechnology to develop and regulate biological systems for the remediation of environmental contamination. Nature has gifted ample material for remediation of its resources, among which chitosan is one of the most important and largely available biomaterial globally. Chitosan is a biopolymer obtained by deacetylation of chitin extracted from marine waste and its applications from drug delivery to food additives are broadly available. Chitosan exhibit several properties such as availability, low cost, high biocompatibility, and biodegradability. These properties make it biologically and chemically acceptable for use in various fields. Due to some limitations of pure chitosan, there has been a growing interest in modifying the chitosan in order to improve the original properties and widen the applications of pure phase chitosan. Various modified forms of chitosan and their associated applications are reviewed here with emphasis on their use in environmental remediation. The demand of chitosan in the global industrial market is growing which is briefly explained in this paper. Chitosan is used for water purification since a long time and still progress is going on for making it more efficient in the removal process. It can be used as a flocculent and coagulant, as an adsorbent for removing the contaminants like heavy metals, dyes, pesticides, antibiotics, biological contaminants from wastewater. Soil remediation using chitosan material is explained in this review. Various other applications such as drug delivery, food additives, tissue engineering are thoroughly reviewed.
Collapse
Affiliation(s)
- Preeti Pal
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, India.
| | - Anjali Pal
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Civil Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Kazunori Nakashima
- Division of Sustainable Resources Engineering Hokkaido University, Japan.
| | - Brijesh Kumar Yadav
- Hydrology Department, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| |
Collapse
|
25
|
Kang X, Wang Y, Liang W, Tang X, Zhang Y, Wang L, Zhao P, Lu Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103904. [PMID: 33245980 DOI: 10.1016/j.dci.2020.103904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Forkhead-box O (FoxO) is the primary transcriptional effector of the insulin-like signaling pathway that enhances gluconeogenesis through transcriptional activation of PEPCK and G6Pase in mammals. We have previously demonstrated the involvement of phosphoenolpyruvate carboxykinase (BmPEPCK-2) in antiviral immunity against the multiplication of Bombyx mori nuclearpolyhedrosisvirus (BmNPV) in silkworm. Therefore, we speculated that BmFoxO might suppress BmNPV by regulating the expression of PEPCK in silkworm. In the present study, we found that the expression of BmFoxO decreased after BmNPV infection in Bombyx mori; this finding was consistent with BmPEPCK-2 expression. In addition, the expression of BmFoxO was altered, and it was found that reduced expression of BmFoxO (dsBmFoxO) downregulated the expression of BmPEPCK-2 and increased the viral fluorescence and content in silkworm embryonic cell line BmE cells, and vice versa. BmFoxO could upregulate the expression of BmPEPCK-2 by binding to the BmPEPCK-2 promoter. Moreover, overexpression of BmFoxO significantly increased the expression of autophagy genes ATG6/7/8 after infection with BmNPV, consistent with BmPEPCK-2. These results indicate that BmNPV downregulates transcription factor BmFoxO to elevate virus infection, and BmFoxO overexpression upregulates BmPEPCK-2 expression and enhances silkworm antiviral resistance.
Collapse
Affiliation(s)
- Xiaoli Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
26
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Piegat A, Żywicka A, Niemczyk A, Goszczyńska A. Antibacterial Activity of N, O-Acylated Chitosan Derivative. Polymers (Basel) 2020; 13:polym13010107. [PMID: 33383839 PMCID: PMC7794783 DOI: 10.3390/polym13010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
The antibacterial activity of N,O-acylated chitosan derivative with linoleic acid (CH_LA) was tested by disc and well diffusion, agar impregnation and microdilution methods against Staphylococcus aureus, Escherichia coli and Helicobacter pylori strains. Hydrophobically modified chitosan (HMC) was expected to exhibit enhanced antibacterial activity and specific mucin interactions. Although diffusion tests have not indicated the antibacterial potential of chitosan (CH) or CH_LA, the results of the microdilution method demonstrated that tested polymers significantly reduced the amount of living bacteria cells in different concentrations depending on the microorganism. Additionally, CH_LA was characterized by enhanced antibacterial activity compared to CH, which may suggest a different mechanism of interaction with S. aureus and H. pylori. Furthermore, the UV-VIS analysis revealed that the amphiphilic character of derivative led to strong CH_LA–mucin interactions. The study proved the high potential of CH_LA in antibacterial applications, especially for the gastrointestinal tract.
Collapse
Affiliation(s)
- Agnieszka Piegat
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
- Correspondence:
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| | - Agata Niemczyk
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 19 Piastow Ave, 70-310 Szczecin, Poland;
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| |
Collapse
|
28
|
Abdallah Y, Liu M, Ogunyemi SO, Ahmed T, Fouad H, Abdelazez A, Yan C, Yang Y, Chen J, Li B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020; 25:E4795. [PMID: 33086640 PMCID: PMC7587532 DOI: 10.3390/molecules25204795] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
- Department of Plant pathology, Minia University, Elminya 61519, Egypt
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Hatem Fouad
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310027, China;
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12619, Egypt
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt;
| | - Chenqi Yan
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| |
Collapse
|
29
|
Aboshanab MHA, El-Nabarawi MA, Teaima MH, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Fabrication, characterization and biological evaluation of silymarin nanoparticles against carbon tetrachloride-induced oxidative stress and genotoxicity in rats. Int J Pharm 2020; 587:119639. [PMID: 32673772 DOI: 10.1016/j.ijpharm.2020.119639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to synthesize silymarin nanoparticles (SILNPs) using chitosan nanoparticles as a delivery system and to evaluate their protective effects against CCl4 in rats. Eight groups of male Sprague-Dawley rats were treated for three weeks included the control group, CCl4-treated group (100 mg/kg b.w twice a week); SIL-treated group (50 mg/lg b.w); the groups treated daily with low dose (LD) or high dose (HD) of SILNPs (25, 50 mg/kg b.w) and the groups treated with CCl4 plus SIL, SILNPs (LD) or SILNPs (HD). Blood and tissue samples were collected for different assays. The synthesized SILNPs showed a smooth rounded shape with average particle size of 100 ± 2.8 nm. SILNPs contain the same compounds found in raw SIL and the in vitro release of SILNPs continues till 24 h. The in vivo study revealed that SIL and SILNPs at the low or high dose induced a significant improvement in the hematological parameters, liver and kidney function, lipid profile, serum cytokines, gene expression DNA fragmentation and histology of liver and kidney tissue resulted from CCl4. It could be concluded that SILNPs can be applied in oral delivery formulations with a potential application value for liver disease therapy.
Collapse
Affiliation(s)
- Mohamed H A Aboshanab
- Pharmaceutics & Industrial Pharmacy Dept., Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Pharmaceutics & Industrial Pharmacy Dept., Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Pharmaceutics & Industrial Pharmacy Dept., Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
30
|
Ma H, Zhao X, Yang L, Su P, Fu P, Peng J, Yang N, Guo G. Antimicrobial Peptide AMP-17 Affects Candida albicans by Disrupting Its Cell Wall and Cell Membrane Integrity. Infect Drug Resist 2020; 13:2509-2520. [PMID: 32801789 PMCID: PMC7398874 DOI: 10.2147/idr.s250278] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/13/2020] [Indexed: 01/25/2023] Open
Abstract
Background Candida albicans is associated with high mortality among immunocompromised patients. Resistance to and toxic side effects of antifungal drugs require the development of alternative antifungal agents. AMP-17 is a novel antimicrobial peptide derived from Musca domestica that exerts excellent antifungal effects against the Candida species. In this article, we discuss the potential mechanism of AMP-17 against C. albicans from the perspective of affecting the latter's cell external structure. Methods Recombinant AMP-17 was prepared by prokaryotic expression system, and its anti-C. albicans activity was detected by microdilution method. Microscopy and scanning electron microscopy were used to examine morphological changes in C. albicans. Cell wall-specific staining method was used to detect the change of cell wall integrity of C. albicans after AMP-17 treatment. AMP-17-induced damage to the C. albicans cell membrane was analyzed by fluorescent probes and glycerol assay kit. The expression of genes related to fungal cell wall and cell-membrane synthesis was detected by qRT-PCR. Results Morphological observations showed that the growth of C. albicans was significantly inhibited in AMP-17-treated cells; the cells appeared aggregated and dissolved, with severe irregularities in shape. Furthermore, AMP-17 damaged the integrity of C. albicans cell walls. The cell wall integrity rate of AMP-17-treated cells was only 21.7% compared to untreated cells. Moreover, the change of membrane dynamics and permeability suggested that the cell membrane was disrupted by AMP-17 treatment. Genetic analysis showed that after AMP-17 treatment, the cell wall synthesis-related gene FKS2 of C. albicans was up-regulated 3.46-fold, while the cell membrane ergosterol synthesis-related genes ERG1, ERG5, ERG6, and MET6 were down-regulated 5.88-, 17.54-, 13.33-, and 7.14-fold, respectively. Conclusion AMP-17 treatment disrupted the cell wall integrity and membrane structure of C. albicans and is likely a novel therapeutic option for prevention and control of C. albicans infections.
Collapse
Affiliation(s)
- Huiling Ma
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China.,Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Xinyu Zhao
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Longbing Yang
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Peipei Su
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Ping Fu
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Jian Peng
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Na Yang
- School of Food Science, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Guo Guo
- Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, People's Republic of China.,School of Food Science, Guizhou Medical University, Guiyang 550025, People's Republic of China
| |
Collapse
|
31
|
Antibacterial activity of various chitosan forms against Xanthomonas axonopodis pv. glycines. Int J Biol Macromol 2020; 156:1600-1605. [DOI: 10.1016/j.ijbiomac.2019.11.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
|
32
|
Jarach N, Dodiuk H, Kenig S. Polymers in the Medical Antiviral Front-Line. Polymers (Basel) 2020; 12:E1727. [PMID: 32752109 PMCID: PMC7464166 DOI: 10.3390/polym12081727] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Antiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs. The other approach involves searching for polymers with antiviral properties to be used as prescription medications or viral spread prevention measures. This second approach took two distinct directions. The first, using polymers as antiviral drug-delivery systems, taking advantage of their biodegradable properties. The second, using polymers with antiviral properties for on-contact virus elimination, which will be the focus of this review. Anti-viral polymers are obtained by either the addition of small antiviral molecules (such as metal ions) to obtain ion-containing polymers with antiviral properties or the use of polymers composed of an organic backbone and electrically charged moieties like polyanions, such as carboxylate containing polymers, or polycations such as quaternary ammonium containing polymers. Other approaches include moieties hybridized by sulphates, carboxylic acids, or amines and/or combining repeating units with a similar chemical structure to common antiviral drugs. Furthermore, elevated temperatures appear to increase the anti-viral effect of ions and other functional moieties.
Collapse
Affiliation(s)
| | | | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Raman-Gan 52562, Israel; (N.J.); (H.D.)
| |
Collapse
|
33
|
Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. Int J Biol Macromol 2020; 153:492-501. [DOI: 10.1016/j.ijbiomac.2020.02.302] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
|
34
|
Housefly Pupae-Derived Antioxidant Peptides Exerting Neuroprotective Effects on Hydrogen Peroxide-Induced Oxidative Damage in PC12 Cells. Molecules 2019; 24:molecules24244486. [PMID: 31817866 PMCID: PMC6943417 DOI: 10.3390/molecules24244486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, two antioxidant peptides were identified and characterized from the alcalase-hydrolysate of housefly (Musca domestica L.) pupae guided by ABTS cation radical scavenging activity. Peptides sequences were identified as DFTPVCTTELGR (DR12, 1338.48 Da) and ARFEELCSDLFR (AR12, 1485.66 Da) using nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both DR12 and AR12 exert strong ABTS cation radical scavenging ability with EC50 values of 0.39 and 0.35 mM, respectively. Moreover, AR12 can effectively protect PC12 cells from oxidative damage induced by hydrogen peroxide (H2O2) by decreasing intracellular reactive oxygen species (ROS) and malonaldehyde (MDA), recovering cellular mitochondrial membrane potential (MMP), and increasing the activity of intracellular superoxide dismutase (SOD). Stability tests suggest that AR12 is competent for the challenge of heating, acid, alkali or simulated gastrointestinal (GI) digestion and exhibits great activity to remove ABTS cation radical. DR12 shows a great stability against heating, but its antioxidative ability declines after being treated with acid, alkali or simulated GI digestion. In general, both DR12 and AR12 identified from housefly pupae hydrolysate stand a chance of being potential antioxidants or precursors to antioxidants and AR12 might be applied in the field of neuroprotection.
Collapse
|
35
|
Józefiak A, Nogales-Mérida S, Rawski M, Kierończyk B, Mazurkiewicz J. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet Res 2019; 15:348. [PMID: 31623627 PMCID: PMC6798509 DOI: 10.1186/s12917-019-2070-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/30/2019] [Indexed: 01/30/2023] Open
Abstract
Background Insects in the fish diet are a natural source of protein, fat, and other nutrients. These meals are considered an ecological replacement for fishmeal to improve growth parameters. The application of insect meals to fish diets has been studied, especially in continental fish. Data regarding the effects of insect meals on the gut health of Siberian sturgeon are not available. This study investigated the effects of full-fat Hermetia illucens (HI) and Tenebrio molitor (TM) meals on the gut health of juvenile Siberian sturgeon. Growth performance, gastrointestinal tract (GIT) histomorphology and the microbiome composition of juvenile Siberian sturgeon were analyzed. Results The inclusion of insect meals did not affect the growth performance or the survival rate. In the gastrointestinal tract histomorphology, a reduction in the mucosa thickness with the HI treatment was observed. In contrast, fish fed the TM diet had an increase in the thickness of the muscular layer. There were no observed significant differences in villus height among treatments. The analysis of the selected microbiota populations in the Siberian sturgeon gastrointestinal tract showed that insect addition affected the composition of the microbiome. The greatest effect on bacterial populations (Clostridium leptum subgroup, Enterobacteriaceae, Clostridium coccoides – Eubacterium rectale cluster, Aeromonas spp., Bacillus spp., Carnobacterium spp., Enterococcus spp. and Lactobacillus group) was observed with the HI diet (P < 0.05). The TM-based diet increased counts in the following bacterial groups: Clostridium coccoides – Eubacterium rectale cluster, Bacillus spp., Carnobacterium spp., and Enterococcus spp. In contrast, the TM diet decreased the total number of bacteria. The TM diet did not significantly affect the Clostridium leptum subgroup, Enterobacteriaceae, Aeromonas spp. or the Lactobacillus group. Conclusions Fish meal replacement by the inclusion of 15% of full-fat Hermetia illucens and Tenebrio molitor (15%) meals did not affect the growth performance, survival rate or villus height of juvenile Siberian sturgeon. The present study suggests that an H. illucens-based diet positively affects the gut microbiota composition and intestinal morphology of juvenile Siberian sturgeon without negative changes in the villus height.
Collapse
Affiliation(s)
- Agata Józefiak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska, 35, 60-637, Poznań, Poland.
| | | | - Mateusz Rawski
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Bartosz Kierończyk
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Jan Mazurkiewicz
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| |
Collapse
|
36
|
Anti-diarrhea effects and identification of Musca domestica larvae low molecular weight peptides (LMWP). J Pharm Biomed Anal 2019; 173:162-168. [PMID: 31146171 DOI: 10.1016/j.jpba.2019.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
Abstract
Musca domestica larvae have been used clinically to cure children malnutritional stagnation and low molecular weight peptides (LMWP) of Musca domestica larvae showed more useful bioactivities. But there is no report on anti-diarrhea effects and identification of the LWMP. The purposes of this study were clarifying the anti-diarrhea effects by regulating intestinal microecology and identification of LMWP. In anti-diarrhea test, diarrhea mice were administered LMWP by oral gavage. Then rectal stool indicator bacteria were counted also the identification of rectal stool bacteria were determined by PCR-DGGE. In LMWP identification test, GFC and RP-HPLC were used to separate the peptide. Then the single polypeptide was tested by MALDI TOF and N-terminal sequence analysis. The results of anti-diarrhea showed that LMWP was effective in the inhibition diarrhea in mice. And microbial diversity indices showed that LMWP treatment group exhibited a higher number of bands. The identification test showed that LMWP had four main components (10-30KD, S1, S2, S3), and there were 5, 7 and 4 peaks in S1, S2 and S3, respectively. The the molecular weight of S2-5, S3-2 and S3-3 was 877.053D, 877.0631D and 1069.4391D, respectively. And S3-3 was determined as Chain A, Carboxypeptidase G2. So the hypothesis that intestinal microbiological regulation might be one of the potential anti-diarrhea mechanisms of Musca domestica larvae LMWP which had four main components and one of the single polypeptide was identified could be drawn.
Collapse
|
37
|
Xiong S, Marin L, Duan L, Cheng X. Fluorescent chitosan hydrogel for highly and selectively sensing of p-nitrophenol and 2, 4, 6-trinitrophenol. Carbohydr Polym 2019; 225:115253. [PMID: 31521279 DOI: 10.1016/j.carbpol.2019.115253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
Nitroaromatic compounds, especially 2, 4, 6-trinitrophenol, have strong biological toxicity and explosive risks, so the detection of 2, 4, 6-trinitrophenol exhibit importantly practical and scientific significance. In this work, three fluorescence functionalized chitosan CNS 3, CNS 4 and CNS 5 were prepared using chitosan as matrix. When 2, 4, 6-trinitrophenol (TNP) and/or p-nitrophenol (4-NP) was present in spot, these fluorescent chitosan sensors produced notable fluorescence quenching. It renders the chitosan sensing ability to detect TNP and 4-NP selectively and sensitively. The sensing mechanism is investigated as well. When introduced electron-rich moieties to the fluorescent chitosan, the sensitive detecting ability could be obtained. Excellent recognition ability could reach as low as 0.28 μM. The fluorescence fictionalization cause slight influence to the gel performance of chitosan.
Collapse
Affiliation(s)
- Shuangyu Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Luminita Marin
- "Petru Poni'' Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| | - Lian Duan
- School of Textiles and Garments, Southwest University, Chongqing, 400715, PR China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| |
Collapse
|
38
|
He X, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem Toxicol 2019; 44:335-340. [PMID: 31179762 DOI: 10.1080/01480545.2019.1620264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chitosan is widely used as a medical material because of its excellent biological activities. However, the low solubility of natural chitosan limited its medicinal activity to some extent. The solubility can be improved by introducing more active groups and lowering molecular weight. Therefore, 6-amine chitosan derivatives were synthesized in this paper since more active groups were introduced to increase the medicinal activity. Those derivatives were characterized by elemental analysis, HPLC, and FT-IR and the antiviral activity was tested by hemagglutination tests. Finally, 6-amine chitosan derivatives improved the antiviral activity, especially after the introduction of bromine ion. When 6-deoxy-6-bromo-N-phthaloyl chitosan was 1 g/L, they reduced the hemagglutination titer of virus to zero. The RT-PCR result showed that the expression level of TNF-α and IFN-β increased significantly, which indicated that the antiviral activity of amino-modified chitosan worked through the stimulation of immune response.
Collapse
Affiliation(s)
- Xiaofei He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
39
|
Chu F, Ma H, Jin X. Cardiovascular and respiratory safety evaluation of Musca Domestica larvae low molecular weight peptide in beagle dogs. Toxicol Mech Methods 2019; 29:397-402. [PMID: 30676175 DOI: 10.1080/15376516.2018.1519863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Many studies have demonstrated that the water extracts and low-molecular-weight peptide (LMWP) of the Musca domestica larvae contain significant biological activity. However, the cardiovascular and respiratory safety evaluations of LMWP are yet to be sufficiently investigated. Aim: This study focused on the cardiovascular and respiratory safety evaluations of the M. domestica larvae LMWP in beagle dogs. Methods: Direct cardiovascular and respiratory effects of three different doses of the M. domestica larvae LMWP were investigated following only once oral administration in conscious telemetered dogs, whereby ECG, arterial pressure, and respiratory data were collected using the Data Science International telemetric system. Results: The PR, QT, and QTcf intervals were significantly shortened in the medium-dose LMWP treatment group at 3 h after drug administration. Furthermore, no significant differences were observed in any of the corresponding indexes of other treatment groups at different time points compared to those of the control group. P wave, ST segment, R wave, systolic pressure, diastolic pressure, and mean pressure were significantly different, although these differences had no significant dose-effect relationship. Respiratory frequency significantly increased in the medium-dose LMWP treatment group at 8 h after drug administration compared to that of the control group. Respiratory rate and tidal volume showed no significant differences at varying time points among all LMWP treatment groups. Conclusions: No toxicological effects related to cardiovascular and respiratory safety in beagle dogs were observed at any dose level of the M. domestica larvae LMWP.
Collapse
Affiliation(s)
- Fujiang Chu
- a School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances , Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University , Guangzhou , PR China
| | - Hongyan Ma
- b School of Traditional Chinese Medicine , Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University , Guangzhou , PR China
| | - Xiaobao Jin
- a School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances , Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University , Guangzhou , PR China
| |
Collapse
|
40
|
Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr Polym 2018; 202:382-396. [DOI: 10.1016/j.carbpol.2018.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
|
41
|
Zhang J, Luan F, Li Q, Gu G, Dong F, Guo Z. Synthesis of Novel Chitin Derivatives Bearing Amino Groups and Evaluation of Their Antifungal Activity. Mar Drugs 2018; 16:E380. [PMID: 30314267 PMCID: PMC6212816 DOI: 10.3390/md16100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
Chemical modification is one of the most effective methods to improve the biological activity of chitin. In the current study, we modified C3-OH and C6-OH of chitin (CT) and successfully synthesized 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) through a series of chemical reactions. The structure of NCT and DNCT were characterized by elemental analyses, FT-IR, 13C NMR, XRD, and SEM. The inhibitory effects of CT, NCT, and DNCT against six kinds of phytopathogen (F. oxysporum f. sp. cucumerium, B. cinerea, C. lagenarium, P. asparagi, F. oxysporum f. niveum, and G. zeae) were evaluated using disk diffusion method in vitro. Meanwhile, carbendazim and amphotericin B were used as positive controls. Results revealed that 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) showed improved antifungal properties compared with pristine chitin. Moreover, DNCT exhibited the better antifungal property than NCT. Especially, while the inhibition zone diameters of NCT are ranged from 11.2 to 16.3 mm, DNCT are about 11.4⁻20.4 mm. These data demonstrated that the introduction of amino group into chitin derivatives could be key to increasing the antifungal activity of such compounds, and the greater the number of amino groups in the chitin derivatives, the better their antifungal activity was.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Luan
- Navigation College, Shandong Jiaotong University, Weihai 264209, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Zhou J, Fang NN, Zheng Y, Liu KY, Mao B, Kong LN, Chen Y, Ai H. Identification and characterization of two novel C-type lectins from the larvae of housefly, Musca domestica L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21467. [PMID: 29677385 DOI: 10.1002/arch.21467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lectins and antimicrobial peptides (AMPs) are widely distributed in various insects and play crucial roles in primary host defense against pathogenic microorganisms. Two AMPs (cecropin and attacin) have been identified and characterized in the larvae of housefly. In this study, two novel C-type lectins (CTLs) were obtained from Musca domestica, while their agglutinating and antiviral properties were evaluated. Real-time PCR analysis showed that the mRNA levels of four immune genes (MdCTL1, MdCTL2, Cecropin, and Attacin) from M. domestica were significantly upregulated after injection with killed Gram-negative Escherichia coli. Moreover, purified MdCTL1-2 proteins can agglutinate E. coli and Staphylococcus aureus in the presence of calcium ions, suggesting their immune function is Ca2+ dependent. Sequence analysis indicated that typical WND and QPD motifs were found in the Ca2+ -binding site 2 of carbohydrate recognition domain from MdCTL1-2, which was consistent with their agglutinating activities. Subsequently, antiviral experiments indicated that MdCTL1-2 proteins could significantly reduce the infection rate of Spodoptera frugiperda 9 cells by the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, indicating they might play important roles in insect innate immunity against microbial pathogens. In addition, MdCTL1-2 proteins could effectively inhibit the replication of influenza H1 N1 virus, which was similar to the effect of ribavirin. These results suggested that two novel CTLs could be considered a promising drug candidate for the treatment of influenza. Moreover, it is believed that the discovery of the CTLs with antiviral effects in M. domestica will improve our understanding of the molecular mechanism of insect immune response against viruses.
Collapse
Affiliation(s)
- Jing Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Nai-Nai Fang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kai-Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bin Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Li-Na Kong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
43
|
Rahmouni N, Tahri W, Sbihi HM, Nehdi IA, Desbrieres J, Besbes-Hentati S. Improvement of chitosan solubility and bactericidity by synthesis of N-benzimidazole-O-acetyl-chitosan and its electrodeposition. Int J Biol Macromol 2018; 113:623-630. [DOI: 10.1016/j.ijbiomac.2018.02.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 02/08/2023]
|
44
|
Gao Y, Wang D, Xu ML, Shi SS, Xiong JF. Toxicological characteristics of edible insects in China: A historical review. Food Chem Toxicol 2018; 119:237-251. [PMID: 29649491 DOI: 10.1016/j.fct.2018.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
Abstract
Edible insects are ideal food sources, which contain important nutrients and health-promoting compounds. With a rapid development of industrial insect farming, insect-derived food is a novel and emerging food industry. Edible insects have been traditionally consumed in various communities, while continuously gaining relevance in today's society; however, they currently remain underutilized. Although there are a large number of literature on edible insects, these literature primarily focus on the nutritional value edible insects. The toxicity assessment data of edible insects remain incomprehensive, especially for the new national standard that is currently in effect; and many data and conclusions are not accurately specified/reported. Therefore, we performed a literature review and summarized the data on the toxicological assessment of edible insects in China. The review first describes the research progress on safety toxicological assessment, and then offers references regarding the development of 34 edible insect species in China. These data can be a platform for the development of future toxicological assessment strategies, which can be carried out by a multidisciplinary team, possibly consisting of food engineers, agronomists, farmers, and so on, to improve the acceptability of edible insects.
Collapse
Affiliation(s)
- Yu Gao
- College of Agriculture, Jilin Agricultural University, Changchun 130118, PR China
| | - Di Wang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, PR China
| | - Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130000, PR China.
| | - Shu-Sen Shi
- College of Agriculture, Jilin Agricultural University, Changchun 130118, PR China.
| | - Jin-Feng Xiong
- Changchun Institute of Biological Products Co. Ltd., Changchun 130012, PR China
| |
Collapse
|
45
|
Antibacterial Effects of Chitosan/Cationic Peptide Nanoparticles. NANOMATERIALS 2018; 8:nano8020088. [PMID: 29401728 PMCID: PMC5853720 DOI: 10.3390/nano8020088] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
This study attempted to develop chitosan-based nanoparticles with increased stability and antibacterial activity. The chitosan/protamine hybrid nanoparticles were formed based on an ionic gelation method by mixing chitosan with protamine and subsequently cross-linking the mixtures with sodium tripolyphosphate (TPP). The effects of protamine on the chemical structures, physical properties, and antibacterial activities of the hybrid nanoparticles were investigated. The antibacterial experiments demonstrated that the addition of protamine (125 µg/mL) in the hybrid nanoparticles (500 µg/mL chitosan and 166.67 µg/mL TPP) improved the antimicrobial specificity with the minimum inhibitory concentration (MIC) value of 31.25 µg/mL towards Escherichia coli (E. coli), while the MIC value was higher than 250 µg/mL towards Bacillus cereus. The chitosan/protamine hybrid nanoparticles induced the formation of biofilm-like structure in B. cereus and non-motile-like structure in E. coli. The detection of bacterial cell ruptures showed that the inclusion of protamine in the hybrid nanoparticles caused different membrane permeability compared to chitosan nanoparticles and chitosan alone. The chitosan/protamine nanoparticles also exhibited lower binding affinity towards B. cereus than E. coli. The results suggested that the hybridization of chitosan with protamine improved the antibacterial activity of chitosan nanoparticles towards pathogenic E. coli, but the inhibitory effect against probiotic B. cereus was significantly reduced.
Collapse
|
46
|
Li H, Inoue A, Taniguchi S, Yukutake T, Suyama K, Nose T, Maeda I. Multifunctional biological activities of water extract of housefly larvae ( Musca domestica ). PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Vanden Braber NL, Díaz Vergara LI, Morán Vieyra FE, Borsarelli CD, Yossen MM, Vega JR, Correa SG, Montenegro MA. Physicochemical characterization of water-soluble chitosan derivatives with singlet oxygen quenching and antibacterial capabilities. Int J Biol Macromol 2017; 102:200-207. [DOI: 10.1016/j.ijbiomac.2017.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/26/2023]
|
48
|
Zhang Y, Zhou X, Ji L, Du X, Sang Q, Chen F. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder. Carbohydr Polym 2017; 172:113-119. [DOI: 10.1016/j.carbpol.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
|
49
|
Seabrooks L, Hu L. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 2017; 7:409-426. [PMID: 28752026 PMCID: PMC5518667 DOI: 10.1016/j.apsb.2017.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Nature has been the source of life-changing and -saving medications for centuries. Aspirin, penicillin and morphine are prime examples of Nature׳s gifts to medicine. These discoveries catalyzed the field of natural product drug discovery which has mostly focused on plants. However, insects have more than twice the number of species and entomotherapy has been in practice for as long as and often in conjunction with medicinal plants and is an important alternative to modern medicine in many parts of the world. Herein, an overview of current traditional medicinal applications of insects and characterization of isolated biologically active molecules starting from approximately 2010 is presented. Insect natural products reviewed were isolated from ants, bees, wasps, beetles, cockroaches, termites, flies, true bugs, moths and more. Biological activities of these natural products from insects include antimicrobial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory and immunomodulatory effects.
Collapse
|
50
|
Muthumari K, Anand M, Maruthupandy M. Collagen Extract from Marine Finfish Scales as a Potential Mosquito Larvicide. Protein J 2017; 35:391-400. [PMID: 27804059 DOI: 10.1007/s10930-016-9685-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen is a peptide being utilized in medical, health care, nutrient and decorative industry. Marine fish scales are one of the good sources of collagen, which is extracted using the advanced enzymatic digestion method. Scales of Sardinella longiceps (Oil Sardine) have a high proportion of collagen. This product is well absorbed with broad adaptive values that encourage the inclusion of nutriments. In this paper, we have performed the isolation and characterization of collagen from S. longiceps fish scales. The unnecessary proteins on the surface of fish scales was removed by demineralization process. The fish scale collagen was extracted in two different methods: acid (acetic acid) and enzymatic (pepsin) technique. The molecular mass of the extracted collagen was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The absorption spectra of the extracted collagen was measured to estimate its amino acid (tyrosine) content. Fourier transform infrared (FTIR) spectrum showed the existence of bands corresponding to the collagen extracted from S. longiceps fish scale and the crystallinity of extracted collagen was obtained using X-ray diffraction (XRD) analysis. The morphological micrograph was also analyzed by scanning electron microscope (SEM). The anti-larval effect of the collagen extract was determined using mosquito larvae of Aedes aegypti (Ae. aegypti) and the activity was statistically significant.
Collapse
Affiliation(s)
- K Muthumari
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - M Anand
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - M Maruthupandy
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| |
Collapse
|