1
|
Shu X, Xie M, Zhang X, Wang N, Zhang W, Lin J, Yang J, Yang X, Li Y. Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods 2025; 14:355. [PMID: 39941950 PMCID: PMC11816377 DOI: 10.3390/foods14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The untargeted metabolomics of Newhall navel oranges from three areas in China-Ganzhou, Fengjie, and Zigui-with geographical indication (GI) was measured using LC-MS/MS. Orthogonal partial least squares discriminant analysis was performed for sample classification and important metabolite identification. This approach identified the best markers of the geographical origin able to discriminate Fengjie, Ganzhou, and Zigui orange samples. For peeled samples, 2-isopropylmalic acid, succinic acid, citric acid, L-aspartic acid, L-glutamic γ-semialdehyde, D-β-phenylalanine, hesperetin, hydrocinnamic acid, 4-hydroxycinnamic acid, and dehydroascorbate were the markers used to discriminate the geographical origin. All these markers were overexpressed in the peeled samples from the Zigui area, followed by the Ganzhou area. As for unpeeled samples, L-glutamic γ-semialdehyde, isovitexin 2'-O-β-D-glucoside, 2-isopropylmalic acid, isovitexin, diosmetin, trans-2-hydroxycinnamate and trans-cinnamate, L-aspartic acid, hydrocinnamic acid, and β-carotene were used to discriminate their origin. The first seven markers in Zigui-planted whole samples showed the highest levels, and the last three markers were richest in Ganzhou-planted samples. According to the variation in the markers for discriminating the origins of the peeled or unpeeled Newhall navel oranges with GI and the highest value of titratable acidity in those from Zigui, the samples planted in Ganzhou have the best balance between taste and nutrition. This work confirms that the approach of untargeted metabolomics combined with OPLS-DA is an effective way for origin tracing and overall quality evaluation.
Collapse
Affiliation(s)
- Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Manli Xie
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Na Wang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Yingkui Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| |
Collapse
|
2
|
Wang N, Zhang X, Guo Q, Yan G, Wang J, Wu C, Zhou Y, Zhou J, Zhang K, Li T, Duan X. Effects of different rootstocks on fruit quality and non-volatile flavor-related compounds of sweet cherry 'summit'. Food Chem 2025; 463:141512. [PMID: 39396431 DOI: 10.1016/j.foodchem.2024.141512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
In practical sweet cherry production, grafting onto rootstocks is a common practice to enhance environmental adaptability. Rootstocks play a crucial role in influencing scion growth and fruit quality by regulating the absorption and utilization of mineral elements. In this study, the influence of five rootstocks with or without root fertilization during the fruit color conversion period on the fruit quality of sweet cherry 'Summit' was observed. The physicochemical characteristics, external color characteristics, and total anthocyanin content of 'Summit' were significantly affected by both rootstock and fertilization, with an interaction between the two factors. The content of certain sugar components, organic acid components and phenolic acid components in 'Summit' were significantly affected by rootstocks and fertilization. 'Summit' grafted on Gisela 5 and H22 exhibited higher sugar content, while 'Summit' grafted on H11 and H17 exhibited higher organic and phenolic acid content.
Collapse
Affiliation(s)
- Naiyu Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; College of Horticulture, China Agricultural University, Beijing 100193, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Qingqing Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; College of Horticulture, China Agricultural University, Beijing 100193, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China
| | - Junman Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R.China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China.
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, P.R.China.
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, P.R.China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, P.R.China.
| |
Collapse
|
3
|
Oosalo AA, Naseri L, Alirezalu A, Darvishzadeh R, Ebrahimi SN. Exogenous phenylalanine application effects on phytochemicals, antioxidant activity, HPLC profiling, and PAL and CHS genes expression in table grapes (Vitis vinifera cv. 'Qzl Ouzum'). BMC PLANT BIOLOGY 2024; 24:1216. [PMID: 39701999 DOI: 10.1186/s12870-024-05934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Grape (Vitis vinifera L.) is one of the most important fruit products globally and has a high nutritional value with potent antioxidant and anti-cancer activities. In current years, phenylalanine application has been particularly noticed for enhancing the nutritional quality of horticultural crops. With the aim of quality improvement, the effects of foliar application of phenylalanine at 5 concentrations (0, 100, 500, 1000, and 2000 μM) on Vitis vinifera cv. 'Qzl Ouzum' berry compositions were studied. The studied parameters included antioxidant activity, phenolics, flavonoids, anthocyanin, catalase and phenylalanine ammonia-lyase enzyme activity, and phenolic compounds content based on HPLC analyses (myricetin, quercetin, kaempferol, syringetin, catechin, gallic acid, caffeic acid, p-coumaric acid, resveratrol). RESULTS Phenylalanine at 1000 μM increased total phenols, flavonoids, anthocyanins, and PAL enzyme activity. In addition, HPLC analysis revealed a significant accumulation of individual phenolic compounds by phenylalanine treatment. The highest values were recorded in the treatments with 100 and 500 μM phenylalanine for most of the phenolic components. Real-time quantitative RT-PCR results showed that the expression of PAL and CHS genes was induced by phenylalanine. The highest PAL and CHS gene expression was observed at 500 μM and then at 1000 μM phenylalanine treatment. CONCLUSIONS With the use of phenylalanine, the activity of the PAL and CHS enzyme and PAL and CHS gene expression were significantly increased and led to a greater accumulation of phenolic compounds and antioxidant activiety. This study suggests that the use of phenylalanine as a main precursor for the synthesis of phenolic compounds, can improve the phenolic composition of grapes and could be a practical approach to advance fruit quality in the production of grape cv. 'Qzl Ouzum'.
Collapse
Affiliation(s)
| | - Lotfali Naseri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Abolfazl Alirezalu
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Manda‐Hakki K, Hassanpour H. Changes in Postharvest Quality and Physiological Attributes of Strawberry Fruits Influenced by l-Phenylalanine. Food Sci Nutr 2024; 12:10262-10274. [PMID: 39723087 PMCID: PMC11666917 DOI: 10.1002/fsn3.4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
Strawberry (Fragaria × ananassa) is a popular fruit with rich nutrients and a delicious taste. But this fruit is very vulnerable to diseases and decay. Therefore, l-phenylalanine (Phe) (0, 4, 8 mM) was considered to improve biochemical characteristics and activity of antioxidant enzymes in strawberry fruit cv. Sabrina under cold storage (5, 10, 15 days). After treatment and storage, traits including weight loss, total phenol (TP), antioxidant capacity, ascorbic acid, total anthocyanin (TA), total flavonoid (TF), malondialdehyde (MDA), soluble protein content and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) and phenylalanine ammonialyase (PAL) were evaluated at 5-day intervals. Our findings showed that the treatment of l-phenylalanine in different concentrations prevented the weight loss of the fruit compared to the control and maintained and increased TP, antioxidant capacity, ascorbic acid, TA, TF, soluble protein and SOD, CAT, APX, POD, and PAL enzymes activity. Also, Phe decreased the MDA content and peroxidation of lipid. The results showed that 4 mM Phe is the best treatment for improving phytochemical characteristics and maintaining fruit quality. The findings indicated that Phe treatment may be useful to improve quality and increase postharvest shelf life in strawberry fruits.
Collapse
Affiliation(s)
- Karim Manda‐Hakki
- Department of Horticultural Sciences, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
5
|
Sun W, Shahrajabian MH, Kuang Y, Wang N. Amino Acids Biostimulants and Protein Hydrolysates in Agricultural Sciences. PLANTS (BASEL, SWITZERLAND) 2024; 13:210. [PMID: 38256763 PMCID: PMC10819947 DOI: 10.3390/plants13020210] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The effects of different types of biostimulants on crops include improving the visual quality of the final products, stimulating the immune systems of plants, inducing the biosynthesis of plant defensive biomolecules, removing heavy metals from contaminated soil, improving crop performance, reducing leaching, improving root development and seed germination, inducing tolerance to abiotic and biotic stressors, promoting crop establishment and increasing nutrient-use efficiency. Protein hydrolysates are mixtures of polypeptides and free amino acids resulting from enzymatic and chemical hydrolysis of agro-industrial protein by-products obtained from animal or plant origins, and they are able to alleviate environmental stress effects, improve growth, and promote crop productivity. Amino acids involve various advantages such as increased yield and yield components, increased nutrient assimilation and stress tolerance, and improved yield components and quality characteristics. They are generally achieved through chemical or enzymatic protein hydrolysis, with significant capabilities to influence the synthesis and activity of some enzymes, gene expression, and redox-homeostasis. Increased yield, yield components, and crop quality; improved and regulated oxidation-reduction process, photosynthesis, and physiological activities; decreased negative effects of toxic components; and improved anti-fungal activities of plants are just some of the more important benefits of the application of phenols and phenolic biostimulants. The aim of this manuscript is to survey the impacts of amino acids, different types of protein hydrolysates, phenols, and phenolic biostimulants on different plants by presenting case studies and successful paradigms in several horticultural and agricultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | | | | | |
Collapse
|
6
|
Zhao T, Xie S, Zhang Z. Effects of foliar-sprayed potassium dihydrogen phosphate on accumulation of flavonoids in Cabernet Sauvignon (Vitis vinifera L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4838-4849. [PMID: 36916448 DOI: 10.1002/jsfa.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/01/2022] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND In current vineyards, potassium dihydrogen phosphate (KH2 PO4 ) is a common foliar fertilizer with the lowest salt index. It is employed to improve the transportation and distribution of grape photosynthetic products, but the mechanism of its effect on fruit flavonoid synthesis is unclear. RESULTS This study investigated the effects of foliar spraying of KH2 PO4 at different developmental stages (1 week before veraison; the end of veraison (EV)) on flavonoid metabolites and related gene expression of 'Cabernet Sauvignon' grape for two consecutive vintages. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry technology was used to identify 6 flavan-3-ols, 11 flavonols, and 16 anthocyanins. KH2 PO4 influenced anthocyanins content, especially when applied at the EV stage, the content of anthocyanins was significantly higher than that of the control. Further, quantitative polymerase chain reaction analysis showed that KH2 PO4 treatment applied at the EV stage can increase the expression of anthocyanin synthesis genes and accelerate anthocyanin synthesis. In particular, the expression of VviGST in EV treatment was significantly higher than that of the control during the development process. CONCLUSION These findings have enhanced our understanding of the effect of KH2 PO4 treatment on grape flavonoids. Among them, EV treatment can significantly increase anthocyanins content. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A & F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, Yangling, China
| |
Collapse
|
7
|
Paprocka M, Dancewicz K, Kordan B, Damszel M, Sergiel I, Biesaga M, Mroczek J, Arroyo Garcia RA, Gabryś B. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2022.2162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- M. Paprocka
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - K. Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - B. Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - M. Damszel
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - I. Sergiel
- Department of Biotechnology, University of Zielona Góra, Zielona Góra, Poland
| | - M. Biesaga
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - J. Mroczek
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - R. A. Arroyo Garcia
- CSIC-INIA (CPGP) Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Madrid, Spain
| | - B. Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
8
|
Foliar application of methyl jasmonate and methyl jasmonate supported on nanoparticles: Incidence on grape phenolic composition over two seasons. Food Chem 2023; 402:134244. [DOI: 10.1016/j.foodchem.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
|
9
|
Effect of Methyl Jasmonate and Methyl Jasmonate Plus Urea Foliar Applications on Wine Phenolic, Aromatic and Nitrogen Composition. BEVERAGES 2022. [DOI: 10.3390/beverages8030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foliar application has been studied to enhance grape composition and, therefore, wine quality. This work examined, for first time, the effects of foliar applications of methyl jasmonate (MeJ) and methyl jasmonate plus urea (MeJ+Ur) to Tempranillo vineyard on wine phenolic, aromatic and nitrogen composition over two vintages (2019 and 2020). A reduction in alcoholic degree was observed in MeJ and MeJ+Ur wines. The effect of foliar treatments was season-dependent. MeJ and MeJ+Ur wines were characterized, in the first vintage, by a higher content of total acylated anthocyanins, but a low content of total esters, alcohols and acids when compared with control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in the second vintage, MeJ and MeJ+Ur wines presented an increase in some non-acylated anthocyanins, but only MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control wines. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control wines. Overall, the effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.
Collapse
|
10
|
Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Res Int 2022; 160:111478. [DOI: 10.1016/j.foodres.2022.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
|
11
|
Bottle Aging Affected Aromatic and Phenolic Wine Composition More than Yeast Starter Strains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Volatile and phenolic compounds play a key role in the sensory properties of wine, especially aroma and color. During fermentation, yeasts produce enzymes that affect the skin’s phenolic compounds extraction and synthesize some of the most important wine volatile compounds. Generally, selected yeasts of the Saccharomyces cerevisiae (Sc) strains are inoculated, which are responsible for carrying out the wine fermentation, enhancing and highlighting its sensory characteristics and contributing to help achieve the wine typicity, according to the winemaker’s criteria. After fermentation, all wines require aging in a bottle to modulate their composition and stability over time. Thus, four different Sc strains (Sc1–Sc4) were inoculated into tanks with Tempranillo grapes to carry out, in duplicate, their fermentation and subsequent aging in bottles (9 months), comparing the aromatic and phenolic composition between them. Results showed differences in the fermentation process (kinetic, ethanol yield), CI, TPI and content of alcohols, esters, anthocyanins, flavonols and flavanols in wines from the different Sc strains studied. Moreover, in the content in wines of most groups of aromas and phenols, except for total acetate esters and flavonols, aging in a bottle had more influence than the yeast strain used for fermentation.
Collapse
|
12
|
Gur L, Cohen Y, Frenkel O, Schweitzer R, Shlisel M, Reuveni M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:978. [PMID: 35406958 PMCID: PMC9002579 DOI: 10.3390/plants11070978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Powdery mildew caused by the fungus Erysiphe necator is a major grape disease worldwide. It attacks foliage and berries and reduces yield and wine quality. Fungicides are mainly used for combating the disease. Fungicide resistance and the global requisite to reduce pesticide deployment encourage the use of environment-friendly alternatives for disease management. Our field experiments showed that the foliar application of the potassium phosphate fertilizer Top-KP+ (1-50-33 NPK) reduced disease incidence on leaves and clusters by 15-65% and severity by 75-90%, compared to untreated vines. Top-KP+ mixed with Nanovatz (containing the micronutrients boron (B) and zinc (Zn)) or with TruPhos Platinum (a mixture containing N, P2O5, K2O, Zn, B, Mg, Fe, Mn, Cu, Mo, and CO) further reduced disease incidence by 30-90% and disease severity by 85-95%. These fertilizers were as effective as the fungicide tebuconazole. Tank mixtures of fertilizers and tebuconazole further enhanced control efficacy in the vineyards. The modes of action of fertilizers in disease control were elucidated via tests with grape seedlings, microscopy, and berry metabolomics. Fertilizers applied preventively to the foliage of grape seedlings inhibited powdery mildew development. Application onto existing mildew colonies plasmolyzed mycelia and conidia and arrested the development of the disease. Berries treated with fertilizers or with a fungicide showed a significant increase in anti-fungal and antioxidant metabolites. Twenty-two metabolites, including non-protein amino acids and carbohydrates, known for their anti-fungal and bioactive effects, were significantly upregulated in grapes treated with fertilizers as compared to grapes treated with a fungicide, suggesting possible indirect activity against the pathogen. Esters and organic acids that contribute to wine quality were also upregulated. We conclude that integrating macro and micronutrients in spray programs in commercial vineyards shall control powdery mildew, reduce fungicide deployment, delay the buildup of fungicide resistance, and may improve wine quality.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Ron Schweitzer
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Meir Shlisel
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- STK Bio-Ag Technologies Ltd., Petach Tikva 4951447, Israel
| |
Collapse
|
13
|
Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. NANOMATERIALS 2022; 12:nano12050746. [PMID: 35269233 PMCID: PMC8912025 DOI: 10.3390/nano12050746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Polyphenols are gaining increasing interest due to their beneficial properties to human health. Grape pomace, the by-product of wine production, is a source of these bioactive compounds. An extract from Tempranillo grape pomace was obtained and characterized qualitatively and quantitatively. The major components found were anthocyanins, flavan-3-ols, and flavonols. To improve the bioavailability of these compounds, the extract was formulated in phospholipid vesicles, namely transfersomes. Spherical unilamellar vesicles around 100 nm each were obtained. The antioxidant activity of both the extract and the transfersomes was evaluated by using colorimetric assays (i.e., DPPH, FRAP, and Folin–Ciocalteu). The cells’ viability and the antioxidant activity were assessed in keratinocytes. The results showed that the extract and the transfersomes had no cytotoxic effects and exerted remarkable antioxidant activity, which was more evident in a vesicle formulation. These findings highlighted the potential of the Tempranillo grape pomace extract and the efficacy of the incorporation into phospholipid vesicles.
Collapse
|
14
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Cheng X, Wang P, Chen Q, Ma T, Wang R, Gao Y, Zhu H, Liu Y, Liu B, Sun X, Fang Y. Enhancement of anthocyanin and chromatic profiles in 'Cabernet Sauvignon' (Vitis vinifera L.) by foliar nitrogen fertilizer during veraison. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:383-395. [PMID: 34143902 DOI: 10.1002/jsfa.11368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The influence of foliar nitrogen fertilizer during veraison (FNFV) on anthocyanin accumulation and chromatic characteristics of 'Cabernet Sauvignon' grapes over two seasons was investigated. RESULTS Urea and phenylalanine fertilizers (TU and TP, respectively) and a control were sprayed three times at veraison. In 2018, TU displayed a significant enhancement in total individual anthocyanin content and a* and Cab * profiles. In 2019, FNAV significantly improved the content of total non-acylated, acylated anthocyanin and total individual anthocyanin, and the profiles of L*, a* and Cab *, except a* in TU. The whole process from phenylalanine variation to anthocyanin accumulation in grape skins was analyzed. On the whole, after the first FNFV to harvest, the increase in phenylalanine metabolism, abscisic acid content, effects of PAL (Phenylalanine ammonia lyase), UFGT (UDP glucose-flavonoid 3-O-glucosyltransferase) and transcript concentrations of VvPAL and VvUFGT involved in anthocyanin biosynthesis were also strong evidence explaining the increased anthocyanin and chromatic profiles in 2019. CONCLUSION Overall, FNFV for nitrogen-deficient grapevines could significantly improve grape color, especially in the 2019 veraison with a proper climate. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Panpan Wang
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Qianyi Chen
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Rui Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yajun Gao
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Hongda Zhu
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Yuan Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buchun Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Gil-Muñoz R, Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM. Effect of Methyl Jasmonate Doped Nanoparticles on Nitrogen Composition of Monastrell Grapes and Wines. Biomolecules 2021; 11:1631. [PMID: 34827629 PMCID: PMC8615355 DOI: 10.3390/biom11111631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Diego Fernando Paladines-Quezada
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - José Ignacio Fernández-Fernández
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - Gloria Belén Ramírez-Rodríguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| |
Collapse
|
17
|
Hui Y, Wang J, Jiang T, Ma T, Wang R. Effect of nitrogen regulation on berry quality and flavonoids during veraison stage. Food Sci Nutr 2021; 9:5448-5456. [PMID: 34646515 PMCID: PMC8498049 DOI: 10.1002/fsn3.2503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022] Open
Abstract
Nitrogen regulation can effectively promote the improvement of berry components and the formation of flavor compounds in wine grapes. In order to understand the effects of foliar nitrogen spraying on grape quality and flavonoid substance, took Cabernet Sauvignon as the test subject, grape leaves were sprayed by ammonium sulfate, calcium ammonium nitrate, urea, phenylalanine, and glutamate during veraison, and clear water was used as the control. The results showed that spraying ammonium sulfate could improve the contents of soluble solids, anthocyanins, and total phenols of grape berries; spraying phenylalanine significantly increased the content of titratable acid and tannin and decreased the ratio of sugar to acid in grape berries; compared with the control group, spraying glutamate could significantly upregulate some flavonol monomers; spraying calcium ammonium nitrate can adjust the monomer content of some flavanols; urea spraying significantly increased the contents of most anthocyanins, flavanols, and flavonol and increased the contents of total anthocyanins, total flavanols, and total flavonol in grape skins, laying a foundation for the improvement of the nutritional value of grapes and wine in the future.
Collapse
Affiliation(s)
- Yueran Hui
- College of AgronomyNingxia UniversityYinchuanChina
| | - Jing Wang
- College of AgronomyNingxia UniversityYinchuanChina
| | | | - Tinghui Ma
- Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Rui Wang
- College of AgronomyNingxia UniversityYinchuanChina
- Ningxia Grape and Wine Research InstituteYinchuanChina
- China Wine Industry Technology InstituteYinchuanChina
| |
Collapse
|
18
|
Selection Process of a Mixed Inoculum of Non-Saccharomyces Yeasts Isolated in the D.O.Ca. Rioja. FERMENTATION 2021. [DOI: 10.3390/fermentation7030148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.
Collapse
|
19
|
Garde-Cerdán T, Gutiérrez-Gamboa G, Ayestarán B, González-Lázaro M, Rubio-Bretón P, Pérez-Álvarez EP. Influence of seaweed foliar application to Tempranillo grapevines on grape and wine phenolic compounds over two vintages. Food Chem 2021; 345:128843. [PMID: 33340888 DOI: 10.1016/j.foodchem.2020.128843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022]
Abstract
The study of seaweeds is increasing in viticulture due to their implications on plant protection and grape quality. This trial aimed to study the effects of foliar applications of an Ascophyllum nodosum extract at low (0.25%, v v-1) and high (0.50%, v v-1) dosages on grape and wine phenolic compounds in 2017 and 2018. In grapes, seaweed biostimulation increased the content of malvidin-3-glc, myricetin-3-glc and myricetin-3-gal in 2017 season. Moreover, both treatments improved the synthesis of trans-piceid and total stilbenes in both seasons. Sensory analysis revealed that 2017 wines had more color than the 2018 wines, which coincided with color intensity parameters. Therefore, seaweed applications to grapevines improved stilbenes content in grapes independently of the season and its effects on the rest of phenolic compounds in grapes and wines depended strongly of season factor.
Collapse
Affiliation(s)
- T Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain.
| | - G Gutiérrez-Gamboa
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - B Ayestarán
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - M González-Lázaro
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - P Rubio-Bretón
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - E P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain; Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain.
| |
Collapse
|
20
|
Pérez-Álvarez EP, Ramírez-Rodríguez GB, Carmona FJ, Martínez-Vidaurre JM, Masciocchi N, Guagliardi A, Garde-Cerdán T, Delgado-López JM. Towards a more sustainable viticulture: foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1307-1313. [PMID: 32789867 DOI: 10.1002/jsfa.10738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND The use of nanomaterials for the efficient delivery of active species in viticulture is still an unexplored opportunity. Nitrogen, an essential nutrient for grapevine development and wine quality, is commonly provided in the form of urea. However, the application of conventional fertilisers contributes to nitrate leaching and denitrification, thus polluting groundwater and causing a serious environmental impact. Nanotechnology is offering smart solutions towards more sustainable and efficient agriculture. In the present work, we assessed the efficiency of nontoxic amorphous calcium phosphate (ACP) nanoparticles as nanocarriers of urea (U-ACP) through field experiments on Tempranillo grapevines. Four treatments were foliarly applied: U-ACP nanofertiliser (0.4 kg N ha-1 ), commercial urea solutions at 3 and 6 kg N ha-1 (U3 and U6) and a control treatment (water). RESULTS The grapes harvested from plants treated with U-ACP and U6 provided similar levels of yeast assimilable nitrogen, despite the very large reduction of nitrogen dosage. The concentration of amino acids was greater in U-ACP-treated plants than those of the control and U3 treatments and, barring a few exceptions, the values were comparable with those observed in grapes obtained following U6 treatment. Nanofertilisers provided a high arginine concentration in the musts but low proline concentrations in comparison to the U6 treatment. CONCLUSIONS The results of this work show the potential benefits of nanotechnology over conventional practices for nitrogen fertilisation. Significantly, the application of U-ACP allowed a considerable reduction of nitrogen dosage to maintain the quality of the harvest, thereby mitigating the environmental impact. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | | | - Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - José M Martínez-Vidaurre
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - Antonella Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Como, Italy
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Cheng X, Liang Y, Zhang A, Wang P, He S, Zhang K, Wang J, Fang Y, Sun X. Using foliar nitrogen application during veraison to improve the flavor components of grape and wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1288-1300. [PMID: 32869302 DOI: 10.1002/jsfa.10782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen is involved in the winemaking process from grapevine growth to wine fermentation, and its precise utilization in vineyards can regulate grape and wine quality. Foliar nitrogen application during veraison (FNAV) could prevent nitrogen deficiency in grape and must in nitrogen-deficient vineyards. Moreover, FNAV also could improve certain flavor components of grape and wine, but little attention has been paid to FNAV. Therefore, this paper mainly reviews the difficulties encountered in current applications of nitrogen in vineyards and wineries, and the advantages of FNAV over the addition of nitrogen in soil and wineries. And it discusses that FNAV can increase yeast-assimilable nitrogen and phenolics, and scarcely affect volatile components of grape (must and wine), and points out the existing problems including the core issue and then puts forward future research directions. This information may indicate future directions for research, and provide a reference for viticulturists and winemakers on the precise application of nitrogen on grapevine and must to further improve grape and wine quality in nitrogen-deficient vineyards. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Yanying Liang
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, No. 1 Liupanshan Road, Qinhuangdao, Hebei, 066004, China
| | - Panpan Wang
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Shuang He
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Kekun Zhang
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Jiexing Wang
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Yulin Fang
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| | - Xiangyu Sun
- College of Enology, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, No. 22 Xinong Road, Yangling, shaanxi, 712100, China
| |
Collapse
|
22
|
Sogvar OB, Rabiei V, Razavi F, Gohari G. Phenylalanine Alleviates Postharvest Chilling Injury of Plum Fruit by Modulating Antioxidant System and Enhancing the Accumulation of Phenolic Compounds. Food Technol Biotechnol 2021; 58:433-444. [PMID: 33505206 PMCID: PMC7821777 DOI: 10.17113/ftb.58.04.20.6717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Research background Low temperature storage causes chilling injury in plum (Prunus domestica L.) fruits. Consequently, any treatments with beneficial effects against these symptoms would achieve attention. For this purpose, phenylalanine treatments were applied on ‘Stanley’ plum fruits. The main purpose of the present study is to investigate the influence of the exogenous application of phenylalanine on fruit quality, chilling tolerance, and antioxidant capacity of ‘Stanley’ plums during cold storage. Experimental approach Phenylalanine at different concentrations was applied on ‘Stanley’ plums. Following phenylalanine application, plums were cold stored. Chilling injury, antioxidant capacity, electrolyte leakage, malondialdehyde, proline and internal contents of anthocyanin, flavonoids, phenols, ascorbic acid and some antioxidant enzymes were assessed. Results and conclusions Phenylalanine treatment significantly alleviated chilling injury in plum fruits by enhancing antioxidant capacity and increasing the activity of phenylalanine ammonia lyase enzyme (PAL). Phenylalanine-treated fruits had higher mass fractions of ascorbic acid, anthocyanins, flavonoids and phenols, as well as a higher total antioxidant activity than the control fruits during low temperature storage. Phenylalanine at 7.5 mM was the most effective treatment in enhancing the activity of PAL, the accumulation of phenolic compounds and in reducing the severity of chilling injury. Treatments delayed mass loss and maintained fruit firmness. In addition, the application of 7.5 mM phenylalanine improved the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase), decreased the accumulation of hydrogen peroxide, and increased the endogenous content of proline. Moreover, phenylalanine maintained membrane integrity, manifested by a reduced electrolyte leakage and malondialdehyde accumulation. Novelty and scientific contribution In the current study, chilling injury had a positive correlation with the activities of PAL and antioxidant enzymes. However, negative correlations were observed between the chilling injury and ascorbic acid mass fraction, and antioxidant capacity. Considering the results, phenylalanine treatment could be an encouraging approach to alleviate the severity of chilling injury and thus preserve nutritional quality of plums during low temperature storage.
Collapse
Affiliation(s)
- Ommol Banin Sogvar
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran
| | - Vali Rabiei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Daneshgah Blvd., Madar Square, 83111-55181, Maragheh, East Azarbaijan, Iran
| |
Collapse
|
23
|
Cheng X, Wang X, Zhang A, Wang P, Chen Q, Ma T, Li W, Liang Y, Sun X, Fang Y. Foliar Phenylalanine Application Promoted Antioxidant Activities in Cabernet Sauvignon by Regulating Phenolic Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15390-15402. [PMID: 33319992 DOI: 10.1021/acs.jafc.0c05565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of foliar phenylalanine application during veraison (FPV) on phenolic biosynthesis and correlation between phenolic compositions and antioxidant activities in Cabernet Sauvignon grown in field and greenhouse were investigated. Solutions with 69 and 138 mg N/vine phenylalanine (Pe1 and Pe2, respectively) and an aqueous solution without nitrogen (CK) were sprayed three times during veraison. FPV significantly improved antioxidant activities in grapes using the two culture methods. The most contributory phenolic compositions to antioxidant activities were anthocyanins and stilbenes following FPV compared with CK. Phenylalanine metabolism, abscisic acid content, and expression levels of VvPAL, VvCHS, VvF3H, VvUFGT, and VvSTS in the phenolic synthesis pathway were increased from the first FPV to harvest. Although Pe2 significantly increased total phenolic contents than Pe1, antioxidant parameters were not markedly affected by the phenylalanine dose. Our finding revealed that FPV was a useful fertilization method to enhance antioxidant activities in grapes in nitrogen-deficient vineyards.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xuefei Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, Qinhuangdao, Hebei 066004, China
| | - Panpan Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Qianyi Chen
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Wanping Li
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yanying Liang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
24
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Poorghadir M, Torkashvand AM, Mirjalili SA, Moradi P. Interactions of amino acids (proline and phenylalanine) and biostimulants (salicylic acid and chitosan) on the growth and essential oil components of savory (Satureja hortensis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Cheng X, Ma T, Wang P, Liang Y, Zhang J, Zhang A, Chen Q, Li W, Ge Q, Sun X, Fang Y. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines. Food Res Int 2020; 137:109566. [DOI: 10.1016/j.foodres.2020.109566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
|
27
|
Foliar Application of an Amino Acid-Enriched Urea Fertilizer on 'Greco' Grapevines at Full Veraison Increases Berry Yeast-Assimilable Nitrogen Content. PLANTS 2020; 9:plants9050619. [PMID: 32413954 PMCID: PMC7285263 DOI: 10.3390/plants9050619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
Reaching a sufficient yeast assimilable nitrogen (YAN) content in berries at harvest is considered a main viticultural goal for wine-making, because low YANs can slow down must fermentation and have negative effects on wine sensory attributes. For this reason, many attempts have been made to define correct fertilization strategies to stimulate YAN accumulation in the berries. Foliar application of amino acid-enriched urea fertilizer is considered a promising environmentally friendly strategy for improving the yield and nutrient efficiency of plants. The aim of this two-year research was to study the effects of two fertilizers based on urea enriched with amino acids applied at low doses in diverse phenological stages on berry YAN concentration in ‘Greco’ grapevines. The results of this study indicate that amino acid-enriched urea fertilizers induced an increase in YANs in the ‘Greco’ berries at harvest, but only when the application was undertaken at full veraison. Foliar applications applied at veraison onset or post-veraison appeared to be ineffective. In addition, the fertilizers enhanced YAN accumulation in the berry without modifying the other composition parameters measured in this study (total soluble solids, titratable acidity, pH and malic acid). Therefore, the results of our study suggest that foliar application of urea fertilizers enriched with amino acids is an effective strategy to increase yeast-assimilable nitrogen concentration in grapevine berries at harvest.
Collapse
|
28
|
González-Arenzana L, Santamaría R, Escribano-Viana R, Portu J, Garijo P, López-Alfaro I, López R, Santamaría P, Gutiérrez AR. Influence of the carbonic maceration winemaking method on the physicochemical, colour, aromatic and microbiological features of tempranillo red wines. Food Chem 2020; 319:126569. [PMID: 32179371 DOI: 10.1016/j.foodchem.2020.126569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study was to determine the differences in the microbiological, physical-chemical, aromatic and phenolic composition between two winemaking methods: carbonic maceration and the standard method of destemming and crushing. We analysed 84 commercial Rioja wines made from the Tempranillo grape variety during the 2017 vintage, 40 had been made by carbonic maceration and 44 by destemming and crushing. Despite the heterogeneity within the two groups of wines, it was possible to differentiate between them. Wines made by carbonic maceration presented higher aromatic quality due to their higher total content of esters and acetates, as well as a greater colour intensity due to a higher phenolic content and higher rates of ionization and polymerization. In addition, it was observed that the antioxidant activity, the content in coumaroyl derivatives of anthocyanins and the vitisins A and B were considerably greater in wines made by carbonic maceration.
Collapse
Affiliation(s)
- Lucía González-Arenzana
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| | - Rosario Santamaría
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain
| | - Rocío Escribano-Viana
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| | - Javier Portu
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain
| | - Patrocinio Garijo
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| | - Isabel López-Alfaro
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain
| | - Rosa López
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| | - Pilar Santamaría
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| | - Ana Rosa Gutiérrez
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Ctra. LO-20-salida 13, 26071 Logroño, Spain.
| |
Collapse
|
29
|
Lang CP, Merkt N, Klaiber I, Pfannstiel J, Zörb C. Different forms of nitrogen application affect metabolite patterns in grapevine leaves and the sensory of wine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:308-319. [PMID: 31539760 DOI: 10.1016/j.plaphy.2019.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 05/24/2023]
Abstract
The quality of grapevine berries, must and wine is influenced by environmental and viticultural inputs and their complex interactions. Aroma and flavour are decisive for quality and are mainly determined by primary and secondary metabolites. In particular, phenolic compounds contribute to berry and wine quality. The influence of various nitrogen forms on i) the composition of phenolic compounds in leaves and wine and; ii) the resulting wine quality were studied in a vineyard system. Must and wine quality was evaluated by chemical analysis and sensory testing. Metabolomic profiling was also performed. Aroma and sensory profile were significantly changed by the application of nitrogen in contrast to no nitrogen fertilisation. The levels of 33 metabolites in leaves and 55 metabolites in wine were significantly changed altered by fertilisation with the various nitrogen forms. In leaves, more metabolites were increased by the use of calcium nitrate or ammonium but were decreased by the use of urea. In terms of wine, the used nitrogen forms decreased more metabolites compared with no fertilisation.
Collapse
Affiliation(s)
- Carina P Lang
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Emill-Wolff-Str.25, 70599, Stuttgart, Germany.
| | - Nikolaus Merkt
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Emill-Wolff-Str.25, 70599, Stuttgart, Germany
| | - Iris Klaiber
- University of Hohenheim, Core Facility Hohenheim, Mass Spectrometry Unit, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- University of Hohenheim, Core Facility Hohenheim, Mass Spectrometry Unit, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Christian Zörb
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Emill-Wolff-Str.25, 70599, Stuttgart, Germany.
| |
Collapse
|
30
|
Sachadyn-Król M, Materska M, Chilczuk B. Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents. Antioxidants (Basel) 2019; 8:antiox8090356. [PMID: 31480596 PMCID: PMC6769928 DOI: 10.3390/antiox8090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022] Open
Abstract
The effect of treatment of pepper fruits with gaseous ozone and storage time following the ozonation process on changes in the content of lipophilic fraction is analyzed for the first time in this paper. The aim of the present study was to assess the impact of ozone treatment on the composition of lipophilic compound fraction and its antioxidant activity (AA). Pepper fruits of cv. Cyklon were ozonated for 1 and 3 h immediately after harvesting. Then, the fruits were stored for 30 days under refrigeration conditions. The total content of phenolic compounds and the AA of the lipophilic fraction isolated from the pericarp and placenta of the fruits were investigated after 10, 20, and 30 days of storage. Additionally, quantitative high-performance liquid chromatography diode array detection analysis of individual phenolic compounds was performed. The results revealed that the content and activity of secondary metabolites varied during storage, with the highest values recorded on the 20th day after harvest, both in control and ozonated fruits, regardless of the ozone dosage used. Treatment of the fruits with ozone for 3 h, but not for 1 h, exhibited a positive effect on the phenolic composition and AA during the prolonged storage of pepper fruits. Three hours of ozonation seems to be the appropriate time to increase the persistence of pepper fruits during storage.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| | - Małgorzata Materska
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Barbara Chilczuk
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
31
|
Effects of fertigation by elicitors enriched in amino acids from vegetal and animal origins on Syrah plant gas exchange and grape quality. Food Res Int 2019; 125:108630. [PMID: 31554113 DOI: 10.1016/j.foodres.2019.108630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 11/21/2022]
Abstract
Nutrition management of vines is a key factor that regulates production and determines grape quality. Currently, one of the main objectives of fertilization is to apply eco-friendly and balanced nutrition. In this case, fertigation is the most efficient strategy. The objective of this work was to assess the effect of innovative fertilizers on Syrah grapevines. The tested products contained an elicitor, macro- and microelements and amino acids from animal and vegetal origins. Fertilizers were applied by fertigation under field conditions in 2016, 2017 and 2018. The influence of the treatments on the grapevine gas exchange, element assimilation and oenological composition of must was evaluated. Additionally, the amino acid contents and volatile composition were determined. The results suggest that application of fertigation does not directly influence the water status of Syrah vines under the conditions of the study but can improve the gas exchange balance and N assimilation. Moreover, the leaf assimilation of Zn, Ca and, to a lesser extent, B were improved at the bloom stage, and the assimilation of Mn was improved at veraison. Small changes were observed in the basic parameters of musts, and an increase in yeast assimilable nitrogen was detected in treated vines. The aromatic profile of grape musts was enhanced in treated vines, and the elicitors enriched in vegetal amino acids could be a sustainable alternative for improving certain vegetative and grape quality parameters of Syrah.
Collapse
|
32
|
Pérez-Álvarez EP, Martínez-Vidaurre JM, Garde-Cerdán T. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo A.O.C. Rioja vineyards. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4833-4841. [PMID: 30977148 DOI: 10.1002/jsfa.9741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Soil and climate are among the most determining factors for the composition of grapes. Among the compounds present in grapes, anthocyanins mainly determine their organoleptic and health-related properties. The purpose of this work was to study the influence of three different soils on the anthocyanin content of Tempranillo grapes (Vitis vinifera L.) from 2016 and 2017 vintages. The soils of the vineyards were classified as Fluventic Haploxerepts (FH), Typic Calcixerepts (TC) and Petrocalcic Palexerolls (PP). RESULTS Non-acylated anthocyanins, and those derived from malvidin and peonidin, were the most abundant in grapes, regardless of soil type and year. During the wetter season (2016), the grapes with the highest concentration of total anthocyanins and several of the major anthocyanins were those from TC and PP soils, in which nitrogen availability was lower than that in FH soil. However, during the drier season (2017), no significant differences were observed, although trends similar to those seen in the 2016 season were recognized. Principal component analysis showed a good separation of samples according to the two seasons and to the three soils in each season. CONCLUSION In vineyards that resemble each other closely and that are located in a unique mesoclimatic area where similar plant material is used and similar managements practices are applied, soil characteristics, which condition water holding capacity and nitrogen availability for the vines, in conjunction with seasonal conditions, were the factors that predominantly determined the anthocyanin composition in grapes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja), Logroño, Spain
| | - José M Martínez-Vidaurre
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja), Logroño, Spain
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja), Logroño, Spain
| |
Collapse
|
33
|
Effect of the Atmospheric Pressure Cold Plasma Treatment on Tempranillo Red Wine Quality in Batch and Flow Systems. BEVERAGES 2019. [DOI: 10.3390/beverages5030050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The demand for chemical-free beverages is posing a challenge to the wine industry to provide safe and healthy products with low concentrations of chemical preservatives. The development of new technologies, such as Atmospheric Pressure Cold Plasma (APCP), offers the wine industry the opportunity to contribute to this continuous improvement. The purpose of this research is to evaluate the effect of Argon APCP treatment, applied in both batch and flow systems, on Tempranillo red wine quality. Batch treatments of 100 mL were applied with two powers (60 and 90 W) at four periods (1, 3, 5, and 10 min). For flowing devices, 750 mL of wine with a flow of 1.2 and 2.4 L/min were treated at 60 and 90 W for 25 min and was sampled every 5 min. Treatments in batch resulted in wines with greater color intensity, lower tonality, and higher content in total phenolic compounds and anthocyanins, so that they were favorable for wine quality. Among the batch treatments, the one with the lowest power was the most favorable. Flow continuous treatments, despite being more appropriate to implement in wineries, neither led to significant improvements in the chromatic and phenolic wine properties nor caused wine spoilage.
Collapse
|
34
|
Pérez-Álvarez EP, Ruiz-González R, Nonell S, Garde-Cerdán T. Riboflavin applications to grapevine leaves and berries blue-light post-harvest treatments modifies grape anthocyanins and amino acids contents. Food Res Int 2019; 122:479-486. [PMID: 31229103 DOI: 10.1016/j.foodres.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/21/2023]
Abstract
Light is an energy source and key environmental factor for plants. Out of the different light wavelengths, blue-light is one of the most relevant spectral regions because of its relation to anthocyanins biosynthesis. Among the compounds present in grapes, anthocyanins determine their main organoleptic and healthy properties; while a minimum concentration of ammonium and amino acids is necessary for a desirable development of the alcoholic fermentation. Moreover, amino acids are precursors of several volatile compounds synthetized during the fermentation. The aim of this study was to assess the influence of riboflavin (vitamin B2) applications, at harvest and one week later,to grapevine leaves in combination with post-harvest blue-light irradiation on Tempranillo (Vitis vinifera L.) grape anthocyanins and amino acidscomposition. The combination of blue-light irradiation and two riboflavin doses as well as theseindividual factors affected both grape anthocyanins and amino acidsconcentrations. After one week of storage, anthocyanins concentration diminished when clusters were irradiated with blue-light; while for amino acids content, the trend to increase or decrease is dependent on the riboflavin dose applied in vines and the storage time.
Collapse
Affiliation(s)
- E P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain.
| | - R Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta, 390.08017, Barcelona, Spain; Esencias Moles S.A. Avenida de Cataluña, 11. 08758 Cervelló, Barcelona, Spain.
| | - S Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta, 390.08017, Barcelona, Spain
| | - T Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain
| |
Collapse
|
35
|
Escribano-Viana R, Portu J, Garijo P, López R, Santamaría P, López-Alfaro I, Gutiérrez AR, González-Arenzana L. Effect of the Sequential Inoculation of Non- Saccharomyces/Saccharomyces on the Anthocyans and Stilbenes Composition of Tempranillo Wines. Front Microbiol 2019; 10:773. [PMID: 31024516 PMCID: PMC6465580 DOI: 10.3389/fmicb.2019.00773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
The phenolic compounds of red wines are responsible for their color, astringency, and antioxidant properties. The fermentative yeasts might be used to modulate wines in terms of their color, aroma and probably healthy properties. In this study, six non-Saccharomyces species were tested because they might enhance the properties of red Tempranillo wines from Rioja. The results confirmed that the anthocyanins and stilbenes composition of wine can be modulated with the use of a specific fermentation starter. Metschnikowia pulcherrima, Zygosaccharomyces bailii, Candida zeylanoides, and Torulaspora delbrueckii achieved the greatest improvements of the monomeric anthocyanin composition, and the latter three yeast species achieved the best results of stilbene composition when compared to S. cerevisiae and the other non-Saccharomyces yeasts. Overall, results suggested that the use of M. pulcherrima, Z. bailii, C. zeylanoides and T. delbrueckii as fermentation starters could be of great interest to achieve wines with better color and likely healthy properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucía González-Arenzana
- Instituto de Ciencias de la Vid y el Vino, CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
36
|
|
37
|
Gutiérrez-Gamboa G, Romanazzi G, Garde-Cerdán T, Pérez-Álvarez EP. A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1001-1009. [PMID: 30198154 DOI: 10.1002/jsfa.9353] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 05/08/2023]
Abstract
Foliar application of biostimulants (including resistance inducers or elicitors) in the vineyard has become an interesting strategy to prevent plant diseases and improve grape quality on the grapevine. This also represents a partial alternative to soil fertilisation, avoiding some of the negative effects to the environment from leaching of nutrients into the groundwater. The foliar applications that most promote the synthesis of secondary metabolites in grape berries are treatments with nitrogen, elicitors, other biostimulants, and waste from the agricultural industry. However, the impact of their use in the vineyard depends on a number of conditions, including mainly the type of compound, application rate, timing and number of applications, and cultivar. This review thus summarises the influence of biostimulants as foliar applications to grapevines on grape amino acids and their phenolic and volatile concentrations, to define the most important factors in their effectiveness. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche Ancona, Italy
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
38
|
Zhou W, Chen Y, Xu H, Liang X, Hu Y, Jin C, Lu L, Lin X. Short-Term Nitrate Limitation Prior to Harvest Improves Phenolic Compound Accumulation in Hydroponic-Cultivated Lettuce ( Lactuca sativa L.) without Reducing Shoot Fresh Weight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10353-10361. [PMID: 30222346 DOI: 10.1021/acs.jafc.8b02157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-term exposure to a low nitrogen supply could effectively improve phenolic content in vegetables, but it also greatly decreases the yield. Therefore, it is necessary to develop cost-effective strategies of nitrogen management to overcome these obstacles. Here, we find that decreasing the nitrogen (NO3-) supply from 8.0 to below 2.0 mM during the last 7 days before harvest significantly increases phenolic levels and antioxidant capacity of the soluble fraction in two hydroponic-cultivated lettuces, which is demonstrated by the up-regulation of related genes ( PAL1, CHS, F3H, DFR, F35H, and UFGT) involved in the phenolic synthesis pathway. Importantly, short-term nitrate limitation before harvest does not affect yield production unless nitrogen supply is reduced below 1.0 and 0.5 mM for Ziluoma and Lvluo, respectively. These findings suggest that appropriate short-term nitrate limitation before harvest, considering genotype variation, is feasible for improving the phenolic content and antioxidant capacity of vegetables without reducing their yield.
Collapse
Affiliation(s)
| | | | - Huaping Xu
- Mathematics Teaching and Research Section, College of Pharmaceutical Sciences , Zhejiang Chinese Medical University , Hangzhou 310053 , China
| | | | | | | | | | | |
Collapse
|
39
|
Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher P, Andreotti C. Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage. FRONTIERS IN PLANT SCIENCE 2018; 9:1342. [PMID: 30298077 PMCID: PMC6160664 DOI: 10.3389/fpls.2018.01342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The experiment was conducted during two consecutive seasons (years 2016 and 2017) in an organic apple orchard of the cultivar Jonathan. Several biostimulants were tested (10 in total), including humic acids, macro and micro seaweed extracts, alfalfa protein hydrolysate, amino acids alone or in combination with zinc, B-group vitamins, chitosan and a commercial product containing silicon. Treatments were performed at weekly intervals, starting from the end of May until mid-August. The macroseaweed extract was effective in stimulate tree growth potential in both years, as shown by a significantly larger leaf area (+20% as compared to control) and by an higher chlorophyll content and leaf photosynthetic rate in year 2016. As for the yield performances and apples quality traits at harvest (average fruit weight, soluble solids content, titratable acidity, and flesh firmness), they were generally affected by the different climatic conditions that characterized the two growing seasons (year 2017 being characterized by higher maximal and average temperatures and by limited rainfalls at the beginning of the season). Treatments with macroseaweed extract, B-group vitamins and alfalfa protein hydrolysate were able to significantly improve the intensity and extension of the red coloration of apples at harvest. Correspondingly, the anthocyanin content in the skin of apples treated with the same biostimulants resulted significantly higher than control, highlighting the potential influence of these substances on the synthesis of secondary metabolites in apple. The incidence of physiological disorders was also monitored during apple storage period. Amino acids plus zinc application was effective in reducing (more than 50%) the incidence of the "Jonathan spot," the main post-harvest disorder for this cultivar.
Collapse
Affiliation(s)
- Sebastian Soppelsa
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | | | | | | | | | - Carlo Andreotti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
40
|
Portu J, López R, Ewald P, Santamaría P, Winterhalter P, Garde-Cerdán T. Evaluation of Grenache, Graciano and Tempranillo grape stilbene content after field applications of elicitors and nitrogen compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1856-1862. [PMID: 28885695 DOI: 10.1002/jsfa.8662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/03/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Stilbenes have a significant biological activity and are one of the most important non-flavonoid contributors to grape and wine health-related properties. The accumulation of this class of compounds could be favored by viticultural practices such as the application of biostimulants. However, stilbene concentration also depends on several factors, including, for example, grape variety. Therefore, the aim of this work was to study the influence of foliar treatments carried out with elicitors (methyl jasmonate (MeJ) and a commercial foliar spray (YD)) and nitrogen compounds (phenylalanine and urea) on the grape stilbene composition of three varieties: Grenache, Graciano and Tempranillo. An ultra-high-pressure liquid chromatographic methodology was validated for stilbene determination. RESULTS Results showed that, despite the huge influence of the grape variety, YD significantly improved stilbene composition in Grenache and Graciano, while MeJ increased the stilbene content in Graciano and Tempranillo. As for the nitrogen treatments, phenylalanine significantly increased the stilbene concentration in Graciano, while urea treatment increased it in Tempranillo. However, the application of elicitors had a greater effect than the nitrogen compounds. CONCLUSION Overall, the foliar application of the elicitors could be a suitable practice for increasing the amount of stilbenes in grape and, therefore, its nutraceutical properties. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Javier Portu
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Logroño, Spain
| | - Rosa López
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Logroño, Spain
| | - Philipp Ewald
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Pilar Santamaría
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Logroño, Spain
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
41
|
Martínez-Gil AM, Gutiérrez-Gamboa G, Garde-Cerdán T, Pérez-Álvarez EP, Moreno-Simunovic Y. Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:274-282. [PMID: 28585244 DOI: 10.1002/jsfa.8468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Among Chilean varieties, Carignan noir has had a major resurgence due to its rediscovered wine quality potential. For this, the aim of this study was to characterize phenolic composition of grapes grown in six sites from the Maule Valley. RESULTS The data showed that myricetin-3-glc and catechin were the most important flavonol and flavanol, respectively. Anthocyanin and flavonol composition was correlated with biologically effective degree days, exhibiting a relationship with grape maturity. Flavanol and hydroxycinnamic acid composition was inversely correlated to the average maximum temperature of the warmest month, showing that their synthesis is favored by cooler temperatures during the warmest month. CONCLUSION These results have enological and viticultural interest for grape growers as vineyard site selection for this cultivar can confer differentiable attributes in terms of grape composition and quality. On the other hand, understanding the effects of climate on the synthesis of phenolic compounds may be useful for managing the vineyards with the aim of improving grape quality. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Martínez-Gil
- Centro Tecnológico de la Vid y el Vino, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Grupo UVaMOX, E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Spain
| | - Gastón Gutiérrez-Gamboa
- Centro Tecnológico de la Vid y el Vino, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Logroño, Spain
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Logroño, Spain
| | - Eva P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Logroño, Spain
| | - Yerko Moreno-Simunovic
- Centro Tecnológico de la Vid y el Vino, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
42
|
Ruiz-Rodríguez A, Carrera CA, Setyaningsih W, Barbero GF, Ferreiro-González M, Palma M, Barroso CG. Tryptophan Levels during Grape Ripening: Effects of Cultural Practices. Molecules 2017; 22:E941. [PMID: 28587278 PMCID: PMC6152642 DOI: 10.3390/molecules22060941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022] Open
Abstract
Some cultural practices that are carried out during the grape ripening period are associated with vine stress, including leaf removal, grape bunch removal, and vegetable cover crops. Additionally, several nitrogen and sulfur supplements have also been used directly on leaves during the last stage of the ripening period. In the work described here, five different cultural practices and the reference were applied in three replicates in the same vineyard. The evolution of tryptophan levels was evaluated from just after grape veraison until the harvest date. In some cases, certain specific treatments were also evaluated after the regular harvest date. The cultural techniques that involved the application of nitrogen led to higher levels of tryptophan at the harvest day when compared to other cultural techniques. It was also found that the application of nitrogen without sulfur had a faster effect on the level of tryptophan. It was established that a period of around 20 days is needed for the grapes to show clear differences in tryptophan levels after the application of nitrogen.
Collapse
Affiliation(s)
- Ana Ruiz-Rodríguez
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| | - Ceferino A Carrera
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| | - Widiastuti Setyaningsih
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur 55281, Yogyakarta, Indonesia.
| | - Gerardo F Barbero
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| | - Miguel Palma
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| | - Carmelo G Barroso
- Department of Analytical Chemistry, IVAGRO, Faculty of Sciences, University of Cadiz, Puerto Real 11510, Spain.
| |
Collapse
|
43
|
Portu J, López R, Santamaría P, Garde-Cerdán T. Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: Effect on Garnacha grape phenolic content. Food Chem 2017; 237:416-422. [PMID: 28764015 DOI: 10.1016/j.foodchem.2017.05.126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
Recent works showed that elicitation, supported by precursor feeding, could be a strategy to increase phenolic content. However, these studies have never been conducted in viticulture. This strategy could be of greater interest in Garnacha, a grape variety characterized by its low phenolic content. Therefore, this work studied elicitation with methyl jasmonate (MeJ), supported by precursor feeding with phenylalanine (Phe), in order to improve Garnacha grape phenolic content. Results showed that Phe+MeJ treatment did not improve phenolic content to a greater extent than the corresponding individual treatments. Overall, the greatest improvement was obtained with MeJ application, followed by Phe+MeJ; while Phe treatment barely increased phenolic compounds. Consequently, it was not possible to confirm the hypothesis that elicitation by MeJ could be supported by precursor feeding with Phe, when both applied together. This is the first study dealing with this matter under field conditions serving as basis for future works.
Collapse
Affiliation(s)
- Javier Portu
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Carretera de Burgos, km. 6, Finca La Grajera, 26007 Logroño, Spain
| | - Rosa López
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Carretera de Burgos, km. 6, Finca La Grajera, 26007 Logroño, Spain
| | - Pilar Santamaría
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Carretera de Burgos, km. 6, Finca La Grajera, 26007 Logroño, Spain
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (CAR-CSIC-UR), Carretera de Burgos, km. 6, Finca La Grajera, 26007 Logroño, Spain.
| |
Collapse
|
44
|
González-Arenzana L, Portu J, López R, Garijo P, Garde-Cerdán T, López-Alfaro I. Phenylalanine and urea foliar application: Effect on grape and must microbiota. Int J Food Microbiol 2017; 245:88-97. [DOI: 10.1016/j.ijfoodmicro.2017.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/12/2022]
|
45
|
Gutiérrez-Gamboa G, Garde-Cerdán T, Gonzalo-Diago A, Moreno-Simunovic Y, Martínez-Gil AM. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Helwi P, Habran A, Guillaumie S, Thibon C, Hilbert G, Gomes E, Delrot S, Darriet P, van Leeuwen C. Vine Nitrogen Status Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in Grape Berries and Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9789-9802. [PMID: 26478224 DOI: 10.1021/acs.jafc.5b03838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methoxypyrazines (MP) constitute a large family of compounds that contribute to the vegetative varietal aroma of many grapevine varieties and wines. The berry content in 2-methoxy-3-isobutylpyrazine (IBMP), a major MP reminiscent of green-pepper aroma, can be influenced by environmental factors or cultural practices such as water status or mineral nutrition. To date, no study has investigated a possible direct effect of nitrogen (N) on IBMP synthesis without possible interference from water status and vigor variations. In this study, only vine nitrogen status was significantly different among treatments. Water status was controlled during the season, and vine vigor was similar among treatments. IBMP level was maximal at bunch closure and decreased during the season. There was no significant effect of nitrogen nutrition on this metabolite. Moreover, the expression profiles of VvOMT3 and VvOMT4, key genes in the IBMP biosynthetic pathway, were similar between treatments. This result indicates that when an effect of N on IBMP was found in previous studies, it was likely mediated through the modification of bunch-zone microclimate, induced by the higher vigor of high N-status vines.
Collapse
Affiliation(s)
- Pierre Helwi
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Aude Habran
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Sabine Guillaumie
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Cécile Thibon
- Unité de recherche Œnologie, EA4577, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- USC 1366 Œnologie, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Ghislaine Hilbert
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Eric Gomes
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Serge Delrot
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Philippe Darriet
- Unité de recherche Œnologie, EA4577, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
- USC 1366 Œnologie, INRA, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| | - Cornelis van Leeuwen
- Ecophysiology and Functional Genomics of the Vine (EGFV), UMR 1287, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV) , 33140 Villenave d'Ornon, France
| |
Collapse
|