1
|
Pan X, Xian P, Li Y, Zhao X, Zhang J, Song Y, Nan Y, Ni S, Hu K. Chemotaxis-driven hybrid liposomes recover intestinal homeostasis for targeted colitis therapy. J Control Release 2025; 380:829-845. [PMID: 39961435 DOI: 10.1016/j.jconrel.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from Stenotrophomonas maltophilia)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peng Xian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yushu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunrong Nan
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Jin Z, Cao X, Guo Q, Zhang C, Li Q, Wang W, Lv Y, Ma Y, Wang X. TA-V Nanozymes with Acid Resistance Capabilities Effectively Target and Alleviate Ulcerative Colitis Lesions via Oral Delivery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14912-14923. [PMID: 40013919 DOI: 10.1021/acsami.4c20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
As one of the most common inflammatory bowel diseases (IBDs), ulcerative colitis (UC) has become a rising global health issue that affects people's quality of life. Conventional therapeutic drugs have low bioavailability and may cause serious side effects due to their lack of acidic resistance and lesion-targeting capabilities. The development of novel nanomedicines to overcome these problems is urgently needed. Nanozymes have attracted attention because of their excellent catalytic efficiency in various harsh environments. In this study, tannic acid-vanadium (TA-V) nanozymes with multienzymatic and excellent antioxidant abilities, which exhibit acidic resistance and a negative surface charge, were successfully developed. All these characteristics make it possible that these nanozymes are not easily decomposed by gastric acid and can effectively accumulate in colitis lesions with a positive charge through oral delivery. In vitro and in vivo experiments further demonstrated the excellent prophylactic and therapeutic value of these compounds in the treatment of UC by scavenging reactive oxygen/nitrogen species (ROS/RNS) and mitigating the oxidative stress environment, thus downregulating the levels of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Furthermore, TA-V also showed excellent biosafety and biocompatibility without causing obvious damage to the main organs. This work provides novel preventative and therapeutic TA-V nanozymes that might have potential clinical applications in UC treatment.
Collapse
Affiliation(s)
- Zhenzhen Jin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qinglong Guo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Cong Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Wenqi Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Yong Lv
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Xianwen Wang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
4
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
5
|
Nie W, Zhong W, Qian L, Zhong H, Hou Y, Xu H, Qi S, Dai L, Han X, Yang X, Xu R, He Y, Lin D, Gao F. Oral chitosan-cyclodextrin "shell-core" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment. Int J Biol Macromol 2025; 288:138493. [PMID: 39647762 DOI: 10.1016/j.ijbiomac.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.
Collapse
Affiliation(s)
- Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Lin Qian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiyun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China
| | - Yusen Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xinyue Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Dasheng Lin
- Chengdu Huashen Technology Group Co., Ltd., Chengdu 611137, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
6
|
Sobolewska D, Galanty A, Grabowska K, Makowska-Wąs J, Podolak I, Wróbel-Biedrawa D. Genipin-Simple but Significant Bioactive Iridoid for Therapeutical Application and Beyond: A Review. Life (Basel) 2025; 15:159. [PMID: 40003568 PMCID: PMC11856651 DOI: 10.3390/life15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Genipin is a non-glycosidic iridoid isolated mainly from the fruits of Gardenia jasminoides and Genipa americana. It is the active ingredient in extracts from these plants, responsible for their anti-inflammatory and hepatoprotective effects. In several in vitro tests, its anti-proliferative activity against tumour cell lines has been demonstrated, and due to its ability to specifically inhibit the UCP2 protein and inhibit STAT3 activation, a significant increase in the cytotoxicity of several anticancer drugs was observed in co-treatment with genipin. In recent years, the importance of genipin has increased due to the possibility of using this iridoid as a biocompatible and low cytotoxicity potent crosslinking agent in the manufacture of dressings, in tissue engineering, as a component of a drug carrier system and in the production of food packaging. Genipin is also a substrate in the production of a blue pigment used as a food additive and fabric pigment, and other applications. Due to documented cases of hepatotoxicity, genipin and the blue pigment derived from it are being investigated for effective and safe therapeutic and non-drug use. The current paper discusses selected aspects of chemistry, activity and use of this interesting compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Dagmara Wróbel-Biedrawa
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688 Cracow, Poland; (D.S.); (A.G.); (K.G.); (J.M.-W.); (I.P.)
| |
Collapse
|
7
|
Xu D, Hui YY, Zhang W, Zhao MN, Gao K, Tao XR, Wang JW. Genipin-crosslinked hydrogels for food and biomedical applications: A scientometric review. Int J Biol Macromol 2024; 282:137478. [PMID: 39537060 DOI: 10.1016/j.ijbiomac.2024.137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Genipin, a precursor of dietary blue pigment, is a promising alternative for industrial applications in food and health. Due to its ability to simultaneously satisfy biosafety requirements and provide crosslinking effects, genipin has attracted considerable attention for food and biomedical applications. In this review, we attempt to shed light on the progress in genipin research using scientometrics. Based on this scientometric discovery, we reviewed the use of genipin-crosslinked films for fruit packaging in food science. Genipin-crosslinked hydrogels used for drug delivery include natural, chemical, and protein delivery systems. Genipin-crosslinked hydrogels for tissue engineering primarily include materials used for tissue regeneration and repair. Genipin-crosslinked hydrogels are used in wound dressings and wound closure. This review provides a scientometric perspective to facilitate future research and development of genipin for food science, drug delivery, tissue engineering, and wound healing.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Yu Hui
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Mei-Na Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing-Ru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Zhao J, Jia W, Zhang R, Wang X, Zhang L. Improving curcumin bioavailability: Targeted delivery of curcumin and loading systems in intestinal inflammation. Food Res Int 2024; 196:115079. [PMID: 39614566 DOI: 10.1016/j.foodres.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Curcumin is a natural food ingredient and has the potential to alleviate inflammation and combat cancer. The incidence of intestinal inflammation has been increasing and poses a severe risk to human health. Due to low absorption and bioavailability, curcumin's anti-inflammatory ability is ineffective. To improve the bioavailability of curcumin, descriptions of the intestinal barrier, signaling pathways, and transport mechanisms are reviewed. Blocking the signaling pathways lowers the number of inflammatory cytokines produced, which is the primary mechanism by which curcumin relieves inflammatory symptoms. The bioavailability of curcumin is not only related to physicochemical properties but also to the nature of the carrier material. Environmental indicators also have an impact on the improvement of curcumin bioavailability in applications. There is a need to develop multifunctional and more stable nanomaterial targeting systems to improve curcumin bioavailability and achieve better results in nanotechnology research and targeted inflammation therapy.
Collapse
Affiliation(s)
- Junyi Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Zhang
- Keyi Sunshine Test, Xi'an 710021, China
| |
Collapse
|
9
|
Wang XC, Xu Y, Jiang W, Luo FX, Zhang D, Wu D, Du YN, Hu JN. Dual-layer probiotic encapsulation using metal phenolic network with gellan gum-tamarind gum coating for colitis treatment. Int J Biol Macromol 2024; 280:135759. [PMID: 39299413 DOI: 10.1016/j.ijbiomac.2024.135759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Probiotic oral therapy has been recognised as an effective treatment for inflammatory bowel disease (IBD). However, the efficacy of probiotics is often diminished due to their limited resistance to harsh gastrointestinal conditions. Therefore, the importance of designing innovative strategies for oral probiotic delivery for the effective treatment of IBD is increasingly recognised. In this study, we present a novel encapsulation strategy of Lactobacillus plantarum (L.P) using the dual-layer system consisting of a tannic acid‑calcium network and polysaccharide coating (gellan gum-tamarind gum) named L.P-C/T-G/T. This double-layer encapsulation system not only does not affect the normal proliferation of probiotics and provide protection, but also endows probiotics with more functions. More specifically, the acid resistance ability of the encapsulated probiotics is increased by 10 times, the free radical scavenging rate is enhanced by 5 times, and the intestinal retention time can be prolonged by 6-12 h. In the DSS-induced murine colitis model, it significantly alleviated colon shortening, inhibited ROS overexpression, and promoted the repair and regeneration of the mucus layer. This dual-layer encapsulation approach for a single probiotic demonstrates a significant advancement in probiotic delivery technology, offering hope for a comprehensive approach to the treatment of colitis and potentially other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yu Xu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng-Xian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yi-Nan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
10
|
Zhang Q, Deng H, Luo R, Qi H, Lei Y, Yang L, Pang H, Fu C, Liu F. Oral food-derived whey protein isolate-Tremella fuciformis polysaccharides pickering emulsions with adhesive ability to delivery magnolol for targeted treatment of ulcerative colitis. Int J Biol Macromol 2024:135585. [PMID: 39270912 DOI: 10.1016/j.ijbiomac.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Magnolol (Mag) is a promising natural compound with therapeutic potential for ulcerative colitis (UC). Here we designed and fabricated an oral food-grade whey protein isolate-Tremella fuciformis polysaccharides (WPI-TFPS) stabilized pickering emulsions to encapsulate Mag (Mag-WPI-TFPS) for targeted treatment of UC. With the assistance of the WPI-TFPS, pickering emulsions were well encapsulated and formed stable microparticles with a particle size of approximately 9.49 ± 0.047 μm, a 93.63 ± 0.21 % encapsulation efficiency and a loading efficiency of 21.53 ± 0.01 %. In vitro, the formulation exhibited sustained-release properties in simulated colon fluid with a cumulative release rate of 60.78 % at 48 h. In vivo, the Mag-WPI-TFPS specifically accumulated in the colon tissue for 24 h with stronger fluorescence intensity, which demonstrated that TFPS and WPI had a good adherence ability to inflamed mucosa by electrostatic attraction and ligand-receptor interactions. As expected, compared with Free-Mag, the oral administration of Mag-WPI-TFPS remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. More importantly, WPI-TFPS enhanced gut microbiota balance by increasing the diversity and relative abundances of Lactobacillaceae and Firmicutes. Overall, this study presents a convenient, eco-friendly, food-derived oral formulation with potential as a dietary supplement for targeted UC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yicheng Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Liu Y, Gao C, Li G, Niu Z, Liu X, Shen H, Sun J, Zhang R. Melanin Nanoparticle-Modified Probiotics for Targeted Synergistic Therapy of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31950-31965. [PMID: 38861025 DOI: 10.1021/acsami.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.
Collapse
Affiliation(s)
- Yuqin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Gang Li
- Shanxi Medical University, Taiyuan 030001, China
| | | | - Xiaoli Liu
- Shanxi Medical University, Taiyuan 030001, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Zhang H, Zhang T, Huang X, Liu C, Ma S, Li S, Li Y, Liu J, Du Z, Yang M. Oral Synergism of Egg-White-Derived Peptides (EWDP) and Curcumin for Colitis Mitigation via Polysaccharide/Cyclodextrin Metal-Organic Framework-Based Assemblies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11140-11152. [PMID: 38703140 DOI: 10.1021/acs.jafc.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.
Collapse
Affiliation(s)
- Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinyi Huang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
14
|
Zhao C, Yang X, Fan M, Tian L, Sun T, Sun C, Jiang T. The investigation on sialic acid-modified pectin nanoparticles loaded with oxymatrine for orally targeting and inhibiting the of ulcerative colitis. Colloids Surf B Biointerfaces 2024; 236:113809. [PMID: 38447446 DOI: 10.1016/j.colsurfb.2024.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
The aim of the study was to develop an oral targeting drug delivery system (OTDDS) of oxymatrine (OMT) to effectively treat ulcerative colitis (UC). The OTDDS of OMT (OMT/SA-NPs) was constructed with OMT, pectin, Ca2+, chitosan (CS) and sialic acid (SA). The obtained particles were characterized in terms of particle size, zeta potential, morphology, drug loading, encapsulation efficiency, drug release and stability. The average size of OMT/SA-NPs was 255.0 nm with a zeta potential of -12.4 mV. The loading content and encapsulation efficiency of OMT/SA-NPs were 14.65% and 84.83%, respectively. The particle size of OMT/SA-NPs changed slightly in the gastrointestinal tract. The nanoparticles can delivery most of the drug to the colon region. In vitro cell experiments showed that the SA-NPs had excellent biocompatibility and anti-inflammation, and the uptake of SA-NPs by RAW 264.7 cells was time and concentration-dependent. The conjugated SA can help the internalization of NPs into target cells. In vivo experiments showed that OMT/SA-NPs had a superior anti-inflammation effect and the effect of reducing UC, which was attributed to the delivery most of OMT to the colonic lumen, the specific targeting and retention in colitis site and the combined anti-inflammation of OMT and NPs.
Collapse
Affiliation(s)
- Chunying Zhao
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Xin Yang
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Mengyao Fan
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Linan Tian
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Tongtong Sun
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Changshan Sun
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China.
| | - Tongying Jiang
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China.
| |
Collapse
|
15
|
Wang Y, Zhong S, Yang K, Luo R, Dai L, Zhong W, Ye Y, Fu C, Lin D, Li N, Chen J, Zheng C, Fu S, Gao F. β-1,3-d-glucan particles-based "nest" protected co-loaded Rhein and Emodin regulates microbiota and intestinal immunity for ulcerative colitis treatment. Int J Biol Macromol 2024; 260:128818. [PMID: 38103669 DOI: 10.1016/j.ijbiomac.2023.128818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Herein, a β-1,3-D-glucan based yeast cell wall loaded with co-loaded nanoparticles of Rhein (RH) and Emodin (EMO), was developed for the combined treatment of ulcerative colitis (UC) by modulating gut microbiota and the Th17/Treg cell balance. This was achieved through an oral "nano-in-micro" advanced drug delivery system. Specifically, RH was grafted onto the HA chain via disulfide bonds to synthesize a reduction-sensitive carrier material and then used to encapsulate EMO to form nanoparticles with a specific drug ratio (denoted as HA-RH/EMO NPs). As anticipated, HA-RH/EMO NPs were encased within the "nests"-yeast cell wall microparticles (YPs), efficiently reach the colon and then released gradually, this occurs mainly due to the degradation of β-1,3-D-glucan by β-glucanase. Additionally, HA-RH/EMO NPs demonstrated a significant reduction-sensitive effect in GSH stimulation evaluations and a remarkable ability to target macrophages in in vitro cell uptake studies. Notably, HA-RH/EMO NYPs reduced inflammatory responses by inhibiting the PI3K/Akt signaling pathway. Even more crucially, the oral delivery and drug combination methods significantly enhanced the regulatory effects of HA-RH/EMO NYPs on gut microbiota and the Th17/Treg balance. Overall, this research marks the first use of YPs to encapsulate two components, RH and EMO, presenting a promising therapeutic strategy for UC.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Siwei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ke Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yan Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Dasheng Lin
- Chengdu Huashen Technology Group Co., Ltd., Chengdu 611137, Sichuan, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jianping Chen
- School of Traditional Chinese Medicine, University of Hong Kong, 999077, Hong Kong, China.
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
16
|
Guo ZJ, Zhang W, Xu JG, Li XM, Zhang JB, Li Y, Ji D, Li L, Huang W, Su LL. Effect of vinegar steaming on the composition and structure of Schisandra chinensis polysaccharide and its anti-colitis activity. Biomed Chromatogr 2024; 38:e5811. [PMID: 38191780 DOI: 10.1002/bmc.5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
In this study, infrared spectroscopy, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) technology were applied to systematically explain the Schisandra chinensis's polysaccharide transformation in configuration, molecular weight, monosaccharide composition, and anti-ulcerative colitis (UC) activity after vinegar processing. Scanning electron microscopic results showed that the appearance of S. chinensis polysaccharide changed significantly after steaming with vinegar. The MALDI-TOF-MS results showed that the mass spectra of raw S. chinensis polysaccharides (RSCP) were slightly lower than those of vinegar-processed S. chinensis polysaccharides (VSCP). The RSCP showed higher peaks at m/z 1350.790, 2016.796, and 2665.985, all with left-skewed distribution, and the molecular weights were concentrated in the range of 1300-3100, with no higher peak above m/z 5000. The VSCPs showed a whole band below m/z 3000, with m/z 1021.096 being the highest peak, and the intensity decreased with the increase of m/z. In addition, compared to RSCPs, VSCPs can significantly increase the content of intestinal short-chain fatty acids (SCFAs). This study showed that the apparent morphology and molecular weight of S. chinensis's polysaccharides significantly changed after steaming with vinegar. These changes directly affect its anti-UC effect significantly, and its mechanism is closely related to improving the structure and diversity of gut microbiota and SCFA metabolism.
Collapse
Affiliation(s)
- Zhi-Jun Guo
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Guo Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Man Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiu-Ba Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Huang
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Technology Engineering Research Center of TCM Health Preservation, Nanjing, China
| |
Collapse
|
17
|
Ahmed R, Ul Ain Hira N, Wang M, Iqbal S, Yi J, Hemar Y. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem 2024; 434:137498. [PMID: 37741231 DOI: 10.1016/j.foodchem.2023.137498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Natural cross-linkers are extensively employed due to their low toxicity and biocompatibility benefits. Genipin acts as a precursor for producing blue colorants. The formation of these colorants involves the cross-linking reaction between genipin and primary amines present in amino acids, peptides, and proteins. Genipin is extracted from Gardenia jasminoides and Genipa americana. This article explains the cross-linking mechanism of genipin with proteins/polysaccharides to provide an overall understanding of its properties. Furthermore, it explores new sources of genipin and innovative methodologies to make the genipin recovery process efficient. Genipin increases food products' texture, gel strength, stability, and shelf life. The antibacterial, anti-inflammatory, and antioxidant properties of chitosan, gelatin, alginate, and hyaluronic acid increased after genipin cross-linking. Lastly, drawbacks, toxicity, and directions regarding the genipin cross-linking have also been addressed. The review article covers how to recover and cross-link genipin with biopolymers for industrial applications.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Noor Ul Ain Hira
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shahid Iqbal
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222. Palmerston North, 4442, New Zealand
| |
Collapse
|
18
|
Meng ZW, Chang B, Sang LX. Use of curcumin and its nanopreparations in the treatment of inflammatory bowel disease. World J Gastroenterol 2024; 30:280-282. [PMID: 38314128 PMCID: PMC10835530 DOI: 10.3748/wjg.v30.i3.280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease of the intestine that includes Crohn's disease and ulcerative colitis. Because IBD is difficult to heal and easily relapses, it could worsen patient quality of life and increase economic burdens. Curcumin (CUR) is a bioactive component derived from the rhizome of turmeric (Curcuma longa). Many basic and clinical studies have shown that CUR can efficiently treat IBD by decreasing the activity of proinflammatory cytokines by communicating with transcription factors and signaling molecules. However, due to the limitations of being almost insoluble in aqueous solutions and having low oral bioavailability, it is important to select appropriate pharmaceutical preparations.
Collapse
Affiliation(s)
- Zi-Wen Meng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| |
Collapse
|
19
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
20
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
21
|
Wen Z, Kang L, Fu H, Zhu S, Ye X, Yang X, Zhang S, Hu J, Li X, Chen L, Hu Y, Yang X. Oral delivery of porous starch-loaded bilayer microgels for controlled drug delivery and treatment of ulcerative colitis. Carbohydr Polym 2023; 314:120887. [PMID: 37173037 DOI: 10.1016/j.carbpol.2023.120887] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
We prepared one type of bilayer microgels for oral administration with three effects: pH responsiveness, time lag, and colon enzyme degradation. Combined with the dual biological effects of curcumin (Cur) for reducing inflammation and promoting repair of colonic mucosal injury, targeted colonic localization and release of Cur according to the colonic microenvironment were enhanced. The inner core, derived from guar gum and low-methoxyl pectin, afforded colonic adhesion and degradation behavior; the outer layer, modified by alginate and chitosan via polyelectrolyte interaction, achieved colonic localization. The porous starch (PS)-mediated strong adsorption allowed Cur loading in inner core to achieve a multifunctional delivery system. In vitro, the formulations exhibited good bioresponses at different pH conditions, potentially delaying Cur release in the upper gastrointestinal tract. In vivo, dextran sulfate sodium-induced ulcerative colitis (UC) symptoms were significantly alleviated after oral administration, accompanied by reduced levels of inflammatory factors. The formulations facilitated colonic delivery, allowing Cur accumulation in colonic tissue. Moreover, the formulations could alter gut microbiota composition in mice. During Cur delivery, each formulation increased species richness, decreased pathogenic bacterial content, and afforded synergistic effects against UC. These PS-loaded bilayer microgels, exhibiting excellent biocompatibility, multi-bioresponsiveness, and colon targeting, could be beneficial in UC therapy, allowing development into a novel oral formulation.
Collapse
Affiliation(s)
- Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Lvyi Chen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Chen J, Li M, Chen R, Xu Z, Yang X, Gu H, Zhang L, Fu C, Zhang J, Wu Y. Gegen Qinlian standard decoction alleviated irinotecan-induced diarrhea via PI3K/AKT/NF-κB axis by network pharmacology prediction and experimental validation combination. Chin Med 2023; 18:46. [PMID: 37106406 PMCID: PMC10134581 DOI: 10.1186/s13020-023-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The frequently occurred chemotherapy-induced diarrhea (CID) caused by irinotecan (CPT-11) administration has been the most representative side-effects of CPT-11, resulting in the chemotherapy suspension or failure. Our previous studies indicated that Gegen Qinlian formula exhibited a significant alleviation effect on CPT-11-induced diarrhea. However, referencing to Japanese Kampo medicine, the TCM standard decoction would supply the gap between ancient preparation application and modern industrial production. METHODS The LC-MS technology combined with network pharmacology was employed to identify the active ingredients and mechanisms of GQD standard decoction for CPT-11-induced diarrhea. The anti-inflammatory activities associated with intestinal barrier function of GQD standard decoction were studied by SN-38 activated NCM460 cells in vitro and CPT-11-induced diarrhea in vivo. Proteins involved in inflammation, mRNA levels, disease severity scores, and histology involved in intestinal inflammation were analysed. RESULTS There were 37 active compounds were identified in GQD standard decoction. Network pharmacology analyses indicated that PI3K-AKT signaling pathway were probably the main pathway of GQD standard decoction in CPT-11-induced diarrhea treatment, and PIK3R1, AKT1, NF-κB1 were the core proteins. Moreover, we found that the key proteins and pathway predicted above was verified in vivo and in vitro experiments, and the GQD standard decoction could protect the cellular proliferation in vitro and ameliorate CPT-11-induced diarrhea in mice model. CONCLUSIONS This study demonstrated the molecular mechanism of 37 active ingredients in GQD standard decoction against CPT-11-induced diarrhea. And the core proteins and pathway were validated by experiment. This data establishes the groundwork for particular molecular mechanism of GQD standard decoction active components, and this research can provide a scientific reference for the TCM therapy of CID.
Collapse
Affiliation(s)
- Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Min Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Ziyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xiaoqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China.
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
23
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
24
|
Ye N, Zhao P, Ayue S, Qi S, Ye Y, He H, Dai L, Luo R, Chang D, Gao F. Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis treatment. Int J Biol Macromol 2023; 232:123229. [PMID: 36642354 DOI: 10.1016/j.ijbiomac.2023.123229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Curcumin (CUR) is a promising natural compound in ulcerative colitis (UC) treatment, but limited by its low oral bioavailability and poor targeting ability. Therefore, given the targeting action of lactoferrin (LF) by binding to the LF receptors of intestinal epithelial cells (IECs) and of folic acid (FA) by binding to the FA receptors of macrophages, we developed an oral dual-targeting nanosystem. Laminarin (LA)-coated, FA-modified LF nanoparticles (NPs) were used to encapsulate CUR (LA/FA/CUR-NPs) with a food-grade, enzyme-sensitive, and dual-targeting capacity. For the generated NPs, LF improved the loading efficiency of CUR (95.08 %). The LA layer could improve the upper gastrointestinal tract stability of the NPs while improve drug release around colon lesion through β-glucanase digestion. Based on the cellular uptake evaluation, FA/CUR-NPs were capable of specifically targeting colonic epithelial cells and macrophages through LF and FA ligands, respectively, to enhance the uptake efficiency. Moreover, based on the advantage of the dual-targeting strategy, oral administration of FA/CUR-NPs obviously reduced colitis symptoms by alleviating inflammation, accelerating colonic mucosal barrier repair and restoring the balance of the intestinal microbiota. This dual-targeted nanodesign corresponded to the multi-bioresponsibilities of CUR, thus offering a promising approach in UC treatment.
Collapse
Affiliation(s)
- Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Peng Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shibu Ayue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yan Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Haoqi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
25
|
Yan JN, Jiang XY, Li L, Sun W, Lai B, Wu HT. Storage stability of scallop (Patinopecten yessoensis) male gonad hydrolysates/κ-carrageenan composite hydrogels embeded curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Rashid N, Khalid SH, Ullah Khan I, Chauhdary Z, Mahmood H, Saleem A, Umair M, Asghar S. Curcumin-Loaded Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-inflammatory Cytokines to Expedite Healing of Full-Thickness Wounds. ACS OMEGA 2023; 8:7575-7586. [PMID: 36872957 PMCID: PMC9979366 DOI: 10.1021/acsomega.2c07018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Curcumin (Cur) entrapped poly(vinyl alcohol) (PVA)/gelatin composite films were prepared by cross-linking with tannic acid (TA) as bioactive dressings for rapid wound closure. Films were evaluated for mechanical strength, swelling index, water vapor transmission rate (WVTR), film solubility, and in-vitro drug release studies. SEM revealed uniform and smooth surfaces of blank (PG9) and Cur-loaded composite films (PGC4). PGC4 exhibited excellent mechanical strength (tensile strength (TS) and Young's modulus (YM) were 32.83 and 0.55 MPa, respectively), swelling ability (600-800% at pH 5.4, 7.4, and 9), WVTR (2003 ± 26), and film solubility (27.06 ± 2.0). Sustained release (81%) of the encapsulated payload was also observed for 72 h. The antioxidant activity determined by DPPH free radical scavenging showed that the PGC4 possessed strong % inhibition. The PGC4 formulation displayed higher antibacterial potential against S. aureus (14.55 mm zone of inhibition) and E. coli (13.00 mm zone of inhibition) compared to blank and positive control by the agar well diffusion method. An in-vivo wound healing study was carried out on rats using a full-thickness excisional wound model. Wounds treated with PGC4 showed very rapid healing about 93% in just 10 days post wounding as compared to 82.75% by Cur cream and 80.90% by PG9. Furthermore, histopathological studies showed ordered collagen deposition and angiogenesis along with fibroblast formation. PGC4 also exerted a strong anti-inflammatory effect by downregulating the expression of pro-inflammatory cytokines (TNF-α and IL-6 were lowered by 76% and 68% as compared to the untreated group, respectively). Therefore, Cur-loaded composite films can be an ideal delivery system for effective wound healing.
Collapse
Affiliation(s)
- Nida Rashid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hira Mahmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
27
|
Coating Materials to Increase the Stability of Liposomes. Polymers (Basel) 2023; 15:polym15030782. [PMID: 36772080 PMCID: PMC10004256 DOI: 10.3390/polym15030782] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Liposomes carry various compounds with applications in pharmaceutical, food, and cosmetic fields, and the administration route is especially parenteral, oral, or transdermal. Liposomes are used to preserve and release the internal components, thus maintaining the properties of the compounds, the stability and shelf life of the encapsulated products, and their functional benefits. The main problem in obtaining liposomes at the industrial level is their low stability due to fragile phospholipid membranes. To increase the stability of liposomes, phospholipid bilayers have been modified or different coating materials have been developed and studied, both for liposomes with applications in the pharmaceutical field and liposomes in the food field. In the cosmetic field, liposomes need no additional coating because the liposomal formulation is intended to have a fast penetration into the skin. The aim of this review is to provide current knowledge regarding physical and chemical factors that influence stability, coating materials for liposomes with applications in the pharmaceutical and food fields to increase the stability of liposomes containing various sensitive compounds, and absorption of the liposomes and commercial liposomal products obtained through various technologies available on the market.
Collapse
|
28
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
29
|
Beneficial effects of tannic acid on comorbid anxiety in cecal ligation and puncture-induced sepsis in rats and potential underlying mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1019-1030. [PMID: 36598513 DOI: 10.1007/s00210-022-02374-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Sepsis-associated encephalopathy (SAE), a neurological dysfunction caused by sepsis, is the most common complication among septic ICU patients. Given the major role of inflammation in the pathophysiology of sepsis-induced anxiety, an extreme and early manifestation of SAE, the present study examined whether tannic acid, as an anti-inflammatory agent, has anxiolytic effects in cecal ligation and puncture (CLP)-induced sepsis. Forty male Wistar rats were assigned to four groups: (1) sham; (2) sham + tannic acid; (3) sepsis and (4) sepsis + tannic acid. Sepsis was induced by cecal ligation and puncture model. Animals in the sham + tannic acid and sepsis + tannic acid groups received tannic acid (20 mg/kg, i.p.), 6, 12, and 18 h after the sepsis induction. Twenty-four hours after the sepsis induction, systolic blood pressure and sepsis score were assessed. Anxiety-related behaviors were evaluated using elevated plus-maze and dark-light transition tests. Moreover, inflammatory markers (TNF-α and IL-6) and oxidative stress parameters (MDA and SOD) were measured in the brain tissue while protein levels (GABAA receptors and IL-1β) were assessed in the hippocampus. Administration of tannic acid significantly improved sepsis score and hypotension induced by sepsis. Anxiety-related behaviors showed a significant decrease in the sepsis + tannic acid group compared to the sepsis group. Tannic acid caused a significant decrease in the brain inflammatory markers and a remarkable improvement in the brain oxidative status compared to the septic rats. Tannic acid prevented animals from decreasing GABAA receptors and increasing IL-1β protein levels in the hippocampus compared to the sepsis group. This study indicated that tannic acid mitigated anxiety-related behaviors through decreasing inflammation and oxidative stress and positively modifying IL-1β/GABAA receptor pathway. Therefore, tannic acid shows promise as an efficacious treatment for comorbid anxiety in septic patients.
Collapse
|
30
|
Liu K, Chen YY, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Hydrolytic Quinoa Protein and Cationic Lotus Root Starch-Based Micelles for Co-Delivery of Quercetin and Epigallo-catechin 3-Gallate in Ulcerative Colitis Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15189-15201. [PMID: 36441188 DOI: 10.1021/acs.jafc.2c06376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation and sustained release of drugs in the colonic inflammatory region are the favorable strategy for treating ulcerative colitis (UC). In this study, we developed a synergistic anti-inflammatory drug (quercetin/EGCG)-loaded micelle using hydrolytic quinoa protein (HQP) and cationic lotus root starch (CLRS) by a layer-by-layer assembly method. The encapsulation efficiency of quercetin and EGCG in the Que-HQP-EGCG-CLRS micelles reached 91.5 and 89.4%, respectively. This composite micelle exhibited a core-shell structure, where Que-HQP-EGCG was the core and CLRS was the coating shell. Moreover, the in vitro experiments indicated that these micelles can make Que/EGCG pass through gastric environments stably and delay their release in the intestine. Animal experiments further confirmed that the Que-HQP-EGCG-CLRS micelles can efficiently accumulate in the colonic inflammatory region and enable sustained release of drugs (more than 24 h), thus notably alleviating the symptoms of UC. These results suggested that Que-HQP-EGCG-CLRS micelles have good gastric stability, colonic inflammatory-accumulated effect, and sustained drug release ability, which are a promising co-delivery system for UC treatment.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
- Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei230036, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei230009, People's Republic of China
| |
Collapse
|
31
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
32
|
Qi S, Luo R, Han X, Nie W, Ye N, Fu C, Gao F. pH/ROS Dual-Sensitive Natural Polysaccharide Nanoparticles Enhance "One Stone Four Birds" Effect of Rhein on Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50692-50709. [PMID: 36326017 DOI: 10.1021/acsami.2c17827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rhein (RH), a natural anthraquinone compound, is considered an effective treatment candidate for ulcerative colitis (UC), whose multiple biological activities contribute to UC, including anti-inflammation, antioxidation, intestinal barrier repair, and microflora regulation. However, the application of RH is severely limited by its low water solubility, low bioavailability, and poor colonic targeting. Although some nanoparticles have been developed for the oral delivery of RH, most of them mainly highlighted only one effect of some drug delivery strategies but the above multiple biological activities. Therefore, a multiple polysaccharide-based nanodelivery system, comprising chitosan (CS) and fucoidan (FU), with pH/reactive oxygen species (ROS) sensitivity and mucosal adhesion, was developed and first used to load RH as a comprehensive treatment for UC. Briefly, RH-F/C-NPs were prepared using the polyelectrolyte self-assembly method; the average size of RH-F/C-NPs was 233.1 ± 5.7 nm, and the encapsulation rate of RH was 93.67 ± 1.60%. And it could maintain gastric stability and release RH in the colon with the designed pH/ROS sensitivity contributed by the polysaccharide-based structures. Cellular uptake experiments showed that both NCM 460 cells and RAW 264.7 cells had a good uptake of RH-F/C-NPs. Importantly, the effects of RH were highlighted in in vivo experiments, the results of which showed that RH-F/C-NPs could significantly reduce DSS-induced inflammation by inhibiting the TLR4/NF-κB-mediated anti-inflammatory pathway, the Nrf2/HO-1-mediated antioxidant pathway, colonic mucosal barrier repair, and intestinal microflora regulation. In addition, pharmacokinetic studies have shown that F/C-NPs contribute to the increase in the plasma concentration and the accumulation of RH in the colon to some extent. In short, this study is the first to develop an oral multiple polysaccharide-based nanosystem with pH/ROS dual sensitivity to study the "one stone four birds" therapeutic effect of RH on UC.
Collapse
Affiliation(s)
- Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Naijing Ye
- Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu610072, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| |
Collapse
|
33
|
Sun H, Zhan M, Mignani S, Shcharbin D, Majoral JP, Rodrigues J, Shi X, Shen M. Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022; 14:2239. [PMID: 36297677 PMCID: PMC9611033 DOI: 10.3390/pharmaceutics14102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin (Cur), a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. However, the poor water solubility and low bioavailability of Cur limit its therapeutic effects for clinical applications. A variety of nanocarriers have been successfully developed to improve the water solubility, in vivo distribution, and pharmacokinetics of Cur, as well as to enhance the ability of Cur to polarize macrophages and relieve macrophage oxidative stress or anti-apoptosis, thus accelerating the therapeutic effects of Cur on inflammatory diseases. Herein, we review the design and development of diverse Cur nanoformulations in recent years and introduce the biomedical applications and potential therapeutic mechanisms of Cur nanoformulations in common inflammatory diseases, such as arthritis, neurodegenerative diseases, respiratory diseases, and ulcerative colitis, by regulating macrophage behaviors. Finally, the perspectives of the design and preparation of future nanocarriers aimed at efficiently exerting the biological activity of Cur are briefly discussed.
Collapse
Affiliation(s)
- Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Serge Mignani
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, 75006 Paris, France
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Laboratoire de Chimie de Coordination du CNRS, Université Toulouse, 31077 Toulouse, France
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Zhang H, Guo Z, Wang X, Xian J, Zou L, Zheng C, Zhang J. Protective mechanisms of Zanthoxylum bungeanum essential oil on DSS-induced ulcerative colitis in mice based on a colonic mucosal transcriptomic approach. Food Funct 2022; 13:9324-9339. [PMID: 36069282 DOI: 10.1039/d1fo04323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ameliorative effects on ulcerative colitis (UC) as well as the related mechanisms of the essential oil derived from the edible herb Zanthoxylum bungeanum Maxim (ZBEO) have been demonstrated herein. Based on GC-MS analysis, 45 volatile compounds in ZBEO were determined for its quality control. In vitro studies showed that after pretreatment with ZBEO, the disordered expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and an anti-inflammatory cytokine (IL-10) on colon epithelial NCM460 cells induced by lipopolysaccharide (LPS) could be reversed. Additionally, oral administration of ZBEO significantly alleviated colitis in dextran sulfate sodium (DSS)-induced UC mice, including body weight loss, colon length shortening, disease activity index and colonic pathological damage. Furthermore, to uncover the anti-UC mechanisms of ZBEO, analysis of transcriptomes by next-generation sequencing technology was performed to explore the RNA genetic variation on colon tissues. Based on GO analysis and KEGG pathway analysis, a series of genetic pathways involved in the protective role of ZBEO against UC were determined. As a result, ZBEO treatment could decrease the expression of VCAM-1, TLR8, IL-1β and IL-11 mRNA as verified by qRT-PCR, which are involved in these potential genetic pathways. In conclusion, ZBEO administration would be a medicinal or dietary supplementation strategy for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Zhiqing Guo
- Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional of Chinese Medicine, Chengdu 610072, China.
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional of Chinese Medicine, Chengdu 610072, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
35
|
Xiao M, Wu S, Cheng Y, Ma J, Luo X, Chang L, Zhang C, Chen J, Zou L, You Y, Zhang J. Colon-specific delivery of isoliquiritigenin by oral edible zein/caseate nanocomplex for ulcerative colitis treatment. Front Chem 2022; 10:981055. [PMID: 36157029 PMCID: PMC9501975 DOI: 10.3389/fchem.2022.981055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023] Open
Abstract
Although a natural anti-inflammatory ingredient, isoliquiritigenin (ISL), plays an effective role in ulcerative colitis (UC) treatment, a series of drawbacks still limit its clinical application, including the poor solubility, instability in gastrointestinal tract, and rapid elimination rate of ISL. Zein-based NPs display the benefits on drug loading and delivery, whereas with the poor stability. In this study, an edible nano-system composed by zein/caseinate complex was fabricated for the colon-targeting delivery of ISL, to improve its colon retention and anti-UC effects. The optimized ISL loaded zein/caseinate NPs (ISL@NPs) were prepared by single-factor design by anti-solvent precipitation method, and then characterized. The improved cellular uptake of ISL@NPs on NCM460 and RAW 264.7 cells was evaluated in vitro. The colon tissue permeability and retention capacity in vivo, and the anti-UC efficacy of ISL@NPs in DSS-induce UC were implemented. As a result, ISL@NPs with the high drug loading efficiency of 9.39% ± 0.26%, the average particle diameter of 137.32 ± 2.54 nm, exhibited the pH-sensitive stability in the different simulated gastrointestinal buffer. Compared with free ISL, ISL@NPs showed significantly higher cellular uptake ability in NCM460 and RAW 264.7 cells. Based on in vivo imaging system, zein/caseinate NPs showed the prolonged colonic retention and the enhanced penetration into the colonic epithelium. Finally, the oral administration of ISL@NPs could effectively alleviate the UC-related symptoms, down-regulate the production of pro-inflammatory factors, and reduce the infiltration of macrophages and neutrophils in colon tissues. In this study, an oral colon-specific nano-system, composed with the natural compound and edible materials, was developed as the promising alternatives in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyang Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaqi Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Chang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianping Chen
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yu You, ; Jinming Zhang,
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yu You, ; Jinming Zhang,
| |
Collapse
|
36
|
Rahiman N, Markina YV, Kesharwani P, Johnston TP, Sahebkar A. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases. J Control Release 2022; 348:264-286. [PMID: 35649486 DOI: 10.1016/j.jconrel.2022.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases usually arise as a result of an aberrant immune system attack on normal tissues of the body, which leads to a cascade of inflammatory reactions. The immune system employs different types of protective and anti-inflammatory cells for the regulation of this process. Curcumin is a known natural anti-inflammatory agent that inhibits pathological autoimmune processes by regulating inflammatory cytokines and their associated signaling pathways in immune cells. Due to the unstable nature of curcumin and its susceptibility to either degradation, or metabolism into other chemical entities (i.e., metabolites), encapsulation of this agent into various nanocarriers would appear to be an appropriate strategy for attaining greater beneficial effects from curcumin as it pertains to immunomodulation. Many studies have focused on the design and development of curcumin nanodelivery systems (micelles, dendrimers, and diverse nanocarriers) and are summarized in this review in order to obtain greater insight into novel drug delivery systems for curcumin and their suitability for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad, Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
37
|
Del Castillo-Santaella T, Aguilera-Garrido A, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, Maldonado-Valderrama J. Hyaluronic acid and human/bovine serum albumin shelled nanocapsules: Interaction with mucins and in vitro digestibility of interfacial films. Food Chem 2022; 383:132330. [PMID: 35219153 DOI: 10.1016/j.foodchem.2022.132330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Liquid lipid nanocapsules are oil droplets surrounded by a protective shell, which enable high load and allow controlled delivery of lipophilic compounds. However, their use in food formulations requires analysing their digestibility and interaction with mucin. Here, serum albumins and hyaluronic acid shelled olive oil nanocapsules are analysed to discern differences between human and bovine variants, the latter usually used as model system. Interfacial interaction of albumins and hyaluronic acid reveals that human albumin presents limited conformational changes upon adsorption, which increase by complexation with the polysaccharide present at the interface. The latter also promotes hydrophobic interactions with mucin, especially at pH 3 and protects albumin interfacial layer under in vitro gastric digestion. The interfacial unfolding induced in human albumin by hyaluronic acid facilitates in vitro lipolysis while its limited conformational changes provide the largest protection against in vitro lipolysis.
Collapse
Affiliation(s)
- Teresa Del Castillo-Santaella
- Department of Applied Physics, University of Granada, Avenida de Fuente Nueva, s/n, C.P. 18071 Granada, Spain; Department of Physical Chemistry, University of Granada, Campus Universitario s/n, C.P. 1807 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, University of Granada, Avenida de Fuente Nueva, s/n, C.P. 18071 Granada, Spain
| | - Francisco Galisteo-González
- Department of Applied Physics, University of Granada, Avenida de Fuente Nueva, s/n, C.P. 18071 Granada, Spain
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Avenida de Fuente Nueva, s/n, C.P. 18071 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Avda. del Hospicio, s/n, C.P. 18010 Granada, Spain
| | - José Antonio Molina-Bolívar
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Avda. del Hospicio, s/n, C.P. 18010 Granada, Spain; Department of Applied Physics II, Engineering School, University of Málaga, 29071 Málaga, Spain
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Avenida de Fuente Nueva, s/n, C.P. 18071 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Avda. del Hospicio, s/n, C.P. 18010 Granada, Spain.
| |
Collapse
|
38
|
Barzegar PEF, Mohammadi Z, Sattari S, Beiranvand Z, Salahvarzi M, Rossoli K, Adeli S, Beyranvand S, Maleki S, Kazeminava F, Mousazadeh H, Raisi A, Farjanikish G, Sadegh AB, Shahbazi F, Adeli M. Graphene-MoS 2 polyfunctional hybrid hydrogels for the healing of transected Achilles tendon. BIOMATERIALS ADVANCES 2022; 137:212820. [PMID: 35929257 DOI: 10.1016/j.bioadv.2022.212820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Healing of injured tendon is a major clinical challenge in orthopaedic medicine, due to the poor regenerative potential of this tissue. Two-dimensional nanomaterials, as versatile scaffolds, have shown a great potential to support, trigger and accelerate the tendon regeneration. However, weak mechanical properties, poor functionality and low biocompatibility of these scaffolds as well as post-surgery infections are main drawbacks that limit their development in the higher clinical phases. In this work, a series of hydrogels consisting polyglycerol functionalized reduced graphene oxide (PG), polyglycerol-functionalized molybdenum disulfide (PMoS2) and PG/PMoS2 hybrid within the gelatin matrix are formulated in new scaffolds and their ability for the healing of injured Achilles tendon, due to their high mechanical properties, low toxicity, cell proliferation enhancement, and antibacterial activities is investigated. While scaffolds containing PG and PMoS2 showed a moderate tendon regeneration and anti-inflammatory effect, respectively, their hybridization into PG/PMoS2 demonstrated a synergistic healing efficiency. Along the same line, an accelerated return of tendon function with low peritendinous adhesion and low cross-sectional area in animal group treated with scaffold containing PG/PMoS2 was observed. Taking advantage of the high biocompatibility, high strength, straightforward construction and fast tendon regeneration, PG/PMoS2 can be used as a new scaffold for the future tissue engineering.
Collapse
Affiliation(s)
| | - Zahra Mohammadi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Zahra Beiranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Maryam Salahvarzi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Kiarash Rossoli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Saeid Adeli
- Research and Development of Razi Kimya Gahar Startup Company, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Sara Maleki
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Ghasem Farjanikish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Bigham Sadegh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Feizollah Shahbazi
- Department of Agricultural Machinery, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
39
|
Sharifi S, Saei AA, Gharibi H, Mahmoud NN, Harkins S, Dararatana N, Lisabeth EM, Serpooshan V, Végvári Á, Moore A, Mahmoudi M. Mass Spectrometry, Structural Analysis, and Anti-Inflammatory Properties of Photo-Cross-Linked Human Albumin Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2643-2663. [PMID: 35544705 DOI: 10.1021/acsabm.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shannon Harkins
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Naruphorn Dararatana
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
40
|
Curcumin-loaded composite hydrogel based on scallop (Patinopecten yessoensis) male gonad hydrolysates and κ-carrageenan: Characterization and in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Lu HT, Huang GY, Chang WJ, Lu TW, Huang TW, Ho MH, Mi FL. Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydr Polym 2022; 281:119035. [DOI: 10.1016/j.carbpol.2021.119035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023]
|
43
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
44
|
Bryś M, Urbańska K, Olas B. Novel Findings regarding the Bioactivity of the Natural Blue Pigment Genipin in Human Diseases. Int J Mol Sci 2022; 23:902. [PMID: 35055094 PMCID: PMC8776187 DOI: 10.3390/ijms23020902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Genipin is an important monoterpene iridoid compound isolated from Gardenia jasminoides J.Ellis fruits and from Genipa americana fruits, or genipap. It is a precursor of a blue pigment which may be attractive alternative to existing food dyes and it possesses various potential therapeutic properties such as anti-cancer, anti-diabetic and hepatoprotective activity. Biomedical studies also show that genipin may act as a neuroprotective drug. This review describes new aspects of the bioactivity of genipin against various diseases, as well as its toxicity and industrial applications, and presents its potential mechanism of action.
Collapse
Affiliation(s)
- Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
45
|
Gao J, Liu Y, Chen J, Tong C, Wang Q, Piao Y. Curcumin treatment attenuates cisplatin-induced gastric mucosal inflammation and apoptosis through the NF- κ B and MAPKs signaling pathway. Hum Exp Toxicol 2022; 41:9603271221128738. [DOI: 10.1177/09603271221128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To investigate the protective effects of curcumin (Cur) on gastric mucosal injury induced by cisplatin (DDP), and explore possible molecular mechanisms. A mouse of gastric mucosal injury was established by intraperitoneal injection of DDP (27 mg/kg). Thirty mice were randomly divided into control group, DDP group and DDP + Cur group. Serum and gastric mucosal samples were collected on the 7th day after Cur treatment. The index of gastric mucosa injury was calculated, and the expression levels of inflammation, apoptosis and signaling pathway proteins were evaluated using hematoxylin and eosin staining, ELISA and western blotting analysis. These data showed that Cur treatment significantly attenuated DDP-induced decrease in body weight, food intake, fat and muscle ratios, and improved the gross gastric injury, scores of ulcer index, and histopathology changes triggered by DDP ( p < .05). Meanwhile, Cur significantly decreased serum IL-23 and IL-17 proteins, reduced the expression levels of gastric mucosal IL-1β, TNF- α and MPO, and restored the level of IL-10 protein ( p < .05). Moreover, Cur treatment significantly inhibited the expression levels of Caspase-3, PARP and Bax, and increased the expression of Bcl-2 protein. Furthermore, Cur treatment significantly decreased the expression levels of IL-1R, MyD88 and TAK1, and also repressed the activation of NF-κB and nuclear translocation of NF-κB p65. And more importantly, Cur treatment significantly inhibited DDP-induced gastric mucosal JNK1/2, ASK1, P38 and JUN phosphorylation, and promoted the phosphorylation of ERK1/2 and C-Myc proteins. Our data suggest that Cur treatment alleviates DDP-induced gastric mucosal inflammation and apoptosis, which may be mediated through the NF- κ B and MAPKs signaling pathway.
Collapse
Affiliation(s)
- Jinping Gao
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Yunen Liu
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Juan Chen
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Changci Tong
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Qian Wang
- Department of Oncology, Shengjing Hospital of China Medical University, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, China
| |
Collapse
|
46
|
Liu P, Li Y, Wang R, Ren F, Wang X. Oxidative Stress and Antioxidant Nanotherapeutic Approaches for Inflammatory Bowel Disease. Biomedicines 2021; 10:85. [PMID: 35052764 PMCID: PMC8773244 DOI: 10.3390/biomedicines10010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, caused by the accumulation of reactive species, is associated with the initiation and progress of inflammatory bowel disease (IBD). The investigation of antioxidants to target overexpressed reactive species and modulate oxidant stress pathways becomes an important therapeutic option. Nowadays, antioxidative nanotechnology has emerged as a novel strategy. The nanocarriers have shown many advantages in comparison with conventional antioxidants, owing to their on-site accumulation, stability of antioxidants, and most importantly, intrinsic multiple reactive species scavenging or catalyzing properties. This review concludes an up-to-date summary of IBD nanomedicines according to the classification of the delivered antioxidants. Moreover, the concerns and future perspectives in this study field are also discussed.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
47
|
Zhang J, Xu X, Li N, Cao L, Sun Y, Wang J, He S, Si J, Qing D. Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora. Eur J Pharmacol 2021; 916:174730. [PMID: 34968462 DOI: 10.1016/j.ejphar.2021.174730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a major inflammatory disease worldwide. We previously demonstrated that licorice residue flavones (LFs) showed satisfactory efficacy in the treatment of UC. Therefore, research into the ingredients of LFs may lead to the discovery of novel anti-UC targets. In the current study, we separated licoflavone B (LB) from LFs and administered it to dextran sodium sulfate (DSS)-exposed C57BL/6 mice for 14 days. Our results demonstrated that high dose LB (120mg/kg) significantly prevented DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and colonic inflammation, indicating that LB has ameliorative effects on UC. We also investigated the composition of the intestinal barrier and microflora in an attempt to explore the mechanisms of LB against UC. As a result, we found that LB preserved the integrity of the colonic barrier by inhibiting colonic cell apoptosis and protecting the expression of occludin, claudin-1, and ZO-1. Moreover, LB reshaped the microflora composition by suppressing harmful bacteria (Enterococcus et al.) and boosting beneficial microorganisms (Bacteroides et al.). Further molecular exploration implied that LB exerted anti-UC activity through blocking the MAPK pathway. Here, we explored anti-UC activity of LB for the first time and clarified its mechanisms. These results will provide valuable clues for the discovery of novel anti-UC agents.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Xiaoqin Xu
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, 313000, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Degang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| |
Collapse
|
48
|
Ari B, Sahiner M, Demirci S, Sahiner N. Poly(vinyl alcohol)-tannic Acid Cryogel Matrix as Antioxidant and Antibacterial Material. Polymers (Basel) 2021; 14:70. [PMID: 35012093 PMCID: PMC8747331 DOI: 10.3390/polym14010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The biocompatible, viscoelastic properties of poly(vinyl alcohol) (PVA) in combination with the antimicrobial and antioxidant natural polyphenolic, tannic acid (TA), and the natural flavonoid and antioxidant curcumin (Cur), were used in the preparation of PVA:TA and PVA:TA:Cur cryogel composites using cryotropic gelation to combine the individually beneficial properties. The effect of TA content on the antioxidant and antimicrobial activities of PVA:TA cryogel composites and the antioxidant activities of PVA:TA:Cur cryogel composites was determined using Trolox equivalent antioxidant capacity (TEAC) and total phenol content (TPC) assays, and were compared. The PVA:TA:Cur cryogel composite showed the highest antioxidant activity, with a TEAC value of 2.10 ± 0.24 and a TPC value of 293 ± 12.00. The antibacterial capacity of the PVA:TA and PVA:TA:Cur 1:1:0.1 cryogel composites was examined against two different species of bacteria, E. coli and S. aureus. It was found that the minimum inhibition concentration (MIC) value of the PVA:TA:Cur 1:1:0.1 cryogel composites varied between 5 and 10 mg/mL based on the type of microorganism, and the minimum bactericidal concentration (MBC) value was 20 mg/mL irrespective of the type of microorganism. Furthermore, the hemocompatibility of the PVA:TA cryogel composites was evaluated by examining their hemolytic and coagulation behaviors. PVA:TA 1:1 cryogels with a value of 95.7% revealed the highest blood clotting index value amongst all of the synthesized cryogels, signifying the potential for blood contacting applications. The release of TA and Cur from the cryogel composites was quantified at different pH conditions, i.e., 1.0, 7.4, and 9.0, and additionally in ethanol (EtOH) and an ethanol-water (EtOH:Wat) mixture. The solution released from the PVA:TA cryogels in PBS was tested for inhibition capability against α-glucosidase (E.C. 3.2.1.20). Concentration-dependent enzyme inhibition was observed, and 70 µL of 83 µg/mL PVA:TA (1:1) cryogel in PBS inhibited α-glucosidase enzyme solution of 0.03 unit/mL in 70 µL by 81.75 ± 0.96%.
Collapse
Affiliation(s)
- Betul Ari
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
| | - Mehtap Sahiner
- Faculty of Canakkale School of Applied Science, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
- Nanoscience and Technology Research and Application Center, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
49
|
Wu A, Chen C, Lu J, Sun J, Xiao M, Yue X, Zhou P, Zhao S, Zhong G, Huang C, Qu Y, Zhang C. Preparation of Oral Core-Shell Zein Nanoparticles to Improve the Bioavailability of Glycyrrhizic Acid for the Treatment of Ulcerative Colitis. Biomacromolecules 2021; 23:210-225. [PMID: 34905341 DOI: 10.1021/acs.biomac.1c01233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, oral colon-targeted adhesion core-shell nanoparticles were designed by applying FA-Zein as the core and using pectin as the shell to enhance the low bioavailability exhibited by glycyrrhizic acid (GA) and the anti-inflammatory effect in specific parts of the intestine. As indicated by the results, the nanoparticles (NPs) remained stable in the stomach and small intestine, while pectins began to degrade and release GA in considerable amounts in the colon with the abundant flora. Subsequently, folate-acid targeting was further assessed with Raw 264.7 and NCM 460 cells. Lastly, NPs were reported to exhibit high adhesion on the colon by using the DSS-induced ulcerative colitis mouse model. Moreover, as indicated by in vitro and in vivo studies, nanoparticles could decrease the levels of MPO and TNF-α by reducing macrophages and neutrophils. In brief, this study provides an ideal loaded natural anti-inflammatory drug delivery system to treat ulcerative colitis.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chonghao Chen
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jiayi Sun
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng Xiao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xuan Yue
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ping Zhou
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Shiyi Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chi Huang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
50
|
Zhou P, Chen C, Yue X, Zhang J, Huang C, Zhao S, Wu A, Li X, Qu Y, Zhang C. Strategy for osteoarthritis therapy: Improved the delivery of triptolide using liposome-loaded dissolving microneedle arrays. Int J Pharm 2021; 609:121211. [PMID: 34687817 DOI: 10.1016/j.ijpharm.2021.121211] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is a chronic disease that seriously impairs people's physical function and quality of life. Triptolide (TP), as a promising anti-inflammatory drug for the treatment of OA, has limited clinical application due to its severe systemic toxicity, poor solubility and rapid elimination in the body. To extend its application prospect for OA treatment. We have developed a liposome-loaded dissolving microneedle (DMN) system, which can effectively deliver poorly water-soluble TP and improve OA symptoms. To incorporate TP into DMNs, triptolide liposome (TP-Lipo) with entrapment efficiency of 90.25% was prepared by ethanol injection. Subsequently, TP-Lipo was concentrated by ultrafiltration tube and mixed with hyaluronic acid solution to prepare DMNs, TP-Lipo-loaded DMNs (TP-Lipo@DMNs) showed sufficient mechanical and insertion properties to penetrate about 200 μm of rat skin. The drug distribution in vivo showed that TP-Lipo@DMNs had a slow-release effect compared with intra-articular injection. In vivo pharmacodynamic research showed that TP-Lipo@DMNs significantly reduced knee joint swelling and the level of inflammatory cytokines (TNF-α, IL-1β, IL-6). Micro-CT and histological evaluation showed that TP-Lipo@DMNs effectively reduced cartilage destruction and alleviated OA symptoms. These results support that TP@Lipo@DMNs may be a promising option for OA treatment.
Collapse
Affiliation(s)
- Ping Zhou
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chonghao Chen
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Yue
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Huang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Anxing Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuebo Li
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|