1
|
Qu B, Feng M, Liu L, Cong S, Cai S, Wang T, Qiao Y, Shi L, Liu J, Xiao H. Comprehensive and high-coverage glycerophospholipidomic analysis based on iterative quadrupole time-of-flight mass spectrometry and its application in cerebral ischemia-reperfusion injury. Anal Bioanal Chem 2025:10.1007/s00216-025-05884-2. [PMID: 40327074 DOI: 10.1007/s00216-025-05884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Glycerophospholipids play important roles in iron-induced lipid peroxidation during cerebral ischemia-reperfusion, making it essential to investigate changes in their varieties and concentrations under these conditions. However, the wide range of glycerophospholipid contents, particularly the low-abundance species in actual biological samples, posed a challenge for comprehensive analysis. In this study, an iterative quadrupole time-of-flight mass spectrometry (Q-ToF-MS/MS) method was established with the aim of comprehensively detecting glycerophospholipids. This method was a data acquisition strategy implemented through iterative analyses. In each iteration, ions detected in previous runs were excluded, allowing low-abundance glycerophospholipids that were missed by the usual analysis to be extensively detected by a simplified operational process. Using this strategy, 254 glycerophospholipids including 157 PCs, 67 PEs, 19 PGs, 9 PIs, 7 PSs and 5 PAs in rat brain samples were identified after four iterations, and the number of glycerophospholipid species increased by 93.9% compared to a single assay, significantly enhancing the coverage of glycerophospholipid detection. Furthermore, the characteristic fragmentation patterns of six glycerophospholipid subclasses were systematically summarized to improve the accuracy of qualitative identification. In addition, these patterns were also used to construct an ion pair database containing 254 glycerophospholipids, enabling targeted multiple reaction monitoring (MRM) analysis under the optimized high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS) conditions. By comparing the changed glycerophospholipids of rat brains from the normal and cerebral ischemia-reperfusion injury groups, 29 glycerophospholipids were recognized as the potential biomarkers for cerebral ischemia-reperfusion injury, among which nine glycerophospholipids were particularly detected by four iterations. Overall, this iterative MS/MS approach extensively expanded the coverage of low-abundance components, and has been proven to be an effective approach in biomarker screening of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Biqiong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shengnan Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tengteng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lixia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Jawad A, Oh D, Choi H, Kim M, Ham J, Oh BC, Lee J, Hyun SH. Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos. Front Vet Sci 2024; 11:1475329. [PMID: 39735584 PMCID: PMC11672211 DOI: 10.3389/fvets.2024.1475329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024] Open
Abstract
Objective Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms. Methods In this study, various concentrations of Myo-Ins (0, 5, 10, and 20 mM) were added to the porcine zygotic medium (PZM3) during the in vitro culture (IVC) of porcine embryos. Several characteristics were evaluated, including cleavage rate, blastocyst formation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in 4-5 cell stage embryos, total cell number, apoptotic rate in blastocysts, mitochondrial membrane potential (MMP), mitochondrial quantity, mitochondrial stress in the blastocysts, and gene expression for antioxidant and mitochondrial function markers. Additionally, the immunofluorescence of HO-1 was assessed. Results The results showed that Myo-Ins at concentrations of 10 and 20 mM significantly increased the blastocyst formation rate compared to the control group. Embryos supplemented with 20 mM Myo-Ins exhibited higher GSH levels and lower ROS levels than those in the control group. Myo-Ins supplementation also decreased the rate of apoptosis and the apoptotic index in the treatment groups. Additionally, embryos supplemented with 20 mM Myo-Ins showed increased mitochondrial membrane potential (MMP), greater mitochondrial quantity, and reduced oxidative stress in the mitochondria. Interestingly, the expression levels of genes related to mitochondrial function and the nuclear erythroid factor 2-related factor (NRF2) pathway were elevated in the Myo-Ins treated groups. Furthermore, immunofluorescence results indicated that 20 mM Myo-Ins significantly increased HO-1 expression in blastocysts compared to the control group. Conclusion In conclusion, 20 mM Myo-Ins supplementation enhanced blastocyst development and improved mitochondrial function by regulating apoptosis, reducing oxidative stress, and activating the NRF2 pathway.
Collapse
Affiliation(s)
- Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Jaehyung Ham
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joohyeong Lee
- Department of Companion Animal Industry, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea
- Chungbuk National University Hospital, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Hou Y, He C, Zhao Y, Duan C, Nie X, Li J. Toxic effects of acute and chronic atorvastatin exposure on antioxidant systems, autophagy processes, energy metabolism and life history in Daphnia magna. CHEMOSPHERE 2024; 369:143792. [PMID: 39577804 DOI: 10.1016/j.chemosphere.2024.143792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Atorvastatin (ATV) is a representative for hypolipidemic pharmaceuticals and is widely detectable in aquatic environments around the world. However, there are limited studies on the potential effects of ATV on aquatic non-target organisms, especially on aquatic invertebrates. In the present study, the model organism, Daphnia magna was used to investigate the responses of antioxidant system, autophagy process and energy metabolism under the acute exposure of ATV (24 h-96 h), and the changes of physiological parameters of D. magna in response to chronic ATV exposure (21 d) was addressed as well. The results showed that ATV caused oxidative stress in D. magna and elevated activities of antioxidant enzymes (SOD, GST, GPx, and TrxR) at 48 h. However, the progressively increasing oxidative pressure eventually suppressed antioxidant capacities and triggered the transcriptional autophagy process in organism under the regulation of Sestrin as well as its regulated genes (P62, LC3, ATG1, and ATG4B). ATV also altered the expression of DNA methylation related genes. Unlike the clinical response, we found acute ATV exposure led to lipid accumulation in D. magna, affecting energy metabolism. Chronic exposure of higher concentration of ATV (50, 500 μg L-1) adversely affected growth and reproduction parameters of D. magna, caused delayed molting, reduced body length, and decreased number and delayed time of neonates production. Lethal effects were observed in the 5000 μg L-1 of ATV. The present study investigated the toxic effects and mechanisms of acute and chronic ATV exposure on D. magna to provide a scientific basis for evaluating the potential ecological risks of statins on aquatic invertebrates.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| |
Collapse
|
5
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Tang Y, Liu C, Wei R, Li R, Li Z, Zhang K, Zhao X, Ma Q. TRPV1/cPLA2/AA pathway contributes to ferroptosis-mediated acute liver injury in heatstroke. Int Immunopharmacol 2024; 138:112539. [PMID: 38936054 DOI: 10.1016/j.intimp.2024.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
With the increasing frequency of global heatwaves, the incidence of heatstroke (HS) is significantly rising. The liver plays a crucial role in metabolism and is an organ highly sensitive to temperature. Acute liver injury (ALI) frequently occurs in patients with HS, yet the exact mechanisms driving ALI in HS are still unknown. In this basic study, we investigated the specific molecular mechanisms by which cytosolic phospholipase A2 (cPLA2) mediates ferroptosis, contributing to the development of ALI following HS. We utilized a mouse model of HS and divided the mice into healthy control and HS groups for a series of experiments. Firstly, we assessed oxidative damage markers in tissues and cells, as well as ferroptosis biomarkers. Additionally, we conducted a non-targeted metabolomics analysis to validate the role of key enzymes in metabolism and the ferroptosis pathway. Our results indicated that ferroptosis contributed to the progression of ALI after HS. Administering the ferroptosis inhibitor liproxstatin-1 (10 mg/kg) post-HS onset significantly inhibits HS-induced ALI progression. Mechanistically, heatstroke triggered cPLA2 activation and increased the levels of its metabolic product, arachidonic acid, thereby further promoted the occurrence of ferroptosis. Furthermore, heatstroke mediated cPLA2 activation might involve enhancing transient receptor potential vanilloid subtype 1 (TRPV1) receptor function. Overall, these results highlighted the critical role that cPLA2-mediated ferroptosis plays in the development of ALI following HS, indicating that inhibiting cPLA2 may present a novel therapeutic approach to prevent ALI after HS by limiting liver cell death.
Collapse
Affiliation(s)
- Youyong Tang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China
| | - Chenxin Liu
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China
| | - Riqing Wei
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China
| | - Ru Li
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Keying Zhang
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China
| | - Xiaofeng Zhao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Medical Critical Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou 510010, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China..
| |
Collapse
|
7
|
Eldarov C, Starodubtseva N, Shevtsova Y, Goryunov K, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Dried Blood Spot Metabolome Features of Ischemic-Hypoxic Encephalopathy: A Neonatal Rat Model. Int J Mol Sci 2024; 25:8903. [PMID: 39201589 PMCID: PMC11354919 DOI: 10.3390/ijms25168903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia's therapeutic effects. Using a rat model of hypoxic-ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE.
Collapse
Affiliation(s)
- Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
8
|
Perkins GD, Neumar R, Hsu CH, Hirsch KG, Aneman A, Becker LB, Couper K, Callaway CW, Hoedemaekers CWE, Lim SL, Meurer W, Olasveengen T, Sekhon MS, Skrifvars M, Soar J, Tsai MS, Vengamma B, Nolan JP. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement From the International Liaison Committee on Resuscitation. Resuscitation 2024; 201:110196. [PMID: 38932555 DOI: 10.1016/j.resuscitation.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This scientific statement presents a conceptual framework for the pathophysiology of post-cardiac arrest brain injury, explores reasons for previous failure to translate preclinical data to clinical practice, and outlines potential paths forward. Post-cardiac arrest brain injury is characterized by 4 distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. Previous research has been challenging because of the limitations of laboratory models; heterogeneity in the patient populations enrolled; overoptimistic estimation of treatment effects leading to suboptimal sample sizes; timing and route of intervention delivery; limited or absent evidence that the intervention has engaged the mechanistic target; and heterogeneity in postresuscitation care, prognostication, and withdrawal of life-sustaining treatments. Future trials must tailor their interventions to the subset of patients most likely to benefit and deliver this intervention at the appropriate time, through the appropriate route, and at the appropriate dose. The complexity of post-cardiac arrest brain injury suggests that monotherapies are unlikely to be as successful as multimodal neuroprotective therapies. Biomarkers should be developed to identify patients with the targeted mechanism of injury, to quantify its severity, and to measure the response to therapy. Studies need to be adequately powered to detect effect sizes that are realistic and meaningful to patients, their families, and clinicians. Study designs should be optimized to accelerate the evaluation of the most promising interventions. Multidisciplinary and international collaboration will be essential to realize the goal of developing effective therapies for post-cardiac arrest brain injury.
Collapse
|
9
|
Shang G, Shao Q, Lv K, Xu W, Ji J, Fan S, Kang X, Cheng F, Wang X, Wang Q. Hypercholesterolemia and the Increased Risk of Vascular Dementia: a Cholesterol Perspective. Curr Atheroscler Rep 2024; 26:435-449. [PMID: 38814418 DOI: 10.1007/s11883-024-01217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease.Hypercholesterolemia may increase the risk of dementia, but the association between cholesterol and cognitive function is very complex. From the perspective of peripheral and brain cholesterol, we review the relationship between hypercholesterolemia and increased risk of VaD and how the use of lipid-lowering therapies affects cognition. RECENT FINDINGS Epidemiologic studies show since 1980, non-HDL-C levels of individuals has increased rapidly in Asian countries.The study has suggested that vascular risk factors increase the risk of VaD, such as disordered lipid metabolism. Dyslipidemia has been found to interact with chronic cerebral hypoperfusion to promote inflammation resulting in cognitive dysfunction in the brain.Hypercholesterolemia may be a risk factor for VaD. Inflammation could potentially serve as a link between hypercholesterolemia and VaD. Additionally, the potential impact of lipid-lowering therapy on cognitive function is also worth considering. Finding strategies to prevent and treat VaD is critical given the aging of the population to lessen the load on society. Currently, controlling underlying vascular risk factors is considered one of the most effective methods of preventing VaD. Understanding the relationship between abnormal cholesterol levels and VaD, as well as discovering potential serum biomarkers, is important for the early prevention and treatment of VaD.
Collapse
Affiliation(s)
- Guojiao Shang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Kai Lv
- Department of Geratology, The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, No.51 Xiaoguan Street, Andingmenwai, Chaoyang District, Beijing, China
| | - Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Shuning Fan
- Dongzhimen Hospital of Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, China
| | - Xiangdong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, China.
| |
Collapse
|
10
|
Kang JB, Son HK, Park DJ, Jin YB, Shah FA, Koh PO. Modulation of thioredoxin by chlorogenic acid in an ischemic stroke model and glutamate-exposed neurons. Neurosci Lett 2024; 825:137701. [PMID: 38395190 DOI: 10.1016/j.neulet.2024.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Ischemic stroke increases the production of reactive oxygen species (ROS), which can eventually lead to neuronal death. Thioredoxin is a small reductase protein that acts as an eliminator of ROS and protects neurons from brain damage. Chlorogenic acid is known as a phenolic compound that has a neuroprotective effect. We investigated the change of thioredoxin expression by chlorogenic acid in a middle cerebral artery occlusion (MCAO) animal model. Adult rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) 2 h after MCAO. MCAO damage induced neurological defects and increased ROS and lipid peroxidation levels, however, chlorogenic acid mitigated these changes. MCAO damage reduced thioredoxin expression, which was mitigated by chlorogenic acid treatment. The interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) was decreased in MCAO animals, chlorogenic acid treatment prevented this decrease. In cultured neurons, chlorogenic acid dose-dependently attenuated glutamate-induced decreases in cell viability and thioredoxin expression. Glutamate toxicity downregulated bcl-2 and upregulated bax, cytochrome c, and caspase-3, however, chlorogenic acid attenuated these changes. The mitigating effect of chlorogenic acid was lower in thioredoxin siRNA-transfected cells than in non-transfected cells. These results provide evidence that chlorogenic acid exerts potent antioxidant and neuroprotective effects through regulation of thioredoxin and modulation of ASK1 and thioredoxin binding in ischemic brain injury. These findings indicate that chlorogenic acid exerts a neuroprotective effect by regulating thioredoxin expression in cerebral ischemia and glutamate exposure conditions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Hyun-Kyoung Son
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Yeung-Bae Jin
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Fawad-Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea.
| |
Collapse
|
11
|
Todorova T, Boyadzhiev K, Dimitrov M, Parvanova P. Bee venom genotoxicity on Saccharomyces cerevisiae cells - The role of mitochondria and YAP1 transcription factor. Toxicology 2024; 503:153768. [PMID: 38442839 DOI: 10.1016/j.tox.2024.153768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.
Collapse
Affiliation(s)
- Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria.
| | - Krassimir Boyadzhiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Martin Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Petya Parvanova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| |
Collapse
|
12
|
Pradhyumnan H, Patel SH, Furones-Alonso O, Zhao W, Bramlett HM, Raval AP. Electronic Cigarette Vape Exposure Exacerbates Post-Ischemic Outcomes in Female but Not in Male Rats. Stroke 2024; 55:735-746. [PMID: 38323450 PMCID: PMC10940219 DOI: 10.1161/strokeaha.123.046101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Nicotine-containing electronic cigarette (EC) vaping has become popular worldwide, and our understanding of the effects of vaping on stroke outcomes is elusive. Using a rat model of transient middle cerebral artery occlusion, the current exploratory study aims to evaluate the sex-dependent effects of EC exposure on brain energy metabolism and stroke outcomes. METHODS Adult Sprague-Dawley rats of both sexes were randomly assigned to air/EC vapor (5% nicotine Juul pods) exposure for 16 nights, followed by randomization into 3 cohorts. The first cohort underwent exposure to air/EC preceding randomization to transient middle cerebral artery occlusion (90 minutes) or sham surgery, followed by survival for 21 days. During the survival period, rats underwent sensorimotor and Morris water maze testing. Subsequently, brains were collected for histopathology. A second cohort was exposed to air/EC after which brains were collected for unbiased metabolomics analysis. The third cohort of animals was exposed to air/EC and received transient middle cerebral artery occlusion/sham surgery, and brain tissue was collected 24 hours later for biochemical analysis. RESULTS In females, EC significantly increased (P<0.05) infarct volumes by 94% as compared with air-exposed rats, 165±50 mm3 in EC-exposed rats, and 85±29 mm3 in air-exposed rats, respectively, while in males such a difference was not apparent. Morris water maze data showed significant deficits in spatial learning and working memory in the EC sham or transient middle cerebral artery occlusion groups compared with the respective air groups in rats of both sexes (P<0.05). Thirty-two metabolites of carbohydrate, glycolysis, tricarboxylic acid cycle, and lipid metabolism were significantly altered (P≤0.05) due to EC, 23 of which were specific for females. Steady-state protein levels of hexokinase significantly decreased (P<0.05) in EC-exposed females; however, these changes were not seen in males. CONCLUSIONS Even brief EC exposure over 2 weeks impacts brain energy metabolism, exacerbates infarction, and worsens poststroke cognitive deficits in working memory more in female than male rats.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shahil H. Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ofelia Furones-Alonso
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Helen M. Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| |
Collapse
|
13
|
Briones-Valdivieso C, Briones F, Orellana-Urzúa S, Chichiarelli S, Saso L, Rodrigo R. Novel Multi-Antioxidant Approach for Ischemic Stroke Therapy Targeting the Role of Oxidative Stress. Biomedicines 2024; 12:501. [PMID: 38540114 PMCID: PMC10968576 DOI: 10.3390/biomedicines12030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 01/03/2025] Open
Abstract
Stroke is a major contributor to global mortality and disability. While reperfusion is essential for preventing neuronal death in the penumbra, it also triggers cerebral ischemia-reperfusion injury, a paradoxical injury primarily caused by oxidative stress, inflammation, and blood-brain barrier disruption. An oxidative burst inflicts marked cellular damage, ranging from alterations in mitochondrial function to lipid peroxidation and the activation of intricate signalling pathways that can even lead to cell death. Thus, given the pivotal role of oxidative stress in the mechanisms of cerebral ischemia-reperfusion injury, the reinforcement of the antioxidant defence system has been proposed as a protective approach. Although this strategy has proven to be successful in experimental models, its translation into clinical practice has yielded inconsistent results. However, it should be considered that the availability of numerous antioxidant molecules with a wide range of chemical properties can affect the extent of injury; several groups of antioxidant molecules, including polyphenols, carotenoids, and vitamins, among other antioxidant compounds, can mitigate this damage by intervening in multiple signalling pathways at various stages. Multiple clinical trials have previously been conducted to evaluate these properties using melatonin, acetyl-L-carnitine, chrysanthemum extract, edaravone dexborneol, saffron, coenzyme Q10, and oleoylethanolamide, among other treatments. Therefore, multi-antioxidant therapy emerges as a promising novel therapeutic option due to the potential synergistic effect provided by the simultaneous roles of the individual compounds.
Collapse
Affiliation(s)
| | - Felipe Briones
- Institute for Public Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|
14
|
Hu X, Bao Y, Li M, Zhang W, Chen C. The role of ferroptosis and its mechanism in ischemic stroke. Exp Neurol 2024; 372:114630. [PMID: 38056585 DOI: 10.1016/j.expneurol.2023.114630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease with a high morbidity, mortality, and disability rate. Persistent ischemia of brain tissue can cause irreversible damage to neurons, leading to neurological dysfunction and seriously affecting patients' quality of life. However, current clinical therapies are limited and have not achieved satisfactory outcome, due to the incomplete understanding of the mechanism of neuronal damage during ischemic stroke. Recent studies have found that ferroptosis is implicated in the pathophysiology of ischemic stroke. Ferroptosis is an iron-dependent regulated cell death driven by lipid peroxidation. Under normal physiological conditions, GSH/GPX4, FSP1/CoQ10, GCH/BH4 and other anti-ferroptosis pathways can function effectively to suppress the occurrence of ferroptosis. After ischemic stroke, two typical ferroptosis characteristics, lipid peroxidation and iron accumulation, are observed, accompanied by changes in the expression of ferroptosis related genes such as GPX4, ACSL4, and SLC7A11, suggesting that ferroptosis plays a key role in ischemic stroke, which provides a new idea for the clinical treatment of ischemic stroke. This article reviewed the pathological mechanisms of ferroptosis in the occurrence and development of ischemic stroke, as well as the related progress of ferroptosis targeted therapy.
Collapse
Affiliation(s)
- Xiaodan Hu
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunhua Chen
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Hou Y, Tan E, Shi H, Ren X, Wan X, Wu W, Chen Y, Niu H, Zhu G, Li J, Li Y, Wang L. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci 2024; 81:23. [PMID: 38200266 PMCID: PMC10781825 DOI: 10.1007/s00018-023-05078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.
Collapse
Affiliation(s)
- Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xiayu Ren
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xing Wan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Wenjie Wu
- Department of Orthopaedics, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hiumin Niu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
- Department of Nephrology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Guozhen Zhu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
16
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
17
|
Shi W, Zhang H, Zhang Y, Lu L, Zhou Q, Wang Y, Pu Y, Yin L. Co-exposure to Fe, Zn, and Cu induced neuronal ferroptosis with associated lipid metabolism disorder via the ERK/cPLA2/AA pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122438. [PMID: 37625769 DOI: 10.1016/j.envpol.2023.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Excessive amounts of iron (Fe), zinc (Zn), and copper (Cu) can be toxic to neuronal cells, even though these are essential trace elements for animals and humans. However, the precise mechanisms underlying the neurotoxicity of exposure to mixtures of Fe, Zn, and Cu are still mostly unclear. The research aimed to investigate the influence of co-exposure to iron, zinc and copper and the related mechanisms in HT22 murine hippocampal neuronal cells. Intracellular metal content, markers of oxidative damage, and biomarkers of ferroptosis were respectively detected. Afterward, metabolomic analyses were performed to obtain a comprehensive understanding of the metal mixtures on metabolism, and the functions of key enzymes on metabolic pathways were validated. The results showed that metal co-exposure resulted in cellular iron overload and increased lipid peroxidation, accompanied by significant pathological damage and mitochondrial abnormalities in HT22 cells. Meanwhile, it was found that GSH depletion, decreased GPX4, and increased expression of the lipid metabolism gene ACSL4 play important roles in ferroptosis induced by metal mixture. Further, metabolomic analysis revealed metal co-exposure induced significant alterations in metabolite levels, especially in the glycerophospholipid metabolism pathway and the arachidonic acid metabolism pathway. The levels of cPLA2 and its metabolite, arachidonic acid, were significantly increased after metal co-exposure. Then, inhibition of cPLA2 decreased the level of arachidonic acid and attenuated ferroptosis in neuronal cells. Collectively, our findings unveiled ferroptosis induced by metal co-exposure associated with crucial molecular changes in neuronal cells, providing a novel perspective on the comprehensive toxicity risk assessment of metal mixtures.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
18
|
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1693. [PMID: 37892356 PMCID: PMC10605414 DOI: 10.3390/children10101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
A study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes. Subsequent univariate statistical analysis identified 120 positive and 54 negative molecular ions that exhibited statistically significant change in concentration, with more than a 1.5-fold difference after HIE. In the HIE group, the concentrations of steroid hormones, saturated mono- and triglycerides, and phosphatidylcholines (PCs) were significantly decreased in positive mode. On the contrary, the concentration of unsaturated PCs was increased in the HIE group. Among negatively charged molecular ions, the greatest variations were found in the categories of phosphatidylcholines, phosphatidylinositols, and triglycerides. The major metabolic pathways associated with changed metabolites were analyzed for both modes. Metabolic pathways such as steroid biosynthesis and metabolism fatty acids were most affected. These results underscored the central role of glycerophospholipid metabolism in triggering systemic responses in HIE. Therefore, lipid biomarkers' evaluation by targeted HPLC-MS research could be a promising approach for the early diagnosis of HIE.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
19
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Kim JW, Lee JY, Oh M, Lee EW. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med 2023; 55:1620-1631. [PMID: 37612411 PMCID: PMC10474074 DOI: 10.1038/s12276-023-01077-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation. This process contributes to cellular and tissue damage in various human diseases, such as cardiovascular diseases, neurodegeneration, liver disease, and cancer. Although polyunsaturated fatty acids (PUFAs) in membrane phospholipids are preferentially oxidized, saturated/monounsaturated fatty acids (SFAs/MUFAs) also influence lipid peroxidation and ferroptosis. In this review, we first explain how cells differentially synthesize SFA/MUFAs and PUFAs and how they control fatty acid pools via fatty acid uptake and β-oxidation, impacting ferroptosis. Furthermore, we discuss how fatty acids are stored in different lipids, such as diacyl or ether phospholipids with different head groups; triglycerides; and cholesterols. Moreover, we explain how these fatty acids are released from these molecules. In summary, we provide an integrated view of the diverse and dynamic metabolic processes in the context of ferroptosis by revisiting lipidomic studies. Thus, this review contributes to the development of therapeutic strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
21
|
Blackberry-Loaded AgNPs Attenuate Hepatic Ischemia/Reperfusion Injury via PI3K/Akt/mTOR Pathway. Metabolites 2023; 13:metabo13030419. [PMID: 36984859 PMCID: PMC10051224 DOI: 10.3390/metabo13030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities. Aims: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms. Methods: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed. Key findings: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors. Significance: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.
Collapse
|
22
|
Martha SR, Levy SH, Federico E, Levitt MR, Walker M. Machine Learning Analysis of the Cerebrovascular Thrombi Lipidome in Acute Ischemic Stroke. J Neurosci Nurs 2023; 55:10-17. [PMID: 36346351 PMCID: PMC9839472 DOI: 10.1097/jnn.0000000000000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACT OBJECTIVE: The aim of this study was to identify a signature lipid profile from cerebral thrombi in acute ischemic stroke (AIS) patients at the time of ictus. METHODS: We performed untargeted lipidomics analysis using liquid chromatography-mass spectrometry on cerebral thrombi taken from a nonprobability, convenience sampling of adult subjects (≥18 years old, n = 5) who underwent thrombectomy for acute cerebrovascular occlusion. The data were classified using random forest, a machine learning algorithm. RESULTS: The top 10 metabolites identified from the random forest analysis were of the glycerophospholipid species and fatty acids. CONCLUSION: Preliminary analysis demonstrates feasibility of identification of lipid metabolomic profiling in cerebral thrombi retrieved from AIS patients. Recent advances in omic methodologies enable lipidomic profiling, which may provide insight into the cellular metabolic pathophysiology caused by AIS. Understanding of lipidomic changes in AIS may illuminate specific metabolite and lipid pathways involved and further the potential to develop personalized preventive strategies.
Collapse
|
23
|
Sharma SK, Yadav SK, Sharma U, Avti P, Rana S, Khanduja KL. Secretory Phospholipase A 2 (sPLA 2) Isozymes as Potential Targets in Tobacco Condensate- induced Colon Damage. Anticancer Agents Med Chem 2023; 23:450-460. [PMID: 35638274 DOI: 10.2174/1871520622666220527094219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
AIMS To find out the role of secretory phospholipase A2 (sPLA2) isozymes as potential targets in tobacco condensate-induced colon damage. BACKGROUND The effects of cigarette smoke condensate (CSC) and the molecular mechanisms involved in the regulation of phospholipase A2 (PLA2) and its isozymes in colon cells, which are still unclear and emerging, are studied. OBJECTIVES The study aimed to check the effect of CSC on cell viability and reactive oxygen species (ROS) and superoxide. Also, the effect of CSC on gene expression of different secretory phospholipase A2 (sPLA2) was evaluated. Moreover, the impact of inhibition of sPLA2 on various cell properties i.e. cell viability, cell proliferation, membrane damage and free radicals' generation is also studied. METHODS CSC-induced changes were evaluated in cell viability by MTT assay, followed by the evaluation of membrane modulation by flow cytometry, free radical generation by fluorescent dyes, PLA2 isoforms gene expression patterns and their suppression by small interfering RNA (siRNA) studied in HCT-15 male and HT-29 female colon cells. RESULTS Our results demonstrate that HCT-15 and HT-29 cells treated with CSC significantly reduced the cell viability by 50% within 48 h and significantly enhanced the total reactive oxygen species (ROS) by 2 to 10-fold, and mitochondrial ROS (mtROS) and superoxide radicals (SOR) by 2-fold each. Treatment with CSC significantly unregulated secretory phospholipase A2 (sPLA2) IID group and down-regulated IB and cytosolic phospholipase (cPLA2) IVA groups in HCT-15 cells without affecting them in HT-29 cells. Silencing the sPLA2 IID group results in an increase in cell viability and a decrease in ROS. Silencing the PLA2 IVA gene in the HCT-15 cells showed a reduced expression which had no impact on the CSC-induced cell proliferation, membrane damage and free radicals (ROS, mtROS, and SOR) generation. CONCLUSION Therefore, identifying cell-specific sPLA2 isozymes seems to play a key role in controlling the ROSinduced damage by CSC and helps develop specific therapeutic strategies.
Collapse
Affiliation(s)
- Sanjeev K Sharma
- Department of Biophysics, Postgraduate of Institute of Medical Education and Research, Chandigarh, India
| | - Subodh K Yadav
- Department of Biophysics, Postgraduate of Institute of Medical Education and Research, Chandigarh, India
| | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate of Institute of Medical Education and Research, Chandigarh, India
| | - Satyavati Rana
- Department of Gastroenterology, Postgraduate of Institute of Medical Education and Research, Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate of Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
24
|
Ma Y, Chen Z, He Q, Guo ZN, Yang Y, Liu F, Li F, Luo Q, Chang J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol Res 2022; 185:106482. [DOI: 10.1016/j.phrs.2022.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
25
|
Xu D, Wang Y, Guo W, Li X, Liu Y, Han Y, Zhang H, Wei Q, Wang Y, Xu Y. LC-MS-based multi-omics analysis of brain tissue for the evaluation of the anti-ischemic stroke potential of Tribulus terrestris L. fruit extract in MCAO rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
26
|
Impact of ROS-Dependent Lipid Metabolism on Psoriasis Pathophysiology. Int J Mol Sci 2022; 23:ijms232012137. [PMID: 36292991 PMCID: PMC9602909 DOI: 10.3390/ijms232012137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is the most common autoimmune disease, yet its pathophysiology is not fully understood. It is now believed that psoriasis is caused by the increased activation of immune cells, especially Th1 lymphocytes. However, in psoriasis, immune cells interfere with the metabolism of keratinocytes, leading to their increased activation. Therefore, the pathophysiology of psoriasis is currently associated with the overproduction of ROS, which are involved in the activation of immune cells and keratinocytes as well as the modulation of various signaling pathways within them. Nevertheless, ROS modulate the immune system by also boosting the increasing generation of various lipid mediators, such as products of lipid peroxidation as well as endocannabinoids and prostaglandins. In psoriasis, the excessive generation of ROS and lipid mediators is observed in different immune cells, such as granulocytes, dendritic cells, and lymphocytes. All of the above may be activated by ROS and lipid mediators, which leads to inflammation. Nevertheless, ROS and lipid mediators regulate lymphocyte differentiation in favor of Th1 and may also interact directly with keratinocytes, which is also observed in psoriasis. Thus, the analysis of the influence of oxidative stress and its consequences for metabolic changes, including lipidomic ones, in psoriasis may be of diagnostic and therapeutic importance.
Collapse
|
27
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
28
|
Hamoud MMS, Osman NA, Rezq S, A A Abd El-Wahab H, E A Hassan A, Abdel-Fattah HA, Romero DG, Ghanim AM. Design and Synthesis of Novel 1,3,4-Oxadiazole and 1,2,4-Triazole Derivatives as Cyclooxygenase-2 Inhibitors with Anti-inflammatory and Antioxidant activity in LPS-stimulated RAW264.7 Macrophages. Bioorg Chem 2022; 124:105808. [PMID: 35447409 PMCID: PMC10965220 DOI: 10.1016/j.bioorg.2022.105808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
Abstract
In an attempt to obtain new candidates with potential anti-inflammatory activity, two series of 1,3,4-oxadiazole based derivatives (8a-g) and 1,2,4-triazole based derivatives (10a,b and 11a-g) were synthesized and evaluated for their COX-1/COX-2 inhibitory activity. In vitro assays showed potent COX-2 inhibitory activity and selectivity of the novel designed compounds (IC50 = 0.04 - 0.16 μM, SI = 60.71 - 337.5) compared to celecoxib (IC50 = 0.045 μM, SI = 326.67). The anti-inflammatory and antioxidant activity of the synthesized compounds was investigated via testing their ability to inhibit pro-inflammatory [tumour necrosis factor (TNF-α) and interleukin-6 (IL-6)] and oxidative stress [nitric oxide (NO) and reactive oxygen species (ROS)] markers production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Most of the novel compounds exhibited potent anti-inflammatory and antioxidant activity. In particular, the novel compounds showed excellent IL-6 inhibitory activity (IC50 = 0.96 - 11.14 μM) when compared to celecoxib (IC50 = 13.04 μM) and diclofenac sodium (IC50 = 22.97 μM). Moreover, the most potent and selective COX-2 inhibitor 11c (IC50 = 0.04 μM, SI = 337.5) displayed significantly higher activity against NO and ROS production compared to celecoxib (IC50 = 2.60 and 3.01 μM vs. 16.47 and 14.30 μM, respectively). Molecular modelling studies of the novel designed molecules into COX-2 active sites analysed their binding affinity. In-silico simulation studies indicated their acceptable physicochemical properties and pharmacokinetic profiles. This study suggests that the novel synthesized COX-2 inhibitors exert potent anti-inflammatory and antioxidant activity, highlighting their potential as promising therapeutic agents for the treatment of inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Mohamed M S Hamoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nermine A Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend A A Abd El-Wahab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdalla E A Hassan
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hanan A Abdel-Fattah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Amany M Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
29
|
Hang S, Chen H, Wu W, Wang S, Fang Y, Sheng R, Tu Q, Guo R. Progress in Isoindolone Alkaloid Derivatives from Marine Microorganism: Pharmacology, Preparation, and Mechanism. Mar Drugs 2022; 20:md20060405. [PMID: 35736208 PMCID: PMC9227046 DOI: 10.3390/md20060405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Compound 1 (SMTP-7, also FGFC1), an isoindolone alkaloid from marine fungi Starchbotrys longispora FG216 and fungi Stachybotrys microspora IFO 30018, possessed diverse bioactivities such as thrombolysis, anti-inflammatory and anti-oxidative properties, and so on. It may be widely used for the treatment of various diseases, including cerebral infarction, stroke, ischemia/reperfusion damage, acute kidney injury, etc. Especially in cerebral infarction, compound 1 could reduce hemorrhagic transformation along with thrombolytic therapy, as the traditional therapies are accompanied with bleeding risks. In the latest studies, compound 1 selectively inhibited the growth of NSCLC cells with EGFR mutation, thus demonstrating its excellent anti-cancer activity. Herein, we summarized pharmacological activities, preparation of staplabin congeners—especially compound 1—and the mechanism of compound 1, with potential therapeutic applications.
Collapse
Affiliation(s)
- Sijin Hang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
| | - Hui Chen
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
| | - Shiyi Wang
- AIEN Institute, Shanghai Ocean University, Shanghai 201306, China;
| | - Yiwen Fang
- Department of Chemistry, College of Science, Shantou University, Shantou 515063, China;
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
| | - Qidong Tu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
- Correspondence: (Q.T.); (R.G.)
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Correspondence: (Q.T.); (R.G.)
| |
Collapse
|
30
|
Neuroprotection of Oral Edaravone on Middle Cerebral Artery Occlusion in Rats. Neurotox Res 2022; 40:995-1006. [DOI: 10.1007/s12640-022-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
31
|
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu Y, Tong F, Tan Y, Zhou J, Kang C. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics 2022; 12:3196-3216. [PMID: 35547748 PMCID: PMC9065197 DOI: 10.7150/thno.71029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| |
Collapse
|
32
|
Golosova D, Levchenko V, Kravtsova O, Palygin O, Staruschenko A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci Rep 2022; 12:6080. [PMID: 35413977 PMCID: PMC9005691 DOI: 10.1038/s41598-022-09902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabinoids and their endogenous and synthetic analogs impact blood pressure and contribute to the incidence of hypertension. It was previously reported that the endocannabinoid system plays an important role in developing hypertension; however, it was also shown that cannabinoids elicit profound hypotension associated with hemorrhagic, cardiogenic, and endotoxic shock. This study aimed to test acute and chronic effects of an endogenous ligand of cannabinoid receptor anandamide (AEA) on blood pressure and kidney injury in vivo in conscious Dahl salt-sensitive (SS) rats. We demonstrated that acute i.v. bolus administration of a low or a high doses (0.05 or 3 mg/kg) of AEA did not affect blood pressure for 2 h after the injection in Dahl SS rats fed a normal salt diet (0.4% NaCl). Neither low nor high doses of AEA had any beneficial effects on blood pressure or kidney function. Furthermore, hypertensive rats fed a HS diet (8% NaCl) and chronically treated with 3 mg/kg of AEA exhibited a significant increase in blood pressure accompanied by increased renal interstitial fibrosis and glomerular damage at the late stage of hypertension. Western blot analyses revealed increased expression of Smad3 protein levels in the kidney cortex in response to chronic treatment with a high AEA dose. Therefore, TGF-β1/Smad3 signaling pathway may play a crucial role in kidney injury in SS hypertension during chronic treatment with AEA. Collectively, these data indicate that prolonged stimulation of cannabinoid receptors may result in aggravation of hypertension and kidney damage.
Collapse
Affiliation(s)
- Daria Golosova
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA. .,Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
33
|
Dodson M, Benavides GA, Darley-Usmar V, Zhang J. Differential Effects of 2-Deoxyglucose and Glucose Deprivation on 4-Hydroxynonenal Dependent Mitochondrial Dysfunction in Primary Neurons. FRONTIERS IN AGING 2022; 3:812810. [PMID: 35821809 PMCID: PMC9261388 DOI: 10.3389/fragi.2022.812810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction and metabolic decline are prevalent features of aging and age-related disorders, including neurodegeneration. Neurodegenerative diseases are associated with a progressive loss of metabolic homeostasis. This pathogenic decline in metabolism is the result of several factors, including decreased mitochondrial function, increased oxidative stress, inhibited autophagic flux, and altered metabolic substrate availability. One critical metabolite for maintaining neuronal function is glucose, which is utilized by the brain more than any other organ to meet its substantial metabolic demand. Enzymatic conversion of glucose into its downstream metabolites is critical for maintaining neuronal cell growth and overall metabolic homeostasis. Perturbation of glycolysis could significantly hinder neuronal metabolism by affecting key metabolic pathways. Here, we demonstrate that the glucose analogue 2-deoxyglucose (2DG) decreases cell viability, as well as both basal and maximal mitochondrial oxygen consumption in response to the neurotoxic lipid 4-hydroxynonenal (HNE), whereas glucose deprivation has a minimal effect. Furthermore, using a cell permeabilization assay we found that 2DG has a more pronounced effect on HNE-dependent inhibition of mitochondrial complex I and II than glucose deprivation. Importantly, these findings indicate that altered glucose utilization plays a critical role in dictating neuronal survival by regulating the mitochondrial response to electrophilic stress.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria A. Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Sapkota A, Choi JW. Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of Microglial Activation and NLRP3 Inflammasome Activation. Biomol Ther (Seoul) 2022; 30:55-63. [PMID: 34873072 PMCID: PMC8724842 DOI: 10.4062/biomolther.2021.154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to exert protective effects against several neurological diseases through its anti-oxidative and anti-inflammatory activities. The goal of the present study was to evaluate the therapeutic potential of OA against acute and chronic brain injuries after ischemic stroke using a mouse model of transient middle cerebral artery occlusion (tMCAO, MCAO/reperfusion). OA administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, functional neurological deficits, and neuronal apoptosis. Moreover, delayed administration of OA (at 3 h after reperfusion) attenuated brain infarction and improved functional neurological deficits during the acute phase. Such neuroprotective effects were associated with attenuation of microglial activation and lipid peroxidation in the injured brain after the tMCAO challenge. OA also attenuated NLRP3 inflammasome activation in activated microglia during the acute phase. In addition, daily administration of OA for 7 days starting from either immediately after reperfusion or 1 day after reperfusion significantly improved functional neurological deficits and attenuated brain tissue loss up to 21 days after the tMCAO challenge; these findings supported therapeutic effects of OA against ischemic stroke-induced chronic brain injury. Together, these findings showed that OA exerted neuroprotective effects against both acute and chronic brain injuries after tMCAO challenge, suggesting that OA is a potential therapeutic agent to treat ischemic stroke.
Collapse
Affiliation(s)
- Arjun Sapkota
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
35
|
Pannu A, Sharma PC, Thakur VK, Goyal RK. Emerging Role of Flavonoids as the Treatment of Depression. Biomolecules 2021; 11:biom11121825. [PMID: 34944471 PMCID: PMC8698856 DOI: 10.3390/biom11121825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequently observed psychological disorders, affecting thoughts, feelings, behavior and a sense of well-being in person. As per the WHO, it is projected to be the primitive cause of various other diseases by 2030. Clinically, depression is treated by various types of synthetic medicines that have several limitations such as side-effects, slow-onset action, poor remission and response rates due to complicated pathophysiology involved with depression. Further, clinically, patients cannot be given the treatment unless it affects adversely the job or family. In addition, synthetic drugs are usually single targeted drugs. Unlike synthetic medicaments, there are many plants that have flavonoids and producing action on multiple molecular targets and exhibit anti-depressant action by affecting multiple neuronal transmissions or pathways such as noradrenergic, serotonergic, GABAnergic and dopaminergic; inhibition of monoamine oxidase and tropomyosin receptor kinase B; simultaneous increase in nerve growth and brain-derived neurotrophic factors. Such herbal drugs with flavonoids are likely to be useful in patients with sub-clinical depression. This review is an attempt to analyze pre-clinical studies, structural activity relationship and characteristics of reported isolated flavonoids, which may be considered for clinical trials for the development of therapeutically useful antidepressant.
Collapse
Affiliation(s)
- Arzoo Pannu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| | - Ramesh K. Goyal
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| |
Collapse
|
36
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
37
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
39
|
Wang R, Liu S, Liu T, Wu J, Zhang H, Sun Z, Liu Z. Mass spectrometry-based serum lipidomics strategy to explore the mechanism of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves in the treatment of ischemic stroke. Food Funct 2021; 12:4519-4534. [PMID: 33890948 DOI: 10.1039/d0fo02845b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) were reported to have neuroprotective function and are also used to treat cranial and cerebral traumas as a traditional Chinese medicine and food herbage plant. However, there has been no previous study on ESL treatment for stroke at the level of lipid disorders. To clarify the mechanism of ESL in treating ischemic stroke, this study was carried out from 3 aspects, namely, the regulation of lipid disorders, protection of the nervous system, as well as anti-inflammatory and antioxidant actions. This study established a lipidomics research strategy that was developed by UPLC-Q-TOF/MS analysis. The quantification of neurotransmitters in the serum and brain tissue of rats was performed using UPLC-TQ/MS. Also, we quantified the oxidative stress and inflammatory reaction by measuring the contents of SOD, MDA, TNF-α, IL-6, and IL-10 via the ELISA kits for serum and brain tissue. According to UPLC-Q-TOF/MS-based lipidomics analysis, 27 lipidomics biomarkers were identified in this study, including PC, PE, SM, and TG, which were distributed in various lipid metabolic pathways, including glycerophospholipid, linoleic acid, alpha-linolenic acid, glycerolipid, sphingolipid, and arachidonic acid metabolism pathways. By reversing the changes in the lipid content caused by the disease, ESL has a therapeutic effect on ischemic stroke. Furthermore, quantitative results of neurotransmitters indicated that they can be regulated by ESL. Finally, the results of ELISA showed that ESL can treat ischemic stroke to a certain extent by reducing the oxidative and inflammatory damage. Therefore, ESL may play a therapeutic role in the treatment of ischemic stroke in different ways. This research preliminarily revealed the mechanism of ESL in the treatment of ischemic stroke and provided support for the further application of ESL.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jabůrek M, Průchová P, Holendová B, Galkin A, Ježek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants (Basel) 2021; 10:678. [PMID: 33926059 PMCID: PMC8146845 DOI: 10.3390/antiox10050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Pavla Průchová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Alexander Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University William Black Building, New York, NY 10032, USA;
| | - Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| |
Collapse
|
41
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid Metabolism and Ferroptosis. BIOLOGY 2021; 10:biology10030184. [PMID: 33801564 PMCID: PMC8000263 DOI: 10.3390/biology10030184] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary Ferroptosis is a type of cell death, which is morphologically and mechanistically distinct from other type of cell death pathways such as apoptosis and necroptosis. Lipid peroxidation is a hallmark of ferroptosis and directly destroys cellular membranes, thereby causing ferroptosis. Since lipid peroxidation, which induces ferroptosis, occurs in polyunsaturated fatty acid on specific phospholipids, various lipid metabolic pathways are involved in lipid peroxidation and ferroptosis. Besides, various metabolic and signaling pathways directly and indirectly regulate lipid peroxidation and ferroptosis. Since ferroptosis is associated with a variety of human diseases such as cancer, myocardial infarction, atherosclerosis, kidney diseases, liver diseases, and neuronal diseases, a better understanding of the regulatory mechanisms of ferroptosis can provide insights and treatment strategies for related diseases. Abstract Ferroptosis is a type of iron-dependent regulated necrosis induced by lipid peroxidation that occurs in cellular membranes. Among the various lipids, polyunsaturated fatty acids (PUFAs) associated with several phospholipids, such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), are responsible for ferroptosis-inducing lipid peroxidation. Since the de novo synthesis of PUFAs is strongly restricted in mammals, cells take up essential fatty acids from the blood and lymph to produce a variety of PUFAs via PUFA biosynthesis pathways. Free PUFAs can be incorporated into the cellular membrane by several enzymes, such as ACLS4 and LPCAT3, and undergo lipid peroxidation through enzymatic and non-enzymatic mechanisms. These pathways are tightly regulated by various metabolic and signaling pathways. In this review, we summarize our current knowledge of how various lipid metabolic pathways are associated with lipid peroxidation and ferroptosis. Our review will provide insight into treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| |
Collapse
|
43
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
44
|
Momchilova A, Markovska T, Georgiev G, Pankov S, Staneva G, Petkova D, Krastev P, Pinkas A, Pankov R. Quercetin affects membrane lipids and apoptosis in three-dimensional fibroblast cultures. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1939785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tania Markovska
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Georgi Georgiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Stefan Pankov
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galya Staneva
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Petkova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital “St. Ekaterina”, Sofia, Bulgaria
| | - Adriana Pinkas
- Director STEP/CSTEP, Office of Continuing Education, Suffolk County Community College, Sayville, NY, USA
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University, Sofia, Bulgaria
| |
Collapse
|
45
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
46
|
Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants (Basel) 2020; 9:E990. [PMID: 33066477 PMCID: PMC7602129 DOI: 10.3390/antiox9100990] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (R.O.); (S.S.); (A.S.)
| |
Collapse
|
47
|
Sakamoto A, Uemura T, Terui Y, Yoshida M, Fukuda K, Nakamura T, Kashiwagi K, Igarashi K. Development of an ELISA for Measurement of Urinary 3-Hydroxypropyl Mercapturic Acid (3-HPMA), the Marker of Stroke. Med Sci (Basel) 2020; 8:medsci8030033. [PMID: 32824278 PMCID: PMC7564686 DOI: 10.3390/medsci8030033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
We previously observed an inverse correlation between stroke and urinary 3-hydroxypropyl mercapturic acid (3-HPMA), an acrolein-glutathione metabolite, through its measurement by liquid chromatography with tandem mass spectrometry (LC-MS/MS). However, the cost of equipment for LC-MS/MS and its maintenance fee is very expensive and a cost-efficient method is required. In this study, we have developed a sensitive enzyme-linked immunosorbent assay (ELISA) system to measure 3-HPMA using a chicken antibody recognizing 3-HPMA-conjugated chicken albumin as antigen. Linearity to measure 3-HPMA was obtained from 0 to 10 μM, indicating that this ELISA system is useful for measurement of urine 3-HPMA. It was confirmed that 3-HPMA in urine of stroke patients decreased significantly compared with that of control subjects using the ELISA system. Using the ELISA kit, it became possible to evaluate the risk of brain stroke by not only plasma but also by urine. These results confirm that shortage of glutathione to detoxify acrolein is one of the major causes of stroke incidence. Our method contributes to maintenance of quality of life (QOL) of the elderly.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Madoka Yoshida
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
| | - Kazumasa Fukuda
- Chiba Central Medical Center, 1835-1 Kasori-cho, Wakaba-ku, Chiba 264-0017, Japan; (K.F.); (T.N.)
| | - Takao Nakamura
- Chiba Central Medical Center, 1835-1 Kasori-cho, Wakaba-ku, Chiba 264-0017, Japan; (K.F.); (T.N.)
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Correspondence: ; Tel.: +81-43-224-7500; Fax: +81-43-379-1050
| |
Collapse
|
48
|
Luo D, Zhang JB, Liu W, Yao XR, Guo H, Jin ZL, Zhang MJ, Yuan B, Jiang H, Kim NH. Leonurine improves in vitro porcine embryo development competence by reducing reactive oxygen species production and protecting mitochondrial function. Theriogenology 2020; 156:116-123. [PMID: 32698037 DOI: 10.1016/j.theriogenology.2020.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Leonurine (LEO) is pseudoalkaloid that has been isolated from motherwort. It has been found to have various biological activities, including an antioxidant capacity. This study aimed to confirm whether LEO could be used in porcine in vitro culture (IVC) medium for its antioxidant effect and related molecular mechanisms. The results showed that embryos in IVC medium supplemented with 40 μM LEO had an increased blastocyst formation rate, total cell number, and proliferation capacity and a low apoptosis rate. LEO supplementation decreased reactive oxygen species levels and increased glutathione levels. Moreover, LEO-treated embryos exhibited improved intracellular mitochondrial membrane potential and reduced autophagy. In addition, pluripotency related gene was up-regulated while apoptosis and autophagy related genes were down-regulated with LEO supplementation. These results suggest that LEO has a beneficial effect on pre-implantation embryo development by reducing oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Dan Luo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China
| | - Wen Liu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea; Department of Laboratory Animals, Southern Medical University, Guangzhou, 510515, China
| | - Xue-Rui Yao
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Hao Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Zhe-Long Jin
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Ming-Jun Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea.
| | - Nam-Hyung Kim
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea; School of Biotechnology and Healthcare, Wuyi University, Jiangmen, Guangdong, 529020, China.
| |
Collapse
|
49
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
50
|
Longshengzhi Capsules Improve Ischemic Stroke Outcomes and Reperfusion Injury via the Promotion of Anti-Inflammatory and Neuroprotective Effects in MCAO/R Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9654175. [PMID: 32215051 PMCID: PMC7085377 DOI: 10.1155/2020/9654175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death in the elderly. Traditional Chinese medicine provides an exciting strategy for treating stroke. Previous reports indicated that Longshengzhi capsules (LSZ), a modified Chinese formula, reduced formed thrombi and oxidative stress and were promising in the clinical treatment of ischemic stroke. However, the specific therapeutic effect and mechanism of LSZ are still ambiguous. This study aimed to define the effects of LSZ on proinflammatory mediators and neuroprotective effects on middle cerebral artery occlusion and refusion (MCAO/R) rats. Rats were treated with different doses of LSZ (0.54, 1.62, and 4.32 g/(kg·d)) in a week after model building. LSZ could improve the survival rate, ischemic stroke outcome, and infarct volume. In addition, significant decrease was observed in reactive oxygen species (ROS) levels and inflammatory factor levels in LSZ-treated groups, concomitant with increase in activities of superoxide dismutase (SOD), neurosynaptic remodeling, and decrease in brain edema. It is proposed that LSZ has anti-inflammatory and neuroprotective effects resulting in downregulating matrix metalloproteinase 2/9 (MMP-2/9) and vascular endothelial growth factor (VEGF) and nuclear factor kappa-B (NF-κB) and upregulating microtubule-associated protein-2 (Map-2) and growth-associated protein-43 (GAP-43) via p38 MAPK and HIF-1α signaling pathways in MCAO/R rats. This study provides potential evidences that p38 MAPK and HIF-1α/VEGF signaling pathways play significant roles in the anti-inflammatory and neuroprotective effects of LSZ.
Collapse
|