1
|
Elawa S, Fredriksson I, Steinvall I, Zötterman J, Farnebo S, Tesselaar E. Skin perfusion and oxygen saturation after mastectomy and radiation therapy in breast cancer patients. Breast 2024; 75:103704. [PMID: 38460441 PMCID: PMC10943105 DOI: 10.1016/j.breast.2024.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiological mechanism behind complications associated with postmastectomy radiotherapy (PMRT) and subsequent implant-based breast reconstruction are not completely understood. The aim of this study was to examine if there is a relationship between PMRT and microvascular perfusion and saturation in the skin after mastectomy and assess if there is impaired responsiveness to a topically applied vasodilator (Methyl nicotinate - MN). Skin microvascular perfusion and oxygenation >2 years after PMRT were measured using white light diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF) in the irradiated chest wall of 31 women with the contralateral breast as a control. In the non-irradiated breast, the perfusion after application of MN (median 0.84, 25th-75th centile 0.59-1.02 % RBC × mm/s) was higher compared to the irradiated chest wall (median 0.51, 25th-75th centile 0.21-0.68 % RBC × mm/s, p < 0.001). The same phenomenon was noted for saturation (median 91 %, 25th-75th centile 89-94 % compared to 89 % 25th-75th centile 77-93 %, p = 0.001). Eight of the women (26%) had a ≥10 % difference in skin oxygenation between the non-irradiated breast and the irradiated chest wall. These results indicate that late microvascular changes caused by radiotherapy of the chest wall significantly affect skin perfusion and oxygenation.
Collapse
Affiliation(s)
- Sherif Elawa
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden.
| | - Ingemar Fredriksson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Perimed AB, Järfälla, Stockholm, Sweden
| | - Ingrid Steinvall
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Johan Zötterman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Medical Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Chen YY, Wang M, Zuo CY, Mao MX, Peng XC, Cai J. Nrf-2 as a novel target in radiation induced lung injury. Heliyon 2024; 10:e29492. [PMID: 38665580 PMCID: PMC11043957 DOI: 10.1016/j.heliyon.2024.e29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. The underlying mechanisms include radiation-induced oxidative stress caused by damage to the deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 protects against radiation-induced lung inflammation and fibrosis. This review discusses the protective role of Nrf-2 in RILI and its possible mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chen-Yang Zuo
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| |
Collapse
|
3
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
4
|
Ramia P, Bodgi L, Mahmoud D, Mohammad MA, Youssef B, Kopek N, Al-Shamsi H, Dagher M, Abu-Gheida I. Radiation-Induced Fibrosis in Patients with Head and Neck Cancer: A Review of Pathogenesis and Clinical Outcomes. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549211036898. [PMID: 35125900 PMCID: PMC8808018 DOI: 10.1177/11795549211036898] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy-related fibrosis remains one of the most challenging treatment related side effects encountered by patients with head and neck cancer. Several established and ongoing novel therapies have been studied with paucity of data in how to best treat these patients. This review aims to provide researchers and health care providers with a comprehensive review on the presentation, etiology, and therapeutic options for this serious condition.
Collapse
Affiliation(s)
- Paul Ramia
- McGill University Health Centre, Montreal, QC, Canada
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Dima Mahmoud
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad A Mohammad
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Bassem Youssef
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Neil Kopek
- McGill University Health Centre, Montreal, QC, Canada
| | - Humaid Al-Shamsi
- Burjeel Cancer Institute, Abu-Dhabi, United Arab Emirates.,Emirates Oncology Society, Dubai, United Arab Emirates.,University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Dagher
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Abu-Gheida
- Burjeel Cancer Institute, Abu-Dhabi, United Arab Emirates.,Emirates Oncology Society, Dubai, United Arab Emirates.,United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
6
|
Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res Ther 2021; 12:447. [PMID: 34372921 PMCID: PMC8351374 DOI: 10.1186/s13287-021-02516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Radiation-induced dermatitis is a serious side effect of radiotherapy, and very few effective treatments are currently available for this condition. We previously demonstrated that apoptosis is an important feature of radiation-induced dermatitis and adipose-derived stem cells (ADSCs) are one of the most promising types of stem cells that have a protective effect on acute radiation-induced dermatitis. Cathepsin F (CTSF) is a recently discovered protein that plays an important role in apoptosis. In this study, we investigated whether ADSCs affect chronic radiation-induced dermatitis, and the underlying mechanisms involved. Methods ADSCs were isolated from male Sprague-Dawley (SD) rats and characterized. For in vivo studies, rats were randomly divided into control and ADSC-treated groups, and cultured ADSCs were transplanted into radiation-induced dermatitis model rats. The effects of ADSC transplantation were determined by skin damage scoring, histopathological analysis, electron microscopy, immunohistochemical staining, and western blotting analysis of apoptosis-related proteins. To evaluate the effects of ADSCs in vitro, radiation-induced apoptotic cells were treated with ADSC culture supernatant, and apoptosis-related protein expression was investigated by TUNEL staining, flow cytometry, and western blotting. Results In the in vivo studies, skin damage, inflammation, fibrosis, and apoptosis were reduced and hair follicle and sebaceous gland regeneration were enhanced in the ADSC group compared with the control group. Further, CTSF and downstream pro-apoptotic proteins (Bid, BAX, and caspase 9) were downregulated, while anti-apoptotic proteins (Bcl-2 and Bcl-XL) were upregulated. In vitro, ADSCs markedly attenuated radiation-induced apoptosis, downregulated CTSF and downstream pro-apoptotic proteins, and upregulated anti-apoptotic proteins. Conclusion ADSCs protect against radiation-induced dermatitis by exerting an anti-apoptotic effect through inhibition of CTSF expression. ADSCs may be a good therapeutic candidate to prevent the development of radiation-induced dermatitis.
Collapse
|
7
|
Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 2021; 55:595-625. [PMID: 34181503 DOI: 10.1080/10715762.2021.1876854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
8
|
Zhou X, Hao J, Kong Y, Xu R. Iron-catalyzed cascade reaction of C(sp 3)-Se bond cross-coupling/C-N bond formation. Chem Commun (Camb) 2021; 57:5426-5429. [PMID: 33949472 DOI: 10.1039/d1cc01564h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An iron-catalyzed cascade reaction of C(sp3)-Se bond cross-coupling/C-N bond formation was developed. Various 5,13a-dihydro-6H,8H-benzo[5,6][1,3]selenazino[2,3-a]isoquinolin-8-one derivatives were synthesized under mild conditions starting from 1,2,3,4-tetrahydroisoquinolines and 2-hydroselenobenzoic acids. This protocol provides an economical approach for C(sp3)-Se bond formation.
Collapse
Affiliation(s)
- Xinyan Zhou
- Department of Biology and Environment, Jiyang College of Zhejiang A&F University, Shaoxing 311800, Zhejiang, China.
| | - Jin Hao
- Department of Biology and Environment, Jiyang College of Zhejiang A&F University, Shaoxing 311800, Zhejiang, China.
| | - Yilin Kong
- Department of Biology and Environment, Jiyang College of Zhejiang A&F University, Shaoxing 311800, Zhejiang, China.
| | - Runsheng Xu
- Department of Biology and Environment, Jiyang College of Zhejiang A&F University, Shaoxing 311800, Zhejiang, China.
| |
Collapse
|
9
|
Kunwar A, Priyadarsini KI, Jain VK. 3,3'-Diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance. Biochim Biophys Acta Gen Subj 2020; 1865:129768. [PMID: 33148501 DOI: 10.1016/j.bbagen.2020.129768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Extensive research is being carried out globally to design and develop new selenium compounds for various biological applications such as antioxidants, radio-protectors, anti-carcinogenic agents, biocides, etc. In this pursuit, 3,3'-diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention for its biological activities. SCOPE OF REVIEW This review intends to give a comprehensive account of research on DSePA so as to facilitate further research activities on this organoselenium compound and to realize its full potential in different areas of biological and pharmacological sciences. MAJOR CONCLUSIONS It is an interesting diselenide structurally related to selenocystine. It shows moderate glutathione peroxidase (GPx)-like activity and is an excellent scavenger of reactive oxygen species (ROS). Exposure to radiation, as envisaged during radiation therapy, has been associated with normal tissue side effects and also with the decrease in selenium levels in the body. In vitro and in vivo evaluation of DSePA has confirmed its ability to reduce radiation induced side effects into normal tissues. Administration of DSePA through intraperitoneal (IP) or oral route to mice in a dose range of 2 to 2.5 mg/kg body weight has shown survival advantage against whole body irradiation and a significant protection to lung tissue against thoracic irradiation. Pharmacokinetic profiling of DSePA suggests its maximum absorption in the lung. GENERAL SIGNIFICANCE Research work on DSePA reported in fifteen years or so indicates that it is a promising multifunctional organoselenium compound exhibiting many important activities of biological relevance apart from radioprotection.
Collapse
Affiliation(s)
- A Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - K Indira Priyadarsini
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| | - Vimal K Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
10
|
Wang L, Wang Z, Cao Y, Lu W, Kuang L, Hua D. Strategy for Highly Efficient Radioprotection by a Selenium-Containing Polymeric Drug with Low Toxicity and Long Circulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44534-44540. [PMID: 32902946 DOI: 10.1021/acsami.0c14000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the rapid development and extensive use of nuclear technology, ionizing radiation has become a large threat to human health. Until now, there has been no practicable radioprotector for routine clinical application because of severe side effects, high toxicity, and short elimination half-life. Herein, we develop a highly efficient radioprotection strategy using a selenium-containing polymeric drug with low toxicity and long circulation by removing reactive oxygen species (ROSs). The selenium-containing polymeric drug is prepared by copolymerization of vinyl phenylselenides (VSe) and N-(2-hydroxyethyl) acrylamide (HEA). The in vitro radioprotective efficacy of the polymeric drug is increased by 40% with lower cytotoxicity compared with the small-molecular VSe monomer. Importantly, the radioprotection activity of the polymeric drug shows more remarkable effects both in cell culture and mice model compared to the commercially available drug ebselen and also exhibits a much longer retention time in blood (half-life ∼ 10 h). This work may unfold a new area for highly efficient radioprotection by polymeric drugs instead of small-molecular agents.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Weihong Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
11
|
Bartolini D, Tew KD, Marinelli R, Galli F, Wang GY. Nrf2-modulation by seleno-hormetic agents and its potential for radiation protection. Biofactors 2020; 46:239-245. [PMID: 31617634 DOI: 10.1002/biof.1578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
Abstract
The trace element selenium (Se) is an essential component of selenoproteins and plays a critical role in redox signaling via regulating the activity of selenoenzymes such as thioredoxin reductase-1 and glutathione peroxidases. Se compounds and its metabolites possess a wide range of biological functions including anticancer and cytoprotection effects, modulation of hormetic genes and antioxidant enzyme activities. Radiation-induced injury of normal tissues is a significant side effect for cancer patients who receive radiotherapy in the clinic and the development of new and effective radioprotectors is an important goal of research. Others and we have shown that seleno-compounds have the potential to protect ionizing radiation-induced toxicities in various tissues and cells both in in vitro and in vivo studies. In this review, we discuss the potential utilization of Se compounds with redox-dependent hormetic activity as novel radio-protective agents to alleviate radiation toxicity. The cellular and molecular mechanisms underlying the radioprotection effects of these seleno-hormetic agents are also discussed. These include Nrf2 transcription factor modulation and the consequent upregulation of the adaptive stress response to IR in bone marrow stem cells and hematopoietic precursors.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
13
|
Differential effect of Taraxacum officinale L. (dandelion) root extract on hepatic and testicular tissues of rats exposed to ionizing radiation. Mol Biol Rep 2019; 46:4893-4907. [DOI: 10.1007/s11033-019-04939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
|
14
|
Michalson KT, Macintyre AN, Sempowski GD, Bourland JD, Howard TD, Hawkins GA, Dugan GO, Cline JM, Register TC. Monocyte Polarization is Altered by Total-Body Irradiation in Male Rhesus Macaques: Implications for Delayed Effects of Acute Radiation Exposure. Radiat Res 2019; 192:121-134. [PMID: 31161966 DOI: 10.1667/rr15310.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Radiation-induced fibrosis (RIF) is a common delayed effect of acute ionizing radiation exposure (DEARE) affecting diverse tissues including the heart, lungs, liver and skin, leading to reduced tissue function and increased morbidity. Monocytes, which may be classified into classical (CD14++, CD16-), intermediate (CD14++, CD16+) and non-classical (CD14+/low, CD16++) subtypes in humans and non-human primates (NHPs), and monocyte-derived macrophages may play an integral role in the pathogenesis of RIF. We tested the hypothesis that moderate to high levels of total-body exposure to radiation would alter monocyte polarization and produce phenotypes that could promote multi-organ fibrosis in a wellestablished NHP model of DEARE. Subjects were 16 young adult male rhesus macaques, ten of which were exposed to high-energy, 4 Gy X-ray total-body irradiation (TBI) and six that received sham irradiation (control). Total monocytes assessed by complete blood counts were 89% depleted in TBI animals by day 9 postirradiation (P < 0.05), but recovered by day 30 postirradiation and did not differ from control levels thereafter. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) and sorted into classical, intermediate and non-classical subsets using fluorescence-activated cell sorting (FACS) prior to and at 6 months post-TBI. At 6 months postirradiation, monocyte polarization shifted towards lower classical (92% → 86%) and higher intermediate (7% → 12%) and non-classical monocyte subsets (0.6% → 2%) (all P < 0.05) in TBI animals compared to baseline. No change in monocyte subsets was observed in control animals. Transcriptional profiles in classical and intermediate monocyte subsets were assessed using RNAseq. Classical monocyte gene expression did not change significantly over time or differ cross-sectionally between TBI and control groups. In contrast, significant numbers of differentially expressed genes (DEGs) were detected in intermediate monocyte comparisons between the TBI animals and all animals at baseline (304 DEGs), and in the TBI versus control animals at 6 months postirradiation (67 DEGs). Intermediate monocytes also differed between baseline and 6 months in control animals (147 DEGs). Pathway analysis was used to identify genes within significant canonical pathways, yielding 52 DEGs that were specific to irradiated intermediate monocytes. These DEGs and significant canonical pathways were associated with pro-fibrotic and anti-inflammatory signaling pathways that have been noted to induce M2 macrophage polarization. These findings support the hypothesis that TBI may alter monocyte programming and polarization towards a profibrotic phenotype, providing a novel target opportunity for therapies to inhibit or prevent RIF.
Collapse
Affiliation(s)
- Kristofer T Michalson
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Andrew N Macintyre
- d Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gregory D Sempowski
- d Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - J Daniel Bourland
- b Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Timothy D Howard
- c Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- c Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory O Dugan
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
15
|
El-Hady WM, Galal AAA. Neurotoxic Outcomes of Subchronic Manganese Chloride Exposure via Contaminated Water in Adult Male Rats and the Potential Benefits of Ebselen. Biol Trace Elem Res 2018. [PMID: 29516356 DOI: 10.1007/s12011-018-1291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurological effects of manganese (Mn) exposure on adults consuming contaminated water remain unclear. Accordingly, the current experiment was planned to explore the neurotoxic consequences of subchronic Mn exposure via contaminated water and to examine whether ebselen (Ebs) improved these outcomes. Rats exposed to oral MnCl2 (50 mg/kg body weight) for 30 successive days exhibited reduced rearing and ambulation. Furthermore, Mn administration increased brain Mn concentrations and induced superoxide dismutase, catalase, and glutathione depletion. Mn administration also increased lipid peroxidation biomarker levels. Additionally, Mn increased interleukin1-β and prostaglandin E2 levels and altered caspase-3 and Bcl-2 expression. Mn intoxication also induced marked gliosis, numerous vacuolations, and disoriented and pyknotic Purkinje cells as well as marked vascular congestion in brain tissue. Meanwhile, intraperitoneal administration of Ebs (15 mg/kg body weight) to Mn-intoxicated rats improved the behavioral performance and oxidative damage as well as inflammatory, apoptotic, and histopathological changes. The above results indicate that Ebs alleviated Mn neurotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, Ebs could represent a promising agent in the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Walaa M El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
16
|
Kunwar A, Patil A, Kumar S, Deshpande R, Gota V, Goda JS, Jain V, Indira Priyadarsini K. Toxicological safety evaluation of 3,3′-diselenodipropionic acid (DSePA), a pharmacologically important derivative of selenocystine. Regul Toxicol Pharmacol 2018; 99:159-167. [DOI: 10.1016/j.yrtph.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
|
17
|
Park JH, Ku HJ, Kim JK, Park JW, Lee JH. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin. Sci Rep 2018; 8:9464. [PMID: 29930336 PMCID: PMC6013481 DOI: 10.1038/s41598-018-27788-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Hyeong Jun Ku
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Korea.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea.
| |
Collapse
|
18
|
Verma P, Kunwar A, Arai K, Iwaoka M, Priyadarsini KI. Mechanism of radioprotection by dihydroxy-1-selenolane (DHS): Effect of fatty acid conjugation and role of glutathione peroxidase (GPx). Biochimie 2018; 144:122-133. [DOI: 10.1016/j.biochi.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
|
19
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
20
|
Choi C, Lee HY, Jeong YI, Nah JW. Synthesis of methoxy poly(ethylene glycol)- b -poly( dl -lactide- co -glycolide) copolymer via diselenide linkage and fabrication of ebselen-incorporated nanoparticles for radio-responsive drug delivery. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Raghuraman M, Verma P, Kunwar A, Phadnis PP, Jain VK, Priyadarsini KI. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage. Metallomics 2017; 9:715-725. [DOI: 10.1039/c7mt00034k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Puspitasari IM, Yamazaki C, Abdulah R, Putri M, Kameo S, Nakano T, Koyama H. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells. Oncol Lett 2016; 13:449-454. [PMID: 28123581 DOI: 10.3892/ol.2016.5434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0.423). These results suggest that 50 nM sodium selenite supplementation administered for 72 h prior to irradiation may protect CHEK-1 cells from irradiation-induced damage by inhibiting irradiation-induced apoptosis. Therefore, sodium selenite is a potential radioprotective compound for non-cancerous cells in clinical radiotherapy.
Collapse
Affiliation(s)
- Irma M Puspitasari
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Chiho Yamazaki
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Mirasari Putri
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Satomi Kameo
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Koyama
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
23
|
Selenoproteins: Antioxidant selenoenzymes and beyond. Arch Biochem Biophys 2016; 595:113-9. [PMID: 27095226 DOI: 10.1016/j.abb.2015.06.024] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
Adequate intake of the essential trace element and micronutrient selenium is thought to be beneficial for maintaining human health. Selenium may modulate a broad spectrum of key biological processes, including the cellular response to oxidative stress, redox signalling, cellular differentiation, the immune response, and protein folding. Biochemical and cellular effects of selenium are achieved through activities of selenocysteine-containing selenoproteins. This small yet essential group comprises proteins encoded by 25 genes in humans, e.g. oxidoreductases such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR), as well as the iodothyronine deiodinases (DIO) and the plasma selenium transport protein, selenoprotein P (SePP1). Synthetic selenoorganic compounds, including the GPx mimetic ebselen, have also been applied in biological systems in vitro and in vivo; antioxidant and anti-inflammatory actions of ebselen and its history as a drug candidate are summarised here. Furthermore, we discuss several aspects of selenoprotein biochemistry, ranging from their well-known importance for cellular protection against oxidative damage to more recent data that link selenoprotein expression/activity to enterocyte and adipocyte differentiation and function and to (dys)regulation of insulin action and secretion.
Collapse
|
24
|
Dihydroxyselenolane (DHS) supplementation improves survival following whole-body irradiation (WBI) by suppressing tissue-specific inflammatory responses. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 807:33-46. [DOI: 10.1016/j.mrgentox.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
|
25
|
Choudhry QN, Kim MJ, Kim TG, Pan JH, Kim JH, Park SJ, Lee JH, Kim YJ. Saponin-Based Nanoemulsification Improves the Antioxidant Properties of Vitamin A and E in AML-12 Cells. Int J Mol Sci 2016; 17:E1406. [PMID: 27571071 PMCID: PMC5037686 DOI: 10.3390/ijms17091406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
Our work aimed to investigate the protective effects of saponin-based nanoemulsions of vitamin A and E against oxidative stress-induced cellular damage in AML-12 cells. Saponin nanoemulsions of vitamin A (SAN) and vitamin E (SEN) were prepared by high-pressure homogenization and characterized in terms of size, zeta potential, and polydispersity index. SEN and SAN protect AML-12 cells against oxidative stress-induced cellular damage more efficiently via scavenging reactive oxygen species (ROS), and reducing DNA damage, protein carbonylation, and lipid peroxidation. These results provide valuable information for the development of nanoemulsion-based delivery systems that would improve the antioxidant properties of vitamin A and E.
Collapse
Affiliation(s)
- Qaisra Naheed Choudhry
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Mi Jeong Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Jeong Hoon Pan
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Sung Jin Park
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejongro, Jochiwon, Sejong 339-700, Korea.
| |
Collapse
|
26
|
Stoyanovsky DA, Jiang J, Murphy MP, Epperly M, Zhang X, Li S, Greenberger J, Kagan V, Bayır H. Correction to "Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator". ACS Med Chem Lett 2016; 7:653-4. [PMID: 27326344 DOI: 10.1021/acsmedchemlett.6b00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
[This corrects the article DOI: 10.1021/ml5003635.].
Collapse
|
27
|
Ku HJ, Kwon OS, Kang BS, Lee DS, Lee HS, Park JW. IDH2 knockdown sensitizes tumor cells to emodin cytotoxicity in vitro and in vivo. Free Radic Res 2016; 50:1089-1097. [PMID: 27087448 DOI: 10.1080/10715762.2016.1178739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although reactive oxygen species (ROS) work as second messengers at sublethal concentrations, higher levels of ROS can kill cancer cells. Since cellular ROS levels are determined by a balance between ROS generation and removal, the combination of ROS generators, and the depletion of reducing substances greatly enhance ROS levels. Emodin (1,3,8-trihydroxy-6-methyl anthraquinone), a natural anthraquinone derivative from the root and rhizome of numerous plants, is a ROS generator that induces apoptosis in cancer cells. The major enzyme to generate mitochondrial NADPH is the mitochondrial isoenzyme of NADP+-dependent isocitrate dehydrogenase (IDH2). In this report, we demonstrate that IDH2 knockdown effectively enhances emodin-induced apoptosis of mouse melanoma B16F10 cells through the regulation of ROS generation. Our findings suggest that suppression of IDH2 activity results in perturbation of the cellular redox balance and, ultimately, exacerbate emodin-induced apoptotic cell death in B16F10 cells. Our results strongly support a therapeutic strategy in the management of cancer that alters the intracellular redox status by the combination of a ROS generator and the suppression of antioxidant enzyme activity.
Collapse
Affiliation(s)
- Hyeong Jun Ku
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Oh-Shin Kwon
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Boem Sik Kang
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Dong-Seok Lee
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Hyun-Shik Lee
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Jeen-Woo Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| |
Collapse
|
28
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
29
|
Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 2015; 141:1985-94. [PMID: 25910988 DOI: 10.1007/s00432-015-1974-6] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. METHODS A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords "Radiation-Induced Fibrosis," "Radiotherapy Complications," "Fibrosis Therapy," and other closely related terms. RESULTS RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. CONCLUSION Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.
Collapse
Affiliation(s)
- Jeffrey M Straub
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, 3020A Wahl Hall East, Kansas City, KS, 66160, USA
| | - Jacob New
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chase D Hamilton
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, 3020A Wahl Hall East, Kansas City, KS, 66160, USA
| | - Chris Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Yelizaveta Shnayder
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, 3020A Wahl Hall East, Kansas City, KS, 66160, USA
| | - Sufi M Thomas
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, 3020A Wahl Hall East, Kansas City, KS, 66160, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Park JH, Lee JH, Park JW. Attenuated SAG expression exacerbates 4-hydroxy-2-nonenal-induced apoptosis and hypertrophy of H9c2 cardiomyocytes. Free Radic Res 2015; 49:962-72. [PMID: 25850934 DOI: 10.3109/10715762.2015.1023796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- J H Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | | | | |
Collapse
|
31
|
Lee SJ, Park JW. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells. BMB Rep 2015; 47:209-14. [PMID: 24286310 PMCID: PMC4163888 DOI: 10.5483/bmbrep.2014.47.4.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/05/2013] [Accepted: 07/25/2014] [Indexed: 11/30/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214]
Collapse
Affiliation(s)
- Su Jeong Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
32
|
Ku HJ, Ahn Y, Lee JH, Park KM, Park JW. IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice. Free Radic Biol Med 2015; 80:84-92. [PMID: 25557279 DOI: 10.1016/j.freeradbiomed.2014.12.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 01/26/2023]
Abstract
Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2(-/-)) and wild-type (idh2(+/+)) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.
Collapse
Affiliation(s)
- Hyeong Jun Ku
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | - Youngkeun Ahn
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Jeen-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Korea.
| |
Collapse
|
33
|
Stoyanovsky DA, Jiang J, Murphy MP, Epperly M, Zhang X, Li S, Greenberger J, Kagan V, Bayır H. Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator. ACS Med Chem Lett 2014; 5:1304-1307. [PMID: 25530831 PMCID: PMC4266336 DOI: 10.1021/ml5003635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023] Open
Abstract
![]()
Ionizing radiation
(IR) triggers mitochondrial overproduction of H2O2 and accumulation of lipid hydroperoxides leading to the induction
of apoptotic and necroptotic cell death pathways. Given the high catalytic
efficiency of the seleno-enzyme glutathione peroxidase (Gpx) toward
reduction of lipid hydroperoxides and H2O2,
we tested the potential of mitochondria-targeted derivatives of ebselen
to mitigate the deleterious effects of IR. We report that 2-[[2-[4-(3-oxo-1,2-benzoselenazol-2-yl)phenyl]acetyl]amino]ethyl-triphenyl-phosphonium
chloride (MitoPeroxidase 2) was effective in reducing lipid hydroperoxides,
preventing apoptotic cell death, and, when administered 24 h postirradiation,
increased the survival of mice exposed to whole body γ-irradiation.
Collapse
Affiliation(s)
| | | | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills
Road, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
34
|
Chaurasia RK, Balakrishnan S, Kunwar A, Yadav U, Bhat N, Anjaria K, Nairy R, Sapra BK, Jain VK, Priyadarsini KI. Cyto-genotoxicity assessment of potential radioprotector, 3,3′-diselenodipropionic acid (DSePA) in Chinese Hamster Ovary (CHO) cells and human peripheral blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 774:8-16. [DOI: 10.1016/j.mrgentox.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
|
35
|
Kim SH, Yoo YH, Lee JH, Park JW. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase knockdown inhibits tumorigenicity of melanoma cells. Biochem Biophys Res Commun 2014; 451:246-51. [PMID: 25086359 DOI: 10.1016/j.bbrc.2014.07.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
The potent cytotoxicity of reactive oxygen species (ROS) can cause various diseases but may also serve as a powerful weapon capable of destroying cancer cells. Although the balance between generation and elimination of ROS is maintained by the proper function of antioxidative systems, the severe disturbance of cellular redox status may cause various damages, leading to cell death. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2), an NADPH-generating enzyme, is one of the major antioxidant and redox regulators in mitochondria. To assess the effect of IDH2 knockdown in the malignancy process, we generated B16F10 melanoma cells stably transfected either with the cDNA for mouse IDH2 cloned in antisense orientation or with a control vector. Mice injected with B16F10 cells harboring IDH2 downregulation showed a dramatic reduction in tumor progression in comparison to mice administered control cells. This effect might be secondary to a shift from a reducing to an oxidative state in tumor cells. The tumor tissue of mice administered B16F10 cells transfected with the IDH2 cDNA exhibited induction of apoptosis and downregulation of angiogenesis markers. These observations demonstrate that reduction of IDH2 levels in malignant cells has anti-tumorigenic effects and suggest that IDH2 is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Sung Hwan Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Young Hyun Yoo
- Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea.
| |
Collapse
|
36
|
Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:671539. [PMID: 25140198 PMCID: PMC4129148 DOI: 10.1155/2014/671539] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants.
Collapse
Affiliation(s)
- Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Rok Fink
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Li D, Lu L, Zhang J, Wang X, Xing Y, Wu H, Yang X, Shi Z, Zhao M, Fan S, Meng A. Mitigating the effects of Xuebijing injection on hematopoietic cell injury induced by total body irradiation with γ rays by decreasing reactive oxygen species levels. Int J Mol Sci 2014; 15:10541-53. [PMID: 24927144 PMCID: PMC4100167 DOI: 10.3390/ijms150610541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic injury is the most common side effect of radiotherapy. However, the methods available for the mitigating of radiation injury remain limited. Xuebijing injection (XBJ) is a traditional Chinese medicine used to treat sepsis in the clinic. In this study, we investigated the effects of XBJ on the survival rate in mice with hematopoietic injury induced by γ ray ionizing radiation (IR). Mice were intraperitoneally injected with XBJ daily for seven days after total body irradiation (TBI). Our results showed that XBJ (0.4 mL/kg) significantly increased 30-day survival rates in mice exposed to 7.5 Gy TBI. This effect may be attributable to improved preservation of white blood cells (WBCs) and hematopoietic cells, given that bone marrow (BM) cells from XBJ-treated mice produced more granulocyte-macrophage colony forming units (CFU-GM) than that in the 2 Gy/TBI group. XBJ also decreased the levels of reactive oxygen species (ROS) by increasing glutathione (GSH) and superoxide dismutase (SOD) levels in serum and attenuated the increased BM cell apoptosis caused by 2 Gy/TBI. In conclusion, these findings suggest that XBJ enhances the survival rate of irradiated mice and attenuates the effects of radiation on hematopoietic injury by decreasing ROS production in BM cells, indicating that XBJ may be a promising therapeutic candidate for reducing hematopoietic radiation injury.
Collapse
Affiliation(s)
- Deguan Li
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Lu Lu
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Junling Zhang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Xiaochun Wang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Yonghua Xing
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Hongying Wu
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Xiangdong Yang
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Zhexin Shi
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Mingfeng Zhao
- Department of Hematology and Oncology, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Saijun Fan
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Aimin Meng
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
38
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Kim S, Kim SY, Ku HJ, Jeon YH, Lee HW, Lee J, Kwon TK, Park KM, Park JW. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice. Biochim Biophys Acta Mol Basis Dis 2013; 1842:135-43. [PMID: 24240089 DOI: 10.1016/j.bbadis.2013.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/14/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023]
Abstract
The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.
Collapse
Affiliation(s)
- Seontae Kim
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Sung Youl Kim
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Hyeong Jun Ku
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Yong Hyun Jeon
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Taegu 700-422, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Taegu 700-422, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Taegu 700-422, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, College of Medicine, Keimyung University, Taegu 700-712, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Taegu 700-422, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea.
| |
Collapse
|
40
|
Ding NH, Li JJ, Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets 2013; 14:1347-56. [PMID: 23909719 PMCID: PMC4156316 DOI: 10.2174/13894501113149990198] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.
Collapse
Affiliation(s)
- Nian-Hua Ding
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jian Jian Li
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
41
|
Tanaka T, Shimoda M, Shionoiri N, Hosokawa M, Taguchi T, Wake H, Matsunaga T. Electrochemical disinfection of fish pathogens in seawater without the production of a lethal concentration of chlorine using a flow reactor. J Biosci Bioeng 2013; 116:480-4. [DOI: 10.1016/j.jbiosc.2013.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 11/24/2022]
|
42
|
Shin SW, Jung E, Kim S, Kim JH, Kim EG, Lee J, Park D. Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS One 2013; 8:e61971. [PMID: 23626759 PMCID: PMC3633960 DOI: 10.1371/journal.pone.0061971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities.
Collapse
Affiliation(s)
- Seoung Woo Shin
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Seungbeom Kim
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Jang-Hyun Kim
- Dermiskin Life Science Institute, Pyeongtaek City, Gyunggi Do, Korea
| | - Eui-Gyun Kim
- ChiroChem Co., Ltd. Hannam University Science Park, Daejeon, Korea
| | - Jongsung Lee
- Department of Dermatological Health Management, Eulji University, Seongnam, Korea
- * E-mail: (JL); (DP)
| | - Deokhoon Park
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
- * E-mail: (JL); (DP)
| |
Collapse
|
43
|
Shin HS, Yang WJ, Choi EM. The preventive effect of Se-methylselenocysteine on γ-radiation-induced oxidative stress in rat lungs. J Trace Elem Med Biol 2013. [PMID: 23176811 DOI: 10.1016/j.jtemb.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the preventive effect of Se-methylselenocysteine (MSC) administration on γ-radiation (whole body irradiation, single 10-Gy dose)-induced oxidative damage in rat lungs. Rats were pretreated with MSC (0.75mg/rat/day) for 1 week before γ-irradiation. The MSC pretreatment prevented the irradiation-induced increase in lipid peroxidation and the concomitant decrease in cellular glutathione content. The prevention of irradiation-induced oxidative damage in MSC-pretreated rat lungs appeared to be associated with increased antioxidant capacity, particularly in the glutathione system. The 1-week MSC treatment resulted in an increase in glutathione peroxidase, glutathione reductase, and glucose 6-phosphate dehydrogenase activities, which are involved in glutathione redox cycling. An increase in catalase activity was also observed in the rat lungs. Additionally, a significantly increased level of nuclear factor erythroid 2-related factor 2 (Nrf2) was exhibited in the MSC-treated rat lungs. Heme oxygenase 1, glutathione S-transferase pi, and peroxiredoxin 1, which are known target proteins of Nrf2, were also increased in MSC-treated lungs. These results implicate Nrf2 signaling in the MSC-induced activation of the antioxidant system.
Collapse
Affiliation(s)
- Ho-Sang Shin
- Department of Chemistry, University of Incheon, Incheon, Republic of Korea
| | | | | |
Collapse
|
44
|
Shirazi A, Mihandoost E, Mahdavi SR, Mohseni M. Radio-protective role of antioxidant agents. Oncol Rev 2012; 6:e16. [PMID: 25992214 PMCID: PMC4419622 DOI: 10.4081/oncol.2012.e16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 03/22/2012] [Accepted: 07/05/2012] [Indexed: 12/03/2022] Open
Abstract
Ionizing radiation interacts with biological systems to produce reactive oxygen species and reactive nitrogen species which attack various cellular components. Radio-protectors act as prophylactic agents to shield healthy cells and tissues from the harmful effects of radiation. Past research on synthetic radio-protectors has brought little success, primarily due to the various toxicity-related problems. Results of experimental research show that antioxidant nutrients, such as vitamin E and herbal products and melatonin, are protective against the damaging effects of radiation, with less toxicity and side effects. Therefore, we propose that in the future, antioxidant radio-protective agents may improve the therapeutic index in radiation oncology treatments.
Collapse
Affiliation(s)
- Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Ehsan Mihandoost
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran
| | - Seied Rabie Mahdavi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehran Mohseni
- Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Tak JK, Lee JH, Park JW. Resveratrol and piperine enhance radiosensitivity of tumor cells. BMB Rep 2012; 45:242-6. [DOI: 10.5483/bmbrep.2012.45.4.242] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Koh SJ, Tak JK, Kim ST, Nam WS, Kim SY, Park KM, Park JW. Sensitization of ionizing radiation-induced apoptosis by ursolic acid. Free Radic Res 2012; 46:339-45. [PMID: 22239065 DOI: 10.3109/10715762.2012.656101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Radiation therapy has been widely used for treating human cancers. However, cancer cells develop radioresistant phenotypes that decrease the efficacy of radiotherapy. Ionizing radiation (IR) induces the production of reactive oxygen species, which play an important role in apoptotic cell death. Therefore, radiation therapy combined with a sensitizer, which modulates cellular redox status, has the potential to enhance therapeutic efficacy in a variety of human cancers. Here, we investigated the radiosensitizing effects of ursolic acid (UA), a pentacyclic triterpenoid found in rosemary and holy basil. IR-induced apoptosis in cancer cell lines such as DU145, CT26 and B16F10 was significantly enhanced by UA, as reflected by DNA fragmentation, cellular redox status, mitochondrial dysfunction and modulation of apoptotic marker proteins. Additionally, UA combined with IR was also effective for inhibiting tumorigenesis in B16F10 melanoma cells implanted into mice. Taken together, these results suggest that applying UA together with IR may be an effective combination modality for treating cancer.
Collapse
Affiliation(s)
- Su Jin Koh
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Chuai Y, Gao F, Li B, Zhao L, Qian L, Cao F, Wang L, Sun X, Cui J, Cai J. Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. Biochem J 2012; 442:49-56. [PMID: 22077489 DOI: 10.1042/bj20111786] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Our recent studies suggest that H2 (hydrogen) has a potential as a novel radioprotector without known toxic side effects. The present study was designed to examine the underlying radioprotective mechanism of H2 and its protective role on irradiated germ cells. Produced by the Fenton reaction and radiolysis of H2O, hydroxyl radicals (•OH) were identified as the free radical species that were reduced by H2. We used a H2 microelectrode to dynamically detect H2 concentration in vivo, and found H2 significantly reduced in situ fluorescence intensity of hydroxyphenyl fluorescein; however, as we treated the mice with H2 after irradiation, the decrease is not significant. We found that pre-treatment of H2 to IR (ionizing radiation) significantly suppressed the reaction of •OH and the cellular macromolecules which caused lipid peroxidation, protein carbonyl and oxidatively damaged DNA. The radioprotective effect of H2 on male germ cells was supported by ameliorated apoptotic findings examined by morphological changes and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) in testicular tissue, and by preserved viability of stem spermatogonia examined for testicular histological parameters, daily sperm production and sperm quality; we used WR-2721 [S-2-(3-aminopropylamino)ethyl phosphorothioic acid] as a reference compound. Our results represent the first in vivo evidence in support of a radioprotective role of H2 by neutralizing •OH in irradiated tissue with no side effects.
Collapse
Affiliation(s)
- Yunhai Chuai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kil IS, Jung KH, Nam WS, Park JW. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis. Biochimie 2011; 93:1808-15. [DOI: 10.1016/j.biochi.2011.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/21/2011] [Indexed: 02/05/2023]
|
49
|
Terasaki Y, Ohsawa I, Terasaki M, Takahashi M, Kunugi S, Dedong K, Urushiyama H, Amenomori S, Kaneko-Togashi M, Kuwahara N, Ishikawa A, Kamimura N, Ohta S, Fukuda Y. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. Am J Physiol Lung Cell Mol Physiol 2011; 301:L415-26. [PMID: 21764987 DOI: 10.1152/ajplung.00008.2011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular hydrogen (H(2)) is an efficient antioxidant that diffuses rapidly across cell membranes, reduces reactive oxygen species (ROS), such as hydroxyl radicals and peroxynitrite, and suppresses oxidative stress-induced injury in several organs. ROS have been implicated in radiation-induced damage to lungs. Because prompt elimination of irradiation-induced ROS should protect lung tissue from damaging effects of irradiation, we investigated the possibility that H(2) could serve as a radioprotector in the lung. Cells of the human lung epithelial cell line A549 received 10 Gy irradiation with or without H(2) treatment via H(2)-rich PBS or medium. We studied the possible radioprotective effects of H(2) by analyzing ROS and cell damage. Also, C57BL/6J female mice received 15 Gy irradiation to the thorax. Treatment groups inhaled 3% H(2) gas and drank H(2)-enriched water. We evaluated acute and late-irradiation lung damage after H(2) treatment. H(2) reduced the amount of irradiation-induced ROS in A549 cells, as shown by electron spin resonance and fluorescent indicator signals. H(2) also reduced cell damage, measured as levels of oxidative stress and apoptotic markers, and improved cell viability. Within 1 wk after whole thorax irradiation, immunohistochemistry and immunoblotting showed that H(2) treatment reduced oxidative stress and apoptosis, measures of acute damage, in the lungs of mice. At 5 mo after irradiation, chest computed tomography, Ashcroft scores, and type III collagen deposition demonstrated that H(2) treatment reduced lung fibrosis (late damage). This study thus demonstrated that H(2) treatment is valuable for protection against irradiation lung damage with no known toxicity.
Collapse
Affiliation(s)
- Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JBT, Aschner M. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 2011; 32:291-9. [PMID: 21300091 PMCID: PMC3079013 DOI: 10.1016/j.neuro.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Azoles/pharmacology
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Cytoprotection
- Dose-Response Relationship, Drug
- Environmental Pollutants/toxicity
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glutamine/metabolism
- Isoindoles
- Membrane Potential, Mitochondrial/drug effects
- Mercury Poisoning, Nervous System/etiology
- Mercury Poisoning, Nervous System/metabolism
- Mercury Poisoning, Nervous System/pathology
- Methylmercury Compounds/toxicity
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neuroprotective Agents/pharmacology
- Organoselenium Compounds/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | - Mingwei Ni
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dejan Milatovic
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lu Rongzhu
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Joao B. T. Rocha
- Departamento de Bioquímica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|