1
|
Vendrov AE, Lozhkin A, Hayami T, Levin J, Silveira Fernandes Chamon J, Abdel-Latif A, Runge MS, Madamanchi NR. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front Immunol 2024; 15:1410832. [PMID: 38975335 PMCID: PMC11224442 DOI: 10.3389/fimmu.2024.1410832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Aging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages. Methods We studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4 -/-/Apoe -/- and Apoe -/- mice fed Western diet. Results Young Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1β secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis. Discussion Our findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity.
Collapse
Affiliation(s)
- Aleksandr E. Vendrov
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrey Lozhkin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Takayuki Hayami
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Julia Levin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jamille Silveira Fernandes Chamon
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed Abdel-Latif
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine - Cardiology, Ann Arbor VA Healthcare System, Ann Arbor, MI, United States
| | - Marschall S. Runge
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nageswara R. Madamanchi
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Niu C, Zhang P, Zhang L, Lin D, Lai H, Xiao D, Liu Y, Zhuang R, Li M, Ma L, Ye J, Pan Y. Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis. Medicine (Baltimore) 2023; 102:e35106. [PMID: 37773840 PMCID: PMC10545342 DOI: 10.1097/md.0000000000035106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification. METHODS The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking. RESULTS We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14. CONCLUSION The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Collapse
Affiliation(s)
- Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dingfeng Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Lai
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Ye
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Hayashi K, Labios RJ, Morita T, Ashimori A, Aoki R, Mikuni M, Kimura K. Significance of the p38MAPK-CRP2 axis in myofibroblastic phenotypic transition. Cell Struct Funct 2023; 48:199-210. [PMID: 37899269 PMCID: PMC11496777 DOI: 10.1247/csf.23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
We have recently demonstrated that a LIM domain protein, cysteine and glycine-rich protein 2 (CSRP2 [CRP2]), plays a vital role in the functional expression of myofibroblasts and cancer-associated fibroblasts. CRP2 binds directly to myocardin-related transcription factors (MRTF [MRTF-A or MRTF-B]) and serum response factor (SRF) to stabilize the MRTF/SRF/CArG-box complex, leading to the expression of smooth muscle cell (SMC) genes such as α-smooth muscle actin (α-SMA) and collagens. These are the marker genes for myofibroblasts. Here, we show that the adhesion of cultured human skin fibroblasts (HSFs) to collagen reduces the myofibroblastic features. HSF adhesion to collagen suppresses the expression of CRP2 and CSRP2-binding protein (CSRP2BP [CRP2BP]) and reduces the expression of SMC genes. Although CRP2BP is known as an epigenetic factor, we find that CRP2BP also acts as an adaptor protein to enhance the function of CRP2 mentioned above. This CRP2BP function does not depend on its histone acetyltransferase activity. We also addressed the molecular mechanism of the reduced myofibroblastic features of HSFs on collagen. HSF adhesion to collagen inhibits the p38MAPK-mediated pathway, and reducing the p38MAPK activity decreases the expression of CRP2 and SMC genes. Thus, the activation of p38MAPK is critical for the myofibroblastic features. We also show evidence that CRP2 plays a role in the myofibroblastic transition of retinal pigment epithelial cells (RPEs). Like HSFs, such phenotypic modulation of RPEs depends on the p38MAPK pathway.Key words: CRP2, p38MAPK, MRTF, myofibroblasts, retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Ken’ichiro Hayashi
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Reuben Jacob Labios
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama 641-0011, Japan
| | - Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Ren Aoki
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Masanori Mikuni
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
4
|
Wang Y, Mack JA, Hascall VC, Maytin EV. Transforming Growth Factor-β Receptor-Mediated, p38 Mitogen-Activated Protein Kinase-Dependent Signaling Drives Enhanced Myofibroblast Differentiation during Skin Wound Healing in Mice Lacking Hyaluronan Synthases 1 and 3. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1683-1698. [PMID: 36063901 PMCID: PMC9765314 DOI: 10.1016/j.ajpath.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022]
Abstract
Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-β receptor-mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. Closure of skin wounds is significantly accelerated in Has1/3 double-knockout (Has1/3-null) mice. Herein, TGF-β activity and dermal collagen maturation were increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice had higher levels of TGF-β activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. p38α mitogen-activated protein kinase was a necessary element in a noncanonical TGF-β receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), was also critical. Nuclear localization of MRTF was increased, and MRTF binding to SRF was enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminished its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity was increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-β activation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| | - Judith A Mack
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio; Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio; Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
5
|
Ying KE, Feng W, Ying WZ, Li X, Xing D, Sun Y, Chen Y, Sanders PW. Dietary salt initiates redox signaling between endothelium and vascular smooth muscle through NADPH oxidase 4. Redox Biol 2022; 52:102296. [PMID: 35378363 PMCID: PMC8980891 DOI: 10.1016/j.redox.2022.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prevention of phenotype switching of vascular smooth muscle cells is an important determinant of normal vascular physiology. Hydrogen peroxide (H2O2) promotes osteogenic differentiation of vascular smooth muscle cells through expression of Runt related transcription factor 2 (Runx2). In this study, an increase in dietary NaCl increased endothelial H2O2 generation through NOX4, a NAD(P)H oxidase. The production of H2O2 was sufficient to increase Runx2, osteopontin and osteocalcin in adjacent vascular smooth muscle cells from control littermate mice but was inhibited in mice lacking endothelial Nox4. A vascular smooth muscle cell culture model confirmed the direct involvement of the activation of protein kinase B (Akt) with inactivation of FoxO1 and FoxO3a observed in the control mice on the high NaCl diet. The present study also showed a reduction of catalase activity in aortas during high NaCl intake. The findings demonstrated an interesting cell-cell communication in the vascular wall that was initiated with H2O2 production by endothelium and was regulated by dietary NaCl intake. A better understanding of how dietary salt intake alters vascular biology may improve treatment of vascular disease that involves activation of Runx2.
Collapse
Affiliation(s)
- Kai Er Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wei-Zhong Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Birmingham Department of Veterans Affairs Health Care System, Birmingham, AL, 35233, USA
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Birmingham Department of Veterans Affairs Health Care System, Birmingham, AL, 35233, USA.
| |
Collapse
|
6
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
7
|
Siques P, Pena E, Brito J, El Alam S. Oxidative Stress, Kinase Activation, and Inflammatory Pathways Involved in Effects on Smooth Muscle Cells During Pulmonary Artery Hypertension Under Hypobaric Hypoxia Exposure. Front Physiol 2021; 12:690341. [PMID: 34434114 PMCID: PMC8381601 DOI: 10.3389/fphys.2021.690341] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
High-altitude exposure results in hypobaric hypoxia, which affects organisms by activating several mechanisms at the physiological, cellular, and molecular levels and triggering the development of several pathologies. One such pathology is high-altitude pulmonary hypertension (HAPH), which is initiated through hypoxic pulmonary vasoconstriction to distribute blood to more adequately ventilated areas of the lungs. Importantly, all layers of the pulmonary artery (adventitia, smooth muscle, and endothelium) contribute to or are involved in the development of HAPH. However, the principal action sites of HAPH are pulmonary artery smooth muscle cells (PASMCs), which interact with several extracellular and intracellular molecules and participate in mechanisms leading to proliferation, apoptosis, and fibrosis. This review summarizes the alterations in molecular pathways related to oxidative stress, inflammation, kinase activation, and other processes that occur in PASMCs during pulmonary hypertension under hypobaric hypoxia and proposes updates to pharmacological treatments to mitigate the pathological changes in PASMCs under such conditions. In general, PASMCs exposed to hypobaric hypoxia undergo oxidative stress mediated by Nox4, inflammation mediated by increases in interleukin-6 levels and inflammatory cell infiltration, and activation of the protein kinase ERK1/2, which lead to the proliferation of PASMCs and contribute to the development of hypobaric hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Patricia Siques
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Eduardo Pena
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Samia El Alam
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| |
Collapse
|
8
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
9
|
Nox4 Maintains Blood Pressure during Low Sodium Diet. Antioxidants (Basel) 2021; 10:antiox10071103. [PMID: 34356336 PMCID: PMC8301203 DOI: 10.3390/antiox10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023] Open
Abstract
The NADPH oxidase Nox4 is a hydrogen peroxide (H2O2)-producing enzyme, with the highest expression in the kidney. As the kidney is involved in volume and blood pressure control through sodium handling, we set out to determine the impact of a low sodium diet on these parameters in WT and Nox4-/- mice. Nox4 expression in the murine kidney was restricted to the proximal tubule. Nevertheless, low-sodium-induced weight loss and sodium sparing function was similar in WT and Nox4-/- mice, disputing an important function of renal Nox4 in sodium handling. In contrast, a low sodium diet resulted in a reduction in systolic blood pressure in Nox4-/- as compared to WT mice. This was associated with a selectively lower pressure to heart-rate ratio, as well as heart to body weight ratio. In general, a low sodium diet leads to activation of sympathetic tone and the renin angiotensin system, which subsequently increases peripheral resistance. Our observations suggest that the control by this system is attenuated in Nox4-/- mice, resulting in lower blood pressure in response to low sodium.
Collapse
|
10
|
Buchmann GK, Schürmann C, Spaeth M, Abplanalp W, Tombor L, John D, Warwick T, Rezende F, Weigert A, Shah AM, Hansmann ML, Weissmann N, Dimmeler S, Schröder K, Brandes RP. The hydrogen-peroxide producing NADPH oxidase 4 does not limit neointima development after vascular injury in mice. Redox Biol 2021; 45:102050. [PMID: 34218201 PMCID: PMC8256285 DOI: 10.1016/j.redox.2021.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The NADPH oxidase Nox4 is an important source of H2O2. Nox4-derived H2O2 limits vascular inflammation and promotes smooth muscle differentiation. On this basis, the role of Nox4 for restenosis development was determined in the mouse carotid artery injury model. Methods and results Genetic deletion of Nox4 by a tamoxifen-activated Cre-Lox-system did not impact on neointima formation in the carotid artery wire injury model. To understand this unexpected finding, time-resolved single-cell RNA-sequencing (scRNAseq) from injured carotid arteries of control mice and massive-analysis-of-cDNA-ends (MACE)-RNAseq from the neointima harvested by laser capture microdissection of control and Nox4 knockout mice was performed. This revealed that resting smooth muscle cells (SMCs) and fibroblasts exhibit high Nox4 expression, but that the proliferating de-differentiated SMCs, which give rise to the neointima, have low Nox4 expression. In line with this, the first weeks after injury, gene expression was unchanged between the carotid artery neointimas of control and Nox4 knockout mice. Conclusion Upon vascular injury, Nox4 expression is transiently lost in the cells which comprise the neointima. NADPH oxidase 4 therefore does not interfere with restenosis development after wire-induced vascular injury.
Collapse
Affiliation(s)
- Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre, London, UK
| | | | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany.
| |
Collapse
|
11
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
12
|
NOX4-Derived ROS Promotes Collagen I Deposition in Bronchial Smooth Muscle Cells by Activating Noncanonical p38MAPK/Akt-Mediated TGF- β Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668971. [PMID: 33824697 PMCID: PMC8007363 DOI: 10.1155/2021/6668971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
Background Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD). NADPH oxidase 4- (NOX4-) mediated reactive oxygen species (ROS) production plays a crucial role in cell differentiation and extracellular matrix (ECM) synthesis in ASM remodeling. However, the precise mechanisms underpinning its pathogenic roles remain elusive. Methods The expression of NOX4 and TGF-β1 in the airway of the lung was measured in COPD patients and the control group. Cigarette smoke- (CS-) induced emphysema mice were generated, and the alteration of α-SMA, NOX4, TGF-β1, and collagen I was accessed. The changes of the expression of ECM markers, NOX4, components of TGF-β/Smad, and MAPK/Akt signaling in human bronchial smooth muscle cells (HBSMCs) were ascertained for delineating mechanisms of NOX4-mediated ROS production on cell differentiation and remodeling in human ASM cells. Results An increased abundance of NOX4 and TGF-β1 proteins in the epithelial cells and ASM of lung was observed in COPD patients compared with the control group. Additionally, an increased abundance expression of NOX4 and α-SMA was observed in the lungs of the CS-induced emphysema mouse model. TGF-β1 displayed abilities to increase the oxidative burden and collagen I production, along with enhanced phosphorylation of ERK, p38MAPK, and p-Akt473 in HBSMCs. These effects of TGF-β1 could be inhibited by the ROS scavenger N-acetylcysteine (NAC), siRNA-mediated knockdown of Smad3 and NOX4, and pharmacological inhibitors SB203580 (p38MAPK inhibitor) and LY294002 (Akt inhibitor). Conclusions NOX4-mediated ROS production alters TGF-β1-induced cell differentiation and collagen I protein synthesis in HBSMCs in part through the p38MAPK/Akt signaling pathway in a Smad-dependent manner.
Collapse
|
13
|
Jiang F, Cao J, Kong R, Fang L, Wang B, Zhang S, Yang L, Cao X. MICAL2 regulates myofibroblasts differentiation in epidural fibrosis via SRF/MRTF-A signaling pathway. Life Sci 2021; 269:119045. [PMID: 33453238 DOI: 10.1016/j.lfs.2021.119045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
AIM To determine the role of MICAL2 in myofibroblasts differentiation and epidural fibrosis. BACKGROUND Epidural fibrosis (EF) may develop following laminectomy and aberrant myofibroblasts differentiation and excessive extracellular matrix (ECM) accumulation play key roles in the formation of EF. Dense epidural fibrosis results to the poor surgical outcomes and failed back surgery syndrome (FBSS), and there is no effective treatment available. Molecule interacting with Casl2 (MICAL2) has been demonstrated to participate in multiple cellular processes by regulating actin cytoskeleton dynamics. However, its role in epidural fibrosis remains totally unverified. MATERIALS AND METHODS The potential functions and mechanisms of MICAL2 were explored using western blotting, immunofluorescence and lentivirus infection. KEY FINDINGS In our study, we determined that the MICAL2 expression was elevated in epidural fibrotic tissues and TGF-β1-stimulated fibroblasts. Moreover, knockdown of MICAL2 using MICAL2-specific short hairpin RNA attenuated TGF-β1-induced myofibroblasts differentiation and epidural fibrosis both in vitro and vivo, as indicated by decreased scar formation, reduced collagen production and down-regulated expression of α-SMA, collagen-1 and fibronectin. We also demonstrated that MICAL2 knockdown affected the migratory capability of fibroblasts in vitro. By further mechanistic research, we revealed that the MRTF-A nuclear translocation was inhibited in response to the knockdown of MICAL2 in fibroblasts and MICAL2 served as a pro-fibrotic factor in an SRF/MRTF-A-dependent manner. SIGNIFICANCE In conclusion, our results indicated that MICAL2 mediated myofibroblasts differentiation and promoted epidural fibrogenesis via SRF/MRTF-A signaling pathway, suggesting manipulation of MICAL2 activity as a novel alternative strategy for the prevention of epidural fibrosis.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Binyu Wang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Yang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaojian Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Fernandes DC, Wosniak J, Gonçalves RC, Tanaka LY, Fernandes CG, Zanatta DB, de Mattos ABM, Strauss BE, Laurindo FRM. PDIA1 acts as master organizer of NOX1/NOX4 balance and phenotype response in vascular smooth muscle. Free Radic Biol Med 2021; 162:603-614. [PMID: 33227407 DOI: 10.1016/j.freeradbiomed.2020.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023]
Abstract
Changes in vascular smooth muscle cell (VSMC) phenotype underlie disease pathophysiology and are strongly regulated by NOX NADPH oxidases, with NOX1 favoring synthetic proliferative phenotype and NOX4 supporting differentiation. Growth factor-triggered NOX1 expression/activity strictly depends on the chaperone oxidoreductase protein disulfide isomerase-A1 (PDIA1). Intracellular PDIA1 is required for VSMC migration and cytoskeleton organization, while extracellular PDIA1 fine-tunes cytoskeletal mechanoadaptation and vascular remodeling. We hypothesized that PDIA1 orchestrates NOX1/NOX4 balance and VSMC phenotype. Using an inducible PDIA1 overexpression model in VSMC, we showed that early PDIA1 overexpression (for 24-48 h) increased NOX1 expression, hydrogen peroxide steady-state levels and spontaneous VSMC migration distances. Sustained PDIA1 overexpression for 72 h and 96 h supported high NOX1 levels while also increasing NOX4 expression and, remarkably, switched VSMC phenotype to differentiation. Differentiation was preceded by increased nuclear myocardin and serum response factor-response element activation, with no change in cell viability. Both NOX1 and hydrogen peroxide were necessary for later PDIA1-induced VSMC differentiation. In primary VSMC, PDIA1 knockdown decreased nuclear myocardin and increased the proliferating cell nuclear antigen expression. Newly-developed PDIA1-overexpressing mice (TgPDIA1) exhibited normal general and cardiovascular baseline phenotypes. However, in TgPDIA1 carotids, NOX1 was decreased while NOX4 and calponin expressions were enhanced, indicating overdifferentiation vs. normal carotids. Moreover, in a rabbit overdistension injury model during late vascular repair, PDIA1 silencing impaired VSMC redifferentiation and NOX1/NOX4 balance. Our results suggest a model in which PDIA1 acts as an upstream organizer of NOX1/NOX4 balance and related VSMC phenotype, accounting for baseline differentiation setpoint.
Collapse
Affiliation(s)
- Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| | - João Wosniak
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Renata C Gonçalves
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Carolina G Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniela B Zanatta
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Ana Barbosa M de Mattos
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
16
|
Gotham JP, Li R, Tipple TE, Lancaster JR, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med 2020; 154:84-94. [PMID: 32376456 PMCID: PMC7368495 DOI: 10.1016/j.freeradbiomed.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.
Collapse
Affiliation(s)
- John P Gotham
- Science and Technology Honors College, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Kumar V, Kurth T, Zheleznova NN, Yang C, Cowley AW. NOX4/H 2O 2/mTORC1 Pathway in Salt-Induced Hypertension and Kidney Injury. Hypertension 2020; 76:133-143. [PMID: 32475313 PMCID: PMC10629473 DOI: 10.1161/hypertensionaha.120.15058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
We have reported that a high-salt (4.0% NaCl) dietary intake activates mTORC1 and inhibition of this pathway with rapamycin blunts the chronic phase of salt-induced hypertension and renal injury in Dahl salt-sensitive (SS) rats. In SS rats, high-salt intake is known to increase the renal production of H2O2 by NOX4, the most abundant NOX isoform in the kidney, and the global knockout of NOX4 blunts salt-sensitivity in these rats. Here, we explored the hypothesis that elevations of H2O2 by NOX4 in high-salt fed SS rat stimulate mTORC1 for the full development of salt-induced hypertension and renal injury. Our in vitro studies found that H2O2 activates mTORC1 independent of PI3K/AKT and AMPK pathways. To determine the in vivo relevance of NOX4/H2O2/mTORC1 in the salt-induced hypertension, SS-Nox4 knockout (SSNox4-/-) rats were daily administrated with vehicle/rapamycin fed a high-salt diet for 21 days. Rapamycin treatment of SSNox4-/- rats had shown no augmented effect on the salt-induced hypertension nor upon indices of renal injury. Significant reductions of renal T lymphocyte and macrophage together with inhibition of cell proliferation were observed in rapamycin treated rats suggesting a role of mTORC1 independent of NOX4 in the proliferation of immune cell. Given the direct activation of mTORC1 by H2O2 and absence of any further protection from salt-induced hypertension in rapamycin-treated SSNox4-/- rats, we conclude that NOX4-H2O2 is a major upstream activator of mTORC1 that contributes importantly to salt-induced hypertension and renal injury in the SS rat model.
Collapse
Affiliation(s)
- Vikash Kumar
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Theresa Kurth
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | | | - Chun Yang
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
18
|
Tan X, Li T, Zhu S, Zhong W, Li F, Wang Y. Induction of SPARC on Oxidative Stress, Inflammatory Phenotype Transformation, and Apoptosis of Human Brain Smooth Muscle Cells Via TGF-β1-NOX4 Pathway. J Mol Neurosci 2020; 70:1728-1741. [PMID: 32495004 DOI: 10.1007/s12031-020-01566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/22/2020] [Indexed: 11/30/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules. Human brain vascular smooth muscle cells (HBVSMCs) were selected as experimental objects. After the cells were stimulated by recombinant human SPARC protein in vitro, the ROS level in the cells was measured using an ID/ROS fluorescence analysis kit combined with fluorescence microscope and flow cytometry. The related protein expression in HBVSMCs was measured using western blotting. The mitochondrial membrane potential change was detected using a mitochondrial membrane potential kit and laser confocal microscope. The mechanism was explored by intervention with reactive oxygen scavengers N-acetylcysteine (NAC), TGF-β1 inhibitor (SD-208), and siRNA knockout. The results showed that SPARC upregulated the expression of NOX4 through the TGF-β1-dependent signaling pathway, leading to oxidative stress and pro-inflammatory matrix behavior and apoptosis in HBVSMCs. These findings demonstrated that SPARC may promote the progression of IAs.
Collapse
Affiliation(s)
- Xianjun Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, People's Hospital of Chiping City, Liaocheng City, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Tao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.,Department of Neurosurgery, the No.4 People's Hospital of Jinan, Jinan City, Shandong Province, China
| | - Shaowei Zhu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Feng Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.
| |
Collapse
|
19
|
Ross JA, Barrett B, Bensimon V, Shukla G, Weyman CM. Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase to Regulate Serum Response Factor (SRF)-Mediated MyoD Transcription. J Mol Signal 2020; 14:1. [PMID: 32405318 PMCID: PMC7207250 DOI: 10.5334/1750-2187-14-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that stable expression of a dominant negative Death Receptor 5 (dnDR5) in skeletal myoblasts results in decreased basal caspase activity and decreased mRNA and protein expression of the muscle regulatory transcription factor MyoD in growth medium (GM), resulting in inhibited differentation when myoblasts are then cultured in differentiation media (DM). Further, this decreased level of MyoD mRNA was not a consequence of altered message stability, but rather correlated with decreased acetylation of histones in the distal regulatory region (DRR) of the MyoD extended promoter known to control MyoD transcription. As serum response factor (SRF) is the transcription factor known to be responsible for basal MyoD expression in GM, we compared the level of SRF binding to the non-canonical serum response element (SRE) within the DRR in parental and dnDR5 expressing myoblasts. Herein, we report that stable expression of dnDR5 resulted in decreased levels of serum response factor (SRF) binding to the CArG box in the SRE of the DRR. Total SRF expression levels were not affected, but phosphorylation indicative of SRF activation was impaired. This decreased SRF phosphorylation correlated with decreased phosphorylation-induced activation of p38 kinase. Moreover, the aforementioned signaling events affected by expression of dnDR5 could be appropriately recapitulated using either a pharmacological inhibitor of caspase 3 or p38 kinase. Thus, our results have established a signaling pathway from DR5 through caspases to p38 kinase activation, to SRF activation and the basal expression of MyoD.
Collapse
Affiliation(s)
- Jason A. Ross
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Brianna Barrett
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Victoria Bensimon
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Girish Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Crystal M. Weyman
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| |
Collapse
|
20
|
Chatterjee A, Kosmacek EA, Shrishrimal S, McDonald JT, Oberley-Deegan RE. MnTE-2-PyP, a manganese porphyrin, reduces cytotoxicity caused by irradiation in a diabetic environment through the induction of endogenous antioxidant defenses. Redox Biol 2020; 34:101542. [PMID: 32361681 PMCID: PMC7200317 DOI: 10.1016/j.redox.2020.101542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
Radiation is a common anticancer therapy for many cancer patients, including prostate cancer. Diabetic prostate cancer patients suffer from increased lymph node metastasis, tumor recurrence and decreased survival as compared to non-diabetic prostate cancer patients. These patients are also at increased risk for enhanced radiation-induced normal tissue damage such as proctitis. Diabetics are oxidatively stressed and radiation causes additional oxidative damage. We and others have reported that, MnTE-2-PyP, a manganese porphyrin, protects normal prostate tissue from radiation damage. We have also reported that, in an in vivo mouse model of prostate cancer, MnTE-2-PyP decreases tumor volume and increases survival of the mice. In addition, MnTE-2-PyP has also been shown to reduce blood glucose and inhibits pro-fibrotic signaling in a diabetic model. Therefore, to investigate the role of MnTE-2-PyP in normal tissue protection in an irradiated diabetic environment, we have treated human prostate fibroblast cells with MnTE-2-PyP in an irradiated hyperglycemic environment. This study revealed that hyperglycemia causes increased cell death after radiation as compared to normo-glycemia. MnTE-2-PyP protects against hyperglycemia-induced cell death after radiation. MnTE-2-PyP decreases expression of NOX4 and α-SMA, one of the major oxidative enzymes and pro-fibrotic molecules respectively. MnTE-2-PyP obstructs NF-κB activity by decreasing DNA binding of the p50-p50 homodimer in the irradiated hyperglycemic environment. MnTE-2-PyP increases NRF2 mediated cytoprotection by increasing NRF2 protein expression and DNA binding. Therefore, we are proposing that, MnTE-2-PyP protects fibroblasts from irradiation and hyperglycemia damage by enhancing the NRF2- mediated pathway in diabetic prostate cancer patients, undergoing radiotherapy.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J Tyson McDonald
- Department of Physics & Cancer Research Center, Hampton University, Hampton, VA, 23668, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
Astaxanthin Attenuates Hypertensive Vascular Remodeling by Protecting Vascular Smooth Muscle Cells from Oxidative Stress-Induced Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4629189. [PMID: 32351673 PMCID: PMC7178508 DOI: 10.1155/2020/4629189] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress aggravates mitochondrial injuries and accelerates the proliferation of vascular smooth muscle cells (VSMCs), which are important mechanisms contributing to vascular remodeling in hypertension. We put forward the hypothesis that Astaxanthin (ATX), known to possess strong features of antioxidant, could attenuate vascular remodeling by inhibiting VSMC proliferation and improving mitochondrial function. The potential effects of ATX were tested on spontaneously hypertensive rats (SHRs) and cultured VSMCs that injured by angiotensin II (Ang II). The results showed that ATX lowered blood pressure, reduced aortic wall thickness and fibrosis, and decreased the level of reactive oxygen species (ROS) and H2O2 in tunica media. Moreover, ATX decreased the expression of proliferating cell nuclear antigen (PCNA) and ki67 in aortic VSMCs. In vitro, ATX mitigated VSMC proliferation and migration, decreased the level of cellular ROS, and balanced the activities of ROS-related enzymes including NADPH oxidase, xanthine oxidase, and superoxide dismutase (SOD). Besides, ATX mitigated Ca2+ overload, the overproduction of mitochondrial ROS (mtROS), mitochondrial dysfunction, mitochondrial fission, and Drp1 phosphorylation at Ser616. In addition, ATX enhanced mitophagy and mitochondrial biosynthesis by increasing the expression of PINK, parkin, mtDNA, mitochondrial transcription factor A (Tfam), and PGC-1α. The present study indicated that ATX could efficiently treat vascular remodeling through restraining VSMC proliferation and restoring mitochondrial function. Inhibiting mitochondrial fission by decreasing the phosphorylation of Drp1 and stimulating mitochondrial autophagy and biosynthesis via increasing the expression of PINK, parkin, Tfam, and PGC-1α may be part of its underlying mechanisms.
Collapse
|
22
|
Miguel V, Lamas S. Redox distress in organ fibrosis: The role of noncoding RNAs. OXIDATIVE STRESS 2020:779-820. [DOI: 10.1016/b978-0-12-818606-0.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Kong M, Chen X, Lv F, Ren H, Fan Z, Qin H, Yu L, Shi X, Xu Y. Serum response factor (SRF) promotes ROS generation and hepatic stellate cell activation by epigenetically stimulating NCF1/2 transcription. Redox Biol 2019; 26:101302. [PMID: 31442911 PMCID: PMC6831835 DOI: 10.1016/j.redox.2019.101302] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) is a hallmark event in liver fibrosis. Accumulation of reactive oxygen species (ROS) serves as a driving force for HSC activation. The regulatory subunits of the NOX complex, NCF1 (p47phox) and NCF2 (p67phox), are up-regulated during HSC activation contributing to ROS production and liver fibrosis. The transcriptional mechanism underlying NCF1/2 up-regulation is not clear. In the present study we investigated the role of serum response factor (SRF) in HSC activation focusing on the transcriptional regulation of NCF1/2. We report that compared to wild type littermates HSC-conditional SRF knockout (CKO) mice exhibited a mortified phenotype of liver fibrosis induced by thioacetamide (TAA) injection or feeding with a methionine-and-choline deficient diet (MCD). More importantly, SRF deletion attenuated ROS levels in HSCs in vivo. Similarly, SRF knockdown in cultured HSCs suppressed ROS production in vitro. Further analysis revealed that SRF deficiency resulted in repression of NCF1/NCF2 expression. Mechanistically, SRF regulated epigenetic transcriptional activation of NCF1/NCF2 by interacting with and recruiting the histone acetyltransferase KAT8 during HSC activation. In conclusion, we propose that SRF integrates transcriptional activation of NCF1/NCF2 and ROS production to promote liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology and the Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haozhen Ren
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
24
|
Das S, Wikström P, Walum E, Lovicu FJ. A novel NADPH oxidase inhibitor targeting Nox4 in TGFβ-induced lens epithelial to mesenchymal transition. Exp Eye Res 2019; 185:107692. [DOI: 10.1016/j.exer.2019.107692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
|
25
|
Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, Singer HA, Jourd'heuil D, Long X. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol 2019; 22:101137. [PMID: 30771750 PMCID: PMC6377391 DOI: 10.1016/j.redox.2019.101137] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the underlying mechanism using an inducible SMC-MAPK14 knockout mouse line (iSMC-MAPK14-/-). We show that MAPK14 expression and activity were induced in VSMCs after carotid artery ligation injury in mice and ex vivo cultured human saphenous veins. While the vasculature from iSMC-MAPK14-/- mice was indistinguishable from wildtype littermate controls at baseline, these mice exhibited reduced neointima formation following carotid artery ligation injury. Concomitantly, there was an increased VSMC contractile protein expression in the injured vessels and a decrease in proliferating cells. Blockade of MAPK14 through a selective inhibitor suppressed, while activation of MAPK14 by forced expression of an upstream MAPK14 kinase promoted VSMC proliferation in cultured VSMCs. Genome wide RNA array combined with VSMC lineage tracing studies uncovered that vascular injury evoked robust inflammatory responses including the activation of proinflammatory gene expression and accumulation of CD45 positive inflammatory cells, which were attenuated in iSMC-MAPK14-/- mice. Using multiple pharmacological and molecular approaches to manipulate MAPK14 pathway, we further confirmed the critical role of MAPK14 in activating proinflammatory gene expression in cultured VSMCs, which occurs in a p65/NFkB-dependent pathway. Finally, we found that NOX4 contributes to MAPK14 suppression of the VSMC contractile phenotype. Our results revealed that VSMC-MAPK14 is required for injury-induced neointima formation, likely through suppressing VSMC differentiation and promoting VSMC proliferation and inflammation. Our study will provide mechanistic insights into therapeutic strategies for mitigation of vascular stenosis.
Collapse
Affiliation(s)
- Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wei Zhang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Mihyun Choi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Min Xue
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
26
|
Qu M, Zhang X, Hu X, Dong M, Pan X, Bian J, Zhou Q. BRD4 inhibitor JQ1 inhibits and reverses mechanical injury-induced corneal scarring. Cell Death Discov 2018; 4:5. [PMID: 30062054 PMCID: PMC6060126 DOI: 10.1038/s41420-018-0066-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Corneal scarring is characterized by the improper deposition of extracellular matrix components and myofibroblast differentiation from keratocytes. The bromodomain-containing protein 4 (BRD4) inhibitor JQ1 has been shown to attenuate pathological fibrosis. The present study aimed to explore the potential therapeutic effect of JQ1 on mechanical injury-induced mouse corneal scarring and TGFβ-induced human corneal myofibroblast differentiation and the related mechanism. The corneal scarring and myofibroblast differentiation were evaluated with clinical observation and fibrosis-related gene expression analysis. In mice, subconjunctivally injected JQ1 suppressed the initial development and reversed the established progression of corneal scarring, while having no impairment on the epithelial regenerative capacity. BRD4 inhibition with either JQ1 or small-interfering RNA inhibited the differentiation and promoted the dedifferentiation of human corneal myofibroblasts. Moreover, JQ1 attenuated the accumulation of intracellular reactive oxygen species induced by TGFβ treatment, induced Nrf2 nuclear translocation and activated the expression of Nrf2-ARE downstream antioxidant genes. In conclusion, this study implicates that JQ1 suppresses and reverses corneal scarring through the regulation of BRD4 inhibition and Nrf2-dependant antioxidant induction.
Collapse
Affiliation(s)
- Mingli Qu
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoping Zhang
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,2The Affiliated Hospital of Qingdao University, Qingdao, Shandong China
| | - Xiaoli Hu
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Muchen Dong
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Xiaojing Pan
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jiang Bian
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Qingjun Zhou
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
27
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yang J, Li J, Wang Q, Xing Y, Tan Z, Kang Q. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF‑β‑dependent epithelial‑to‑mesenchymal transition in retinal pigment epithelial cells. Int J Mol Med 2018; 42:123-130. [PMID: 29620174 PMCID: PMC5979836 DOI: 10.3892/ijmm.2018.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
NADPH oxidases (NOXs) are important in the pathophysiology of fibrotic diseases. The expression and activity of NOXs are regulated by growth factors, including transforming growth factor (TGF-β). The proliferation of retinal pigment epithelial (RPE) cells following epithelial- to-mesenchymal transition (EMT) is a major pathological change involved in proliferative vitreoretinopathy (PVR). The aim of the present study was to determine the effects of the novel NOX inhibitor VAS2870 on the TGF-β-dependent expression of NOX4 and associated cellular events in RPE cells. Cell viability was examined using a Cell Counting Kit-8 assay and cell cycle progression was detected by flow cytometric analysis. Immunofluorescence analysis and western blot analysis were performed to assess EMT. It was found that TGF-β increased the expression of NOX4 and that pre-incubation with VAS2870 eliminated this effect. Additionally, TGF-β promoted RPE migration and increased EMT. Pre-incubation with VAS2870 significantly prevented TGF-β2-induced EMT by decreasing the levels of α-smooth muscle actin and E-cadherin, and also inhibited the migratory ability of the RPE cells, as demonstrated by scratch assays. Finally, VAS2870 suppressed the proliferation of RPE cells, and led to G1-phase cell cycle arrest and a significant downregulation of the expression of cyclin D1. In conclusion, the pharmacological inhibition of NOX may be a promising tool for the treatment of PVR.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao Xing
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zizhu Tan
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Jiménez-Altayó F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, López-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barberà L, García C, Condom E, Sitges M, Rodríguez-Pascual F, Laurindo F, Schröder K, Ros J, Fabregat I, Egea G. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 2018; 118:44-58. [PMID: 29471108 DOI: 10.1016/j.freeradbiomed.2018.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Thayna Meirelles
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Eva Crosas-Molist
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Alba Sorolla
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Darya Gorbenko Del Blanco
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Judit López-Luque
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana-Maria Siegert
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Fabio Bonorino
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Laura Barberà
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Carolina García
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Enric Condom
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, IDIBAPS-University of Barcelona, Barcelona, Spain
| | | | - Francisco Laurindo
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Katrin Schröder
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Joaquim Ros
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo Egea
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain.
| |
Collapse
|
30
|
Xu Q, Kulkarni AA, Sajith AM, Hussein D, Brown D, Güner OF, Reddy MD, Watkins EB, Lassègue B, Griendling KK, Bowen JP. Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorg Med Chem 2018; 26:989-998. [PMID: 29426628 PMCID: PMC5895456 DOI: 10.1016/j.bmc.2017.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 11/26/2022]
Abstract
NADPH oxidases (Nox enzymes) are critical mediators of both physiologic and pathophysiologic processes. Nox enzymes catalyze NADPH-dependent generation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide. Until recently, Nox4 was proposed to be involved exclusively in normal physiologic functions. Compelling evidence, however, suggests that Nox4 plays a critical role in fibrosis, as well as a host of pathologies and diseases. These considerations led to a search for novel, small molecule inhibitors of this important enzyme. Ultimately, a series of novel tertiary sulfonylureas (23-25) was designed using pharmacophore modeling, synthesized, and evaluated for inhibition of Nox4-dependent signaling.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Amol A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA.
| | - Ayyiliath M Sajith
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Dilbi Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - David Brown
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Osman F Güner
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Current address: Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA 95401, USA
| | - M Damoder Reddy
- Department of Pharmaceutical Sciences, College of Pharmacy, Union University, Jackson, TN 38305, USA
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Union University, Jackson, TN 38305, USA
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - J Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
31
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
32
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
34
|
Miranda MZ, Bialik JF, Speight P, Dan Q, Yeung T, Szászi K, Pedersen SF, Kapus A. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J Biol Chem 2017; 292:14902-14920. [PMID: 28739802 DOI: 10.1074/jbc.m117.780502] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Hippo pathway transcriptional coactivators TAZ and YAP and the TGF-β1 (TGFβ) effector Smad3 regulate a common set of genes, can physically interact, and exhibit multilevel cross-talk regulating cell fate-determining and fibrogenic pathways. However, a key aspect of this cross-talk, TGFβ-mediated regulation of TAZ or YAP expression, remains uncharacterized. Here, we show that TGFβ induces robust TAZ but not YAP protein expression in both mesenchymal and epithelial cells. TAZ levels, and to a lesser extent YAP levels, also increased during experimental kidney fibrosis. Pharmacological or genetic inhibition of Smad3 did not prevent the TGFβ-induced TAZ up-regulation, indicating that this canonical pathway is dispensable. In contrast, inhibition of p38 MAPK, its downstream effector MK2 (e.g. by the clinically approved antifibrotic pirferidone), or Akt suppressed the TGFβ-induced TAZ expression. Moreover, TGFβ elevated TAZ mRNA in a p38-dependent manner. Myocardin-related transcription factor (MRTF) was a central mediator of this effect, as MRTF silencing/inhibition abolished the TGFβ-induced TAZ expression. MRTF overexpression drove the TAZ promoter in a CC(A/T-rich)6GG (CArG) box-dependent manner and induced TAZ protein expression. TGFβ did not act by promoting nuclear MRTF translocation; instead, it triggered p38- and MK2-mediated, Nox4-promoted MRTF phosphorylation and activation. Functionally, higher TAZ levels increased TAZ/TEAD-dependent transcription and primed cells for enhanced TAZ activity upon a second stimulus (i.e. sphingosine 1-phosphate) that induced nuclear TAZ translocation. In conclusion, our results uncover an important aspect of the cross-talk between TGFβ and Hippo signaling, showing that TGFβ induces TAZ via a Smad3-independent, p38- and MRTF-mediated and yet MRTF translocation-independent mechanism.
Collapse
Affiliation(s)
- Maria Zena Miranda
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Tony Yeung
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Departments of Surgery and
| | - Stine F Pedersen
- the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, .,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and.,Departments of Surgery and
| |
Collapse
|
35
|
Mesure B, Huber-Villaume S, Menu P, Velot É. Transforming growth factor-beta 1 or ascorbic acid are able to differentiate Wharton's jelly mesenchymal stem cells towards a smooth muscle phenotype. Biomed Mater Eng 2017; 28:S101-S105. [PMID: 28372284 DOI: 10.3233/bme-171630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are widely used in tissue engineering. In vascular engineering, the ability to obtain a vessel replacement with contractile smooth muscle cells (SMC) is a key factor. In this work, we demonstrated that WJ-MSCs differentiate towards a SMC phenotype with various stimulations in vitro and that the modification of redox state could be involved. WJ-MSCs were isolated from umbilical cords. After their expansion, the cells were stimulated with ascorbic acid (AA, 300 μM) or transforming growth factor (TGF)-β1 (1 to 5 ng/mL). SMC markers were analyzed by Western blot. Modification of redox state was evaluated by reactive oxygen species (ROS) production and glutathione (GSH) content measurements. TGF-β1 or AA-stimulated WJ-MSCs express early and intermediate SMC markers. TGF-β1 (5 ng/mL) modifies the redox state by a ROS production and a GSH content drop, while AA has no effect. This work showed that TGF-β1 and AA are effective SMC phenotype inducers to differentiate WJ-MSCs.
Collapse
Affiliation(s)
- B Mesure
- UMR 7365, CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, 54505, France
| | - S Huber-Villaume
- UMR 7365, CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, 54505, France
| | - P Menu
- UMR 7365, CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, 54505, France.,Faculté de Pharmacie, Université de Lorraine, Nancy, 54000, France
| | - É Velot
- UMR 7365, CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, 54505, France.,Faculté de Pharmacie, Université de Lorraine, Nancy, 54000, France
| |
Collapse
|
36
|
Das SJ, Lovicu FJ, Collinson EJ. Nox4 Plays a Role in TGF-β-Dependent Lens Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci 2017; 57:3665-73. [PMID: 27403995 PMCID: PMC4959837 DOI: 10.1167/iovs.16-19114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Transforming growth factor-β induces an epithelial to mesenchymal transition (EMT) in the lens, presented as an aberrant growth and differentiation of lens epithelial cells. Studies in other models of EMT have shown that TGF-β–driven EMT is dependent on the expression of the reactive oxygen species (ROS)–producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH)–oxidase-4 (Nox4). We investigate the role of this enzyme in TGF-β–induced lens EMT and determine whether it is required for this pathologic process. Methods Rat lens epithelial explants were used to investigate the role of Nox4 in TGF-β–driven lens EMT. Nox1–4 expression and localization was determined by immunolabeling and/or RT-PCR. NADPH–oxidase–produced ROS were visualized microscopically using the fluorescent probe, dihydroethidium (DHE). VAS2870, a pan-NADPH oxidase inhibitor, was used to determine the specificity of Nox4 expression and its role in ROS production, and subsequently TGF-β–driven EMT. Results We demonstrate, for the first time to our knowledge, in rat lens epithelial explants that TGF-β treatment induces Nox4 (but not Nox1–3) expression and activity. Increased Nox4 expression was first detected at 6 to 8 hours following TGF-β treatment and was maintained in explants up to 48 hours. At 8 hours after TGF-β treatment, Nox4 was observed in cell nuclei, while at later stages in the EMT process (at 48 hours), Nox4 was predominately colocalized with α-smooth muscle actin. The inhibition of Nox4 expression and activity using VAS2870 inhibited EMT progression. Conclusions Transforming growth factor-β drives the expression of the ROS-producing enzyme Nox4 in rat lens epithelial cells and Nox4 inhibition can impede the EMT process.
Collapse
Affiliation(s)
- Shannon J Das
- Discipline of Anatomy & Histology Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank J Lovicu
- Discipline of Anatomy & Histology Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia 2Save Sight Institute, Sydney, New South Wales, Australia
| | - Emma J Collinson
- Discipline of Anatomy & Histology Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med 2017; 6:E22. [PMID: 28230726 PMCID: PMC5332926 DOI: 10.3390/jcm6020022] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished.
Collapse
Affiliation(s)
- Karla Cervantes Gracia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Daniel Llanas-Cornejo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
38
|
Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 2016; 9:244-253. [PMID: 27591403 PMCID: PMC5011184 DOI: 10.1016/j.redox.2016.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.
Collapse
Affiliation(s)
| | - Jack M Heath
- Department of Pathology, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
39
|
Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases. Healthcare (Basel) 2016; 4:healthcare4030060. [PMID: 27571113 PMCID: PMC5041061 DOI: 10.3390/healthcare4030060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients.
Collapse
|
40
|
Di Marco E, Gray SP, Kennedy K, Szyndralewiez C, Lyle AN, Lassègue B, Griendling KK, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KAM. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radic Biol Med 2016; 97:556-567. [PMID: 27445103 PMCID: PMC5446082 DOI: 10.1016/j.freeradbiomed.2016.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 12/15/2022]
Abstract
Smooth muscle cell (SMC) proliferation and fibrosis contribute to the development of advanced atherosclerotic lesions. Oxidative stress caused by increased production or unphysiological location of reactive oxygen species (ROS) is a known major pathomechanism. However, in atherosclerosis, in particular under hyperglycaemic/diabetic conditions, the hydrogen peroxide-producing NADPH oxidase type 4 (NOX4) is protective. Here we aim to elucidate the mechanisms underlying this paradoxical atheroprotection of vascular smooth muscle NOX4 under conditions of normo- and hyperglycaemia both in vivo and ex vivo. Following 20-weeks of streptozotocin-induced diabetes, Apoe(-/-) mice showed a reduction in SM-alpha-actin and calponin gene expression with concomitant increases in platelet-derived growth factor (PDGF), osteopontin (OPN) and the extracellular matrix (ECM) protein fibronectin when compared to non-diabetic controls. Genetic deletion of Nox4 (Nox4(-/)(-)Apoe(-/-)) exacerbated diabetes-induced expression of PDGF, OPN, collagen I, and proliferation marker Ki67. Aortic SMCs isolated from NOX4-deficient mice exhibited a dedifferentiated phenotype including loss of contractile gene expression, increased proliferation and ECM production as well as elevated levels of NOX1-associated ROS. Mechanistic studies revealed that elevated PDGF signalling in NOX4-deficient SMCs mediated the loss of calponin and increase in fibronectin, while the upregulation of NOX1 was associated with the increased expression of OPN and markers of proliferation. These findings demonstrate that NOX4 actively regulates SMC pathophysiological responses in diabetic Apoe(-/-) mice and in primary mouse SMCs through the activities of PDGF and NOX1.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/etiology
- Atherosclerosis/pathology
- Becaplermin
- Cell Proliferation
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Fibrosis
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/physiology
- NADPH Oxidase 1/metabolism
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- Osteopontin/genetics
- Osteopontin/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
Collapse
Affiliation(s)
- Elyse Di Marco
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Stephen P Gray
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Kit Kennedy
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | | | - Alicia N Lyle
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Mark E Cooper
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology & Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, The Netherlands
| | - Karin A M Jandeleit-Dahm
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
41
|
Song SH, Kim K, Jo EK, Kim YW, Kwon JS, Bae SS, Sung JH, Park SG, Kim JT, Suh W. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol 2016; 36:1928-36. [PMID: 27470512 DOI: 10.1161/atvbaha.116.308017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMCs) modulate their phenotype between synthetic and contractile states in response to environmental changes; this modulation plays a crucial role in the pathogenesis of restenosis and atherosclerosis. Here, we identified fibroblast growth factor 12 (FGF12) as a novel key regulator of the VSMC phenotype switch. APPROACH AND RESULTS Using murine models and human specimens, we found that FGF12 was highly expressed in contractile VSMCs of normal vessel walls but was downregulated in synthetic VSMCs from injured and atherosclerotic vessels. In human VSMCs, FGF12 expression was inhibited at the transcriptional level by platelet-derived growth factor-BB. Gain- and loss-of-function experiments showed that FGF12 was both necessary and sufficient for inducing and maintaining the quiescent and contractile phenotypes of VSMCs. FGF12 inhibited cell proliferation through the p53 pathway and upregulated the key factors involved in VSMC lineage differentiation, such as myocardin and serum response factor. Such FGF12-induced phenotypic change was mediated by the p38 MAPK (mitogen-activated protein kinase) pathway. Moreover, FGF12 promoted the differentiation of mouse embryonic stem cells and the transdifferentiation of human dermal fibroblasts into SMC-like cells. Furthermore, adenoviral infection of FGF12 substantially decreased neointima hyperplasia in a rat carotid artery injury model. CONCLUSIONS In general, FGF family members induce a synthetic VSMC phenotype. Interestingly, the present study showed the unanticipated finding that FGF12 belonging to FGF family, strongly induced the quiescent and contractile VSMC phenotypes and directly promoted VSMC lineage differentiation. These novel findings suggested that FGF12 could be a new therapeutic target for treating restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Sun-Hwa Song
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Kyungjong Kim
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Eun-Kyung Jo
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Young-Wook Kim
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Jin-Sook Kwon
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Sun Sik Bae
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Jong-Hyuk Sung
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Sang Gyu Park
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Jee Taek Kim
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Wonhee Suh
- From the College of Pharmacy (S.-H.S., K.K., E.-K.J., W.S.), Department of Ophthalmology, College of Medicine (J.T.K.), Chung-Ang University, Seoul, Korea; Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y.-W.K.); Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Cheongju, Chungbuk, Korea (J.-S.K.); Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea (S.S.B.); College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.); STEMORE Co. Ltd., Incheon, Korea (J.-H.S.); and College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.).
| |
Collapse
|
42
|
Lee M, San Martín A, Valdivia A, Martin-Garrido A, Griendling KK. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One 2016; 11:e0153199. [PMID: 27088725 PMCID: PMC4835087 DOI: 10.1371/journal.pone.0153199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra Valdivia
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| |
Collapse
|
43
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
44
|
Karimi Galougahi K, Ashley EA, Ali ZA. Redox regulation of vascular remodeling. Cell Mol Life Sci 2016; 73:349-63. [PMID: 26483132 PMCID: PMC11108558 DOI: 10.1007/s00018-015-2068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023]
Abstract
Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation-reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- Division of Cardiology, Center for Interventional Vascular Therapy, New York Presbyterian Hospital and Columbia University, New York, NY, USA.
- Sydney Medical School Foundation, University of Sydney, Sydney, Australia.
| | - Euan A Ashley
- Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Ziad A Ali
- Division of Cardiology, Center for Interventional Vascular Therapy, New York Presbyterian Hospital and Columbia University, New York, NY, USA
- Cardiovascular Research Foundation, New York, NY, USA
| |
Collapse
|
45
|
Pan Q, Wang YQ, Li GM, Duan XY, Fan JG. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:935903. [PMID: 26881209 PMCID: PMC4736000 DOI: 10.1155/2015/935903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
Abstract
Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β 1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β 1 at both transcription and translation levels. Restoration of TGF-β 1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Guang-Ming Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao-Yan Duan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Shanghai 200092, China
| |
Collapse
|
46
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
47
|
Mosińska P, Storr M, Fichna J. The role of AST-120 and protein-bound uremic toxins in irritable bowel syndrome: a therapeutic perspective. Therap Adv Gastroenterol 2015; 8:278-84. [PMID: 26327918 PMCID: PMC4530433 DOI: 10.1177/1756283x15587866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AST-120 (kremezin) exhibits its favourable effects in reducing the levels of renal toxins by selective adsorption of low molecular weight substances from the intestinal lumen. So far, a vast majority of studies were focused on the role of AST-120 in the treatment of chronic kidney diseases and cardiovascular disorders, and positive therapeutic effects of the agent have already been confirmed in clinical conditions. Up to the present, there are only a few studies regarding the role of AST-120 in irritable bowel syndrome (IBS). Compelling data suggest the ability of the compound to adsorb protein-bound uremic toxins and mast cell derived mediators and to modulate the farnesoid X receptor, which is a bile acid sensor indispensable for maintaining homeostasis in the intestine. In this review we focus on the actions of AST-120 on intestinal permeability, reduction of visceral sensitivity and alteration of gut motility. We also discuss whether AST-120 can mitigate common IBS symptoms, such as abdominal pain, bloating and malfunction of the colonic transit and thus improve the quality of life of patients with IBS.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Martin Storr
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich, Germany,Center of Endoscopy, Starnberg, Germany
| |
Collapse
|
48
|
Fierro-Fernández M, Busnadiego Ó, Sandoval P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML, Lamas S. miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 2015; 16:1358-77. [PMID: 26315535 DOI: 10.15252/embr.201540750] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled extracellular matrix (ECM) production by fibroblasts in response to injury contributes to fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Reactive oxygen species (ROS) generation is involved in the pathogenesis of IPF. Transforming growth factor-β1 (TGF-β1) stimulates the production of NADPH oxidase 4 (NOX4)-dependent ROS, promoting lung fibrosis (LF). Dysregulation of microRNAs (miRNAs) has been shown to contribute to LF. To identify miRNAs involved in redox regulation relevant for IPF, we performed arrays in human lung fibroblasts exposed to ROS. miR-9-5p was selected as the best candidate and we demonstrate its inhibitory effect on TGF-β receptor type II (TGFBR2) and NOX4 expression. Increased expression of miR-9-5p abrogates TGF-β1-dependent myofibroblast phenotypic transformation. In the mouse model of bleomycin-induced LF, miR-9-5p dramatically reduces fibrogenesis and inhibition of miR-9-5p and prevents its anti-fibrotic effect both in vitro and in vivo. In lung specimens from patients with IPF, high levels of miR-9-5p are found. In omentum-derived mesothelial cells (MCs) from patients subjected to peritoneal dialysis (PD), miR-9-5p also inhibits mesothelial to myofibroblast transformation. We propose that TGF-β1 induces miR-9-5p expression as a self-limiting homeostatic response.
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Óscar Busnadiego
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Sandoval
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Espinosa-Díez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Blanco-Ruiz
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Macarena Rodríguez
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Héctor Pian
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Manuel López-Cabrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
49
|
Liu YN, Zha WJ, Ma Y, Chen FF, Zhu W, Ge A, Zeng XN, Huang M. Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Sci Rep 2015; 5:11758. [PMID: 26156213 PMCID: PMC4496730 DOI: 10.1038/srep11758] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
Galangin, a natural flavonol, has attracted much attention for its potential anti-inflammatory properties. However, its role in the regulation of airway remodelling in asthma has not been explored. The present study aimed to elucidate the effects of galangin on chronic inflammation and airway remodelling and to investigate the underlying mechanisms both in vivo and in vitro. Ovalbumin (OVA)-sensitised mice were administered with galangin 30 min before challenge. Our results showed that severe inflammatory responses and airway remodelling occurred in OVA-induced mice. Treatment with galangin markedly attenuated the leakage of inflammatory cells into bronchoalveolar lavage fluid (BALF) and decreased the level of OVA-specific IgE in serum. Galangin significantly inhibited goblet cell hyperplasia, collagen deposition and α-SMA expression. Lowered level of TGF-β1 and suppressed expression of VEGF and MMP-9 were observed in BALF or lung tissue, implying that galangin has an optimal anti-remodelling effect in vivo. Consistently, the TGF-β1-induced proliferation of airway smooth muscle cells was reduced by galangin in vitro, which might be due to the alleviation of ROS levels and inhibition of MAPK pathway. Taken together, the present findings highlight a novel role for galangin as a promising anti-remodelling agent in asthma, which likely involves the TGF-β1-ROS-MAPK pathway.
Collapse
Affiliation(s)
- Ya-Nan Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wang-Jian Zha
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Ma
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Fei Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ai Ge
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Ning Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 2015; 8:588-94. [PMID: 25482625 PMCID: PMC4594483 DOI: 10.4161/19336918.2014.972788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.
Collapse
|