1
|
Ismaiah MJ, Lo EKK, Chen C, Tsui JSJ, Johnson-Hill WA, Felicianna, Zhang F, Leung HKM, Oger C, Durand T, Lee JCY, El-Nezami H. Alpha-aminobutyric acid administration suppressed visceral obesity and modulated hepatic oxidized PUFA metabolism via gut microbiota modulation. Free Radic Biol Med 2025; 232:86-96. [PMID: 40032028 DOI: 10.1016/j.freeradbiomed.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND High-fat diet (HFD) is associated with visceral obesity due to disruption in the lipid metabolism and gut dysbiosis. These symptoms may contribute to hepatic steatosis and the formation of oxidized polyunsaturated fatty acids (PUFAs). Alpha-aminobutyric acid (ABA) is an amino-acid derived metabolite, and its concentration has been correlated with several metabolic conditions and gut microbiome diversity while its direct effects on visceral obesity, lipid metabolism and the gut microbiota are not well understood. This study was designed to investigate the effect of physiological dose of ABA on diet-induced visceral obesity and lipid metabolism dysregulation by examining the fatty acids and oxidized PUFAs profile in the liver as well as the gut microbiota. RESULTS ABA administration reduced visceral obesity by 28 % and lessened adipocyte hypertrophy. The expression of liver Cd36 was lowered by more than 50 % as well as the saturated and monounsaturated FA concentration. Notably, the desaturation index for C16 and C18 FAs that are correlated with adiposity were reduced. The concentration of several DHA-derived oxidized PUFAs were also enhanced. Faecal metagenomics sequencing revealed enriched abundance of Leptogranulimonas caecicola and Bacteroides sp. ZJ-18 and were positively correlated with several DHA- and ALA-derived oxidized PUFAs in ABA group. CONCLUSION Our study revealed the modulatory effect of physiological dose of ABA on attenuating visceral obesity, reducing hepatic steatosis, and promoting the production of anti-inflammatory oxidized PUFAs that were potentially mediated by the gut microbiota.
Collapse
Affiliation(s)
- Marsena Jasiel Ismaiah
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Congjia Chen
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Jacob Shing-Jie Tsui
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Winifred Audrey Johnson-Hill
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Felicianna
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Fangfei Zhang
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR5247, CNRS, ENSCM, Université de Montpellier, F-34093, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR5247, CNRS, ENSCM, Université de Montpellier, F-34093, Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China.
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region of China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, FI-70211, Finland
| |
Collapse
|
2
|
Leonard M, Maury J, Dickerson B, Gonzalez DE, Kendra J, Jenkins V, Nottingham K, Yoo C, Xing D, Ko J, Pradelles R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Dietary Supplementation of a Microalgae Extract Containing Fucoxanthin Combined with Guarana on Cognitive Function and Gaming Performance. Nutrients 2023; 15:nu15081918. [PMID: 37111136 PMCID: PMC10142384 DOI: 10.3390/nu15081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Esports competitive gaming requires selective visual attention, memory, quick judgment, and an ability to sustain psychomotor performance over time. Fucoxanthin is a carotenoid, found in specific microalgae varieties such as Phaeodactylum tricornutum (PT), that has been purported to possess nootropic and neuroprotective effects through its anti-inflammatory and antioxidant properties. This study evaluated whether acute and 30-day supplementation of an extract of PT from microalgae combined with guarana (a natural source of caffeine) affects cognitive function in gamers. MATERIALS AND METHODS In a double-blind, placebo-controlled manner, 61 experienced gamers (21.7 ± 4.1 years, 73 ± 13 kg) were randomly assigned to ingest a placebo (PL), a low-dose (LD) supplement containing 440 mg of PT extract including 1% fucoxanthin +500 mg of guarana containing 40-44 mg caffeine (MicroPhyt™, Microphyt, Baillargues, FR), or a high-dose (HD) supplement containing 880 mg of PT extract +500 mg of guarana for 30 days. At baseline, cognitive function tests were administered before supplementation, 15 min post-supplementation, and after 60 min of competitive gameplay with participants' most played video game. Participants continued supplementation for 30 days and then repeated pre-supplementation and post-gaming cognitive function tests. General linear model univariate analyses with repeated measures and changes from baseline with 95% confidence intervals were used to analyze data. RESULTS There was some evidence that acute and 30-day ingestion of the PT extract from microalgae with guarana improved reaction times, reasoning, learning, executive control, attention shifting (cognitive flexibility), and impulsiveness. While some effects were seen after acute ingestion, the greatest impact appeared after 30 days of supplementation, with some benefits seen in the LD and HD groups. Moreover, there was evidence that both doses of the PT extract from microalgae with guarana may support mood state after acute and 30-day supplementation. Registered clinical trial #NCT04851899.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Maury
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Drew E Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jacob Kendra
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Kay Nottingham
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Rémi Pradelles
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin, Whitewater, WI 53190, USA
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Christopher J Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156069. [PMID: 35605851 DOI: 10.1016/j.scitotenv.2022.156069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fludioxonil is widely used in the control of crop diseases because of its broad spectrum and high activity, but its presence is now common in waterways proximate to treated areas. This study examined the toxic effects and mechanisms of fludioxonil on the microalgal taxa Chlorella vulgaris. The results showed that fludioxonil limited the growth of C. vulgaris and the median inhibitory concentration at 96 h was 1.87 mg/L. Concentrations of 0.75 and 3 mg/L fludioxonil reduced the content of photosynthetic pigments in algal cells to different degrees. Fludioxonil induced oxidative damage by altering C. vulgaris antioxidant enzyme activities and increasing reactive oxygen species levels. Fludioxonil at 0.75 mg/L significantly increased the activity of antioxidant enzymes. The highest level of activity was 1.60 times that of the control group. Both fludioxonil treatment groups significantly increased ROS levels, with the highest increase being 1.90 times that of the control group. Transmission electron microscope showed that treatment with 3 mg/L fludioxonil for 96 h disrupted cell integrity and changed cell morphology, and flow cytometer analysis showed that fludioxonil induced apoptosis. Changes in endogenous substances indicated that fludioxonil negatively affects C. vulgaris via altered energy metabolism, biosynthesis of amino acids, and unsaturated fatty acids. This study elucidates the effects of fludioxonil on microalgae and the biological mechanisms of its toxicity, providing insights into the importance of the proper management of this fungicide.
Collapse
Affiliation(s)
- Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Luo Gong
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
5
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Vigor C, Züllig T, Eichmann TO, Oger C, Zhou B, Rechberger GN, Hilsberg L, Trötzmüller M, Pellegrino RM, Alabed HBR, Hartler J, Wolinski H, Galano JM, Durand T, Spener F. α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chem 2022; 371:131194. [PMID: 34600364 DOI: 10.1016/j.foodchem.2021.131194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.
Collapse
Affiliation(s)
- Claire Vigor
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Thomas O Eichmann
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Camille Oger
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Bingqing Zhou
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Gerald N Rechberger
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | | | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Roberto M Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Field of Excellence BioHealth - University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria.
| |
Collapse
|
7
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
Ahmed OS, Sedraoui S, Zhou B, Reversat G, Rocher A, Bultel-Poncé V, Guy A, Vercauteren J, Selim S, Galano JM, Durand T, Oger C, Vigor C. Phytoprostanes from Date Palm Fruit and Byproducts: Five Different Varieties Grown in Two Different Locations As Potential sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13754-13761. [PMID: 34766764 DOI: 10.1021/acs.jafc.1c03364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Date palm fruit has been considered for centuries as an ancient nutritional constituent in the human diet. Recently, global trade in dates increased at an average that, simultaneously, will be accompanied by an increase in date palm byproducts. Supported by date phytochemicals and their health benefits, the aim of this work is to evaluate for the first time the presence of special metabolites of plant called phytoprostanes (PhytoPs) in five different varieties of the Phoenix dactylifera L. pulps and pits using a microLC-ESI-QTrap-MS/MS methodology. Results obtained showed the interest of using these matrices as potential sources of several PhytoPs (ent-16-B1-PhytoP; ent-9-L1-PhytoP; and epimers of ent-16-F1t-PhytoP and of 9-F1t-PhytoP). The variation in concentration between different varieties and different DPF parts was also evaluated. Results obtained will help to unravel the biological activities associated with DPF consumption that could be related to these bioactive metabolites.
Collapse
Affiliation(s)
- Omar S Ahmed
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
- Department of Analytical Chemistry, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City 12566, Egypt
| | - Sami Sedraoui
- Laboratory of Cardio-circulatory, Respiratory, and Hormonal Adaptations to Muscular Exercise, Faculty of Sciences of Bizerte, University of Carthage, Tunis 1054, Tunisia
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| |
Collapse
|
9
|
Leung KS, Galano JM, Yau YF, Oger C, Durand T, Lee JCY. Walnut-Enriched Diet Elevated α-Linolenic Acid, Phytoprostanes, and Phytofurans in Rat Liver and Heart Tissues and Modulated Anti-inflammatory Lipid Mediators in the Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9094-9101. [PMID: 33351614 DOI: 10.1021/acs.jafc.0c06690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Linolenic acid (ALA) and its non-enzymatic oxidized products, namely, phytoprostanes and phytofurans, are found in some nuts. The uptake and deposition of these compounds are not well-defined. Walnut has high ALA and a considerable amount of phytoprostanes and phytofurans compared to other common nuts. When fed to rodents, ALA and eicosapentaenoic acid levels increased in the liver and heart tissues compared to the control diet. Furthermore, phytoprostanes and phytofurans were elevated 3-fold in both tissues after a walnut diet, indicating that they are not only contributed from the diet but also generated through in vivo autoxidation of ALA found in the walnuts. It was further noted that a walnut diet reduced 5-F2t-isoprostanes and 12-hydroxyeicosatetraenoic acid and induced 4-F4t-neuroprostane and significant amounts of anti-inflammatory hydroxydocosahexaenoic acid in the liver only. Altogether, high ALA in a walnut diet elevated phytoprostanes and phytofurans in the liver and heart tissues and showed the regulation of anti-inflammatory lipid mediators in the liver only.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Yu Fung Yau
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
10
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
11
|
Campillo M, Medina S, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Bultel-Poncé V, Durand T, Galano JM, Tomás-Barberán FA, Gil-Izquierdo Á, Domínguez-Perles R. Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radic Biol Med 2021; 167:335-347. [PMID: 33722629 DOI: 10.1016/j.freeradbiomed.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammation is a fundamental pathophysiological process which occurs in the course of several diseases. The present work describes the capacity of phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (plant oxylipins), present in plant-based foods, to modulate inflammatory processes mediated by prostaglandins (PGs, human oxylipins) in lipopolysaccharide (LPS)-stimulated THP-1 monocytic cells, through a panel of 21 PGs and PG's metabolites, analyzed by UHPLC-QqQ-ESI-MS/MS. Also, the assessment of the cytotoxicity of PhytoPs and PhytoFs on THP-1 cells evidenced percentages of cell viability higher than 90% when treated with up to 100 μM. Accordingly, 50 μM of the individual PhytoPs and PhytoFs 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16-epi-16-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF, ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF were evaluated on their capacity to modulate the expression of inflammatory markers. The results obtained demonstrated the presence of 7 metabolites (15-keto-PGF2α, PGF2α, 11β-PGF2α, PGE2, PGD2, PGDM, and PGF1α) in THP-1 monocytic cells, which expression was significantly modulated when exposed to LPS. The evaluation of the capacity of the individual PhytoPs and PhytoFs to revert the modification of the quantitative profile of PGs induced by LPS revealed the anti-inflammatory ability of 9-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, as evidenced by their capacity to prevent the up-regulation of 15-keto-PGF2α, PGF2α, PGE2, PGF1α, PGDM, and PGD2 induced by LPS. These results indicated that specific plant oxylipins can protect against inflammatory events, encouraging further investigations using plant-based foods rich in these oxylipins or enriched extracts, to identify specific bioactivities of the diverse individual molecules, which can be useful for nutrition and health in the frame of well-defined pathophysiological processes.
Collapse
Affiliation(s)
- María Campillo
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Federico Fanti
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, TE, Italy
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | | | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain
| |
Collapse
|
12
|
Bernardo A, Plumitallo C, De Nuccio C, Visentin S, Minghetti L. Curcumin promotes oligodendrocyte differentiation and their protection against TNF-α through the activation of the nuclear receptor PPAR-γ. Sci Rep 2021; 11:4952. [PMID: 33654147 PMCID: PMC7925682 DOI: 10.1038/s41598-021-83938-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Curcumin is a compound found in the rhizome of Curcuma longa (turmeric) with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. The current study aims to assess the effects of this natural compound on oligodendrocyte progenitor (OP) differentiation, particularly in inflammatory conditions. We found that curcumin can promote the differentiation of OPs and to counteract the maturation arrest of OPs induced by TNF-α by a mechanism involving PPAR-γ (peroxisome proliferator activated receptor), a ligand-activated transcription factor with neuroprotective and anti-inflammatory capabilities. Furthermore, curcumin induces the phosphorylation of the protein kinase ERK1/2 known to regulate the transition from OPs to immature oligodendrocytes (OLs), by a mechanism only partially dependent on PPAR-γ. Curcumin is also able to raise the levels of the co-factor PGC1-α and of the cytochrome c oxidase core protein COX1, even when OPs are exposed to TNF-α, through a PPAR-γ-mediated mechanism, in line with the known ability of PPAR-γ to promote mitochondrial integrity and functions, which are crucial for OL differentiation to occur. Altogether, this study provides evidence for a further mechanism of action of curcumin besides its well-known anti-inflammatory properties and supports the suggested therapeutic potential of this nutraceutical in demyelinating diseases.
Collapse
Affiliation(s)
- Antonietta Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Cristina Plumitallo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
13
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
14
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
15
|
Leung KS, Galano JM, Oger C, Durand T, Lee JCY. Enrichment of alpha-linolenic acid in rodent diet reduced oxidative stress and inflammation during myocardial infarction. Free Radic Biol Med 2021; 162:53-64. [PMID: 33271280 DOI: 10.1016/j.freeradbiomed.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) is an irreversible event caused by cardiac ischemia and may be fatal. Studies reported that increased intake of n-3 polyunsaturated fatty acids (PUFA) namely, eicosapentaenoic acid and docosahexaenoic acid reduce the risk of cardiovascular disease and lower the incidence of MI. Nonetheless, the cardioprotective effect of plant n-3-PUFA such as α-linolenic acid (ALA) in the diet is not conclusive. In this study, Sprague Dawley rats were supplemented with isocaloric diets enriched with ALA rich flaxseed (FS) and flaxseed oil (FSO), and normal chow (Control) for 4 weeks. MI was induced by isoproterenol (ISO) injection. Results showed that all ALA-enriched diets displayed cardioprotection against MI. The heart to body weight ratio, plasma LDH activity and plasma cTnI were reduced compared to ISO and was prominent in FS diet. ALA and EPA were up-regulated in both tissues and plasma by ALA-diets compared to Control and remained higher than ISO groups. Notably, LOX-mediated HETEs decreased whereas LOX-mediated HDHAs were elevated in both tissues and plasma of ALA-enriched diets compared to ISO. In addition, non-enzymatic oxidized products from arachidonic acid including 15-F2t-IsoP were reduced in both tissues and plasma of MI rats supplemented with ALA-enriched diets while those from n-3 PUFAs including F4-NeuroPs, PhytoPs and PhytoFs were elevated compared to control. ALA-enriched diets particularly flaxseed reduced gene expressions of inflammatory cytokines namely IL-1β, IL-6 and TNFα and prevented the down regulation of antioxidant catalase in the heart tissues. In conclusion ALA-enriched diets potentially exerted cardioprotection through the regulation of anti-inflammatory and anti-oxidative mediators from n-3 PUFA autooxidation.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
16
|
León-Perez D, Domínguez-Perles R, Collado-González J, Cano-Lamadrid M, Durand T, Guy A, Galano JM, Carbonell-Barrachina Á, Londoño-Londoño J, Ferreres F, Jiménez-Cartagena C, Gil-Izquierdo Á, Medina S. Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Yau YF, El-Nezami H, Galano JM, Kundi ZM, Durand T, Lee JCY. Lactobacillus rhamnosus GG and Oat Beta-Glucan Regulated Fatty Acid Profiles along the Gut-Liver-Brain Axis of Mice Fed with High Fat Diet and Demonstrated Antioxidant and Anti-Inflammatory Potentials. Mol Nutr Food Res 2020; 64:e2000566. [PMID: 32780531 DOI: 10.1002/mnfr.202000566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Abstract
SCOPE This study takes a novel approach to investigate the anti-inflammatory and antioxidant effects of prebiotic oat beta-glucan (OAT) and the probiotic Lactobacillus rhamnosus GG (LGG) against high-fat diets (HFD) by examining the fatty acid profiles in the gut-liver-brain axis. METHOD AND RESULTS HFD-fed C57BL/6N mice are supplemented with OAT and/or LGG for 17 weeks. Thereafter, mass spectrometry-based targeted lipidomics is employed to quantify short-chain fatty acids (SCFA), polyunsaturated fatty acids (PUFA), and oxidized PUFA products in the tissues. Acetate levels are suppressed by HFD in all tissues but reversed in the brain and liver by supplementation with LGG, OAT, or LGG + OAT, and in cecum content by LGG. The n-6/n-3 polyunsaturated fatty acid (PUFA) ratio is elevated by HFD in all tissues but is lowered by LGG and OAT in the cecum and the brain, and by LGG + OAT in the brain, suggesting the anti-inflammatory property of LGG and OAT. LGG and OAT synergistically, but not individually attenuate the increase in non-enzymatic oxidized products, indicating their synbiotic antioxidant property. CONCLUSION The regulation of the fatty acid profiles by LGG and OAT, although incomplete, but demonstrates their anti-inflammatory and antioxidant potentials in the gut-liver-brain axis against HFD.
Collapse
Affiliation(s)
- Yu Fung Yau
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, F-34093, Montpellier, CEDEX 05, France
| | - Zuzanna Maria Kundi
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, F-34093, Montpellier, CEDEX 05, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Medina S, Gil-Izquierdo Á, Abu-Reidah IM, Durand T, Bultel-Poncé V, Galano JM, Domínguez-Perles R. Evaluation of Phoenix dactylifera Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8942-8950. [PMID: 32693588 DOI: 10.1021/acs.jafc.0c03364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though traditionally date-fruit has been featured by a marginal use, mainly restricted to its dietary intake, in recent years, it has raised the range of applications for this agro-food production. These new uses have entailed an enlarged production of date fruits and, simultaneously, of date palm byproducts. Encouraged by the traditional medicinal uses of dates, according to their phytochemical composition, the present work was focused on the evaluation of a new family of secondary metabolites, the plant oxylipins phytoprostanes (PhytoPs) and phytofurans (PhytoFs), in six separate matrixes of the date palm edible parts and byproducts, applying an UHPLC-ESI-QqQ-MS/MS-based methodology. The evaluation for the first time of date palm edible parts and byproducts as a dietary source of PhytoPs and PhytoFs provides evidence on the value of six different parts (pulp, skin, pits, leaves, clusters, and pollen) regarding their content in these plant oxylipins evidenced by the presence of the PhytoPs, 9-F1t-PhytoP (201.3-7223.1 ng/100 g dw) and 9-epi-9-F1t-PhytoP (209.7-7297.4 ng/100 g dw), and the PhytoFs ent-16(RS)-9-epi-ST-Δ14-10-PhytoF (4.6-191.0 ng/100g dw), and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF as the most abundant compounds. Regarding the diverse matrixes assessed, pollen, clusters, and leaves for PhytoPs and skins and pollen for PhytoFs were identified as the most interesting sources of these compounds. In this concern, the information obtained upon the detailed characterization performed in the present work will allow unravelling the biological interest of PhytoPs and PhytoFs and the extent to which these compounds could exert valuable biological activities upon in vitro (mechanistic) and in vivo studies, allocating the effort-focus on the chemical species of PhytoPs and PhytoFs responsible for such traits.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ibrahim M Abu-Reidah
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
- Department of Industrial Chemistry, Arab American University, P.O. Box 240, 13 Zababdeh-Jenin, Palestine
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| |
Collapse
|
19
|
Pavlíčková T, Bultel-Poncé V, Guy A, Rocher A, Reversat G, Vigor C, Durand T, Galano JM, Jahn U, Oger C. First Total Syntheses of Novel Non-Enzymatic Polyunsaturated Fatty Acid Metabolites and Their Identification in Edible Oils. Chemistry 2020; 26:10090-10098. [PMID: 32531118 DOI: 10.1002/chem.202002138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OS) is an in vivo process leading to free radical overproduction, which triggers polyunsaturated fatty acid (PUFA) peroxidation resulting in the formation of racemic non-enzymatic oxygenated metabolites. As potential biomarkers of OS, their in vivo quantification is of great interest. However, since a large number of isomeric metabolites is formed in parallel, their quantification remains difficult without primary standards. Three new PUFA-metabolites, namely 18-F3t -isoprostane (IsoP) from eicosapentaenoic acid (EPA), 20-F4t -neuroprostane (NeuroP) from docosahexaenoic acid (DHA) and 20-F3t -NeuroP from docosapentaenoic acid (DPAn-3 ) were synthesized by two complementary synthetic strategies. The first one relied on a racemic approach to 18(RS)-18-F3t -IsoP using an oxidative radical anion cyclization as a key step, whereas the second used an enzymatic deracemization of a bicyclo[3.3.0]octene intermediate obtained from cyclooctadiene to pursue an asymmetric synthesis. The synthesized metabolites were applied in targeted lipidomics to prove lipid peroxidation in edible oils of commercial nutraceuticals.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| |
Collapse
|
20
|
Isoprostanoid Profiling of Marine Microalgae. Biomolecules 2020; 10:biom10071073. [PMID: 32708411 PMCID: PMC7407139 DOI: 10.3390/biom10071073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Algae result from a complex evolutionary history that shapes their metabolic network. For example, these organisms can synthesize different polyunsaturated fatty acids, such as those found in land plants and oily fish. Due to the presence of numerous double-bonds, such molecules can be oxidized nonenzymatically, and this results in the biosynthesis of high-value bioactive metabolites named isoprostanoids. So far, there have been only a few studies reporting isoprostanoid productions in algae. To fill this gap, the current investigation aimed at profiling isoprostanoids by liquid chromatography -mass spectrometry/mass spectrometry (LC-MS/MS) in four marine microalgae. A good correlation was observed between the most abundant polyunsaturated fatty acids (PUFAs) produced by the investigated microalgal species and their isoprostanoid profiles. No significant variations in the content of oxidized derivatives were observed for Rhodomonas salina and Chaetoceros gracilis under copper stress, whereas increases in the production of C18-, C20- and C22-derived isoprostanoids were monitored in Tisochrysis lutea and Phaeodactylum tricornutum. In the presence of hydrogen peroxide, no significant changes were observed for C. gracilis and for T. lutea, while variations were monitored for the other two algae. This study paves the way to further studying the physiological roles of isoprostanoids in marine microalgae and exploring these organisms as bioresources for isoprostanoid production.
Collapse
|
21
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
22
|
Roy J, Vigor C, Vercauteren J, Reversat G, Zhou B, Surget A, Larroquet L, Lanuque A, Sandres F, Terrier F, Oger C, Galano JM, Corraze G, Durand T. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie 2020; 178:137-147. [PMID: 32623048 DOI: 10.1016/j.biochi.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain. Hence, the goal of this study was to characterize the whole brain fatty acid composition (precursors, enzymatic and non-enzymatic oxidation metabolites) of fish model of rainbow trout fed with three experimental plant-based diet containing distinct levels of eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) (0% for low, 15.7% for medium and 33.4% for high, total fatty acid content) during nine weeks. Trout fed with the diet devoid of DHA and EPA showed reduced brain content of total ω-3 LC-PUFAs, with diminution of EPA and DHA. Selected enzymatic (cyclooxygenases and lipoxygenases) oxidation metabolites of arachidonic acid (AA, 20:4 ω-6) decrease in medium and high ω-3 LC-PUFAs diets. On the contrary, total selected enzymatic oxidation metabolites of DHA and EPA increased in high ω-3 LC-PUFAs diet. Total selected non-enzymatic oxidation metabolites of DHA (not detected for EPA) increased in medium and high ω-3 LC-PUFAs diets. In conclusion, this work revealed for the first time in fish model the presence of some selected enzymatic and non-enzymatic oxidation metabolites in brain and the modulation of brain lipid content by dietary DHA and EPA levels.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Anne Surget
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
23
|
Gutierrez-Pajares JL, Ben Hassen C, Oger C, Galano JM, Durand T, Frank PG. Oxidized Products of α-Linolenic Acid Negatively Regulate Cellular Survival and Motility of Breast Cancer Cells. Biomolecules 2019; 10:biom10010050. [PMID: 31905626 PMCID: PMC7023043 DOI: 10.3390/biom10010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/09/2022] Open
Abstract
Despite recent advances in our understanding of the biological processes leading to the development and progression of cancer, there is still a need for new and effective agents to treat this disease. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are non-enzymatically oxidized products of α-linolenic acid that are present in seeds and vegetable oils. They have been shown to possess anti-inflammatory and apoptosis-promoting activities in macrophages and leukemia cells, respectively. In this work, seven PhytoPs (PP1–PP7) and one PhytoFs (PF1) were evaluated for their cytotoxic, chemosensitization, and anti-migratory activities using the MCF-7 and MDA-MB-231 breast cancer cell lines. Among the tested compounds, only three PhytoPs had a significant effect on cell viability compared to the control group: Ent-9-L1-PhytoP (PP6) decreased cell viability in both cell lines, while 16-F1t-PhytoP (PP1) and 9-L1-PhytoP (PP5) decreased viability of MCF-7 and MDA-MB-231 cells, respectively. When combined with a sub-cytotoxic dose of doxorubicin, these three PhytoPs displayed significantly enhanced cytotoxic effects on MCF-7 cells while the chemotherapeutic drug alone had no effect. In cellular motility assays, Ent-9-(RS)-12-epi-ST-Δ10-13-PhytoF could significantly inhibit cellular migration of MDA-MB-231 cells. In addition, Ent-9-(RS)-12-epi-ST-Δ10-13-PhytoF also enhanced cellular adhesion of MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Celine Ben Hassen
- INSERM, Faculté de Médecine, Université de Tours, UMR1069 Tours, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Faculté de Pharmacie, UMR5247 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Faculté de Pharmacie, UMR5247 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Faculté de Pharmacie, UMR5247 Montpellier, France
| | - Philippe G Frank
- INSERM, Faculté de Médecine, Université de Tours, UMR1069 Tours, France
| |
Collapse
|
24
|
Signorini C, Cardile V, Pannuzzo G, Graziano ACE, Durand T, Galano JM, Oger C, Leoncini S, Cortelazzo A, Lee JCY, Hayek J, De Felice C. Increased isoprostanoid levels in brain from murine model of Krabbe disease - Relevance of isoprostanes, dihomo-isoprostanes and neuroprostanes to disease severity. Free Radic Biol Med 2019; 139:46-54. [PMID: 31100476 DOI: 10.1016/j.freeradbiomed.2019.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Krabbe disease (KD) is a rare and devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. The disease leads to impaired myelin formation and extensive myelin damage in the brain. Oxidative stress is implicated in the pathogenesis of KD but insofar few information is available. The gray and white matter of the brain are rich in docosahexaenoic acid and adrenic acid respectively and under non-enzymatic oxidative stress, release isoprostanoids, i.e. F4-neuroprostanes (F4-NeuroPs) and F2-dihomo-isoprostanes (F2-dihomo-IsoPs). In this study, the formation of isoprostanoids in brain tissue was investigated in a well-established KD mouse model (twitcher) that recapitulates the human pathology. According to the genotype determinations, three groups of mice were selected: wild-type control mice (n = 13), heterozygotes mice (carriers of GALC mutations, n = 14) and homozygous twitcher mice (n = 13). Measurement of F2-dihomo-IsoP and F4-NeuroP levels were performed on whole brain tissue obtained at day 15 and day 35 of the life cycle. Brain isoprostanoid levels were significantly higher in the twitcher mice compared to the heterozygous and wild-type control mice. However, F2-dihomo-IsoP and F4-NeuroP levels did not differ in brain of day 15 compared to day 35 of the heterozygote mice. Interestingly, isoprostanoid levels were proportionally enhanced with disease severity (F2-dihomo-IsoPs, rho = 0.54; F4-NeuroPs, rho = 0.581; P values ≤ 0.05; n = 13). Our findings are the first to show the key role of polyunsaturated fatty acid oxidative damage to brain grey and white matter in the pathogenesis and progression of KD. This shed new insights on the biochemical indexes of KD progression, and potentially provide information for novel therapeutic targets.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Sect. of Physiology, University of Catania, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Sect. of Physiology, University of Catania, Italy
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong Special Administrative Region
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Claudio De Felice
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
25
|
Erkkilä AT, Lee JC, Lankinen M, Manninen S, Leung HH, Oger C, de Mello VD, Schwab US. Camelina sativaOil, Fatty Fish, and Lean Fish Do Not Markedly Affect Urinary Prostanoids in Subjects with Impaired Glucose Metabolism. Lipids 2019; 54:453-464. [DOI: 10.1002/lipd.12176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Arja T. Erkkilä
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Yliopistonranta, 70210 Kuopio Finland
| | - Jetty C.‐Y. Lee
- School of Biological SciencesThe University of Hong Kong Pok Fu Lam Road, Hong Kong SAR
| | - Maria Lankinen
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Yliopistonranta, 70210 Kuopio Finland
| | - Suvi Manninen
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Yliopistonranta, 70210 Kuopio Finland
| | - Ho Hang Leung
- School of Biological SciencesThe University of Hong Kong Pok Fu Lam Road, Hong Kong SAR
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMMUniversité de Montpellier, CNRS, ENSCM Faculté de Pharmacie Av. Charles Flahault BP, 34093 Montpellier Cedex France
| | - Vanessa D. de Mello
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Yliopistonranta, 70210 Kuopio Finland
| | - Ursula S. Schwab
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Yliopistonranta, 70210 Kuopio Finland
- Department of Medicine, Endocrinology and Clinical NutritionKuopio University Hospital Puijonlaaksontie, 70210 Kuopio Finland
| |
Collapse
|
26
|
Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chem 2019; 280:231-239. [DOI: 10.1016/j.foodchem.2018.12.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
|
27
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo Á. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2194-2204. [PMID: 30315579 DOI: 10.1002/jsfa.9413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In Colombia, agro-industrial residues represent an enormous economic and environmental problem, which could be reduced if different techniques for the addition of value to such residues were implemented by this industrial sector. One of the fruits with the highest export rates is Physalis peruviana (goldenberry); however, this fruit is generally marketed without its calyx, generating a large amount of residues. To develop a strategy to add value to these residues, it is essential to know their chemical composition. RESULTS In the present work, phytoprostanes (PhytoPs) - new active oxylipins - have been detected for the first time in Physalis peruviana calyces by ultra-high performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS), F1t -phytoprostanes and D1t -phytoprostanes being the predominant and minor classes, respectively. In addition, we were able to characterize the phenolic compounds profile of this matrix using LC-IT-DAD-MS/MS, describing six phenolic derivatives for the first time therein. CONCLUSIONS This study increases our knowledge of the chemical composition of the calyces of this fruit and thereby supports the recycling of this class of residue. Consequently, goldenberry calyces could be used as phytotherapeutic, nutraceutic, or cosmetic ingredients for the development of diverse natural products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Julián Londoño-Londoño
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Claudio Jiménez-Cartagena
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
28
|
Pinciroli M, Domínguez-Perles R, Abellán Á, Bultel-Poncé V, Durand T, Galano JM, Ferreres F, Gil-Izquierdo Á. Statement of Foliar Fertilization Impact on Yield, Composition, and Oxidative Biomarkers in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:597-605. [PMID: 30566341 DOI: 10.1021/acs.jafc.8b05808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In rice crops, fertilization is a naturalized practice, although inefficient, that could be improved by applying foliar fertilization. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are products of α-linolenic acid peroxidation, useful as biomarkers of oxidative degradation in higher plants. The objective was to determine the effect of the foliar fertilization on the concentration of PhytoPs and PhytoFs and its relationships with modifications of yield and quality of rice productions. It was described that the concentration of biomarkers of stress decreased with the application of foliar fertilization, being the response significantly different depending the genotypes and compound monitored. Moreover, fertilization did not modify significantly the parameters of yield (961.2 g m-2), 1000 whole-grain (21.2 g), and protein content (10.7% dry matter). Therefore, this is the first work that describes the effect of fertilization on PhytoPs and PhytoFs in rice genotypes and reinforces the capacity of these compounds as biomarkers to monitor specific abiotic stress, in this case, represented by nutritional stress.
Collapse
Affiliation(s)
- M Pinciroli
- Department of Climate and Agricultural Phenology, Faculty of Agriculture and Forestry Sciences , National University de la Plata , Street 60 and 119 , 1900 La Plata , Buenos Aires Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - Á Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - V Bultel-Poncé
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - T Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - J M Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - Á Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| |
Collapse
|
29
|
Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E, Suárez-Quiroz ML, González-Ríos O, Rocher A, Reversat G, Vercauteren J, Oger C, Galano JM, Durand T, Vigor C. Identification and quantification of phytoprostanes and phytofurans of coffee and cocoa by- and co-products. Food Funct 2019; 10:6882-6891. [DOI: 10.1039/c9fo01528k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are isoprostanoids that result from the peroxidation of α-linolenic acid and are biomarkers of oxidative stress in plants and humans.
Collapse
Affiliation(s)
| | | | | | - Mirna L. Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz. UNIDA
- 91860 Veracruz
- Mexico
| | - Oscar González-Ríos
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz. UNIDA
- 91860 Veracruz
- Mexico
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Camille Oger
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| |
Collapse
|
30
|
Medina S, Gil-Izquierdo Á, Durand T, Ferreres F, Domínguez-Perles R. Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants (Basel) 2018; 7:E165. [PMID: 30453565 PMCID: PMC6262570 DOI: 10.3390/antiox7110165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Structure-activity relationship (SAR) constitutes a crucial topic to discover new bioactive molecules. This approach initiates with the comparison of a target candidate with a molecule or a collection of molecules and their attributed biological functions to shed some light in the details of one or more SARs and subsequently using that information to outline valuable application of the newly identified compounds. Thus, while the empiric knowledge of medicinal chemistry is critical to these tasks, the results retrieved upon dedicated experimental demonstration retrieved resorting to modern high throughput analytical approaches and techniques allow to overwhelm the constraints adduced so far to the successful accomplishment of such tasks. Therefore, the present work reviews critically the evidences reported to date on the occurrence of phytoprostanes and phytofurans in plant foods, and the information available on their bioavailability and biological activity, shedding some light on the expectation waken up due to their structural similarities with prostanoids and isoprostanes.
Collapse
Affiliation(s)
- Sonia Medina
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, Faculty of Pharmacy, University of Montpellier-ENSCM, 34093 Montpellier, France.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
31
|
Lee JCY, AlGhawas DS, Poutanen K, Leung KS, Oger C, Galano JM, Durand T, El-Nezami H. Dietary Oat Bran Increases Some Proinflammatory Polyunsaturated Fatty-Acid Oxidation Products and Reduces Anti-Inflammatory Products in Apolipoprotein E−/−
Mice. Lipids 2018; 53:785-796. [DOI: 10.1002/lipd.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jetty Chung-Yung Lee
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Dalal Samir AlGhawas
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Kaisa Poutanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; FI-70029 Finland
- Food and Health Research Centre; VTT Technical Research Center of Finland; FI-02044 Finland
| | - Kin Sum Leung
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Hani El-Nezami
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| |
Collapse
|
32
|
Vigor C, Reversat G, Rocher A, Oger C, Galano JM, Vercauteren J, Durand T, Tonon T, Leblanc C, Potin P. Isoprostanoids quantitative profiling of marine red and brown macroalgae. Food Chem 2018; 268:452-462. [PMID: 30064783 DOI: 10.1016/j.foodchem.2018.06.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
With the increasing demand for direct human and animal consumption seaweed farming is rapidly expanding worldwide. Macroalgae have colonized aquatic environments in which they are submitted to frequent changes in biotic and abiotic factors that can trigger oxidative stress (OS). Considering that isoprostanoid derivatives may constitute the most relevant OS biomarkers, we were interested to establish their profile in two red and four brown macroalgae. Seven phytoprostanes, three phytofuranes, and four isoprostanes were quantified through a new micro-LC-MS/MS method. The isoprostanoid contents vary greatly among all the samples, the ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and the sum of 5-F2t-IsoP and 5-epi-5F2t-IsoP being the major compounds for most of the macroalgae studied. We further quantified these isoprostanoids in macroalgae submitted to heavy metal (copper) exposure. In most of the cases, their concentrations increased after 24 h of copper stress corroborating the original hypothesis. One exception is the decrease of ent-9-L1-PhytoP content in L. digitata.
Collapse
Affiliation(s)
- Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France.
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|
33
|
Insight into the contribution of isoprostanoids to the health effects of omega 3 PUFAs. Prostaglandins Other Lipid Mediat 2017; 133:111-122. [DOI: 10.1016/j.prostaglandins.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
34
|
Pinciroli M, Domínguez-Perles R, Abellán A, Guy A, Durand T, Oger C, Galano JM, Ferreres F, Gil-Izquierdo A. Comparative Study of the Phytoprostane and Phytofuran Content of indica and japonica Rice (Oryza sativa L.) Flours. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8938-8947. [PMID: 28931281 DOI: 10.1021/acs.jafc.7b03482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytoprostanes and phytofurans (PhytoPs and PhytoFs, respectively) are nonenzymatic lipid peroxidation products derived from α-linolenic acid (C18:3 n-3), considered biomarkers of oxidative degradation in plant foods. The present work profiled these compounds in white and brown grain flours and rice bran from 14 rice cultivars of the subspecies indica and japonica by ultrahigh performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry. For PhytoPs, the average concentrations were higher in rice bran (0.01-9.35 ng g-1) than in white and brown grain flours (0.01-1.17 ng g-1). In addition, the evaluation of rice flours for the occurrence PhytoFs evidenced average values 1.77, 4.22, and 10.30 ng g-1 dw in rice bran, brown grain flour, and white grain flour, respectively. A significant correlation was observed between total and individual compounds. The concentrations retrieved suggest rice bran as a valuable source of PhytoPs and PhytoFs that should be considered in further studies on bioavailability and bioactivity of such compounds.
Collapse
Affiliation(s)
- M Pinciroli
- Programa Arroz, Facultad de Ciencias Agrarias y Forestales Universidad Nacional de la Plata . Calle 60 y 119, 1900 La Plata, Buenos Aires, Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| |
Collapse
|
35
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
36
|
Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat 2017; 132:84-91. [DOI: 10.1016/j.prostaglandins.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
|
37
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo A. Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem 2017; 229:1-8. [DOI: 10.1016/j.foodchem.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
|
38
|
Bernardo A, Giammarco ML, De Nuccio C, Ajmone-Cat MA, Visentin S, De Simone R, Minghetti L. Docosahexaenoic acid promotes oligodendrocyte differentiation via PPAR-γ signalling and prevents tumor necrosis factor-α-dependent maturational arrest. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28647405 DOI: 10.1016/j.bbalip.2017.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Docosahexaenoic acid (DHA) is an essential omega-3 fatty acid known to be neuroprotective in several models of human diseases, including multiple sclerosis. The protective effects of DHA are largely attributed to its ability to interfere with the activity of transcription factors controlling immune and inflammatory responses, including the agonist-dependent transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ). In this study, we used primary oligodendrocyte progenitor (OP) cultures from neonatal rat brain to investigate whether DHA could influence OP maturation and directly promote myelination, as previously reported for selective PPAR-γ agonists. We show that, similarly to the selective PPAR-γ agonist pioglitazone (PGZ), DHA promotes OP maturation and counteracts the maturational arrest induced by TNF-α, used to mimic inflammatory conditions. The PPAR-γ antagonist GW9662 prevented both DHA-induced OP maturation and PPAR-γ nuclear translocation, supporting the hypothesis that DHA acts through the activation of PPAR-γ. In addition, both PGZ and DHA induced the phosphorylation of extracellular signal-regulated-kinase 1-2 (ERK1/2), in a PPAR-γ-dependent manner. ERK1/2 activity is known to regulate the transition from OPs to immature oligodendrocytes and the presence of specific inhibitors of ERK1/2 phosphorylation (U0126 or PD98059) prevented the differentiating effects of both DHA and PGZ. These results indicate that DHA might influence the process of OP maturation through its PPAR-γ agonistic activity and provide novel molecular mechanisms for the action of this dietary fatty acid, further supporting the nutritional intervention in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- A Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M L Giammarco
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M A Ajmone-Cat
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - R De Simone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - L Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
39
|
Cuyamendous C, Leung KS, Bultel-Poncé V, Guy A, Durand T, Galano JM, Lee JCY, Oger C. Total Synthesis and in Vivo Quantitation of Phytofurans Derived from α-Linolenic Acid. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Claire Cuyamendous
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Kin Sum Leung
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| |
Collapse
|
40
|
Lee YY, Galano JM, Oger C, Vigor C, Guillaume R, Roy J, Le Guennec JY, Durand T, Lee JCY. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids 2016; 51:1217-1229. [PMID: 27671161 DOI: 10.1007/s11745-016-4198-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Oxygenated lipid mediators released from non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) are known to have functional roles in humans. Notably, among these lipid mediators, isoprostanes molecules are robust biomarkers of oxidative stress but those from n-3 PUFA are also bioactive molecules. In order to identify and assess the isoprostanes, the use of mass spectrometry (MS) for analysis is preferable and has been used for over two decades. Gas chromatography (GC) is commonly coupled to the MS to separate the derivatized isoprostanes of interest in biological samples. In order to increase the accuracy of the analytical performance, GC-MS/MS was also applied. Lately, MS or MS/MS has been coupled with high-performance liquid chromatography to assess multiple isoprostane molecules in a single biological sample without derivatization process. However, there are limitations for the use of LC-MS/MS in the measurement of plasma isoprostanes, which will be discussed in this review.
Collapse
Affiliation(s)
- Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Reversat Guillaume
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jérôme Roy
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP, Université de Montpellier, Montpellier, France
| | - Jean-Yves Le Guennec
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
41
|
Krishnan ML, Wang Z, Silver M, Boardman JP, Ball G, Counsell SJ, Walley AJ, Montana G, Edwards AD. Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants. Brain Behav 2016; 6:e00434. [PMID: 27110435 PMCID: PMC4821839 DOI: 10.1002/brb3.434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The consequences of preterm birth are a major public health concern with high rates of ensuing multisystem morbidity, and uncertain biological mechanisms. Common genetic variation may mediate vulnerability to the insult of prematurity and provide opportunities to predict and modify risk. OBJECTIVE To gain novel biological and therapeutic insights from the integrated analysis of magnetic resonance imaging and genetic data, informed by prior knowledge. METHODS We apply our previously validated pathway-based statistical method and a novel network-based method to discover sources of common genetic variation associated with imaging features indicative of structural brain damage. RESULTS Lipid pathways were highly ranked by Pathways Sparse Reduced Rank Regression in a model examining the effect of prematurity, and PPAR (peroxisome proliferator-activated receptor) signaling was the highest ranked pathway once degree of prematurity was accounted for. Within the PPAR pathway, five genes were found by Graph Guided Group Lasso to be highly associated with the phenotype: aquaporin 7 (AQP7), malic enzyme 1, NADP(+)-dependent, cytosolic (ME1), perilipin 1 (PLIN1), solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1), and acetyl-CoA acyltransferase 1 (ACAA1). Expression of four of these (ACAA1, AQP7, ME1, and SLC27A1) is controlled by a common transcription factor, early growth response 4 (EGR-4). CONCLUSIONS This suggests an important role for lipid pathways in influencing development of white matter in preterm infants, and in particular a significant role for interindividual genetic variation in PPAR signaling.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Zi Wang
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Matt Silver
- Department of Population Health London School of Hygiene and Tropical Medicine London WC1E 7HT UK
| | - James P Boardman
- MRC Centre for Reproductive Health University of Edinburgh Edinburgh EH16 4TJ UK
| | - Gareth Ball
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Serena J Counsell
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Andrew J Walley
- School of Public Health Faculty of Medicine Imperial College London Norfolk Place London W2 1PG UK
| | - Giovanni Montana
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Anthony David Edwards
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| |
Collapse
|
42
|
Simeonov SP, Nunes JPM, Guerra K, Kurteva VB, Afonso CAM. Synthesis of Chiral Cyclopentenones. Chem Rev 2016; 116:5744-893. [DOI: 10.1021/cr500504w] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - João P. M. Nunes
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Krassimira Guerra
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanya B. Kurteva
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
43
|
Collado-González J, Pérez-López D, Memmi H, Gijón MC, Medina S, Durand T, Guy A, Galano JM, Fernández DJ, Carro F, Ferreres F, Torrecillas A, Gil-Izquierdo A. Effect of the season on the free phytoprostane content in Cornicabra extra virgin olive oil from deficit-irrigated olive trees. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1585-1592. [PMID: 25981984 DOI: 10.1002/jsfa.7259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The effect of regulated deficit irrigation (RDI) on the phytoprostane (PhytoP) content in extra virgin olive (Olea europaea L., cv. Cornicabra) oil (EVOO) was studied. During the 2012 and 2013 seasons, T0 plants were irrigated at 100% ETc, while T1 and T2 plants were irrigated avoiding water deficit during phases I and III of fruit growth and saving water during the non-critical phenological period of pit hardening (phase II), developing a more severe water deficit in T2 plants. In 2013, a fourth treatment (T3) was also performed, which was similar to T2 except that water saving was from the beginning of phase II to 15 days after the end of phase II. RESULTS 9-F1t -PhytoP, 9-epi-9-F1t -PhytoP, 9-epi-9-D1t -PhytoP, 9-D1t -PhytoP, 16-B1 -PhytoP and 9-L1 -PhytoP were present in Cornicabra EVOO, and their contents increased in the EVOO from RDI plants. CONCLUSION Deficit irrigation during pit hardening or for a further period of 2 weeks thereafter to increase irrigation water saving is clearly critical for EVOO composition because of the enhancement of free PhytoPs, which have potential beneficial effects on human health. The response of individual free PhytoPs to changes in plant water status was not as perceptible as expected, preventing their use as biomarkers of water stress.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - David Pérez-López
- Escuela de Ingeniería Técnica Agrícola, Technical University of Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
| | - Houssem Memmi
- Centro Agrario 'El Chaparrillo', Junta de Comunidades de Castilla-La Mancha, Ciudad Real, Spain
| | - M Carmen Gijón
- Centro Agrario 'El Chaparrillo', Junta de Comunidades de Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Diego José Fernández
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - Fernando Carro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - Arturo Torrecillas
- Department of Irrigation, CEBAS-CSIC, PO Box 164, E-30100, Espinardo, Murcia, Spain
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), PO Box 164, E-30100, Espinardo, Murcia, Spain
| |
Collapse
|
44
|
Dupuy A, Le Faouder P, Vigor C, Oger C, Galano JM, Dray C, Lee JCY, Valet P, Gladine C, Durand T, Bertrand-Michel J. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta 2016; 921:46-58. [PMID: 27126789 DOI: 10.1016/j.aca.2016.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Isoprostanoids are a group of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids. It belongs to oxylipins group, which are important lipid mediators in biological processes, such as tissue repair, blood clotting, blood vessel permeability, inflammation and immunity regulation. Recently, isoprostanoids from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively have attracted attention because of their putative contribution to health. Since isoprostanoids are derived from different substrate of PUFAs and can have similar or opposing biological consequences, a total isoprostanoids profile is essential to understand the overall effect in the testing model. However, the concentration of most isoprostanoids range from picogram to nanogram, therefore a sensitive method to quantify 20 isoprostanoids simultaneously was formulated and measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The lipid portion from various biological samples was extracted prior to LC-MS/MS evaluation. For all the isoprostanoids LOD and LOQ, and the method was validated on plasma samples for matrix effect, yield of extraction and reproducibility were determined. The methodology was further tested for the isoprostanoids profiles in brain and liver of LDLR(-/-) mice with and without docosahexaenoic acid (DHA) supplementation. Our analysis showed similar levels of total F2-isoprostanes and F4-neuroprostanes in the liver and brain of non-supplemented LDLR(-/-) mice. The distribution of different F2-isoprostane isomers varied between tissues but not for F4-neuroprostanes which were predominated by the 4(RS)-4-F4t-neuroprostane isomer. DHA supplementation to LDLR(-/-) mice concomitantly increased total F4-neuroprostanes levels compared to F2-isoprostanes but this effect was more pronounced in the liver than brain.
Collapse
Affiliation(s)
- Aude Dupuy
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Cédric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | | | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | - Cécile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | | |
Collapse
|
45
|
Barbosa M, Valentão P, Andrade PB. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Mar Drugs 2016; 14:23. [PMID: 26805855 PMCID: PMC4728519 DOI: 10.3390/md14010023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| |
Collapse
|
46
|
Marhuenda J, Medina S, Díaz-Castro A, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F, Gil-Izquierdo A. Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9022-9028. [PMID: 26422255 DOI: 10.1021/acs.jafc.5b03365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wine is one of the most consumed alcoholic beverages around the world. Red wine has demonstrated several benefits for health maintenance. One group of potential anti-inflammatory compounds is the phytoprostanes, oxidative degradation products of linolenic acid. The aim of the present study was to measure, for the first time, the phytoprostane content in wine and must by an UHPLC-QqQ-MS/MS method after solid-phase extraction. The data showed two predominant classes of phytoprostanes: F1- and D1-phytoprostane series. In wines, the total phytoprostane concentration ranged from 134.1 ± 2.3 to 216.2 ± 3.06 ng/mL. Musts showed concentrations between 21.4 ± 0.8 and 447.1 ± 15.8 ng/mL. The vinification and aging procedures for the production of wine seem to influence the final phytoprostane levels in red wine and to modify the phytoprostane profile. The high concentrations observed and previous reports on anti-inflammatory effects of phytoprostanes make further research on the benefits of phytoprostanes more important.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Alexandra Díaz-Castro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | | | - Simón Arina
- Bodegas Baigorri S.L., Samaniego, Paı́s Vasco, Spain
| | - Pilar Zafrilla
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Juana Mulero
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| |
Collapse
|
47
|
Barbosa M, Collado-González J, Andrade PB, Ferreres F, Valentão P, Galano JM, Durand T, Gil-Izquierdo Á. Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6466-74. [PMID: 26125601 DOI: 10.1021/acs.jafc.5b01904] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoprostanes, autoxidation products of α-linolenic acid, have been studied in several plant species, but information regarding the natural occurrence of this large family of biologically active oxidized lipids in macroalgae is still scarce. In this work, the free phytoprostane composition of 24 macroalgae species belonging to Chlorophyta, Phaeophyta, and Rhodophyta was determined through a recently validated UHPLC-QqQ-MS/MS method. The phytoprostane profiles varied greatly among all samples, F1t-phytoprostanes and L1-phytoprostanes being the predominant and minor classes, respectively. No correlation between the amounts of α-linolenic acid in alga material and phytoprostane content was found. Therefore, it was hypothesized that the observed variability could be species-specific or result from interspecific interactions. This study provides new insight about the occurrence of phytoprostanes in macroalgae and opens doors for future exploitation of these marine photosynthetic organisms as sources of potentially bioactive oxylipins, encouraging their incorporation in food products and nutraceutical and pharmaceutical preparations for human health.
Collapse
Affiliation(s)
- Mariana Barbosa
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jacinta Collado-González
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Paula B Andrade
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Patrícia Valentão
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jean-Marie Galano
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Ángel Gil-Izquierdo
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| |
Collapse
|
48
|
Abstract
Phytoprostanes (PhytoPs) represent non-enzymatic metabolites of α-linolenic acid (ALA), the essential omega-3 polyunsaturated fatty acid (PUFA) derived from plants. PhytoPs are present in the plant kingdom and represent endogenous mediators capable of protecting cells from oxidative stress damages in plants. Recently, it was found that such metabolites are present in cooking oil in high quantities, and also that B1-PhytoPs protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. We report a novel and facile synthesis of natural 2,3-substituted cyclopentenone PhytoPs, 16-B1-PhytoP, and 9-L1-PhytoP. Our strategy is based on reductive alkylation at the 2-position of 1,3-cyclopentanedione using a recent protocol developed by Ramachary et al. and on a cross-coupling metathesis to access conjugate dienone system. In conclusion, this strategy permitted access to B1- and L1-PhytoPs in a relative short sequence process, and afford the possibility to easily develop analogs of PhytoPs.
Collapse
Affiliation(s)
- Alexandre Guy
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron, UMR 5247 - Centre National de la Recherche Scientifique, University Montpellier École Nationale Supérieure de Chimie de Montpellier Montpellier, France
| | - Séamus Flanagan
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron, UMR 5247 - Centre National de la Recherche Scientifique, University Montpellier École Nationale Supérieure de Chimie de Montpellier Montpellier, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron, UMR 5247 - Centre National de la Recherche Scientifique, University Montpellier École Nationale Supérieure de Chimie de Montpellier Montpellier, France
| | - Camille Oger
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron, UMR 5247 - Centre National de la Recherche Scientifique, University Montpellier École Nationale Supérieure de Chimie de Montpellier Montpellier, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron, UMR 5247 - Centre National de la Recherche Scientifique, University Montpellier École Nationale Supérieure de Chimie de Montpellier Montpellier, France
| |
Collapse
|
49
|
Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs? Biochimie 2015; 120:56-61. [PMID: 26112019 DOI: 10.1016/j.biochi.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 12/21/2022]
Abstract
Non-enzymatic oxygenated metabolites derived from polyunsaturated fatty acids (PUFA) are formed in vivo through free radical reaction under oxidative stress conditions. It has been over twenty-five years since the discovery of cyclic oxygenated metabolites derived from arachidonic acid (20:4 n-6), the isoprostanes, and since then they have become biomarkers of choice for assessing in vivo OS in humans and animals. Chemical synthesis of n-3 PUFA isoprostanoids such as F3-Isoprostanes from eicosapentaenoic acid (20:5 n-3), and F4-Neuroprostanes from docosahexaenoic acid (22:6 n-6) unravelled novel and unexpected biological properties of such omega-3 non-enzymatic cyclic metabolites as highlighted in this review.
Collapse
|
50
|
Collado-González J, Durand T, Ferreres F, Medina S, Torrecillas A, Gil-Izquierdo Á. Phytoprostanes. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/lite.201500020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacinta Collado-González
- CEBAS (CSIC); Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods and Department of Irrigation; P.O. Box 164 E-30100 Espinardo Murcia Spain
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS -; University of Montpellier - ENSCM, Faculty of Pharmacy; Montpellier France
| | - Federico Ferreres
- CEBAS (CSIC); Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods and Department of Irrigation; P.O. Box 164 E-30100 Espinardo Murcia Spain
| | - Sonia Medina
- CEBAS (CSIC); Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods and Department of Irrigation; P.O. Box 164 E-30100 Espinardo Murcia Spain
| | - Arturo Torrecillas
- CEBAS (CSIC); Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods and Department of Irrigation; P.O. Box 164 E-30100 Espinardo Murcia Spain
| | - Ángel Gil-Izquierdo
- CEBAS (CSIC); Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods and Department of Irrigation; P.O. Box 164 E-30100 Espinardo Murcia Spain
| |
Collapse
|