1
|
Morshedi V, Torfi Mozanzadeh M, Noori F, Agh N, Jafari F, Hamedi S, Azodi M, Afshar Moghadam R, Eryalçın KM. Effects of enrichment of live prey with soy lecithin on growth, stress resistance, digestive enzymes activity, and antioxidant capacity in yellowfin seabream (Acanthopagrus latus) larvae. Lipids 2025; 60:85-99. [PMID: 39558587 DOI: 10.1002/lipd.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Phospholipid (PL) is an essential nutrient that has vital effects on growth, stress resistance, and early development in marine fish larvae. In this regard, a 30-day feeding experiment was conducted in order to examine the effects of live prey enrichment with graded levels of soy lecithin (SL) on some physiological responses of Acanthopagrus latus larvae. Four experimental emulsion levels of SL were used to enrich rotifer and Artemia including very low (2%, N-Nil), low (4%, L), medium (8%, M), and high (12%, H). Newly hatched larvae were distributed into 12,250-L cylindrical tanks with an initial density of 15,000 larvae in each tank that was supplied with natural seawater (23 ± 1°C; 40.0 ± 1.0 g L-1). Larvae fed live prey enriched with 4% SL significantly had higher wet weight gain than other treatments. Air exposure and osmotic activity tests were also performed to detect larval resistance to stress. Larvae fed live prey enriched with 8% and 12% SL had higher survival compared to the other two groups. The accumulation of arachidonic (ARA) and docosahexaenoic acid (DHA) was increased in the whole body of larvae fed high SL-supplemented live prey. Alkaline phosphatase and aminopeptidase N activities in the guts brush border membrane of larvae in M and H groups were higher than other treatments. The trypsin and chymotrypsin activities in the N group were lower than in other groups. The highest and lowest amylase activities were in the H and N groups, respectively. The activity of catalase in the whole body of the M group was higher than the N group and the glutathione reductase activity was significantly increased in the M and L groups compared to the N and H groups. Total antioxidant capacity in the whole body of larvae in the N group was lower than in the other treatments. In summary, moderate levels of SL (4%-8%) are suggested for the enrichment of live prey in A. latus.
Collapse
Affiliation(s)
- Vahid Morshedi
- Department of Fisheries and Biology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mansour Torfi Mozanzadeh
- Department of Aquaculture, South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension organization (AREEO), Ahwaz, Iran
| | - Farzaneh Noori
- Department of Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Naser Agh
- Department of Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Fatemeh Jafari
- Department of Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Shirin Hamedi
- Department of Fisheries and Biology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Maryam Azodi
- Department of Fisheries and Biology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Reza Afshar Moghadam
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Kamil Mert Eryalçın
- Faculty of Aquatic Science, Department of Aquaculture and Fish Diseases, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Dong Q, Xie H, Liu J, Su J, An Y, Shi F, Lin F, Liu J. 20(S)-Ginsenoside Rg 2 amino acid derivatives for anti hemorrhagic shock: Synthesis, characterization and evaluation. J Pharm Biomed Anal 2024; 240:115939. [PMID: 38198887 DOI: 10.1016/j.jpba.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to screen a novel Rg2 derivative for anti hemorrhagic shock. Eight Rg2 amino acid ester derivatives were designed and synthesized, and their effects on hypoxia and shock were studied. Among them, the derivative 1 (D1) exhibited excellent anti hypoxia by promoting survival rate of H9c2 cells damaged by hypoxia. D1 improved physiological indicators of the rats in hemorrhagic shock, such as blood pressure, heart rate, lactate, acid-base balance, and alleviate oxidative stress and inflammatory damage. Its latent mechanisms were explored by a method of plasma metabolomics based on UPLC-QTOF-MS. As a result, a total of 16 biomarkers were identified involving 6 metabolic pathways. The results of this study contained that the derivative 1 could be considered as potent drug candidates for anti shock and deserved further research and development.
Collapse
Affiliation(s)
- Qinghai Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Hongliu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jiayin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China; Basic Medicine Department, Fenyang College of Shanxi Medical University, Fenyang 032200, PR China
| | - Yang An
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fei Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jihua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Zhang Y, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L. Vitamin D Promotes Mucosal Barrier System of Fish Skin Infected with Aeromonas hydrophila through Multiple Modulation of Physical and Immune Protective Capacity. Int J Mol Sci 2023; 24:11243. [PMID: 37511003 PMCID: PMC10379486 DOI: 10.3390/ijms241411243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
4
|
Giri SS, Kim SG, Woo KJ, Jung WJ, Lee SB, Lee YM, Jo SJ, Hwang MH, Park J, Kim JH, V S, Park SC. Effects of Bougainvillea glabra leaf on growth, skin mucosal immune responses, and disease resistance in common carp Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108514. [PMID: 36596319 DOI: 10.1016/j.fsi.2022.108514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the effects of Bougainvillea glabra (BG) leaf as a feed supplement on growth, skin mucosal immune parameters, serum oxidative stress, expression of immune-related genes, and susceptibility to pathogen infection in carp Cyprinus carpio. Diets containing four different BG concentrations (g kg-1), i.e., 0 g (basal diet), 20 g (BG20), 30 g (BG30), 40 g (BG40), and 50 g (BG50), were fed to the carp (average weight: 14.03 ± 0.81 g) for 8 weeks. Skin mucosal immunological and serum antioxidant parameters were examined 8 weeks post-feeding. Growth performance was significantly higher in BG40. Among the examined skin mucosal immune parameters, lysozyme (33.79 ± 0.98 U mL-1), protein (6.88 ± 0.37 mg mL-1), immunoglobulin (IgM; 5.34 ± 0.37 unit-mg mL-1), and protease activity (3.18 ± 0.36%) were significantly higher in BG40 than in the control; whereas, there was no significant effect on the alkaline phosphatase level. Among serum immune activity, activities of lysozyme, the alternative complement pathway, and IgM were significantly higher in BG40. Phagocytic, and superoxide dismutase (SOD) activities were higher (P < 0.05) in BG30-BG50. Serum ALT, AST, and MDA levels were lower in BG40 than in the control (P < 0.05). Intestinal enzymatic activities were enhanced in BG40 and BG50 (P < 0.05), except for lipase in BG50. Gene expression analysis revealed that the mRNA expressions of antioxidant genes (SOD, GPx, and Nrf2), an anti-inflammatory gene (IL-10), and IκBα were significantly upregulated in BG40. Conversely, the pro-inflammatory gene IL-1β and the signaling molecule NF-κB p65 were downregulated in BG40 and BG50, respectively. BG supplementation had no significant effect on TNF-α, TLR22, or HSP70 mRNA expressions. Moreover, fish in BG40 exhibited the highest relative post-challenge survival (67.74%) against Aeromonas hydrophila infection. These results suggested that dietary supplementation with BG leaves at 40 g/kg can significantly improve the growth performance, immune responses, and disease resistance of C. carpio. BG leaves are a promising food additive for carp in aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kang Jeong Woo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - JaeHong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sukumaran V
- Department of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Agbohessou PS, Mandiki SNM, Mbondo Biyong SR, Cornet V, Nguyen TM, Lambert J, Jauniaux T, Lalèyè PA, Kestemont P. Intestinal histopathology and immune responses following Escherichia coli lipopolysaccharide challenge in Nile tilapia fed enriched black soldier fly larval (BSF) meal supplemented with chitinase. FISH & SHELLFISH IMMUNOLOGY 2022; 128:620-633. [PMID: 36038101 DOI: 10.1016/j.fsi.2022.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine to what extend the addition of chitinase to black soldier fly larvae (BSF) meals enriched with either PUFA or LC-PUFA could improve the gut health of Nile tilapia and increase its immune status. Two types of BSF meals enriched with either α-linolenic acid (ALA) or ALA + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) were produced using BSF larvae cultured on vegetable substrates (VGS) or fish offal substrates (FOS), respectively. Seven diets were formulated: a control FMFO diet and two other control diets VGD0 vs FOD0 containing the meals of each type of BSF meal as total replacement for fishmeal (FM) and fish oil (FO), as well as four diets supplemented with chitinase. Two doses of commercial chitinase from Aspergillus niger (2 g/kg and 5 g/kg of feed) were supplemented to the other diets VGD0 and FOD0 to formulate VGD2, VGD5, FOD2 and FOD5. After 53 days of feeding, FOD5 diet induced a similar growth performance as the FMFO control diet, while a significant decrease of growth was observed for the other BSF larval-based diets. BSF/FOS meal led to higher SGR of fish than BSF/VGS, as for the FOD5 compared to VGD5. At day 53, lysozyme values showed an increasing trend in fish fed all the BSF-based diets, especially those fed the VGD5. After the Escherichia coli lipopolysaccharide (LPS) injection (day 54), the same increasing trend was observed in lysozyme activity, and modulation was observed only in the VGD5 fish. ACH50 activity was reduced by the BSF-based diets except for the FOD5 diet at day 53, and LPS modulation was only observed for the VGS-chitinase-based diets at day 54. Peroxidase activity and total immunoglobulin (Igs) blood level were not affected by substrate, chitinase dose or LPS injection. At day 53, the low or high dose of chitinase increased the expressions of tlr2, il-1β and il-6 genes in the head kidney of fish fed the BSF/VGS diets compared to those fed the VGD0 or FMFO control diets. At day 54 after LPS injection, the high dose of chitinase decreased the expressions of tlr5 gene in the spleen and mhcII-α gene in the head kidney of fish fed FOD5 diets compared to those fed FOD0 diets. BSF/VGS but not BSF/FOS based diets increased fish sub-epithelial mucosa (SM) and lamina propria (LP) thickness and the number of goblet cells (GC) in fish, but dietary chitinase seemed to prevent some of these effects, especially at low dose. Results showed that chitinase supplementation of 5 g/kg of chitinase to a BSF-based diet enriched with LC-PUFA improved growth, prevented histological changes in the proximal intestine and enhanced some innate immune functions of Nile tilapia without any clear booster effect after challenge with E. coli LPS.
Collapse
Affiliation(s)
- Pamphile S Agbohessou
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Serge R Mbondo Biyong
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thierry Jauniaux
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liege, Belgium
| | - Philippe A Lalèyè
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
6
|
Fan Z, Wu D, Li J, Li C, Zheng X, Wang L. Phosphorus Nutrition in Songpu Mirror Carp ( Cyprinus carpio Songpu) During Chronic Carbonate Alkalinity Stress: Effects on Growth, Intestinal Immunity, Physical Barrier Function, and Intestinal Microflora. Front Immunol 2022; 13:900793. [PMID: 35844559 PMCID: PMC9278090 DOI: 10.3389/fimmu.2022.900793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Carbonate alkalinity is a major environmental stress factor affecting aquatic feed configuration, which easily causes oxidative stress and hypoimmunity for fish. Hence, the purpose of the study is to assess the potential effect of phosphorus on growth, intestinal oxidation resistance, physical barrier function, and microflora for Songpu mirror carp (Cyprinus carpio Songpu) (initial average weight of 2.95 ± 0.21 g) reared at the high-concentration carbonate alkalinity environment. A two-factor, three-level (2 × 3) design was applied, in which diets with three different phosphorus levels (3.6, 7.0, and 10.5 g/kg dry matter) were randomly assigned to 0 and 15 mmol/L carbonate alkalinity groups with three replicate aquariums. After the 8-week trial, we found that weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and lipase and amylase activities in the intestine significantly (p < 0.05) declined with increasing carbonate alkalinity. Carbonate alkalinity of 15 mmol/L significantly reduced glutathione peroxidase (GSHPx) activities in the intestine (p < 0.05). The relative expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), glutathione peroxidase 1a (GPX1a), Clautin3, Clautin11, and tumor necrosis factor β (TNF-β) in the intestine were markedly downregulated by increasing carbonate alkalinity levels (p < 0.05), whilst the relative expressions of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in the intestine were markedly upregulated (p < 0.05). At the 15 mmol/L carbonate alkalinity treatment, Songpu mirror carp suffer from hypoimmunity status with failed digestion, antioxidant, inflammation, and immune response, thereby inducing impaired growth. Additionally, significant increments in the abundance of Proteobacteria and a significant decrease in the abundance of Fusobacteria and the Firmicutes/Bacteroidetes ratio were caused due to excessively high carbonate alkalinity (15 mmol/L) and excessively low dietary phosphorus supply (3.6 g/kg). Collectively, 7.0 g/kg dietary phosphorus supplementation was effective in promoting intestinal antioxidant enzyme activities and the corresponding gene expression via the Keap1-Nrf2 signaling pathway and in enhancing intestinal immunity by upregulating anti-inflammatory and downregulating pro-inflammatory genes. Appropriate dietary phosphorus supply could promote the formation of beneficial microflora in freshwater, and it has the potential ability to transfer the adverse effect of carbonate alkalinity stress to the structural composition of intestinal microflora. Hence, consideration should be given to suitable phosphorus supply for fish under the chronic carbonate alkalinity stress.
Collapse
Affiliation(s)
- Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chenhui Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianhu Zheng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
7
|
Jiang WD, Zhang L, Feng L, Wu P, Liu Y, Kuang SY, Li SW, Tang L, Mi HF, Zhang L, Zhou XQ. New Insight on the Immune Modulation and Physical Barrier Protection Caused by Vitamin A in Fish Gills Infected With Flavobacterium columnare. Front Immunol 2022; 13:833455. [PMID: 35401542 PMCID: PMC8992971 DOI: 10.3389/fimmu.2022.833455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we have investigated the influence of vitamin A on gill barrier function of grass carp (Ctenopharyngodon idella) infected with Flavobacterium columnare. The fish were fed different concentrations of vitamin A diets for 10 weeks and then infected with F. columnare by immersion. We observed that optimal vitamin A significantly prevented gill rot morbidity in fish infected with F. columnare. Further investigations revealed that vitamin A boosted the gill immunity by increasing the contents of complements (C3 and C4), activities of acid phosphatase (ACP) and lysozyme, mRNAs of β-defensin-1, liver-expressed antimicrobial peptide 2A and 2B (LEAP-2A and LEAP-2B), hepcidin, and anti-inflammatory cytokines like transforming growth factor β1 (TGF-β1), TGF-β2, interleukin-10 (IL-10), and IL-11. It also enhanced the levels of various related signaling molecules including inhibitor protein κBα (IκBα), target of rapamycin (TOR), and ribosome protein S6 kinase 1 (S6K1) but downregulated the expression of pro-inflammatory cytokines including IL-1β, IL-8, tumor necrosis factor α (TNF-α), and interferon γ2 (IFN-γ2) and related signaling molecules including nuclear factor κB p65 (NF-κB p65) (rather than NF-κB p52), IκB kinase β (IKKβ), IKKγ (rather than IKKα), eIF4E-binding protein 1 (4E-BP1), and 4E-BP2 mRNA levels in fish gills. In addition, dietary vitamin A markedly lowered the concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC), increased both the activities and mRNAs of copper/zinc superoxide dismutase (Cu/ZnSOD), MnSOD, glutathione transferases (GSTs), glutathione peroxidase (GPx), and glutathione reductase (GR) associated with upregulation of NF-E2-related factor 2 (Nrf2) mRNAs and downregulation of Kelch-like-ECH-associated protein (Keap1a) and Keap1b mRNAs. Moreover, vitamin A decreased the mRNAs of different apoptotic mediators [caspases 8, 9, 3 (rather than 7)] associated with downregulation of signaling molecule p38 mitogen-activated protein kinase (p38MAPK) mRNAs in fish gills. Besides, vitamin A promoted tight junction (TJ) complex mRNAs [including claudin-b, -c, -3, -7, -12, occludin, and zonula occludens-1 (ZO-1)] that have been linked to the downregulation of myosin light chain kinase (MLCK) signaling. Taken together, the current study demonstrated for the first time that vitamin A markedly enhanced gill health associated with immune modulation and physical barrier protection. Based on protecting fish against gill rot morbidity, ACP activity, and against lipid peroxidation, optimum vitamin A concentrations in on-growing grass carp (262-997 g) were found to be 1,991, 2,188, and 2,934 IU/kg diet, respectively.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
8
|
Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre ( Argyrosomus regius) Juveniles. Animals (Basel) 2021; 11:ani11092750. [PMID: 34573716 PMCID: PMC8471189 DOI: 10.3390/ani11092750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Meagre is a target species to diversify marine aquaculture in Europe due to its high growth rates and an excellent nutritional profile. Nevertheless, this species is highly sensitive to low temperatures. The objective of this study was to evaluate the effect of dietary phospholipid (PL) levels on growth and cold tolerance. Animals fed with a PL-enriched diet grew faster and significantly reduced the risk of death and increased the lethal doses 50 and 90 without modifying the average temperature at death. Regarding lipid profiles, the cold challenge promoted a general fatty acid accumulation in the liver that was attenuated in fish fed with the PL-enriched diet preventing the negative effect of a fatty liver. Abstract Meagre (Argyrosomus regius) is a fast-growing species currently produced in aquaculture. This species is highly sensitive to low environmental temperatures which results in high mortality events during production cycles. In this study, the effects of dietary phospholipids (PLs) on growth and cold tolerance were evaluated. For this purpose, control (CTRL) and PL-enriched diets (three-fold higher levels than CTRL) were supplied to meagre juveniles (12.9 ± 2.5 g) for 60 days, and growth was determined using a longitudinal approach. Weight gaining and SGR reduction were significantly different between dietary treatments. Animals fed with the PL-enriched diet were 4.1% heavier and grew 3.2% faster than those fed with the CTRL diet. Survival was higher than 98% in both groups. After finishing the growth trial, animals were submitted to two cold challenges and cold tolerance was evaluated as temperature at death (Tdeath), risk to death and lethal doses (LD) 50 and 90 using the cumulative degree cooling hours 6 h (CD6H). Tdeath ranged between 7.54 and 7.91 °C without statistical differences between dietary treatments. However, risk to death was significantly smaller (0.91-fold lower) and LD50 and LD90 were higher in animals fed with the PL-enriched than those supplied the CTRL diet. To assess the fatty acid (FA) composition of liver and brain in animals fed both diets after a cold challenge, FA profiles were determined in juveniles maintained at 14 °C and challenged at 7 °C. FA amounts increased in the liver of animals challenged at 7 °C. In contrast, several FAs reduced their levels in the PL-enriched diet with respect to CTRL indicating that these animals were able to mobilize efficiently lipids from this organ mitigating the negative effects of lipid accumulation during the cold challenge. In brain, the PL-enriched diet increased DHA level during the cold shock indicating a role in maintaining of brain functions. These results open a new research line that could improve the cold tolerance of meagre through dietary supplementation before winter.
Collapse
|
9
|
Effect of Antarctic krill phospholipid (KOPL) on high fat diet-induced obesity in mice. Food Res Int 2021; 148:110456. [PMID: 34507719 DOI: 10.1016/j.foodres.2021.110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Phospholipids are the main lipid components in Antarctic krill oil, and the combination of n-3 polyunsaturated fatty acids (n-3 PUFAs) shows multiple nutritional advantages. At present, the research about Antarctic krill phospholipid (KOPL) mainly focuses on the purification, and there are few reports on the anti-obesity effect. Thus, this study aimed at evaluating the effect of KOPL on the high-fat diet (HFD)-induced obesity mice. All the mice were divided into five groups, which were fed chow diet, HFD, and different doses of KOPL + HFD, respectively. The results showed that KOPL treatment could reduce the weight gain, fat accumulation, and liver tissue damage in HFD-induced mice. KOPL treatment could reduce the levels of serum lipid (TC, TG, L-LDL) and fasting blood glucose in HFD-induced mice, and the inflammatory cytokines (IL-1β and TNF-α) in serum. Further analysis showed that KOPL could promote the normal expression of lipid-synthesis-related genes and proteins, including sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthetase (FAS), and peroxisome proliferator-activated receptor alpha (PPAR-α) in liver tissue. Besides, it inhibited the overexpression of inflammatory cytokine genes (IL-1β and TNF-α), but increased the expression of tight junction genes (ZO-1 and Occludin) in the colon tissue. Additionally, KOPL improved the decrease of diversity and imbalance of intestinal microbiota, which could contribute to its beneficial effects. In summary, the KOPL treatment improves the effects of HFD-induced obese mice by maintaining normal lipid levels, protecting the liver tissue, reducing inflammation response and intestinal damage, and regulating intestinal microbiota abnormalities. It refer to KOPL could be a promising dietary strategy for treating obesity and improving its related metabolic diseases.
Collapse
|
10
|
Gu M, Pan S, Li Q, Qi Z, Deng W, Bai N. Protective effects of glutamine against soy saponins-induced enteritis, tight junction disruption, oxidative damage and autophagy in the intestine of Scophthalmus maximus L. FISH & SHELLFISH IMMUNOLOGY 2021; 114:49-57. [PMID: 33887442 DOI: 10.1016/j.fsi.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Soy saponins, as thermo-stable anti-nutrients in soybean meal (SBM), are the primary causal agents of SBM-induced enteritis, which represents a well-documented pathologic alternation involving the distal intestines of various farmed fish. Our previous work showed that soy saponins might lead to SBM-induced enteritis, destroy tight junction structure and induce oxidative damage in juvenile turbot. Glutamine, as a conditionally essential amino acid, is an important substrate utilized for the growth of intestinal epithelial cells. An 8-week feeding trial was carried out to determine whether glutamine can attenuate the detrimental effects of soy saponins. Three isonitrogenous-isolipidic experimental diets were formulated as follows: (i) fish meal-based diet (FM), considered as control; (ii) FM + 10 g/kg soy saponins, SAP; and (iii) SAP + 15 g/kg glutamine, GLN. The results showed that dietary soy saponins significantly increased the gene expression levels of inflammatory markers (IL-1β, IL-8 and TNF-α) and related signaling factors (NF-кB, AP-1, p38, JNK and ERK), which were remarkably attenuated by dietary glutamine. Compared to SAP group, GLN-fed fish exhibited significantly higher expression levels of tight junction genes (CLDN3, CLDN4, OCLN, Tricellulin and ZO-1). Glutamine supplementation in SAP diet markedly suppressed the production of reactive oxygen species, malondialdehyde and protein carbonyl, and enhanced the activities of antioxidant enzymes as well as the mRNA levels of HO-1, SOD, GPX and Nrf2. Furthermore, GLN-fed fish had a remarkably lower number of autophagosomes compared to SAP-fed fish. In conclusion, our study indicated that glutamine could reverse the harmful effects of soy saponins on intestinal inflammation, tight junction disruption and oxidative damage, via attenuation of NF-кB, AP-1 and MAPK pathways and activation of Nrf2 pathway. Glutamine may have the function of controlling autophaghic process within an appropriate level of encountering inflammation.
Collapse
Affiliation(s)
- Min Gu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shihui Pan
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qing Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zezheng Qi
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wanzhen Deng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Nan Bai
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
11
|
Gao X, Hu XH, Zhang Q, Wang XJ, Wen XH, Wang Y, Zhang YX, Sun WJ. Exploring lipid biomarkers of coronary heart disease for elucidating the biological effects of gelanxinning capsule by lipidomics method based on LC-MS. Biomed Chromatogr 2021; 35:e5091. [PMID: 33618435 DOI: 10.1002/bmc.5091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/11/2022]
Abstract
High-throughput lipidomics technology was used to explore the potential therapeutic targets and mechanism of action of gelanxinning capsule on rat model with coronary heart disease (CHD). This study attempts to provide a novel method to interpret the molecular mechanism of traditional medicine. The lipid markers of CHD were determined by full-scan analysis based on ultra-performance liquid chromatography-high-definition mass spectrometry. Then, the metabolic changes associated with gelanxinning capsule treatment via the modulation of lipid biomarkers and pathway in rats were characterized. After gelanxinning treatment, the metabolic profile tended to recover compared with the model group. A total of 26 potential biomarkers were identified to represent the disorders of lipid metabolism in CHD animal model, of which 19 were regulated by gelanxinning capsule administration, and four metabolic pathways such as glycerophospholipid metabolism, sphingolipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and glycerolipid metabolism were involved. From the pathway analysis, it was found that glycerophospholipid metabolism and sphingolipid metabolism with significant differences have the potential to be regarded as new targets for the treatment of CHD. Gelanxinning capsule with its good therapeutic effect protects against CHD by regulating lipid biomarkers and pathway from lipidomics-guided biochemical analysis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pharmacognosy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Hu Hu
- Xi'anChiho Pharmaceutical Co., Ltd, Xi'an, Shaanxi, China
| | - Qiong Zhang
- Xi'anChiho Pharmaceutical Co., Ltd, Xi'an, Shaanxi, China
| | - Xi-Jing Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an, Shaanxi, China
| | - Xiu-Hong Wen
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an, Shaanxi, China
| | - Yuan Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an, Shaanxi, China
| | - Yan-Xia Zhang
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an, Shaanxi, China
| | - Wen-Jun Sun
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Ciji A, Akhtar MS, Tripathi PH, Pandey A, Rajesh M, Kamalam BS. Dietary soy lecithin augments antioxidative defense and thermal tolerance but fails to modulate non-specific immune genes in endangered golden mahseer (Tor putitora) fry. FISH & SHELLFISH IMMUNOLOGY 2021; 109:34-40. [PMID: 33285169 DOI: 10.1016/j.fsi.2020.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A 70-day experiment was carried out to assess the effect of different levels (0, 1 and 2%) of soy lecithin in the diet on growth, survival, antioxidant defense markers, immune gene expression and thermal tolerance limits of golden mahseer, Tor putitora fry. Percentage weight gain, specific growth rate (SGR %) and survival of mahseer fed lecithin supplemented diets were not significantly different from those of the control group. Also, the mRNA expression levels of different immune related genes such as tnfα, il-1β, il-10, complement-3, interferon-gamma (ifnγ) and tlr4 were unaffected by dietary lecithin supplementation. Nevertheless, superoxide dismutase (SOD) activity was significantly greater in the lecithin-fed groups than the control fish. The glutathione-S-transferase (GST) activity was exceptionally high in the 2% lecithin supplemented group compared to the rest two groups. This increase in antioxidant status with dietary lecithin supplementation, however, was not reflected in the whole body malonaldehyde (MDA) levels, as it did not vary significantly among the dietary groups. Importantly, dietary inclusion of soy lecithin significantly increased upper thermal tolerance limits as evidenced by higher CTmax and LTmax values. Likewise, golden mahseer fry fed with lecithin supplemented diets (both 1 and 2%) registered significantly lower critical and lethal thermal minimum (CTmin and LTmin) values than the control group, indicating higher cold tolerance capacity. Our results thus demonstrate that the dietary inclusion of soy lecithin could enhance the upper and lower thermal tolerance limits and antioxidant status of golden mahseer fry and failed to enhance immune related gene expression.
Collapse
Affiliation(s)
- Alexander Ciji
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - M S Akhtar
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India.
| | - Priyanka H Tripathi
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - Anupam Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - Manchi Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - Biju Sam Kamalam
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| |
Collapse
|
13
|
Zhang Y, Wei Z, Yang M, Liu D, Pan M, Wu C, Zhang W, Mai K. Dietary taurine modulates hepatic oxidative status, ER stress and inflammation in juvenile turbot (Scophthalmus maximus L.) fed high carbohydrate diets. FISH & SHELLFISH IMMUNOLOGY 2021; 109:1-11. [PMID: 33285166 DOI: 10.1016/j.fsi.2020.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the beneficial role of taurine against chronic high carbohydrate diet-induced oxidative stress, endoplasmic reticulum (ER) stress and inflammation, and to understand the underlying molecular mechanisms in turbot. Two 10-week feeding trials were simultaneously conducted. For the one, six experimental diets with graded levels of taurine supplementation (0, 0.4%, 0.8%, 1.2%, 1.6% and, 2.0%, respectively) and 15% of carbohydrate were used. For the other one, three graded levels of dietary taurine supplementation (0.4%, 1.2% and 2.0%, respectively) with 21% of carbohydrate were used. The results showed that higher expression level of inflammation cytokines and ER stress related genes were detected in higher dietary carbohydrate group. In both feeding trials, 1.2% of dietary taurine supplementation improved anti-oxidative status by decreasing the content of malondialdehyde, increasing the catalase activity and total anti-oxidative capacities. In feeding trial 1, appropriate taurine supplementation lowered contents of tumour necrosis factor-a, interleukin-6, aspartate aminotransferase and alkaline phosphatase in plasma, and decreased the expressions of pro-inflammatory cytokines, such as interleukin-8 (il-8) and interferon-γ (ifn-γ). Furthermore, dietary taurine reduced ER stress by decreasing the mRNA levels of activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and G protein-coupled receptor 78. The optimal dietary taurine content was estimated as 1.40% based on the analysis of specific growth rate. In feeding trial 2, dietary taurine supplementation attenuated liver inflammation partly referring to significantly down-regulated mRNA levels of nuclear transcription factor-κB p65, ifn-γ, interleukin1β and up-regulate the transcript of ribosomal protein S6 kinase 1. Dietary taurine supplementation in feeding trial 2 significantly increased the Nrf2-related factor 2 protein level and decreased the NFκB p65 protein level only at 21% of dietary carbohydrate level. Taurine can alleviate the oxidative damage and inflammation caused by 21% of dietary carbohydrate to a certain degree. Overall, the present study confirmed that dietary taurine supplementation improved growth performance and anti-oxidative response, and reduced liver inflammatory and ER stress processes induced by high dietary carbohydrate in turbot.
Collapse
Affiliation(s)
- Yue Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zehong Wei
- State Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Danni Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Chenglong Wu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
14
|
Jiang WD, Zhang L, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Inconsistently impairment of immune function and structural integrity of head kidney and spleen by vitamin A deficiency in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 99:243-256. [PMID: 32058097 DOI: 10.1016/j.fsi.2020.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
To investigate effects of vitamin A (VA) on fish immune function and structural integrity in the head kidney and spleen of fish, total of 540 on-growing grass carp (Ctenopharyngodon idella) were divided into six groups, feeding graded levels of VA (0, 600, 1200, 1800, 2800 and 3800 IU/kg diet) for 70 days. Results showed that dietary VA deficiency depressed antibacterial ability and aggravated inflammatory response partially linked to nuclear factor κB p65 (NF-κB p65) and target of rapamycin (TOR) signaling pathways in the head kidney and spleen of fish. Meanwhile, VA deficiency caused oxidative damage, apoptosis and disruption of tight junctions (TJs), which were partially attributed to the down-regulation of NF-E2-related factor 2 (Nrf2) signaling mediated antioxidant ability, the up-regulation of p38 mitogen-activated protein kinase (p38MAPK) signaling mediated apoptosis and myosin light chain kinase (MLCK) signaling mediated disruption of tight junctions (TJs). Taken together, current study firstly demonstrated that VA deficiency decreased the immune function and damaged the structural integrity of the head kidney and spleen in fish.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
15
|
Li Q, Liang X, Xue X, Wang K, Wu L. Lipidomics Provides Novel Insights into Understanding the Bee Pollen Lipids Transepithelial Transport and Metabolism in Human Intestinal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:907-917. [PMID: 31842537 DOI: 10.1021/acs.jafc.9b06531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bee pollen (BP) shows profound gut-protecting potentials. BP lipids (BPLs) mainly composed by phospholipids and polyunsaturated fatty acids might be one of the important contributors, while how BPL exerts gut-protecting effects and is transported through intestinal cell monolayers need to be investigated. Here, we exploited a strategy that combines an UPLC-Q-exactive orbitrap/MS-based lipidomics approach with a human intestinal cell (Caco-2) monolayer transport model, to determine the transepithelial transportation of BPL from Camellia sinensis L. (BPL-Cs), in pathological conditions. The results showed that BPL-Cs protected Caco-2 cells against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction by improving cell viability, maintaining membrane integrity, increasing tight junctions (ZO-1 and Claudin-1), and eliciting the expressions of antioxidative-related genes (NQO1, Nrf2, Txnrd1, and GSTA1). Lipidomics analysis revealed that DSS suppressed the transport and uptake of most of BPL-Cs including glycerophospholipids, sphingomyelins, and glycosylsphingolipids. Pretreatment with BPL-Cs significantly regulated glycerophospholipid and sphingolipid metabolisms, potentially involved in building permeability barriers and alleviating intestinal oxidative stress. Finally, eight classes of lipids were identified as the potential biomarkers for evaluating DSS-induced Caco-2 cell dysfunctions and BPL-intervened modulation. These findings shed light on the development of BPL as gastrointestinal protective food supplements in the future.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xinwen Liang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| |
Collapse
|
16
|
Gao X, Hu X, Zhang Q, Wang X, Wen X, Wang Y, Zhang Y, Sun W. Characterization of chemical constituents and absorbed components, screening the active components of gelanxinning capsule and an evaluation of therapeutic effects by ultra‐high performance liquid chromatography with quadrupole time of flight mass spectrometry. J Sep Sci 2019; 42:3439-3450. [DOI: 10.1002/jssc.201900942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Gao
- Department of Pharmacognosy, School of PharmacyXi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiaohu Hu
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Qiong Zhang
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Xijing Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Xiuhong Wen
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yuan Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yanxia Zhang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Wenjun Sun
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| |
Collapse
|
17
|
Giri SS, Sukumaran V, Park SC. Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2019; 92:612-620. [PMID: 31265909 DOI: 10.1016/j.fsi.2019.06.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/26/2023]
Abstract
Present study evaluated the effects of curcumin, the principal curcuminoid of turmeric, on Cyprinus carpio growth, skin mucosal immune parameters, immune-related gene expression, and susceptibility to pathogen challenge. Diets containing four various concentrations of curcumin (g Kg-1): 0 g [basal diet], 5 g [T5], 10 g [T10], and 15 g [T15] were fed to the carp (average weight: 16.37 g) for 8 weeks. Growth parameters were analysed at 4 and 8 weeks post-feeding. Skin mucosal immune responses and expression were examined in 8 weeks post-feeding. Growth performance was significantly higher in T10 and T15, with final weight gain of 102.26 ± 2.31 g and specific growth rate of 3.24 ± 0.37, respectively. The lowest feed conversion ratio (2.35 ± 0.16) was recorded in T15 than in the control (P < 0.05). Among the skin mucosal immune parameters examined, lysozyme (36.8 ± 4.03 U mL-1), total immunoglobulin (6.74 ± 0.5 mg mL-1), protein level (18.7 ± 1.62 mg mL-1), alkaline phosphatase (96.37 ± 6.3 IU L-1), and protease activity (9.47 ± 0.82%) were significantly higher in T15, while the peroxidase activity was higher in T10 (10.24 ± 0.9 U mg-1 protein). Further, lysozyme, superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum and found to be higher in T10 or T15 than in the control (P < 0.05). However, malondialdehyde level decreased significantly in T10 and T15. Furthermore, antioxidant genes (SOD, CAT, nuclear factor erythroid 2-related factor 2) and anti-inflammatory cytokine Interleukin-10 were upregulated in the head kidney, intestine, and hepatopancreas of fish in T10 and T15. Conversely, expression of pro-inflammatory cytokines (IL-1β, tumour necrosis factor-alpha), signalling molecule NF-κBp65 were down-regulated in the tested tissues of T10 and T15. Expression of Toll-like receptor 22 (TLR22) was down regulated in head-kidney and intestine of T15. Fish from T15 exhibited significantly higher relative post-challenge survival (69.70%) against Aeromonas hydrophila challenge. Results of the present study suggest that dietary supplements of curcumin at 15 g Kg-1can significantly improve the growth performance, skin mucosal and serum antioxidant parameters, and strengthen the immunity of C. carpio. Therefore, curcumin represents a promising food additive for carps in aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - V Sukumaran
- Dept. of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Peng XR, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid. FISH & SHELLFISH IMMUNOLOGY 2019; 92:552-569. [PMID: 31252043 DOI: 10.1016/j.fsi.2019.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of bile acid (BA) supplementation on growth performance, intestinal immune function and the mRNA expression of the related signalling molecules in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (mean weight 179.85 ± 1.34 g) were fed a normal protein and lipid (NPNL) diet containing 29% crude protein (CP) and 5% ether extract (EE), and five low-protein and high-lipid (LPHL) diets (26% CP, 6% EE) with graded levels of BA (0-320 mg/kg diet) for 50 days. The fish were then challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with the NPNL diet, the LPHL diet (unsupplemented BA) suppressed the growth performance, intestinal development and enteritis resistance capability and impaired the partial intestinal immune function of on-growing grass carp. Whereas in the LPHL diet, optimal BA supplementation significantly improved fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length and intestosomatic index), increased beneficial bacteria Lactobacillus and Bifidobacterium amounts, decreased harmful bacteria Aeromonas and Escherichia coli amounts, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and upregulated β-defensin-1, hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, interleukin 10 (IL-10), IL-11, transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B), TOR, S6K1 and inhibitor of κBα (IκBα) mRNA levels. In addition, optimal BA supplementation in the LPHL diet downregulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), IL-1β, IL-6, IL-8, IL-15, IL-17D, IL-12p35, IL-12p40 (rather than proximal intestine (PI) or mid intestine (MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel, IκB kinase β (IKKβ), IKKγ (except IKKα), eIF4E-binding proteins (4E-BP)1 and 4E-BP2 mRNA levels in all three intestinal segments of on-growing grass carp (P < 0.05). These findings suggest that BA supplementation in the LPHL diet improves growth and intestinal immune function of fish. Furthermore, 240 mg/kg BA supplementation in the LPHL diet was superior to the NPNL diet in improving growth and enhancing intestinal immune function of fish. Finally, based on percent weight gain, feed intake, protecting fish against enteritis, lysozyme activity in MI and acid phosphatase activity in distal intestine (DI), the optimal BA supplementation for on-growing grass carp were estimated to be 168.98, 170.23, 166.67, 176.50 and 191.97 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xiu-Rong Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
19
|
Wang YL, Zhou XQ, Jiang WD, Wu P, Liu Y, Jiang J, Wang SW, Kuang SY, Tang L, Feng L. Effects of Dietary Zearalenone on Oxidative Stress, Cell Apoptosis, and Tight Junction in the Intestine of Juvenile Grass Carp ( Ctenopharyngodon idella). Toxins (Basel) 2019; 11:toxins11060333. [PMID: 31212760 PMCID: PMC6628422 DOI: 10.3390/toxins11060333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin with high toxicity in animals. In order to study its effect on juvenile grass carp (Ctenopharyngodon idella), six diets supplemented with different levels of ZEA (0, 535, 1041, 1548, 2002, and 2507 μg/kg diet) for 10 weeks were studied to assess its toxicity on intestinal structural integrity and potential mechanisms of action. Our report firstly proved that ZEA led to growth retardation and body deformity, and impaired the intestinal structural integrity of juvenile grass carp, as revealed by the following findings: (1) ZEA accumulated in the intestine and caused histopathological lesions; (2) ZEA resulted in oxidative injury, apoptosis, and breached tight junctions in the fish intestine, which were probably associated with Nuclear factor-erythroid 2-related factor 2 (Nrf2), p38 mitogen activated protein kinases (p38MAPK), and myosin light chain kinase (MLCK) signaling pathways, respectively. ZEA had no influence on the antioxidant gene levels of Kelch-like ECH associating protein 1 (Keap1)b (rather than Keap1a), glutathione-S-transferase (GST)P1, GSTP2 (not in the distal intestine (DI)), tight junctions occludin, claudin-c (not in the proximal intestine (PI)), or claudin-3c (not in the mid intestine (MI) or DI).
Collapse
Affiliation(s)
- Ya-Li Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China.
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shang-Wen Wang
- Tongwei Research Institute, Tongwei Co., Ltd., Chengdu 600438, China.
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China.
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
20
|
Jiang WD, Zhou XQ, Zhang L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Shi HQ, Feng L. Vitamin A deficiency impairs intestinal physical barrier function of fish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:546-558. [PMID: 30716522 DOI: 10.1016/j.fsi.2019.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, 510663, Guangdong, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
21
|
Ni PJ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Impairing of gill health through decreasing immune function and structural integrity of grass carp (Ctenopharyngodon idella) fed graded levels dietary lipids after challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2019; 86:922-933. [PMID: 30590156 DOI: 10.1016/j.fsi.2018.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/22/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The current study conducted to investigate the hypothesis that low or excess levels of lipids increased the gill rot morbidity through impairing the immune function and structural integrity in the gill of grass carp (Ctenopharyngodon idella). A total of 540 young grass carp with an average initial weight of 261.41 ± 0.53 g were fed diets containing six graded levels of lipids at 0.59%, 2.14%, 3.60%, 5.02%, 6.66% and 8.01% diets for 8 weeks. After the growth trial, fish were challenged with Flavobacterium columnare for 3 days. The results indicated that compared with optimal lipids supplementation (2.14%-8.01% lipids diets), low or excess levels of lipids impaired fish immune function through declining the activities of humoral compounds, down-regulated the mRNA levels of anti-inflammatory cytokines, inhibitor of κBα (IκBα) and ribosomal p70S6 kinase (S6K1), and up-regulated pro-inflammatory cytokines, nuclear factor κB p65 (NF-κB p65) (not p52), IκB kinase α (IKKα) (not IKKβ), IKKγ and eIF4E-binding protein (4EBP) in the gill of young grass carp. In addition, low or excess levels of lipids decreased young grass carp physical barrier function through down-regulating the mRNA levels of ZO-1 (rather than ZO-2b), Claudin b, c, 3, 12, 15a, 15b, 7b, 7a and Occludin through MAPKK 6/p38 MAPK/MLCK signaling molecules, decreasing antioxidant ability via Kelch-like ECH-associating protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2) signaling molecules, and down-regulating the mRNA levels of B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis protein (IAP) and up-regulating the mRNA levels of apoptotic protease activating factor-1 (Apaf-1), Caspase-3, -8 and -9 and Fas ligand (FasL) in the gill of grass carp. Based on the quadratic regression analysis for the gill rot morbidity, C3 and MDA contents, the dietary lipids requirements for young grass carp have been estimated to be 5.60%, 6.01% and 4.58% diets.
Collapse
Affiliation(s)
- Pei-Jun Ni
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
22
|
Dietary fatty acid source has little effect on the development of the immune system in the pyloric caeca of Atlantic salmon fry. Sci Rep 2019; 9:27. [PMID: 30631091 PMCID: PMC6328623 DOI: 10.1038/s41598-018-37266-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
The quality and relative amounts of dietary lipids may affect the health and growth of cultured Atlantic salmon. So far, little is known about their effects on the performance of the fish immune system during early life stages and, in particular their importance in the transition from endogenous nutrition (yolk) in the alevin stage to exogenous nutrition in the later fry stage. We investigated the immunomodulatory effects of fish oil, vegetable oil and phospholipid-rich oil in feeds for farmed Atlantic salmon using a transcriptomic approach. The experiment allowed a fine-scale monitoring of gene expression profiles in two tissues, the pyloric caeca of the intestine and the liver, in a 94 days-long first feeding experiment. The analysis of transcriptional profiles revealed that first feeding induced a strong immunomodulation in the pyloric caeca after 48 days of feeding, lasting up to day 94 and possibly beyond. On the other hand, the differential effect of the three dietary regimes was negligible. We interpret this upregulation, undetectable in liver, as a potentiation of the immune system upon the first contact of the digestive system with exogenous feed. This process involved a complex network of gene products involved in both cellular and humoral immunity. We identified the classical pathway of the complement system, acting at the crossroads between innate and adaptive immunity, as a key process modulated in response to the switch from endogenous to exogenous nutrition.
Collapse
|
23
|
Zeng L, Wang YH, Ai CX, Zhang JS. Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:78-87. [PMID: 30193167 DOI: 10.1016/j.ecoenv.2018.08.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to evaluate investigate the effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker under acute copper stress. Fish were injected with β-glucan at a dose of 0 or 5 mg kg-1 body weight on 6, 4 and 2 days before exposed to 0 and 368 μg Cu L-1 for 48 h. Biochemical indicators (MDA, Cu content, MTs protein levels, Cu/Zn-SOD, CAT and iNOS activities), gene expressions of oxidative stresses (Cu/Zn-SOD, CAT, Nrf2, MTs and MTF-1), inflammatory responses (NF-κB, iNOS, IL-1β, IL-6 and TNF-α) and Cu transporters (ATP7A, ATP7B and CTR1) were determined. In the anterior intestine, β-glucan increased MTs levels, activities of Cu/Zn-SOD, CAT and iNOS, mRNA levels of MTs, CAT, iNOS, ATP7A and ATP7B, and reduced Cu content and CTR1 gene expression to inhibite Cu-induced MDA. But β-glucan had no effect on inflammatory gene expressions. In the mid intestine, β-glucan increased activities of Cu/Zn-SOD and iNOS, mRNA levels of Cu/Zn-SOD, CAT and iNOS to maintain MDA content. However, unlike the anterior intestine, β-glucan had no effect on Cu transporter gene expressions. Furthermore, transcription factors (Nrf2, NF-κB and MTF-1) paralleled with their target genes in the mid intestine, but no correlation was observed between NF-κB and IL-1β and TNF-α gene expressions in the anterior intestine. In conclusion, our results unambiguously showed that β-glucan induced oxidative stress, inflammation and copper transport were varied between the anterior and mid intestines of fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yong-Hong Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
24
|
Zheng L, Jiang WD, Feng L, Wu P, Tang L, Kuang SY, Zeng YY, Zhou XQ, Liu Y. Selenium deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 82:408-420. [PMID: 30142391 DOI: 10.1016/j.fsi.2018.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
This study focused on the effects of dietary selenium deficiency on structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (mean weight 226.48 ± 0.68 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of selenium (0.025-1.049 mg/kg diet) for 80 days. Results showed that selenium deficiency (1) caused oxidative damage in part by reducing the activities of antioxidant enzymes (such as SOD, CAT, GPx, GST and GR) and glutathione (GSH) content, down-regulating the transcript abundances of antioxidant enzymes (except GSTp1) partly related to Kelch-like-ECH-associated protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2) signalling; (2) aggravated apoptosis in part by up-regulating the mRNA levels of caspase-2, -3, -7, -8 and -9, which were partially related to p38MAPK/FasL/caspase-8 signalling and JNK/(BAX, Bcl-2, Mcl-1b, IAP)/(Apaf1, caspase-9) signalling; (3) damaged the tight junctions in part by down-regulating the mRNA levels of ZO-1 (except spleen), ZO-2 (except spleen), claudin-c, -f, -7, -11 and claudin-15, and up-regulating the mRNA levels of claudin-12, which were partially related to myosin light chain kinase (MLCK) signalling. Interesting, selenium deficiency failed to affect the expression of GSTp1, Keap1a, occludin, claudin-b, claudin-3c, ZO-1 (spleen only) and ZO-2 (spleen only) in the head kidney, spleen and skin of grass carp. Finally, based on the activities of glutathione peroxidase (GPx) and reactive oxygen species (ROS) content in the head kidney, spleen and skin, the dietary selenium requirements for young grass carp were estimated to be 0.558-0.588 mg/kg diet.
Collapse
Affiliation(s)
- Lin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Jafari F, Agh N, Noori F, Tokmachi A, Gisbert E. Effects of dietary soybean lecithin on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). FISH & SHELLFISH IMMUNOLOGY 2018; 80:487-496. [PMID: 29906622 DOI: 10.1016/j.fsi.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
An eleven weeks feeding trial was conducted to determine the effects of different levels of dietary soybean lecithin (SBL) on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). Fish were fed seven isoproteic (44% crude protein) and isolipidic (17% crude fat) diets containing graded levels of SBL: 0 (control), 1, 2, 4, 6, 8 and 10%. Results showed that dietary SBL supplementation significantly improved the final body weight (BW) and weight gain (WG). Fish fed 6% SBL showed the highest BW and WG values in comparison to fish fed the control diet (P < 0.05), whereas increasing SBL levels above 6% had little practical benefit in terms of somatic growth performance. The inclusion of SBL in diets significantly improved the immune response as data from lysozyme, total Ig levels, alternative complement, phagocytic and bactericidal activities indicated (P < 0.05). The broken-line regression analysis of immunological variable revealed that depending on the parameter considered, the optimal SBL levels in diets for stellate sturgeon juveniles varied. In particular, dietary SBL levels requirements in stellate sturgeon when considering the phagocytic activity rate were determined at 3.3%, whereas 4.1-4.2% were recommended when considering data from lysozyme, alternative complement and bactericidal activities. In contrast, the highest minimum dietary SBL content was estimated at 6.9% when data from total Ig levels were considered. These results indicated that dietary PLs are required for boosting innate immunity in stellate sturgeon, although their minimal level changed depending on the immunological parameter considered. Therefore, we assume that SBL levels comprised between 3.3 and 6.9% may be used as a prophylactic measure to improve the health status in stellate sturgeon. Red blood cell count, hemoglobin and hematocrit levels increased with increasing dietary SBL levels, especially in those sturgeons fed the diet with 6% SBL (P < 0.05). In addition, white blood cell counts significantly increased as dietary SBL levels increased from 4 to 8% in comparison to the control group. Blood biochemistry was also affected by different dietary SBL levels. In particular, significantly higher levels of glucose, cholesterol, HDL and triglycerides were detected in fish fed >6%, >4%, >2% and 2% SBL, respectively (P < 0.05). Based on somatic growth parameters, blood chemistry and systemic immunity parameters, diets containing ca. 6% SBL are recommended for juvenile stellate sturgeon.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Naser Agh
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
| | - Farzaneh Noori
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Amir Tokmachi
- Faculty of Veterinary, Urmia University, Urmia, Iran
| | - Enric Gisbert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita, Unitat de Cultius Aqüícoles, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Rapita, Spain
| |
Collapse
|
26
|
Huang C, Wu P, Jiang WD, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ, Feng L. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 80:376-391. [PMID: 29906621 DOI: 10.1016/j.fsi.2018.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxin contaminants of animal feed worldwide and brings significant threats to the animal production. However, studies concerning the effect of DON on fish intestine are scarce. This study explored the effects of DON on intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). A total of 1440 juvenile grass carp (12.17 ± 0.01 g) were fed six diets containing graded levels of DON (27, 318, 636, 922, 1243 and 1515 μg/kg diet) for 60 days. This study for the first time documented that DON caused body malformation in fish, and histopathological lesions, oxidative damage, declining antioxidant capacity, cell apoptosis and destruction of tight junctions in the intestine of fish. The results indicated that compared with control group (27 μg/kg diet), DON: (1) increased the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) content, and up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1: Keap1a but not Keap1b), whereas decreased glutathione (GSH) content and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes (except GSTR in MI) and NF-E2-related factor 2 (Nrf2), as well as the protein levels of Nrf2 in fish intestine. (2) up-regulated cysteinyl aspartic acid-protease (caspase) -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl2-associated X protein (Bax), Fas ligand (FasL) and c-Jun N-terminal protein kinase (JNK) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in fish intestine. (3) down-regulated the mRNA levels of ZO-1, ZO-2b, occludin, claudin-c, -f, -7a, -7b, -11 (except claudin-b and claudin-3c), whereas up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (MLCK) in fish intestine. All above data indicated that DON caused the oxidative damage, apoptosis and the destruction of tight junctions via Nrf2, JNK and MLCK signaling in the intestine of fish, respectively. Finally, based on PWG, FE, PC and MDA, the safe dose of DON for grass carp were all estimated to be 318 μg/kg diet.
Collapse
Affiliation(s)
- Chen Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
Dietary magnesium deficiency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Sci Rep 2018; 8:12705. [PMID: 30139942 PMCID: PMC6107577 DOI: 10.1038/s41598-018-30485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Grass carp (223.85–757.33 g) were fed diets supplemented with magnesium (73.54–1054.53 mg/kg) for 60 days to explore the impacts of magnesium deficiency on the growth and intestinal structural integrity of the fish. The results demonstrated that magnesium deficiency suppressed the growth and damaged the intestinal structural integrity of the fish. We first demonstrated that magnesium is partly involved in (1) attenuating antioxidant ability by suppressing Nrf2 signalling to decrease antioxidant enzyme mRNA levels and activities (except CuZnSOD mRNA levels and activities); (2) aggravating apoptosis by activating JNK (not p38MAPK) signalling to upregulate proapoptotic protein (Apaf-1, Bax and FasL) and caspase-2, -3, -7, -8 and -9 gene expression but downregulate antiapoptotic protein (Bcl-2, IAP and Mcl-1b) gene expression; (3) weakening the function of tight junctional complexes (TJs) by promoting myosin light chain kinase (MLCK) signalling to downregulate TJ gene expression [except claudin-7, ZO-2b and claudin-15 gene expression]. Additionally, based on percent weight gain (PWG), against reactive oxygen species (ROS), against caspase-9 and claudin-3c in grass carp, the optimal dietary magnesium levels were calculated to be 770.38, 839.86, 856.79 and 811.49 mg/kg, respectively.
Collapse
|
28
|
Wang XZ, Jiang WD, Feng L, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Low or excess levels of dietary cholesterol impaired immunity and aggravated inflammation response in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 78:202-221. [PMID: 29684613 DOI: 10.1016/j.fsi.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The present study explored the effect of cholesterol on the immunity and inflammation response in the immune organs (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella) fed graded levels of dietary cholesterol (0.041-1.526%) for 60 days and then infected with Aeromonas hydrophila for 14 days. The results showed that low levels of cholesterol (1) depressed the innate immune components [lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides] and adaptive immune component [immunoglobulin M (IgM)], (2) up-regulated the mRNA levels of pro-inflammatory cytokines [interleukin 1β (IL-1β), IL-6, IL-8, IL-12p35, IL-12p40, IL-15, IL-17D, tumor necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2)], partly due to the activated nuclear factor kappa B (NF-κB) signalling, and (3) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-4/13B, IL-10, IL-11, transforming growth factor (TGF)-β1 and TGF-β2], partly due to the suppression of target of rapamycin (TOR) signalling in the immune organs of young grass carp. Interestingly, dietary cholesterol had no influences on the IκB kinase α (IKKα) and IL-4/13A mRNA levels in the head kidney, spleen and skin, the IL-1β and IL-12p40 mRNA levels in the spleen and skin, or the β-defensin-1 mRNA level in the skin of young grass carp. Additionally, low levels of cholesterol increased the skin haemorrhage and lesion morbidity. In summary, low levels of cholesterol impaired immunity by depressing the innate and adaptive immune components, and low levels of cholesterol aggravated the inflammation response via up-regulating the expression of pro-inflammatory cytokines as well as down-regulating the expression of anti-inflammatory cytokines partly through the modulation of NF-κB and TOR signalling in the immune organs of fish. Similar to the low level of cholesterol, the excess level of dietary cholesterol impaired immunity and aggravated inflammation response in the immune organs of fish. Finally, based on the percent weight gain (PWG), the ability against skin haemorrhage and lesions as well as the LZ activity in the head kidney and the ACP activity in the spleen, the optimal dietary cholesterol levels for young grass carp were estimated as 0.721, 0.826, 0.802 and 0.772% diet, respectively.
Collapse
Affiliation(s)
- Xiao-Zhong Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Yang J, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 76:333-346. [PMID: 29544771 DOI: 10.1016/j.fsi.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/26/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the intestinal immune barrier function and related signaling pathway in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.33 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila. The results indicated that compared with the optimal dietary myo-inositol level, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) contents in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (P < 0.05). (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of young grass carp (P < 0.05). (3) up-regulated pro-inflammatory cytokines [IL-1β (not in DI), TNF-α and IL-8], nuclear factor kappa B P65 (not NF-κB P52), c-Rel, IκB kinaseα (IKKα), IKKβ and IKKγ mRNA levels in the PI, MI and DI of young grass carp (P < 0.05); and down-regulated pro-inflammatory cytokines IL-15 (not in DI) and inhibitor of κBα (IκBα) mRNA levels (P < 0.05). (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10 (not in DI), IL-11, IL-4/13B (not IL-4/13A), TGF-β1 and TGF-β2], target of rapamycin (TOR), eIF4E-binding proteins 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6k1) in the PI, MI and DI of young grass carp (P < 0.05). All data indicated that myo-inositol deficiency could decrease fish intestine immunity and cause inflammation under infection of A. hydrophila. Finally, the optimal dietary myo-inositol levels for the ACP and LZ activities in the DI were estimated to be 415.1 and 296.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu 610041, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Wu P, Zheng X, Zhou XQ, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Feng L. Deficiency of dietary pyridoxine disturbed the intestinal physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:459-473. [PMID: 29339045 DOI: 10.1016/j.fsi.2018.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effects of dietary pyridoxine (PN) deficiency on intestinal antioxidant capacity, cell apoptosis and intercellular tight junction in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (231.85 ± 0.63 g) were fed six diets containing graded levels of PN (0.12-7.48 mg/kg diet) for 10 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results showed that compared with the optimal PN level, PN deficiency (1) increased the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC), decreased the activities and mRNA levels of antioxidant enzymes such as copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) (P < .05); (2) up-regulated the mRNA levels of cysteinyl aspartic acid-protease-3 (caspase-3), caspase-7, caspase-8, caspase-9, Bcl-2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf-1) and Fas ligand (FasL), and down-regulated the mRNA levels of inhibitor of apoptosis proteins (IAP), B-cell lymphoma protein-2 (Bcl-2) and myeloid cell leukaemia-1 (Mcl-1) (P < .05); (3) down-regulated the mRNA levels of ZO-1, occludin [only in middle intestine (MI)], claudin-b, claudin-c, claudin-f, claudin-3c, claudin-7a, claudin-7b and claudin-11, and up-regulated the mRNA levels of claudin-12 and claudin-15a (P < .05), which might be partly linked to Kelch-like-ECH-associated protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2), p38 mitogen-activated protein kinase (p38MAPK) and myosin light chain kinase (MLCK) signalling in the intestines of fish. However, the activities and mRNA levels of MnSOD, the mRNA levels of Keap1b, c-Jun N-terminal protein kinase (JNK) and claudin-15b in three intestinal segments, and the mRNA levels of occludin in the proximal intestine (PI) and distal intestine (DI) were not affected by graded levels of PN. These data indicate that PN deficiency could disturb the intestinal physical barrier function of fish. Additionally, based on the quadratic regression analysis for MDA content and GST activity, the dietary PN requirements for young grass carp were estimated as 4.85 and 5.02 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
31
|
Chen K, Zhou XQ, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 74:175-189. [PMID: 29305994 DOI: 10.1016/j.fsi.2017.12.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
32
|
Wu P, Pan FY, Feng L, Jiang WD, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue supplementation modulates gill immunological and barrier health status of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:637-648. [PMID: 29360541 DOI: 10.1016/j.fsi.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of methionine hydroxy analogue (MHA) on the physical barrier and immune defence in the gill of young grass carp (Ctenopharyngodon idella). A total 630 young grass carp with an average initial weight of 259.70 ± 0.47 g were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one DL-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. After feeding trial, 15 fish from each treatment were challenged with Flavobacterium columnare. Compared to the basal diet, optimal MHA improved cellular structure integrity of gill via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < .05). Simultaneously, optimal MHA supplementation improved cellular structure integrity of gill via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < .05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase (MLCK) mRNA levels (P < .05). Summarily, MHA could improve the physical barrier of fish gill. In addition, optimal MHA supplementation increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin and β-defensin, suggesting that MHA could enhance antimicrobial ability of fish gill. Meanwhile, optimal MHA supplementation enhanced the immune defence of gill via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < .05). In conclusion, the positive effect of MHA on gill health is associated with the improvement of the defence against apoptosis, antioxidant status, tight junctions and immune defence of fish gill. Meanwhile, MHA was superior to DLM on improving the physical barrier of fish gill. For the direction to healthy breeding of young grass carp, the optimal MHA supplementation levels on the premise of 4.01 g/kg methionine basal were estimated by quadratic regression curve, such as 5.49, 6.17 and 6.02 g/kg diet bases on the defence against gill-rot, malondialdehyde content and LZ activity in the gill, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Su YN, Wu P, Feng L, Jiang WD, Jiang J, Zhang YA, Figueiredo-Silva C, Zhou XQ, Liu Y. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:101-118. [PMID: 29292200 DOI: 10.1016/j.fsi.2017.12.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of dietary DL-methionyl-DL-methionine (Met-Met) on growth performance, intestinal immune function and the underlying signalling molecules in juvenile grass carp (Ctenopharyngodon idella). Fish were fed one DL-methionine (DL-Met) group (2.50 g/kg diet) and six graded levels of Met-Met groups (0, 0.79, 1.44, 1.84, 2.22 and 2.85 g/kg diet) for 10 weeks, and then challenged with Aeromonas hydrophila for 14 days. Results indicated that the optimal Met-Met supplementation: (1) increased fish growth performance, intestinal lysozyme (LZ) and acid phosphatase (ACP) activities, complement (C3 and C4) and immunoglobulin M (IgM) contents, up-regulated hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, β-defensin-1 and Mucin2 mRNA levels; (2) down-regulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-8 [only in the distal intestine (DI)], IL-12p35, IL-12p40 and IL-15 (not IL-17D) mRNA levels partially related to the down-regulation of IκB kinase β (IKKβ) and IKKγ (rather than IKKα), nuclear factor kappa B (NF-κB) p65 and c-Rel (rather than NF-κB p52) mRNA levels and the up-regulation of inhibitor of κBα (IκBα) mRNA levels; (3) up-regulated IL-4/13A, IL-4/13B, IL-6, IL-10, IL-11 and transforming growth factor (TGF)-β1 (not TGF-β2) mRNA levels partially associated with the target of rapamycin (TOR) signalling pathway [TOR/ribosomal protein S6 kinases 1 (S6K1), eIF4E-binding proteins (4E-BP)] in three intestinal segments of juvenile grass carp. These results suggest that Met-Met supplementation improves growth and intestinal immune function in fish. Furthermore, according to a positive effect, the optimal Met-Met supplementation was superior to the optimal DL-Met supplementation at improving the growth performance and enhancing the intestinal immune function in fish. Finally, based on percent weight gain (PWG), protection against enteritis morbidity and immune index (LZ activity), the optimal Met-Met supplementation for juvenile grass carp was estimated as 1.61, 1.64 and 1.68 g/kg diet, respectively, as the basal diet contains 8.03 g/kg total sulfur amino acids (TSAA) (4.26 g methionine/kg and 3.77 g cysteine/kg).
Collapse
Affiliation(s)
- Yue-Ning Su
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Figueiredo-Silva
- Evonik Nutrition & Care GmbH, NC, 10-B531, Postfach 1345, Rodenbacher Chausse 4, 63404 Hanau, Germany
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
34
|
Tan X, Sun Z, Zhou C, Huang Z, Tan L, Xun P, Huang Q, Lin H, Ye C, Wang A. Effects of dietary dandelion extract on intestinal morphology, antioxidant status, immune function and physical barrier function of juvenile golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2018; 73:197-206. [PMID: 29258755 DOI: 10.1016/j.fsi.2017.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/25/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Intestinal morphology, antioxidant status, immune function and tight junction proteins mRNA expression were examined in golden pompano (Trachinotus ovatus) that fed respectively six diets containing dandelion extracts (DE) at 0, 0.5, 1, 2, 4 and 10 g kg-1 after 8 weeks feeding. The study indicated that dietary DE significantly improved intestinal antioxidant abilities by increasing SOD, CAT, T-AOC activities and up-regulating intestinal cat, gpx mRNA levels, but by decreasing MDA content and down-regulating intestinal keap1 mRNA levels in golden pompano. Meanwhile, dietary DE improved intestinal morphology, suggesting that enhances intestinal digestion and absorption, by increasing muscle thickness, villus length, villus width and villus number in the foregut and hindgut; as well as villus number, villus width and muscle thickness in the midgut (P < .05). Dietary DE enhanced intestinal barrier function by increasing intestinal zo-1 and occludin mRNA levels, but by decreasing the mRNA levels of claudin-12 and claudin-15. Furthermore, dietary DE improved intestinal immunity via increasing goblet cells numbers and regulating expression of immune-related genes. In conclusion, dietary DE supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal barrier in golden pompano.
Collapse
Affiliation(s)
- Xiaohong Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhenzhu Sun
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China
| | - Lianjie Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Pengwei Xun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qianqian Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China.
| | - Chaoxia Ye
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
35
|
Lin SM, Li FJ, Yuangsoi B, Doolgindachbaporn S. Effect of dietary phospholipid levels on growth, lipid metabolism, and antioxidative status of juvenile hybrid snakehead (Channa argus×Channa maculata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:401-410. [PMID: 29147969 DOI: 10.1007/s10695-017-0443-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 05/27/2023]
Abstract
The study was conducted to evaluate the effect of dietary phospholipids (PLs) on growth, lipid metabolism, and antioxidative status of hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous and isolipidic diets with graded levels of PLs (8.5, 19.3, 30.7, 41.5, and 50.8 g kg-1) were fed to triplicate groups of juveniles (initial body weight 12.6 ± 0.23 g) for 8 weeks. Results showed that dietary PL supplementation significantly improved growth of juveniles. The final body weight (FBW) and specific growth rate (SGR) significantly increased with dietary PLs increasing from 8.5 to 41.5 g kg-1 (P < 0.05). Fish fed with the diet containing 8.5 g kg-1 PLs showed higher feed conversion ratio (FCR) compared to the other treatments (P < 0.05). Survival rate (SR) was not affected by dietary PL levels (P > 0.05). Liver lipid contents, serum triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) contents significantly decreased with the increasing levels of dietary PLs (P < 0.05). However, serum total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) contents and HDL-C/TC and HDL-C/LDL-C value significantly increased with increasing dietary PL levels (P < 0.05). The catalase (CAT), superoxide dismutase (SOD), and carnitine palmitoyl transferase I (CPT-1) activities in the liver significantly increased with incremental dietary PL level (P < 0.05), while the liver malondialdehyde (MDA) contents and fatty acid synthase (FAS) activity significantly reduced (P < 0.05). No significant difference was observed in the glutathione peroxidase (GPx) activity among dietary treatments (P > 0.05).These results confirmed that dietary PL supplementation has beneficial effects on growth performance and antioxidant capacity of juvenile hybrid snakehead. Dietary PLs might reduce lipid deposition in the liver of juvenile hybrid snakehead.
Collapse
Affiliation(s)
- Shi-Mei Lin
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, People's Republic of China.
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Fa-Jian Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, People's Republic of China
| | - Bundit Yuangsoi
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
36
|
Dong YW, Feng L, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary threonine deficiency depressed the disease resistance, immune and physical barriers in the gills of juvenile grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2018; 72:161-173. [PMID: 29100986 DOI: 10.1016/j.fsi.2017.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of dietary threonine on the disease resistance, gill immune and physical barriers function of juvenile grass carp (Ctenopharyngodon idella). A total of 1080 juveniles were fed six iso-nitrogenous diets containing graded levels of threonine (3.99-21.66 g kg-1 diet) for 8 weeks, and then challenged with Flavobacterium columnare. Results showed that threonine deficiency (3.99 g kg-1 diet): (1) increased the gill rot morbidity after exposure to F. columnare; (2) attenuated the gill immune barrier function by decreasing antimicrobial substances production, up-regulating the mRNA levels of pro-inflammatory cytokines (except IL-12p40), and down-regulating the anti-inflammatory cytokines partly due to the modulation of NF-κB and TOR signaling. (3) disrupt the gill tight junction complexes by down-regulating TJs (claudin-3, -b, -c, 12, occludin, ZO-1 and ZO-2) and up-regulating TJs (claudin-7a, -7b) as well as related signaling molecule myosin light chain kinase mRNA levels (P < 0.05). (4) exacerbated the gill apoptosis by up-regulating cysteinyl aspartic acid-protease-3, 8, 9, c-Jun N-terminal kinases and mediating apoptosis related factors mRNA levels (P < 0.05); (5) exacerbated oxidative injury with increased reactive oxygen species, malondialdehyde and protein carbonyl contents (P < 0.05), decreased the antioxidant related enzymes activities and corresponding mRNA levels (except glutathione peroxidase-1b and glutathione-S-transferase-omega 2) as well as glutathione contents (P < 0.05) partly ascribe to the abridgement of NF-E2-related factor 2 signaling [Nrf2/Keap1a (not Keap1b)] in fish gill. Overall, threonine deficiency depressed the disease resistance, and impaired immune and physical barriers in fish gill. Finally, based on the gill rot morbidity and biochemical indices (immune indices LA activity and antioxidant indices MDA content), threonine requirements for juvenile grass carp (9.53-53.43 g) were estimated to be 15.32 g kg-1 diet (4.73 g 100 g-1 protein), 15.52 g kg-1 diet (4.79 g 100 g-1 protein), 15.46 g kg-1 diet (4.77 g 100 g-1 protein), respectively.
Collapse
Affiliation(s)
- Yu-Wen Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
37
|
Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-κB signalling of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 70:682-700. [PMID: 28951222 DOI: 10.1016/j.fsi.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of dietary pyridoxine (PN) deficiency on growth performance, intestinal immune function and the potential regulation mechanisms in young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of PN (0.12-7.48 mg/kg) for 70 days. After that, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results showed that compared with the optimal PN level, PN deficiency: (1) reduced the production of innate immune components such as lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides and adaptive immune components such as immunoglobulins in three intestinal segments of young grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor β (TGF-β), interleukin 4/13A (IL-4/13A) (rather than IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)] in three intestinal segments of young grass carp; (3) up-regulated the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) [not in the proximal intestine (PI) and distal intestine (DI)], IL-1β, IL-6, IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D [(rather than interferon γ2 (IFN-γ2)] partly relating to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)] in three intestinal segments of young grass carp. These results suggest that PN deficiency could impair the intestinal immune function, and the potential regulation mechanisms were partly associated with TOR and NF-κB signalling pathways. In addition, based on percent weight gain (PWG), the ability against enteritis and LZ activity, the dietary PN requirements for young grass carp were estimated to be 4.43, 4.75 and 5.07 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
38
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 67:475-492. [PMID: 28610850 DOI: 10.1016/j.fsi.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the growth and intestinal physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.83 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with optimal myo-inositol levels, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes [not glutathione-S-transferase (gst) p1 and gstp2] and NF-E2-related factor 2 (nrf2), whereas up-regulated the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, and the mRNA levels of Kelch-like-ECH-associated protein 1 (keap1) in three intestinal segments of young grass carp (P < 0.05). (2) Up-regulated cysteinyl aspartic acid-protease (caspase)-2, -3, -7, -8, -9, apoptotic protease activating factor-1 (apaf-1), Bcl2-associated X protein (bax), fas ligand (fasl), gen-activated protein kinase (p38mapk) and c-Jun N-terminal protein kinase (jnk) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2), inhibitor of apoptosis proteins (iap) and myeloid cell leukemia-1 (mcl-1) mRNA levels in three intestinal segments of young grass carp (P < 0.05). (3) Down-regulated mRNA levels of cell cycle proteins cyclin b, cyclin d, cyclin e and E2F transcription factor 4 (e2f4) in three intestinal segments of young grass carp (P < 0.05). (4) Down-regulated the mRNA levels of zonula occludens (zo) 1, zo-2, occludin, claudin-b, -c, -f, -3c, -7a, -7b as well as -11, and up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (mlck) in three intestinal segments of young grass carp (P < 0.05). All above data indicated that dietary myo-inositol deficiency could damage physical barrier function in three intestinal segments of fish. Finally, the myo-inositol requirements based on the percent weight gain (PWG), reactive oxygen species (ROS) contents in the proximal intestine (PI), relative mRNA levels of caspase-2 (PI), cyclin b (MI) as well as claudin-b (PI) were estimated to be 276.7, 304.1, 327.9, 416.7 and 313.2 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
39
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
40
|
Tian L, Zhou XQ, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Xie F, Feng L. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:548-563. [PMID: 28546021 DOI: 10.1016/j.fsi.2017.05.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the effect of dietary sodium butyrate (SB) supplementation on the growth and immune function in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg-1 diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg-1 diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results indicated that optimal SB supplementation improved the fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length, intestinal somatic index, folds height, trypsin, chymotrypsin, lipase and amylase activities), increased beneficial bacteria lactobacillus amount and butyrate concentration, decreased baneful bacteria Aeromonas and Escherichia coli amounts, reduced acetate and propionate concentrations, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and up-regulated β-defensin-1 (rather than DI), hepcidin, liver expressed antimicrobial peptide 2B (LEAP-2B) (except LEAP-2A), Mucin2, interleukin 10 (IL-10), IL-11 (rather than PI), transforming growth factor β1 (rather than PI), transforming growth factor β2 (rather than PI), IL-4/13A, IL-4/13B and inhibitor of κBα (IκBα) mRNA levels, whereas it down-regulated tumor necrosis factor α, interferon γ2, IL-1β (rather than PI), IL-6, IL-8, IL-15 (rather than PI), IL-17D (rather than PI), IL-12p35, IL-12p40 (rather than PI or MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel (rather than PI or MI), IκB kinase β (IKKβ) (rather than PI), IKKγ (except IKKα), p38 mitogen-activated protein kinase (p38MAPK) and MAPK kinase 6 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that SB supplementation improves growth and intestinal immune function of fish. Furthermore, according to the positive effect, MSB was superior to PSB on improving growth and enhancing intestinal immune function of fish, and based on feed efficiency of young grass carp, the efficacy of MSB was 3.5-fold higher than that of PSB. Finally, based on percent weight gain, protecting fish against enteritis morbidity and lysozyme activity, the optimal SB supplementation (MSB as SB source) of young grass carp were estimated to be 160.8, 339.9 and 316.2 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Li Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Xie
- Shanghai Menon Animal Nutrition Technology Co., Ltd, Shanghai 201807, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
41
|
Pan FY, Wu P, Feng L, Jiang WD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue improves intestinal immunological and physical barrier function in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 64:122-136. [PMID: 28279791 DOI: 10.1016/j.fsi.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
This study was conducted to test the hypothesis that methionine hydroxy analogue (MHA) enhances the defense against enteritis occurrence via improving intestinal barrier function in fish. After 630 young grass carp (Ctenopharyngodon idella) (259.70 ± 0.47 g) fed six graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine group (6.4 g/kg diet) for 8 weeks. At the end of feeding trial, 15 fish from each treatment were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA enhanced the capacity of fish against enteritis emergence, which might be related to the positive effects of MHA on intestinal immunological and physical barrier function in fish. Dietary MHA supplementation enhanced intestinal immunological barrier function via (1) lysozyme (LZM) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1; (2) repressing p38MAPK/IKKβ/IκBα/NF-κB signaling pathway to down-regulate pro-inflammatory cytokines mRNA levels except IL-8 mRNA level only in mid and distal intestine; (3) potentiating TOR-signal cascades to up-regulate anti-inflammatory cytokines. Meanwhile, dietary MHA supplementation improved intestinal physical barrier via (1) down-regulating c-Jun N-terminal kinase mRNA levels to inhibit death receptor and mitochondria pathways induced apoptosis; (2) modulating Keap1a/Nrf2 system to elevate antioxidant enzymes genes isoforms mRNA levels and corresponding enzymes activities, subsequently alleviate oxidative damage; (3) down-regulating MCLK gene expression to up-regulating occludin, zonula occluden 1 and claudins mRNA levels except claudin-7a and claudin-7b only in the proximal intestine. In conclusion, bases on the capacity defense against enteritis, proximal intestinal malondialdehyde content and lysozyme activity, the optimal MHA supplementation levels were 5.83, 5.59 and 6.07 g/kg diet (4.01 g/kg methionine basal), respectively. This study indicates that MHA exerts a positive effect on fish intestinal health status and a superior efficacy to dl-methionine based on the positive effects.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Chen K, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Effect of dietary phosphorus deficiency on the growth, immune function and structural integrity of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 63:103-126. [PMID: 28192254 DOI: 10.1016/j.fsi.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 05/20/2023]
Abstract
This study evaluates the effects of dietary phosphorus on the growth, immune function and structural integrity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella) that were fed graded levels of available phosphorus (0.95-8.75 g/kg diet). Results indicated that phosphorus deficiency decreased the growth performance of young grass carp. In addition, the results first demonstrated that compared with the optimal phosphorus level, phosphorus deficiency depressed the lysozyme (LZ) and acid phosphatase (ACP) activities and the complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and target of rapamycin (TOR), whereas it up-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65 and NF-κB p52 mRNA levels to decrease fish head kidney and spleen immune functions. Moreover, phosphorus deficiency up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1a (Keap1a), Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), caspase -2, -3, -7, -8 and -9, p38 mitogen-activated protein kinase (MAPK) and myosin light chain kinase (MLCK), whereas it depressed the glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes, NF-E2-related factor 2 (Nrf2), B-cell lymphoma protein-2 (Bcl-2), myeloid cell leukemia-1 (Mcl-1) and tight junction complexes to attenuate fish head kidney and spleen structural integrity. In addition, phosphorus deficiency increased skin hemorrhage and lesions morbidity. Finally, based on the percent weight gain (PWG) and the ability to combat skin hemorrhage and lesions, the dietary available phosphorus requirements for young grass carp (254.56-898.23 g) were estimated to be 4.10 and 4.13 g/kg diet, respectively. In summary, phosphorus deficiency decreases the growth performance, and impairs immune function and structural integrity in the head kidney, spleen and skin of young grass carp.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
43
|
A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors. PLoS One 2017; 12:e0169888. [PMID: 28099509 PMCID: PMC5242466 DOI: 10.1371/journal.pone.0169888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 01/24/2023] Open
Abstract
The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas.
Collapse
|
44
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 58:177-192. [PMID: 27640333 DOI: 10.1016/j.fsi.2016.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
45
|
Sukumaran V, Park SC, Giri SS. Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. FISH & SHELLFISH IMMUNOLOGY 2016; 57:362-370. [PMID: 27574828 DOI: 10.1016/j.fsi.2016.08.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 05/12/2023]
Abstract
This study evaluated the effects of ginger (Zingiber officinale) as a feeding supplement on the growth, skin mucus immune parameters, and cytokine-related gene expression of Labeo rohita, and its susceptibility to Aeromonas hydrophila infection. Diets containing six different concentrations of dried ginger (0% [basal diet], 0.2% [G2], 0.4% [G4], 0.6% [G6], 0.8% [G8], and 1.0% [G10] were fed to fish (average weight: 12.3 g) for 60 days. Growth parameters were examined at 30 and 60 days post-feeding. Skin mucosal immune responses and gene expression were examined 60 days post-feeding. Results showed that growth parameters such as final weight gain (93.47 ± 1.73 g) and specific growth rate (3.41 ± 0.14) were significantly higher in G8 than in the control. Among the skin mucosal immune parameters examined, lysozyme (46.5 ± 3.8 U mg(-1)), immunoglobulin level (8.9 ± 0.4 unit-mg mL(-1)), protein level (44.3 ± 2.2 mg mL(-1)) were significantly higher in G8. However, alkaline phosphatase activity (171.6 ± 10.2 IU L(-1)) was high (P < 0.05) in the G10 group. Skin mucus of G8 exhibited significantly higher inhibition zones when tested against pathogenic bacterial strains. For cytokine-related genes, anti-oxidant genes (zinc/copper superoxide dismutase [SOD1], glutathione peroxidase [GPx], anti-inflammatory cytokines (interleukin-10 [IL-10], transforming growth factor-beta [TGF-β]), signalling molecules nuclear factor erythroid 2-related factor 2 [Nrf2], and Inhibitor protein κBα [IκB-α]) were all up-regulated in the head kidney, intestine, and hepatopancreas of fish that were fed experimental diets. In addition, expression abundance was significantly higher in most tissues in G2 and/or G10, than in the control. Conversely, expression of genes encoding pro-inflammatory cytokines (IL-1β, tumour necrosis factor-alpha [TNF-α]), signalling molecules Kelch-like-ECH-associated protein 1 (Keap1), and nuclear factor kappa B p65 (NF-κBp65) were down-regulated in treatment groups. Moreover, fish fed a 0.8% [G8] ginger supplemented diet exhibited significantly higher relative post-challenge survival (65.52%) against Aeromonas hydrophila infection. Collectively, these results suggest that dietary supplements of ginger (at 0.8%) can promote growth performance, skin mucus immune parameters, and strengthen immunity of L. rohita. Therefore, ginger represents a promising food additive for carps in aquaculture.
Collapse
Affiliation(s)
- Venkatachalam Sukumaran
- Dept. of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151742, South Korea.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151742, South Korea.
| |
Collapse
|
46
|
Pan FY, Feng L, Jiang WD, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue enhanced fish immunity via modulation of NF-κB, TOR, MLCK, MAPKs and Nrf2 signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 56:208-228. [PMID: 27422756 DOI: 10.1016/j.fsi.2016.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Our study investigated the effect of dietary methionine hydroxy analogue (MHA) on growth and immunity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (259.70 ± 0.47 g) were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1 in the immune organs (P < 0.05), suggesting that MHA could enhance antimicrobial ability of fish. Meanwhile, optimal MHA enhanced the immune function of immune organs via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < 0.05). In addition, optimal MHA improved cellular structure integrity of immune organs via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < 0.05). Simultaneously, optimal MHA improved cellular structure integrity of immune organs via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < 0.05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase mRNA levels (P < 0.05). In conclusion, MHA exerted a positive effect on the immune function and structural integrity of immune organs in fish. Furthermore, according to the positive effect, MHA was superior to DLM in grass carp. However, based on the growth performance, the efficacy of MHA relative to DLM was 97%. Finally, on the premise of the basal diet containing 4.01 g/kg methionine, the optimal MHA supplementation levels based on feed intake, PWG, defense against skin hemorrhage and lesion, LZ and ACP activities, IgM content, against malondialdehyde, protein carbonyl and ROS in the head kidney of young grass carp were 5.07, 5.21, 5.76, 5.90, 5.88, 5.80, 6.22, 5.68 and 6.85 g/kg diet, respectively.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
47
|
Ni PJ, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Dietary low or excess levels of lipids reduced growth performance, and impaired immune function and structure of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella) under the infection of Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2016; 55:28-47. [PMID: 27157598 DOI: 10.1016/j.fsi.2016.03.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Our study explored the effect of dietary lipids on growth and immunity and structure (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp with an average initial weight of 261.41 ± 0.53 g were fed diets containing six graded levels of lipids at 5.9-80.1 g/kg diet for 8 weeks. After that, a challenge trial was conducted by injection of Aeromonas hydrophila over 2 weeks. The results indicated that compared with optimal lipids supplementation, low and excess levels of lipids down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and ribosomal p70S6 kinase (S6K1), and up-regulated pro-inflammatory cytokines, nuclear factor κB p65 (NF-κB p65), NF-κB c-Rel (not p52), IκB kinase α (IKKα), IKKβ, IKKγ, and eIF4E-binding protein (4EBP) mRNA levels in the head kidney and spleen of young grass carp (P < 0.05). Low or excess levels of lipids also increased reactive oxygen species (ROS) production and malondialdehyde (MDA) and protein carbonyl (PC) contents, reduced the activities of antioxidant enzymes (P < 0.05), down-regulate the relative mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2), and up-regulated the expression levels of Kelch-like ECH-associating protein 1a (Keap1a) and Keap1b in the head kidney and spleen. In addition, low or excess levels of lipids down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis protein (IAP) in the head kidney and spleen, whereas up-regulated the mRNA levels of apoptotic protease activating factor-1 (Apaf-1), caspase 3, 7, 8 and 9 mRNA levels in the head kidney and spleen and Fas ligand (FasL) mRNA levels in the spleen of young grass carp, suggesting that low or excess levels of lipids could decrease the head kidney and spleen immune function, induce oxidative damage and apoptosis and impair antioxidant system of young grass carp. At last, low or excess levels of lipids also impaired the immune function and structure in the skin of young grass carp. Based on the quadratic regression analysis for PWG, skin haemorrhage and lesions morbidity and IgM content, the dietary lipids requirements for young grass carp were estimated to be 43.7, 60.2, 55.0 and 52.1 g/kg diet, respectively.
Collapse
Affiliation(s)
- Pei-Jun Ni
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
48
|
Xu J, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:64-87. [PMID: 27211261 DOI: 10.1016/j.fsi.2016.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary proteins on the growth, disease resistance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila and mortalities were recorded for 14 days. The results indicated that optimal dietary protein levels: increased the production of antibacterial components, up-regulated anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, c-Rel, IκB kinase β, IκB kinase γ and eIF4E-binding proteins 2 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that optimal dietary protein level could enhance fish intestinal immune barrier function; up-regulated the mRNA levels of tight junction complexes, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and NF-E2-related factor 2, and increased the activities and mRNA levels of antioxidant enzymes, whereas down-regulated myosin light chain kinase, cysteinyl aspartic acid-protease 2, 3, 7, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, p38 mitogen-activated protein kinase, c-Jun N-terminal protein kinase and Kelch-like-ECH-associated protein 1b mRNA levels, and decreased reactive oxygen species, malondialdehyde and protein carbonyl contents in three intestinal segments of young grass carp (P < 0.05), indicating that optimal dietary protein level could improve fish intestinal physical barrier function. Finally, the optimal dietary protein levels for the growth performance (PWG) and against enteritis morbidity of young grass carp were estimated to be 286.82 g kg(-1) diet (250.66 g digestible protein kg(-1) diet) and 292.10 g kg(-1) diet (255.47 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
49
|
Liu S, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zeng YY, Xu SD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:88-105. [PMID: 27164217 DOI: 10.1016/j.fsi.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P < 0.05), improved the activities of anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR), glutathione content, and the activities and mRNA levels of antioxidant enzymes (copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase) (P < 0.05), up-regulated signaling molecule NF-E2-related factor 2 (Nrf2) (P < 0.05), down-regulated signaling molecules (Kelch-like-ECH-associated protein 1a, Kelch-like-ECH-associated protein 1b) (P < 0.05) in the intestine of young grass carp. Furthermore, optimal exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P < 0.05), down-regulated the mRNA levels of tight junction proteins (Claudin 12 and Claudin 15a) (P < 0.05), down-regulated signaling molecules myosin light chain kinase (P < 0.05) in the intestine of young grass carp. In conclusion, dietary lipid could partially spare protein, and the low-protein and high-lipid diet could improve growth, intestinal growth and function, immune response and antioxidant capability of fish. Meanwhile, in high-fat and low-protein diets, optimal exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet.
Collapse
Affiliation(s)
- Sen Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-De Xu
- Guangdong Vtr Bio-tech Co., Ltd., Zhuhai 519060, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
50
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 52:111-138. [PMID: 26944716 DOI: 10.1016/j.fsi.2016.02.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary vitamin C on the growth, and head kidney, spleen and skin immunity, structural integrity and related signaling molecules mRNA expression levels of young grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.37 ± 0.66 g) were fed six diets with graded levels of vitamin C (2.9, 44.2, 89.1, 133.8, 179.4 and 224.5 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila and the survival rate recorded for 14 days. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 and complement 4 (C4) contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides [liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin] and anti-inflammatory cytokines-related factors, interleukin (IL) 4/13A, IL-4/13B (only in head kidney), IL-10, IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBα and eIF4E-binding protein 1 (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors, tumor necrosis factor α, interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35 (only in spleen), IL-12 P40, IL-15, IL-17D, nuclear factor κB p65, IκB kinases (IKKα, IKKβ, IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen immunity and cause inflammation. Meanwhile, compared with optimal vitamin C supplementation, vitamin C deficiency decreased the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase (P < 0.05), and down-regulated zonula occludens (ZO) 1, ZO-2, Claudin-b, -c, -3c, -7a, -7b, B-cell lymphoma-2, inhibitor of apoptosis protein, NF-E2-related factor 2 mRNA levels (P < 0.05), increased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl contents (P < 0.05), and up-regulated Claudin-12, 15a, -15b, Fas ligand, mitogen-activated protein kinase kinase 6, p38 mitogen-activated protein kinase, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1, caspase-3, -7, -8, -9, Kelch-like ECH-associating protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen structural integrity through depression of antioxidative ability, induction of apoptosis and disruption of tight junctional complexes. In addition, except the activities of ACP and MnSOD, and mRNA expression levels of TGF-β1, Occludin and MnSOD, the effect of vitamin C on fish head kidney, spleen and skin immunity and structural integrity other indicators model are similar under infection of A. hydrophila. Finally, the vitamin C requirement for the growth performance (PWG) of young grass carp was estimated to be 92.8 mg/kg diet. Meanwhile, the vitamin C requirement for against skin lesion morbidity of young grass carp was estimated to be 122.9 mg/kg diet. In addition, based on the biochemical indices [immune indices (LA activity in the head kidney and C4 content in the spleen) and antioxidant indices (MDA content in the head kidney and ROS content in the spleen)] the vitamin C requirements for young grass carp were estimated to be 131.2, 137.5, 135.8 and 129.8 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|