1
|
Zhang S, Lan X, Lei L. LINC01559: roles, mechanisms, and clinical implications in human cancers. Hum Cell 2025; 38:83. [PMID: 40205068 DOI: 10.1007/s13577-025-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Long intergenic non-protein coding RNA 1559 (LINC01559), a long non-coding RNA (lncRNA) located on chromosome 12p13.1, plays a critical role in the progression of various cancers. The aberrant expression of LINC01559 significantly impacts multiple biological processes in tumor cells, including cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis, and cellular stemness. Notably, the expression levels of LINC01559 correlate with the pathological features and prognosis of several cancers, such as pancreatic, breast, and gastric cancers, and it may serve as a diagnostic marker for non-small cell lung cancer. Moreover, the expression of LINC01559 is regulated by various mechanisms and can influence cancer initiation and progression through a competing endogenous RNA (ceRNA) network, where it interacts with a cohort of eight different microRNAs (miRNAs). Additionally, LINC01559 may directly interact with downstream proteins, thereby promoting their functions or enhancing their stability. LINC01559 is also implicated in key signaling pathways associated with cancer development, including the PI3 K/AKT, RAS, and autophagy signaling pathways. Furthermore, it has been linked to drug resistance in breast cancer and hepatocellular carcinoma. This review provides a comprehensive assessment of the clinical implications of dysregulated LINC01559 expression across various cancer types, highlighting its crucial functions and underlying molecular mechanisms in tumorigenesis. Additionally, we present in-depth discussions and propose hypotheses regarding the functional roles of LINC01559 in cancer pathogenesis, while outlining potential research avenues for future exploration of this molecular target.
Collapse
Affiliation(s)
- Shuwen Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Xin Lan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Ling Lei
- Prevention and Treatment Center, Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
2
|
Song Y, Hu L, Cheng J, Li Z, Zheng J. LncRNA SNHG5 induces CAFs-like phenotype and autophagy of AML-MSCs via PTBP1/ATG5 axis to confer chemoresistance of AML cells. Cell Signal 2025; 128:111625. [PMID: 39864537 DOI: 10.1016/j.cellsig.2025.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is still a threaten to human health due to its high occurrence and poor prognosis. Mesenchymal stem cells (MSCs) in bone marrow microenvironment (BMM) play a critical role in the development of AML. This study elucidated the interaction between MSCs and AML cells and its underlying mechanism. METHOD MSCs were isolated, identified, and co-cultured with AML cells. qRT-PCR, Western blotting and immunofluorescence were used to determine molecule expression. Cell viability and apoptosis were determined by CCK-8 and flow cytometry. Exosomes were isolated and characterized, and PKH26 was used for monitoring exosome internalization. RNA-FISH was used to determine the localization of SNHG5. RIP, RNA-pull down and ChIP assays were used to evaluate the molecular interaction. RESULTS SNHG5 expression was up-regulated and positively correlated with cancer-associated fibroblasts (CAFs)-related biomarkers in AML-MSCs. AML cells-derived exosomes delivered SNHG5 to enhance its expression in MSCs. SNHG5 overexpression induced CAFs-like phenotype and autophagy in HD-MSCs that led to daunorubicin resistance of AML cells. Mechanistically, SNHG5 stabilized autophagy related 5 (ATG5) mRNA by interaction with polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSION AML cells-derived exosomal lncRNA SNHG5 triggered CAFs-like phenotype and autophagy of AML-MSCs via interaction with PTBP1 to increase ATG5 mRNA stability, thereby leading to chemoresistance of AML cells.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Drug Resistance, Neoplasm/genetics
- Autophagy/genetics
- Autophagy-Related Protein 5/metabolism
- Autophagy-Related Protein 5/genetics
- Polypyrimidine Tract-Binding Protein/metabolism
- Polypyrimidine Tract-Binding Protein/genetics
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Exosomes/metabolism
- Cell Line, Tumor
- Phenotype
- Apoptosis
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Lili Hu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
3
|
Hassan FU, Safdar M, Younus M, Arain MA. Regulation of energy metabolism by non-coding RNAs in livestock species: a review. J Comp Physiol B 2025; 195:1-12. [PMID: 39638953 DOI: 10.1007/s00360-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan.
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Younus
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Water and Marine Sciences, Lasbela University of Agriculture, Uthal, 90150, Balochistan, Pakistan
| |
Collapse
|
4
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2025; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
5
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
6
|
Ismail M, Fadul MM, Taha R, Siddig O, Elhafiz M, Yousef BA, Jiang Z, Zhang L, Sun L. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int 2024; 18:1715-1730. [PMID: 39306594 DOI: 10.1007/s12072-024-10722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.
Collapse
Affiliation(s)
- Mohammed Ismail
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Missaa M Fadul
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhanad Elhafiz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Zolfaghari Dehkharghani M, Mousavi S, Kianifard N, Fazlzadeh A, Parsa H, Tavakoli Pirzaman A, Fazlollahpour-Naghibi A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction. IJC HEART & VASCULATURE 2024; 55:101529. [PMID: 39498345 PMCID: PMC11532444 DOI: 10.1016/j.ijcha.2024.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Myocardial infarction (MI), a major global cause of mortality and morbidity, continues to pose a significant burden on public health. Despite advances in understanding its pathogenesis, there remains a need to elucidate the intricate molecular mechanisms underlying MI progression. Long non-coding RNAs (lncRNAs) have emerged as key regulators in diverse biological processes, yet their specific roles in MI pathophysiology remain elusive. Conducting a thorough review of literature using PubMed and Google Scholar databases, we investigated the involvement of lncRNAs in MI, focusing on their regulatory functions and downstream signaling pathways. Our analysis revealed extensive dysregulation of lncRNAs in MI, impacting various biological processes through diverse mechanisms. Notably, lncRNAs act as crucial modulators of gene expression and signaling cascades, functioning as decoys, regulators, and scaffolds. Furthermore, studies identified the multifaceted roles of lncRNAs in modulating inflammation, apoptosis, autophagy, necrosis, fibrosis, remodeling, and ischemia-reperfusion injury during MI progression. Recent research highlights the pivotal contribution of lncRNAs to MI pathogenesis, offering novel insights into potential therapeutic interventions. Moreover, the identification of circulating lncRNA signatures holds promise for the development of non-invasive diagnostic biomarkers. In summary, findings underscore the significance of lncRNAs in MI pathophysiology, emphasizing their potential as therapeutic targets and diagnostic tools for improved patient management and outcomes.
Collapse
Affiliation(s)
| | - Safa Mousavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Kianifard
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Fazlzadeh
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Parsa
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
8
|
Ling H, Wang XC, Liu ZY, Mao S, Yang JJ, Sha JM, Tao H. Noncoding RNA network crosstalk in organ fibrosis. Cell Signal 2024; 124:111430. [PMID: 39312989 DOI: 10.1016/j.cellsig.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen. parenchymal organs, including heart, liver, kidney, and spleen, play important roles in the development of fibrosis. These findings elucidate the intricate involvement of the lncRNA/circRNA-miRNA-mRNA axis in the pathophysiological processes underpinning organ fibrosis, thereby enhancing our comprehension of the onset and progression of this condition. Furthermore, they introduce novel potential therapeutic targets within the realm of ncRNA-based therapeutics, offering avenues for the development of innovative drugs aimed at mitigating or reversing the effects of organ fibrosis.
Collapse
Affiliation(s)
- Hui Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
9
|
Doghish AS, Abd-Elmawla MA, Hatawsh A, Zaki MB, Aborehab NM, Radwan AF, Moussa R, Eisa MA, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Elimam H. Unraveling the role of LncRNAs in glioblastoma progression: insights into signaling pathways and therapeutic potential. Metab Brain Dis 2024; 40:42. [PMID: 39589598 DOI: 10.1007/s11011-024-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of brain cancer, characterized by its poor prognosis and low survival rate despite current treatment modalities. Because GBM is lethal, clarifying the pathogenesis's underlying mechanisms is important, which are still poorly understood. Recent discoveries in the fields of molecular genetics and cancer biology have demonstrated the critical role that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play in the molecular pathophysiology of GBM growth. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. They are significant epigenetic modulators that control gene e expression at several levels. Their dysregulation and interactions with important signaling pathways play a major role in the malignancy and development of GBM. The increasing role of lncRNAs in GBM pathogenesis is thoroughly examined in this review, with particular attention given to their regulation mechanisms in key signaling pathways such as PI3K/AKT, Wnt/β-catenin, and p53. It also looks into lncRNAs' potential as new biomarkers and treatment targets for GBM. In addition, the study discusses the difficulties in delivering lncRNA-based medicines across the blood-brain barrier and identifies areas that need more research to advance lncRNA-oriented treatments for this deadly cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
10
|
Fang K, Xu H, Yuan S, Li X, Chen X, Fan X, Gao X, Zhang L, Sun S, Zhu X. LncRNA mediated metabolic reprogramming: the chief culprits of solid tumor malignant progression: an update review. Nutr Metab (Lond) 2024; 21:89. [PMID: 39516895 PMCID: PMC11549785 DOI: 10.1186/s12986-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism reprogramming (MR) is one of the top ten hallmarks of malignant tumors. The aberrant activation of MR has been recognized as a critical contributory factor to the malignant progression of solid tumors. Moreover, various long non-coding RNAs (lncRNAs) are implicated in the aberrant activation of MR in solid tumor cells. Therefore, in this review, we mainly focus on summarizing the functional relevance and molecular mechanistic underpinnings of lncRNAs in modulating MR of solid tumors by targeting glucose metabolism, lipid metabolism, affecting mitochondrial function, and regulating interactions between tumor and non-tumor cells in tumor microenvironment. Besides, we also underscore the potential for constructing lncRNAs-centered tumor metabolic regulation networks and developing novel anti-tumor strategies by targeting lncRNAs and abnormal MR. Ultimately, this review seeks to offer new targets and avenues for the clinical treatment of solid tumors in the future.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoyu Chen
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiushi Fan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Lu Zhang
- Department of Human Resources, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Li Y, Zhou M, Yang L, Liu S, Yang L, Xu B, Li X, Zhao H, Song Z. LncRNA DDX11-AS1 promotes breast cancer progression by targeting the miR-30c-5p/MTDH axis. Sci Rep 2024; 14:26745. [PMID: 39501057 PMCID: PMC11538490 DOI: 10.1038/s41598-024-78413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play a significant role in the occurrence and development of malignant tumours. However, ceRNAs, which are significantly associated with the prognosis of breast cancer (BC), need to be further investigated. Therefore, the current study aimed to investigate the effect of the lncRNA DDX11-AS1 on BC progression. Bioinformatics analysis via a public microarray revealed that DDX11-AS1 was upregulated in BC. The above findings were verified via RT‒qPCR analysis of BC tissues. Additionally, our study revealed that the expression levels of DDX11-AS1 increased with increasing pathological grade and lymph node metastasis. Furthermore, DDX11-AS1 knockdown markedly inhibited the proliferation, migration and invasion abilities of BC cells. Mechanistically, DDX11-AS1 could prevent the degradation of MTDH in BC via competitively binding with miR-30c-5p, which could act as a tumour promoter factor. Additionally, miR-30c-5p was downregulated and MTDH was upregulated in BC cells and tissues. The promoting effect of DDX11-AS1 on BC cells was enhanced by miR-30c-5p silencing and reduced by treatment with MTDH inhibitors. Collectively, the above results suggest that the DDX11-AS1/miR-30c-5p/MTDH axis could be associated with the progression of BC and that DDX11-AS1 could be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yanting Li
- Department of Breast Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Mengsi Zhou
- Department of Breast Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Liu Yang
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Shuo Liu
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, 054001, China
| | - Bin Xu
- Department of Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Xiaolong Li
- Department of Breast Surgery, the Fourth Hospital of Shijiazhuang, Shijiazhuang, 050035, China
| | - Haijun Zhao
- Department of Breast Surgery, the Fourth Hospital of Shijiazhuang, Shijiazhuang, 050035, China
| | - Zhenchuan Song
- Breast Center, Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050035, China.
| |
Collapse
|
12
|
Jia QH, Cao YZ, Xing YX, Guan HB, Ma CL, Li X, Tian WH, Li ZJ, Tian YD, Li GX, Jiang RR, Kang XT, Liu XJ, Li H. LncRNA lncLLM Facilitates Lipid Deposition by Promoting the Ubiquitination of MYH9 in Chicken LMH Cells. Int J Mol Sci 2024; 25:10316. [PMID: 39408647 PMCID: PMC11477197 DOI: 10.3390/ijms251910316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The liver plays an important role in regulating lipid metabolism in animals. This study investigated the function and mechanism of lncLLM in liver lipid metabolism in hens at the peak of egg production. The effect of lncLLM on intracellular lipid content in LMH cells was evaluated by qPCR, Oil Red O staining, and detection of triglyceride (TG) and cholesterol (TC) content. The interaction between lncLLM and MYH9 was confirmed by RNA purification chromatin fractionation (CHIRP) and RNA immunoprecipitation (RIP) analysis. The results showed that lncLLM increased the intracellular content of TG and TC and promoted the expression of genes related to lipid synthesis. It was further found that lncLLM had a negative regulatory effect on the expression level of MYH9 protein in LMH cells. The intracellular TG and TC content of MYH9 knockdown cells increased, and the expression of genes related to lipid decomposition was significantly reduced. In addition, this study confirmed that the role of lncLLM is at least partly through mediating the ubiquitination of MYH9 protein to accelerate the degradation of MYH9 protein. This discovery provides a new molecular target for improving egg-laying performance in hens and treating fatty liver disease in humans.
Collapse
Affiliation(s)
- Qi-Hui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Yu-Zhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Yu-Xin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Hong-Bo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Cheng-Lin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Wei-Hua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Ya-Dong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Rui-Rui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiang-Tao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiao-Jun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
13
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
14
|
Sahu S, Rao AR, Saxena S, Gupta P, Gaikwad K. Systematic profiling and analysis of growth and development responsive DE-lncRNAs in cluster bean (Cyamopsis tetragonoloba). Int J Biol Macromol 2024; 280:135821. [PMID: 39306152 DOI: 10.1016/j.ijbiomac.2024.135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial role in regulating genes involved in various processes including growth & development, flowering, and stress response in plants. The study aims to identify and characterize tissue-specific, growth & development and floral responsive differentially expressed lncRNAs (DE-lncRNAs) in cluster bean from a high-throughput RNA sequencing data. We have identified 3309 DE-lncRNAs, with an average length of 818 bp. Merely, around 4 % of DE-lncRNAs across the tissues were found to be conserved as rate of evolution of lncRNAs is high. Among the identified DE-lncRNAs, 204 were common in leaf vs. shoot, leaf vs. flower and flower vs. shoot. A total of 60 DE-lncRNAs targeted 10 protein-coding genes involved in flower development and initiation processes. We investigated 179 tissue-specific DE-lncRNAs based on tissue specificity index. Three DE-lncRNAs: Cb_lnc_0820, Cb_lnc_0430, Cb_lnc_0260 and their target genes show their involvement in floral development and stress mechanisms, which were validated by Quantitative real-time PCR (qRT-PCR). The identified DE-lncRNAs were expressed higher in flower bud than in leaf and similar expression pattern was observed in both RNA-seq data and qRT-PCR analyses. Notably, 362 DE-lncRNAs were predicted as eTM-lncRNAs with the participation of 84 miRNAs. Whereas 46 DE-lncRNAs were predicted to possess the internal ribosomal entry sites (IRES) and can encode for small peptides. The regulatory networks established between DE-lncRNAs, mRNAs and miRNAs have provided an insight into their association with plant growth & development, flowering, and stress mechanisms. Comprehensively, the characterization of DE-lncRNAs in various tissues of cluster bean shed a light on interactions among lncRNAs, miRNAs and mRNAs and help understand their involvement in growth & development and floral initiation processes. The information retrieved from the analyses was shared in the public domain in the form of a database: Cb-DElncRNAdb, and made available at http://backlin.cabgrid.res.in/Cb-DElncRNA/index.php, which may be useful for the scientific community engaged cluster bean research.
Collapse
Affiliation(s)
- Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | | | - Swati Saxena
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Palak Gupta
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
15
|
Huang K, Yu L, Lu D, Zhu Z, Shu M, Ma Z. Long non-coding RNAs in ferroptosis, pyroptosis and necroptosis: from functions to clinical implications in cancer therapy. Front Oncol 2024; 14:1437698. [PMID: 39267831 PMCID: PMC11390357 DOI: 10.3389/fonc.2024.1437698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Li Yu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Dingci Lu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Zhu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Min Shu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
16
|
Kang Z, Wang C, Shao F, Deng H, Sun Y, Ren Z, Zhang W, Ding Z, Zhang J, Zang Y. The increase of long noncoding RNA Fendrr in hepatocytes contributes to liver fibrosis by promoting IL-6 production. J Biol Chem 2024; 300:107376. [PMID: 38762176 PMCID: PMC11190708 DOI: 10.1016/j.jbc.2024.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Liver fibrosis/cirrhosis is a pathological state caused by excessive extracellular matrix deposition. Sustained activation of hepatic stellate cells (HSC) is the predominant cause of liver fibrosis, but the detailed mechanism is far from clear. In this study, we found that long noncoding RNA Fendrr is exclusively increased in hepatocytes in the murine model of CCl4- and bile duct ligation-induced liver fibrosis, as well as in the biopsies of liver cirrhosis patients. In vivo, ectopic expression of Fendrr aggravated the severity of CCl4-induced liver fibrosis in mice. In contrast, inhibiting Fendrr blockaded the activation of HSC and ameliorated CCl4-induced liver fibrosis. Our mechanistic study showed that Fendrr binds to STAT2 and enhances its enrichment in the nucleus, which then promote the expression of interleukin 6 (IL-6), and, ultimately, activates HSC in a paracrine manner. Accordingly, disrupting the interaction between Fendrr and STAT2 by ectopic expression of a STAT2 mutant attenuated the profibrotic response inspired by Fendrr in the CCl4-induced liver fibrosis. Notably, the increase of Fendrr in patient fibrotic liver is positively correlated with the severity of fibrosis and the expression of IL-6. Meanwhile, hepatic IL-6 positively correlates with the extent of liver fibrosis and HSC activation as well, thus suggesting a causative role of Fendrr in HSC activation and liver fibrosis. In conclusion, these observations identify an important regulatory cross talk between hepatocyte Fendrr and HSC activation in the progression of liver fibrosis, which might represent a potential strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Chenqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hao Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China; State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, PR China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
17
|
Lu R, Zhu J, Li X, Zeng C, Huang Y, Peng C, Zhou Y, Xue Q. ERβ-activated LINC01018 promotes endometriosis development by regulating the CDC25C/CDK1/CyclinB1 pathway. J Genet Genomics 2024; 51:617-629. [PMID: 38224945 DOI: 10.1016/j.jgg.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Endometriosis refers to as an estrogen-dependent disease. Estrogen receptor β (ERβ), the main estrogen receptor subtype which is encoded by the estrogen receptor 2 (ESR2) gene, can mediate the action of estrogen in endometriosis. Although selective estrogen receptor modulators can target the ERβ, they are not specific due to the wide distribution of ERβ. Recently, long noncoding RNAs have been implicated in endometriosis. Therefore, we aim to explore and validate the downstream regulatory mechanism of ERβ, and to investigate the potential role of long intergenic noncoding RNA 1018 (LINC01018) as a nonhormonal treatment for endometriosis. Our study demonstrates that the expression levels of ESR2 and LINC01018 are increased in ectopic endometrial tissues and reveals a significant positive correlation between the ESR2 and LINC01018 expression. Mechanistically, ERβ directly binds to an estrogen response element located in the LINC01018 promoter region and activates LINC01018 transcription. Functionally, ERβ can regulate the CDC25C/CDK1/CyclinB1 pathway and promote ectopic endometrial stromal cell proliferation via LINC01018 in vitro. Consistent with these findings, the knockdown of LINC01018 inhibits endometriotic lesion proliferation in vivo. In summary, our study demonstrates that the ERβ/LINC01018/CDC25C/CDK1/CyclinB1 signaling axis regulates endometriosis progression.
Collapse
Affiliation(s)
- Ruihui Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
18
|
Doghish AS, Radwan AF, Zaki MB, Elfar N, Moussa R, Walash Z, Alhamshry NAA, Mohammed OA, Abdel-Reheim MA, Elimam H. Decoding the role of long non-coding RNAs in gallbladder cancer pathogenesis: A review focus on signaling pathways interplay. Int J Biol Macromol 2024; 264:130426. [PMID: 38428766 DOI: 10.1016/j.ijbiomac.2024.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital 11578, Cairo, Egypt; Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Zahraa Walash
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
19
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
20
|
Kar S, Mukherjee R, Guha S, Talukdar D, Das G, Murmu N. Modulating the acetylation of α-tubulin by LncRNAs and microRNAs helps in the progression of cancer. Cell Biochem Funct 2024; 42:e3953. [PMID: 38414166 DOI: 10.1002/cbf.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Malignant tumor cells go through morphological and gene expression alterations, including rearrangement of cytoskeleton proteins that promote invasion and metastasis. Microtubules form a major cytoskeleton component that plays a significant role in regulating multiple cellular activities and function depending on the presence of posttranslational modification (PTM). Acetylation is a type of PTM that generally occurs in the lysine 40 region of α-tubulin and is known to be critically associated with cancer metastasis. Current evidence demonstrates that noncoding RNAs, such as long noncoding RNA (lncRNA) and microRNA (or miRNA), which are correlated with gene regulation modulate the expression of acetylated tubulin in the development and metastasis of cancer. This review provides an overview about the role of lncRNA and miRNA in regulation of tubulin acetylation in various types of cancer.
Collapse
Affiliation(s)
- Sneha Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
21
|
Sanchez-Lopez JM, Juarez-Mancera MA, Bustamante B, Ruiz-Silvestre A, Espinosa M, Mendoza-Almanza G, Ceballos-Cancino G, Melendez-Zajgla J, Maldonado V, Lizarraga F. Decoding LINC00052 role in breast cancer by bioinformatic and experimental analyses. RNA Biol 2024; 21:1-11. [PMID: 38832821 PMCID: PMC11152094 DOI: 10.1080/15476286.2024.2355393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.
Collapse
Affiliation(s)
- Jose Manuel Sanchez-Lopez
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | | | - Benjamin Bustamante
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Araceli Ruiz-Silvestre
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Magali Espinosa
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Gretel Mendoza-Almanza
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Gisela Ceballos-Cancino
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Vilma Maldonado
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Floria Lizarraga
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| |
Collapse
|
22
|
Martinez-Castillo M, M. Elsayed A, López-Berestein G, Amero P, Rodríguez-Aguayo C. An Overview of the Immune Modulatory Properties of Long Non-Coding RNAs and Their Potential Use as Therapeutic Targets in Cancer. Noncoding RNA 2023; 9:70. [PMID: 37987366 PMCID: PMC10660772 DOI: 10.3390/ncrna9060070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivotal roles in regulating immune responses, immune cell differentiation, activation, and inflammatory processes. In cancer, they are gaining prominence as potential therapeutic targets due to their ability to regulate immune checkpoint molecules and immune-related factors, suggesting avenues for bolstering anti-tumor immune responses. Here, we explore the mechanistic insights into lncRNA-mediated immune modulation, highlighting their impact on immunity. Additionally, we discuss their potential to enhance cancer immunotherapy, augmenting the effectiveness of immune checkpoint inhibitors and adoptive T cell therapies. LncRNAs as therapeutic targets hold the promise of revolutionizing cancer treatments, inspiring further research in this field with substantial clinical implications.
Collapse
Affiliation(s)
- Moises Martinez-Castillo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 06726, Mexico
| | - Abdelrahman M. Elsayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gabriel López-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
| | - Cristian Rodríguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
23
|
Tang T, Jiang G, Shao J, Wang M, Zhang X, Xia S, Sun W, Jia X, Wang J, Lai S. lncRNA MSTRG4710 Promotes the Proliferation and Differentiation of Preadipocytes through miR-29b-3p/IGF1 Axis. Int J Mol Sci 2023; 24:15715. [PMID: 37958699 PMCID: PMC10649235 DOI: 10.3390/ijms242115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity, a major global health issue, is increasingly associated with the integral role of long non-coding RNA (lncRNA) in adipogenesis. Recently, we found that lncRNA-MSTRG4710 was highly expressed in the liver of rabbits fed a high-fat diet, but whether it is involved in lipid metabolism remains unclear. A series of experiments involving CCK-8, EDU, qPCR, and Oil Red O staining demonstrated that the overexpression of MSTRG4710 stimulated the proliferation and differentiation of preadipocytes while its knockdown inhibited these processes. Bioinformatics analysis showed that miR-29b-3p was a potential target gene of MSTRG4710, and IGF1 was a downstream target gene of miR-29b-3p. Luciferase reporter gene analysis and qPCR analysis confirmed that miR-29b-3p was a potential target gene of MSTRG4710, and miR-29b-3p directly targeted the 3'UTR of IGF1. The overexpression of miR-29b-3p was observed to regulate IGF1 protein and mRNA levels negatively. Additionally, a total of 414 known differentially expressed genes between the miR-29b-3p mimic, miR-29b-3p negative control (NC), siMSTRG4710, and siMSTRG4710-NC group were screened via transcriptome sequencing technology. The GO- and KEGG-enriched pathways were found to be related to lipid metabolism. The study also established that miR-29b-3p targets IGF1 to inhibit preadipocyte proliferation and differentiation. Notably, IGF1 knockdown significantly reduced preadipocyte proliferation and differentiation. Furthermore, co-transfection of pcDNA3.1(+)-MSTRG4710 and mimics into rabbit preadipocytes revealed that the mimics reversed the promotional effect of pcDNA3.1(+)-MSTRG4710. In conclusion, these results uncover that MSTRG4710 positively regulated cell proliferation and adipogenesis by the miR-29b-3p/IGF1 axis. Our findings might provide a new target for studying adipogenesis in rabbit preadipocytes and obesity.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxiao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| |
Collapse
|
24
|
Cui Y, Shi B, Zhou Z, Chen B, Zhang X, Li C, Luo K, Zhu Z, Zheng J, He X. LncRNA CFRL aggravates cardiac fibrosis by modulating both miR-3113-5p/CTGF and miR-3473d/FN1 axis. iScience 2023; 26:108039. [PMID: 37954142 PMCID: PMC10638480 DOI: 10.1016/j.isci.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 11/14/2023] Open
Abstract
Cardiac fibrosis is a major type of adverse remodeling, predisposing the disease progression to ultimate heart failure. However, the complexity of pathogenesis has hampered the development of therapies. One of the key mechanisms of cardiac diseases has recently been identified as long non-coding RNA (lncRNA) dysregulation. Through in vitro and in vivo studies, we identified an lncRNA NONMMUT067673.2, which is named as a cardiac fibrosis related lncRNA (CFRL). CFRL was significantly increased in both mouse model and cell model of cardiac fibrosis. In vitro, CFRL was proved to promote the proliferation and migration of cardiac fibroblasts by competitively binding miR-3113-5p and miR-3473d and indirectly up-regulating both CTGF and FN1. In vivo, silencing CFRL significantly mitigated cardiac fibrosis and improved left ventricular function. In short, CFRL may exert an essential role in cardiac fibrosis and interfering with CFRL might be considered as a multitarget strategy for cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yue Cui
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zijie Zhou
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bo Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
25
|
Han X, Guo B, Zhao S, Li Y, Zhu J, He Y, Wang J, Yao Q, Shao S, Zheng L, Shi Z, Han T, Hong W, Zhang K. lncRNA Helf promotes hepatic inflammation and fibrosis by interacting with PTBP1 to facilitate PIK3R5 mRNA stabilization. Cell Mol Biol Lett 2023; 28:77. [PMID: 37805473 PMCID: PMC10560431 DOI: 10.1186/s11658-023-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a common consequence of chronic liver diseases without approved antifibrotic therapies. Long noncoding RNAs (lncRNAs) play an important role in various pathophysiological processes. However, the functions of certain lncRNAs involved in mediating the antifibrotic role remain largely unclear. METHODS The RNA level of lnc-High Expressed in Liver Fibrosis (Helf) was detected in both mouse and human fibrotic livers. Furthermore, lnc-Helf-silenced mice were treated with carbon tetrachloride (CCl4) or bile duct ligation (BDL) to investigate the function of lnc-Helf in liver fibrosis. RESULTS We found that lnc-Helf has significantly higher expression in human and mouse fibrotic livers as well as M1 polarized hepatic macrophages (HMs) and activated hepatic stellate cells (HSCs). In vivo studies showed that silencing lnc-Helf by AAV8 vector alleviates CCl4- and BDL-induced hepatic inflammation and fibrosis. Furthermore, in vitro experiments revealed that lnc-Helf promotes HSCs activation and proliferation, as well as HMs M1 polarization and proliferation in the absence or presence of cytokine stimulation. Mechanistically, our data illustrated that lnc-Helf interacts with RNA binding protein PTBP1 to promote its interaction with PIK3R5 mRNA, resulting in increased stability and activating the AKT pathway, thus promoting HSCs and HMs activation and proliferation, which augments hepatic inflammation and fibrosis. CONCLUSION Our results unveil a lnc-Helf/PTBP1/PIK3R5/AKT feedforward, amplifying signaling that exacerbates the process of hepatic inflammation and fibrosis, thus providing a possible therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Beichen Guo
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Sicong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yehua Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Jing Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yifan He
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Jiajun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Shuai Shao
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center Affiliated to Nankai University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
26
|
Wu W, Zhu S, Wu Y, Dai L, Zhao J, Jiang Z. Long intergenic non-protein-coding RNA 1547 acts as a competing endogenous RNA and exerts cancer-promoting activity in non-small cell lung cancer by targeting the microRNA-195-5p/ homeobox C8 axis. Heliyon 2023; 9:e18015. [PMID: 37560663 PMCID: PMC10407678 DOI: 10.1016/j.heliyon.2023.e18015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Long intergenic non-protein coding RNA 1547 (LINC01547) presents a notable relationship with prognosis in patients with ovarian cancer. Herein, we examined the expression of LINC01547 in non-small cell lung cancer (NSCLC) to ascertain its clinical significance. We also explored the detailed functions of LINC01547 in regulating the aggressive phenotype of NSCLC and the molecular mechanism of action underlying its carcinogenic activities events in NSCLC. Furthermore, we applied the data acquired from the tissue specimens and the Cancer Genome Atlas (TCGA) database to analyze the level of LINC01547 in NSCLC and conducted functional assays to address the regulatory effect of LINC01547. Further, we examined the mechanistic interaction among LINC01547, microRNA-195-5p (miR-195-5p), and homeobox C8 (HOXC8) using bioinformatics prediction and luciferase reporter assay. LINC01547 was noticeably overexpressed, as affirmed by data from TCGA and our own cohort; moreover, poor prognosis was associated with increased LINC01547 levels in patients with NSCLC. LINC01547 regulates cell proliferation, colony-forming, migration, and invasion, and its absence produced tumor-repressing effects in NSCLC. Mechanistically, as a competitive endogenous RNA, LINC01547 decoyed miR-195-5p and consequently resulted in the overexpression of HOXC8 in NSCLC cells. Using rescue experiments, we found that the regulatory activities of LINC01547 deficient in repressing the malignant properties of NSCLC cells could be counteracted by hindering miR-195-5p or overexpressing HOXC8. Conclusively, LINC01547 serves as a crucial component to worsen the oncogenicity of NSCLC cells by controlling the miR-195-5p/HOXC8 axis. Thus, the newly identified competing endogenous RNA pathway may potentially be an attractive therapeutic for NSCLC management.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Siyu Zhu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
- Baiyun Lake Community Health Service Center of Baiyun District, Guangzhou 510450, China
| | - Yonghui Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
27
|
Zhang L, Zou J, Wang Z, Li L. A Subpathway and Target Gene Cluster-Based Approach Uncovers lncRNAs Associated with Human Primordial Follicle Activation. Int J Mol Sci 2023; 24:10525. [PMID: 37445702 DOI: 10.3390/ijms241310525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a critical regulator in controlling the expression level of genes involved in cell differentiation and development. Primordial follicle activation (PFA) is the first step for follicle maturation, and excessive PFA results in premature ovarian insufficiency (POI). However, the correlation between lncRNA and cell differentiation was largely unknown, especially during PFA. In this study, we observed the expression level of lncRNA was more specific than protein-coding genes in both follicles and granulosa cells, suggesting lncRNA might play a crucial role in follicle development. Hence, a systematical framework was needed to infer the functions of lncRNAs during PFA. Additionally, an increasing number of studies indicate that the subpathway is more precise in reflecting biological processes than the entire pathway. Given the complex expression patterns of lncRNA target genes, target genes were further clustered based on their expression similarity and classification performance to reveal the activated/inhibited gene modules, which intuitively illustrated the diversity of lncRNA regulation. Moreover, the knockdown of SBF2-AS1 in the A549 cell line and ZFAS1 in the SK-Hep1 cell line further validated the function of SBF2-AS1 in regulating the Hippo signaling subpathway and ZFAS1 in the cell cycle subpathway. Overall, our findings demonstrated the importance of subpathway analysis in uncovering the functions of lncRNAs during PFA, and paved new avenues for future lncRNA-associated research.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiyuan Zou
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
29
|
Verma S, Sahu BD, Mugale MN. Role of lncRNAs in hepatocellular carcinoma. Life Sci 2023; 325:121751. [PMID: 37169145 DOI: 10.1016/j.lfs.2023.121751] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bidhya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
He XY, Fan X, Qu L, Wang X, Jiang L, Sang LJ, Shi CY, Lin S, Yang JC, Yang ZZ, Lei K, Li JH, Ju HQ, Yan Q, Liu J, Wang F, Shao J, Xiong Y, Wang W, Lin A. LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism. Nat Commun 2023; 14:2253. [PMID: 37080959 PMCID: PMC10119135 DOI: 10.1038/s41467-023-37871-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.
Collapse
Affiliation(s)
- Xin-Yu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, 158 Guangchang Back Road, 313000, Huzhou, Zhejiang, P.R. China
| | - Li Jiang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling-Jie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cheng-Yu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Siyi Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jie-Cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zuo-Zhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jun-Hong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, Guangdong, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Liu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, 310002, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 314400, Haining, Zhejiang, China
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, 310000, Hangzhou, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Zhan T, Cheng X, Zhu Q, Han Z, Zhu K, Tan J, Liu M, Chen W, Chen X, Chen X, Tian X, Huang X. LncRNA LOC105369504 inhibits tumor proliferation and metastasis in colorectal cancer by regulating PSPC1. Cell Death Discov 2023; 9:89. [PMID: 36894530 PMCID: PMC9998613 DOI: 10.1038/s41420-023-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is growing evidence that long non-coding RNAs (lncRNAs) are significant contributors to the epigenetic mechanisms implicated in the emergence, progression and metastasis of the colorectal cancer (CRC), but many remain underexplored. A novel lncRNA LOC105369504, was identified to be a potential functional lncRNA by microarray analysis. In CRC, the expression of LOC105369504 was markedly decreased and resulted in distinct variations in proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in vivo and in vitro. This study showed that LOC105369504 bound to the protein of paraspeckles compound 1 (PSPC1) directly and regulated its stability using the ubiquitin-proteasome pathway in CRC cells. The suppression of CRC by LOC105369504 could be reversed through PSPC1 overexpression.This study showed that in CRC, LOC105369504 was under-regulated and as a novel lncRNA, LOC105369504 exerted tumor suppressive activity to suppress the proliferation together with metastasis in CRC cells through the regulation of PSPC1. These results offer new perspectives on the lncRNA effect on the progression of CRC.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Qingxi Zhu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Kejing Zhu
- Department of Pharmacy, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Men Liu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaohong Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| | - Xiaodong Huang
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| |
Collapse
|
32
|
Rashidmayvan M, Khorasanchi Z, Nattagh-Eshtivani E, Esfehani AJ, Sahebi R, Sharifan P, Assadiyan-Sohan P, Aghasizadeh M, Avan A, Ghayour-Mobarhan M, Ferns G. Association between Inflammatory Factors, Vitamin D, Long Non-Coding RNAs, MALAT1, and Adiponectin Antisense in Individuals with Metabolic Syndrome. Mol Nutr Food Res 2023; 67:e2200144. [PMID: 36317460 DOI: 10.1002/mnfr.202200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a common clustering of cardiovascular risk factors associated with increased inflammation. Long non-coding RNA (LncRNA) are involved in many of the body's metabolic activities, including inflammation. Vitamin D may play a vital role in preventing metabolic syndrome risk factors. This study aimed to evaluate the status of inflammation and expression of LncRNA and their relationship with serum vitamin D levels in patients with metabolic syndrome. METHOD This cross-sectional study included staff and Mashhad University of Medical Sciences students between 30 and 50 years old who met the International Diabetes Federation criteria for Mets. Total RNA was extracted from both frozen clinical samples using the Trizol reagent. RESULTS A total of eighty people were recruited into the two groups, with and without MetS. Inflammatory markers were higher in the individuals in the MetS group, and linear regression showed an inverse association between serum vitamin D and LncRNAs. There was a positive association between inflammatory biomarkers, lipid profiles and Adiponectin Antisense (APQ AS) expression. CONCLUSION APQ AS and MALAT1 levels are positively associated with inflammatory biomarkers and inverse relation between MALAT1 and serum 25 (OH) D concentration.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khorasanchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | | | - Reza Sahebi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Sharifan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Assadiyan-Sohan
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Aghasizadeh
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| |
Collapse
|
33
|
Zhang N, Cao W, He X, Xing Y, Yang N. Long Non-Coding RNAs in Retinal Ganglion Cell Apoptosis. Cell Mol Neurobiol 2023; 43:561-574. [PMID: 35226226 PMCID: PMC11415166 DOI: 10.1007/s10571-022-01210-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
Traumatic optic neuropathy or other neurodegenerative diseases, including optic nerve transection, glaucoma, and diabetic retinopathy, can lead to progressive and irreversible visual damage. Long non-coding RNAs (lncRNAs), which belong to the family of non-protein-coding transcripts, have been linked to the pathogenesis, progression, and prognosis of these lesions. Retinal ganglion cells (RGCs) are critical for the transmission of visual information to the brain, damage to which results in visual loss. Apoptosis has been identified as one of the most essential modes of RGC death. Emerging evidence suggests that lncRNAs can regulate RGC degeneration by directly or indirectly modulating apoptosis-associated signaling pathways. This review presents a comprehensive overview of the role of lncRNAs in RGC apoptosis at transcriptional, post-transcriptional, translational, and post-translational levels, emphasizing on the potential mechanisms of action. The current limitations and future perspectives of exploring the connection between lncRNAs and RGC apoptosis have been summarized. Understanding the intricate molecular interaction network of lncRNAs and RGC apoptosis will open new avenues for the identification of novel diagnostic biomarkers, therapeutic targets, and molecules for prognostic evaluation of diseases related to RGC injury.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
34
|
LncRNA XR_351665 Contributes to Chronic Pain-Induced Depression by Upregulating DNMT1 via Sponging miR-152-3p. THE JOURNAL OF PAIN 2023; 24:449-462. [PMID: 36257574 DOI: 10.1016/j.jpain.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Chronic pain is frequently comorbid with depression. However, the mechanisms underlying chronic pain-induced depression remain unclear. Here, we found that DNA methyltransferase 1 (DNMT1) was upregulated in the central amygdala (CeA) of spared nerve injury (SNI)-induced chronic pain-depression rats, and knockdown of DNMT1 could improve the depression-like behaviors in SNI rats. Additionally, a panel of differentially expressed lncRNAs, including 38 upregulated and 12 downregulated lncRNAs, were identified by microarray analysis. Bioinformatics analysis suggested that the upregulated lncRNA XR_351665 was the upstream molecule to regulate DNMT1 expression. The knockdown of XR_351665 significantly alleviated the depression-like behaviors in SNI rats, whereas overexpression of XR_351665 induced the depression-like behaviors in naïve rats. Further mechanism-related researches uncovered that XR_351665 functioned as a competing endogenous RNA (ceRNA) to upregulate DNMT1 by competitively sponging miR-152-3p, and subsequently promoted the development of chronic pain-induced depression. Our findings suggest that lncRNA XR_351665 is involved in the development of chronic pain-induced depression by upregulating DNMT1 via sponging miR-152-3p. These data provide novel insight into understanding the pathogenesis of chronic pain-induced depression and identify a potential therapeutic target. PERSPECTIVE: LncRNA XR_351665 in CeA functions as a ceRNA to block the inhibitory effect of miR-152-3p on DNMT1 and contributes to the development of chronic pain-induced depression. These data suggest that manipulation of XR_351665/miR-152-3p/DNMT1 axis may be a potential method to attenuate chronic pain-induced depression.
Collapse
|
35
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
36
|
Long Noncoding RNA LINC00578 Inhibits Ferroptosis in Pancreatic Cancer via Regulating SLC7A11 Ubiquitination. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1744102. [PMID: 36846713 PMCID: PMC9950792 DOI: 10.1155/2023/1744102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
Abstract
Background Pancreatic cancer is a highly aggressive malignancy worldwide with rapid development and an exceedingly poor prognosis. lncRNAs play crucial roles in regulating the biological behaviors of tumor cells. In this study, we discovered that LINC00578 acted as a regulator of ferroptosis in pancreatic cancer. Methods A series of loss- and gain-of-function experiments in vitro and in vivo were performed to explore the oncogenic role of LINC00578 in pancreatic cancer development and progression. Label-free proteomic analysis was performed to select LINC00578-related differentially expressed proteins. Pull-down and RNA immunoprecipitation assays were carried out to determine and validate the binding protein of LINC00578. Coimmunoprecipitation assays were used to investigate the association of LINC00578 with SLC7A11 in ubiquitination and to confirm the interaction between ubiquitin-conjugating enzyme E2 K (UBE2K) and SLC7A11. An immunohistochemical assay was used to confirm the correlation between LINC00578 and SLC7A11 in the clinic. Results LINC00578 positively regulated cell proliferation and invasion in vitro and tumorigenesis in vivo in pancreatic cancer. LINC00578 can obviously inhibit ferroptosis events, including cell proliferation, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) depolarization. In addition, the LINC00578-induced inhibitory effect on ferroptosis events was rescued by SLC7A11 knockdown. Mechanistically, LINC00578 directly binds UBE2K to decrease the ubiquitination of SLC7A11, thus accelerating SLC7A11 expression. In the clinic, LINC00578 is closely associated with clinicopathologic factors and poor prognosis and correlated with SLC7A11 expression in pancreatic cancer. Conclusions This study elucidated that LINC00578 acts as an oncogene to promote pancreatic cancer cell progression and suppress ferroptosis by directly combining with UBE2K to inhibit the ubiquitination of SLC7A11, which provides a promising option for the diagnosis and treatment of pancreatic cancer.
Collapse
|
37
|
Xia J, Tian Y, Shao Z, Li C, Ding M, Qi Y, Xu X, Dai K, Wu C, Yao W, Hao C. MALAT1-miR-30c-5p-CTGF/ATG5 axis regulates silica-induced experimental silicosis by mediating EMT in alveolar epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114392. [PMID: 36508811 DOI: 10.1016/j.ecoenv.2022.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Epithelial-mesenchymal transdifferentiation of alveolar type Ⅱ epithelial cells is a vital source of pulmonary myofibroblasts, and myofibroblasts formation is recognized as an important phase in the pathological process of silicosis. miR-30c-5p has been determined to be relevant in the activation of the epithelial-mesenchymal transition (EMT) in numerous disease processes. However, elucidating the role played by miR-30c-5p in the silicosis-associated EMT process remains a great challenge. In this work, based on the establishment of mouse silicosis and A549 cells EMT models, miR-30c-5p was interfered with in vivo and in vitro models to reveal its effects on EMT and autophagy. Moreover, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), connective tissue growth factor (CTGF), autophagy-related gene 5 (ATG5), and autophagy were further interfered with in the A549 cells models to uncover the possible molecular mechanism through which miR-30c-5p inhibits silicosis associated EMT. The results demonstrated the targeted binding of miR-30c-5p to CTGF, ATG5, and MALAT1, and showed that miR-30c-5p could prevent EMT in lung epithelial cells by acting on CTGF and ATG5-associated autophagy, thereby inhibiting the silicosis fibrosis process. Furthermore, we also found that lncRNA MALAT1 might competitively absorb miR-30c-5p and affect the EMT of lung epithelial cells. In a word, interfering with miR-30c-5p and its related molecules (MALAT1, CTGF, and ATG5-associated autophagy) may provide a reference point for the application of silicosis intervention-related targets.
Collapse
Affiliation(s)
- Jiarui Xia
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yangyang Tian
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Zheng Shao
- The Third Affiliated Hospital of Zhengzhou University, Henan, PR China
| | - Chao Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Mingcui Ding
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yuanmeng Qi
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Xiao Xu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Kai Dai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Chenchen Wu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
38
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Gcanga L, Tamgue O, Ozturk M, Pillay S, Jacobs R, Chia JE, Mbandi SK, Davids M, Dheda K, Schmeier S, Alam T, Roy S, Suzuki H, Brombacher F, Guler R. Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of Mycobacterium tuberculosis. Nucleic Acid Ther 2022; 32:421-437. [PMID: 35895506 PMCID: PMC7613730 DOI: 10.1089/nat.2022.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) kills 1.6 million people worldwide every year, and there is an urgent need for targeting host-pathogen interactions as a strategy to reduce mycobacterial resistance to current antimicrobials. Noncoding RNAs are emerging as important regulators of numerous biological processes and avenues for exploitation in host-directed therapeutics. Although long noncoding RNAs (lncRNAs) are abundantly expressed in immune cells, their functional role in gene regulation and bacterial infections remains understudied. In this study, we identify an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, which is upregulated in mouse and human macrophages upon IL-4/IL-13 stimulation and downregulated after clinical Mtb HN878 strain infection and in peripheral blood mononuclear cells from active TB patients. To evaluate the functional role of lincRNA-MIR99AHG, we used antisense locked nucleic acid (LNA) GapmeR-mediated antisense oligonucleotide (ASO) lncRNA knockdown experiments. Knockdown of lincRNA-MIR99AHG with ASOs significantly reduced intracellular Mtb growth in mouse and human macrophages and reduced pro-inflammatory cytokine production. In addition, in vivo treatment of mice with MIR99AHG ASOs reduced the mycobacterial burden in the lung and spleen. Furthermore, in macrophages, lincRNA-MIR99AHG is translocated to the nucleus and interacts with high affinity to hnRNPA2/B1 following IL-4/IL-13 stimulation and Mtb HN878 infection. Together, these findings identify lincRNA-MIR99AHG as a positive regulator of inflammation and macrophage polarization to promote Mtb growth and a possible target for adjunctive host-directed therapy against TB.
Collapse
Affiliation(s)
- Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- Division of Immunology, Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Malika Davids
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical medicine, London, United Kingdom
| | - Sebastian Schmeier
- College of Science, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Tanvir Alam
- Information and Computing Technology Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Address correspondence to: Frank Brombacher, PhD, International Centre for Genetic Engineering and Biotechnology (ICGEB) Department of Pathology, Cape Town Component, Cape Town 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Reto Guler, PhD, Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town 7925, South Africa
| |
Collapse
|
40
|
Cao P, Zhan C, Yin J, Gong S, Ma D, Li Y. Genome-wide identification of long intergenic non-coding RNAs for Ralstonia solanacearum resistance in tomato ( Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2022; 13:981281. [PMID: 36186038 PMCID: PMC9523475 DOI: 10.3389/fpls.2022.981281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 05/26/2023]
Abstract
There is growing evidences indicating that long intergenic ncRNAs (lincRNAs) play key roles in plant development and stress responses. To research tomato lincRNA functions during the interaction between tomato and Ralstonia solanacearum, RNA-seq data of tomato plants inoculated with R. solanacearum was analyzed. In this study, 315 possible lincRNAs were identified from RNA-seq data. Then 23 differentially expressed lincRNAs between tomato plants inoculated with R. solanacearum and control were identified and a total of 171 possible target genes for these differentially expressed lincRNAs were predicted. Through GO and KEGG analysis, we found that lincRNA might be involved in jasmonic acid and ethylene signaling pathways to respond to tomato bacterial wilt infection. Furthermore, lincRNA may also be involved in regulating the expression of AGO protein. Subsequently, analysis of expression patterns between differentially expressed lincRNAs and adjacent mRNAs by qRT-PCR revealed that part of lincRNAs and their possible target genes exhibited positive correlation. Taken together, these results suggest that lincRNAs play potential roles in tomato against R. solanacearum infection and will provide fundamental information about the lincRNA-based plant defense mechanisms.
Collapse
Affiliation(s)
- Peina Cao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Chuang Zhan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
41
|
He F, Wang N, Yu X, Zheng Y, Liu Q, Chen Q, Pu J, Li N, Zou W, Li B, Ran P. GATA3/long noncoding RNA MHC-R regulates the immune activity of dendritic cells in chronic obstructive pulmonary disease induced by air pollution particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129459. [PMID: 35780733 DOI: 10.1016/j.jhazmat.2022.129459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous illness associated with aberrant inflammatory immune reaction in the lung in response to noxious particles and gases. Our previous epidemiological studies discovered that long-term exposure to air pollution PM was associated with an increase in the incidence of COPD and lung function decline, but the impact of air pollution on the onset of COPD and its pathogenesis remains obscure. In recent years, long noncoding RNAs (lncRNAs) have been documented to have a crucial role in COPD. Our preliminary study found that the expression of lncRNA MHC-R in the lung tissues of rats exposed to air pollution PM was dramatically elevated, and the specific expression was mainly focused on the immune-related MHC I, antigen-presenting, and adaptive immune response. After transcription factor prediction, it was found that GATA3 could be combined with the specific sequence of the lncRNA MHC-R promoter region. Dendritic cells (DCs) are necessary antigen-presenting cells (APCs) with the most potent antigen-presenting function. We proved that GATA3/lncRNA MHC-R might regulate the immune activities of DCs to participate in the pathogenic mechanism of COPD induced by air pollution PM, which opens up a new way for early COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Fang He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Nian Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yufan Zheng
- Zhongshan School of Medical, Sun Yat-sen University//Center for Pain Research, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, Guangdong 510000, China
| | - Qingzi Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Naijian Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Weifeng Zou
- Guangzhou Chest Hospital, Guangzhou, Guangdong 510000, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
42
|
Hu Y, Guo J, Jang H, Liu A, Ma L, Ren D, Wang F. Long Non-Coding RNA T Cell Leukemia/Lymphoma 6 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Down-Regulating miR-665. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer (BC), which is most commonly seen in women, has become the second most common cause of cancer death in the United States. The number of women dying from BC is increasing every year, especially in the developing countries that fall behind in terms of economy and technologies.
Therefore, it is of great necessity to find potential targets to effectively treat this disease. In this study, RT-qPCR was performed to detect the expressions of TCL6, miR-665, and CD82. CCK-8 and immunofluorescence assays were conducted for the assessment of BC cell proliferation. The invasion
and migration of BC cells were detected by transwell and wound healing assays, respectively. Luciferase reporter assay was used to verify the combination of TCL6 and miR-665, and the binding of miR-665 and CD82. Moreover, the proliferation and migration of related proteins were measured by
western blot. The results showed that TCL6 was low expressed in BC cells, but overexpression of TCL6 inhibited the proliferation, migration, and invasion of BC cells. On the contrary, miR-665 was highly expressed in BC cells, while its expression was negatively correlated with TCL6 as suggested
by RT-qPCR assay. Furthermore, the inhibitory effects of TCL6 overexpression on the proliferation, migration, and invasion of BC cells were reversed by miR-665 mimic. Afterwards, the binding sites between miR-665 and CD82 were verified by luciferase reporter assay. Overexpression of TCL6 increased
the level of CD82 in BC cells, but this effect was reversed by miR-665 mimic as well. In conclusion, the present study has presented the fact that TCL6 could enhance the expression of CD82 by down-regulating the expression of miR-665.
Collapse
Affiliation(s)
- Yaofeng Hu
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Jing Guo
- The Second Group of Geriatrics Department, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Hongnan Jang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Ailan Liu
- Clinical Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Lijun Ma
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan Shanxi 030032, China
| | - Dongliang Ren
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Fusheng Wang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| |
Collapse
|
43
|
Zeng H, Hu F, Duan Y, Li H, Wang Y. Expression of lncRNA APF in Peripheral Blood of Patients with Acute Myocardial Infarction Caused by Coronary Heart Disease and its Clinical Significance. Int Heart J 2022; 63:742-748. [PMID: 35831141 DOI: 10.1536/ihj.21-434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death from cardiovascular disease. This study investigated the expression and clinical significance of long noncoding RNA (lncRNA) autophagy promoting factor (APF) in peripheral blood of patients with acute myocardial infarction (AMI) caused by CHD. Patients with angina pectoris (AP) (n = 80) and AMI (n = 96) and other patients (n = 60) with precordial discomfort but no CHD were included. The serum levels of lncRNA APF, MIAT, MALAT1, H19, CHAST, CDR1AS, miR-188-3p, and cardiac troponin I (cTnI) /creatine kinase (CK) /creatine kinase isozymes (CK-MB) were detected using reverse transcription-quantitative polymerase chain reaction or enzyme-linked immunosorbent assay. Patients with AMI were divided into high/low expression groups based on the median level of APF, and the clinical baseline indicators of patients with AMI were compared. The correlation between lncRNA APF and cTnI/CK/CK-MB/miR-188-3p was analyzed using Pearson analysis, and the clinical value of lncRNA APF was evaluated using the receiver operating characteristic curve. The levels of lncRNA APF, MIAT, MALAT1, H19, CHAST, and CDR1AS in patients with AMI were increased, whereas there were no differences in patients with AP. The APF levels in patients with AMI were higher than MIAT, MALAT1, and CHAST, whereas there were no differences between APF and H19 and CDR1AS. In patients with AMI, the high level of lncRNA APF was correlated with the history of smoking/drinking. Moreover, lncRNA APF was positively correlated with cTnI/CK/CK-MB levels and negatively correlated with miR-188-3p. LncRNA APF has high diagnostic efficacy for AMI. Overall, lncRNA APF is highly expressed in patients with AMI caused by CHD and has high diagnostic efficacy for AMI.
Collapse
Affiliation(s)
- Haitao Zeng
- Department of Cardiology, Changsha Third Hospital
| | - Fangxing Hu
- Department of Medical Laboratory Science, Changsha Third Hospital
| | - Yong Duan
- Department of Cardiology, Changsha Third Hospital
| | - Hui Li
- Department of Cardiology, Changsha Third Hospital
| | - Yong Wang
- Department of Cardiology, Changsha Third Hospital
| |
Collapse
|
44
|
Feng Y, Li Y, Xu M, Meng H, Dai C, Yao Z, Lin N. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis. Stem Cell Res Ther 2022; 13:375. [PMID: 35902883 PMCID: PMC9331515 DOI: 10.1186/s13287-022-03069-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background The mechanism of bone marrow mesenchymal stem cells (BMSCs) in treating hepatic fibrosis remains unclear. Methods TGF-β1-induced hepatic stellate cell (HSC)-T6 and CCl4-induced hepatic fibrosis rats were treated with BMSCs. HSC-T6 cell activity was determined using the cell counting kit-8 assay, and the histology change was evaluated using hematoxylin and eosin and Masson staining. The expression of fibrosis markers was determined using real-time quantitative PCR, Western blotting, and immunocytochemistry. RNA sequencing (RNA-seq) was used to screen the lncRNAs involved in the effect of BMSCs in fibrosis, and the function of fibrosis-associated lncRNA in fibrosis histology change and fibrosis marker expression was investigated. The potential miRNA target of lncRNA was predicted using R software. The interaction between lncRNA and miRNA was verified using luciferase report system and RNA immunoprecipitation (RIP) in 293T and HSC-T6 cells. Results BMSC attenuated TGF-β1-induced HSC-T6 activation and suppressed the expression of fibrosis-associated gene (MMP2, Collagen I, and αSMA) expression at the transcription and translation levels. BMSC treatment also improves hepatic fibrosis in rats with CCl4-induced fibrosis by decreasing the expression of fibrosis-associated genes and suppressing collagen deposition in the liver. RNA-seq revealed that AABR07028795.2 (lnc-BIHAA1) was downregulated in the TGF-β1-induced HSC-T6 after treatment with BMSCs as compared with those in TGF-β1-induced HSC-T6, and subsequently, functional analysis showed that lnc-BIHAA1 plays a beneficial role in suppressing hepatic fibrosis. Luciferase activity assay and RIP revealed that lnc-BIHAA1 interacted with the miRNA, rno-miR-667-5p, functioning as a fibrosis phenotype suppressor in TGF-β1-induced HSC-T6. Moreover, overexpression of rno-miR-667-5p significantly reverses the effect of lnc-BIHAA1 on HSC-T6. Conclusions BMSC treatment suppresses hepatic fibrosis by downregulating the lnc-BIHAA1/rno-miR-667-5p signaling pathway in HSCs. Our results provide a scientific basis for establishing BMSCs as a biological treatment method for liver fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Cao Dai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
45
|
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, Li X, Zhu L, Shen L. LncRNA-Mediated Adipogenesis in Different Adipocytes. Int J Mol Sci 2022; 23:ijms23137488. [PMID: 35806493 PMCID: PMC9267348 DOI: 10.3390/ijms23137488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- College of Life Science, China West Normal University, Nanchong 637009, China;
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| |
Collapse
|
46
|
Kufukihara R, Tanaka N, Takamatsu K, Niwa N, Fukumoto K, Yasumizu Y, Takeda T, Matsumoto K, Morita S, Kosaka T, Aimono E, Nishihara H, Mizuno R, Oya M. Hybridisation chain reaction-based visualisation and screening for lncRNA profiles in clear-cell renal-cell carcinoma. Br J Cancer 2022; 127:1133-1141. [PMID: 35764788 DOI: 10.1038/s41416-022-01895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Analysis of long noncoding RNA (lncRNA) localisation at both the tissue and subcellular levels can provide important insights into the cell types that are important for their function. METHODS By applying new fluorescent in situ hybridisation technique called hybridisation chain reaction (HCR), we achieved a high-throughput lncRNA visualisation and evaluation of clinical samples. RESULTS Assessing 1728 pairs of 16 lncRNAs and clear-cell renal-cell carcinoma (ccRCC) specimens, three lncRNAs (TUG1, HOTAIR and CDKN2B-AS1) were associated with ccRCC prognosis. Furthermore, we derived a new lncRNA risk group of ccRCC prognosis by combining the expression levels of these three lncRNAs. Examining genomic alterations underlying this classification revealed prominent features of tumours that could serve as potential biomarkers for targeting lncRNAs. We then derived combination of HCR with expansion microscopy and visualised nanoscale-resolution HCR signals in cell nuclei, uncovering intracellular colocalization of three lncRNA (TUG1, HOTAIR and CDKN2B-AS1) signals such as those located intra- or out of the nucleus or nucleolus in cancer cells. CONCLUSION LncRNAs are expected to be desirable noncoding targets for cancer diagnosis or treatments. HCR involves plural probes consisting of small DNA oligonucleotides, clinically enabling us to detect cancerous lncRNA signals simply and rapidly at a lower cost.
Collapse
Affiliation(s)
- Ryohei Kufukihara
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan.
| | - Kimiharu Takamatsu
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Naoya Niwa
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Keishiro Fukumoto
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Toshikazu Takeda
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Kazuhiro Matsumoto
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Shinya Morita
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| |
Collapse
|
47
|
Zakutansky PM, Feng Y. The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells 2022; 11:1949. [PMID: 35741078 PMCID: PMC9221589 DOI: 10.3390/cells11121949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes, recent discoveries demonstrate that abnormalities associated with non-coding RNAs, including microRNAs and long non-coding RNAs (lncRNAs), also contribute to the pathogenesis of SZ. lncRNAs are an actively evolving family of non-coding RNAs that harbor greater than 200 nucleotides but do not encode for proteins. In general, lncRNA genes are poorly conserved. The large number of lncRNAs specifically expressed in the human brain, together with the genetic alterations and dysregulation of lncRNA genes in the SZ brain, suggests a critical role in normal cognitive function and the pathogenesis of neuropsychiatric diseases. A particular lncRNA of interest is GOMAFU, also known as MIAT and RNCR2. Growing evidence suggests the function of GOMAFU in governing neuronal development and its potential roles as a risk factor and biomarker for SZ, which will be reviewed in this article. Moreover, we discuss the potential mechanisms through which GOMAFU regulates molecular pathways, including its subcellular localization and interaction with RNA-binding proteins, and how interruption to GOMAFU pathways may contribute to the pathogenesis of SZ.
Collapse
Affiliation(s)
- Paul M. Zakutansky
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA;
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
49
|
Zhang H, Chen L, Wang Z, Sun Z, Shan Y, Li Q, Qi L, Wang H, Chen Y. Long noncoding RNA KCNQ1OT1 inhibits osteoclast differentiation by regulating the miR-128-3p/NFAT5 axis. Aging (Albany NY) 2022; 14:4486-4499. [PMID: 35587369 PMCID: PMC9186780 DOI: 10.18632/aging.204088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs play an important role in regulating osteoclast differentiation. We investigated whether and how potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA, regulates osteoclast differentiation. We found that the expression of KCNQ1OT1 was downregulated in osteoporotic bone tissue. Then transfection of KCNQ1OT1 overexpression vectors or small interfering RNAs showed that the proliferation, migration, and osteoclast differentiation of RAW 264.7 cells were inhibited by KCNQ1OT1 upregulation, while they were promoted by KCNQ1OT1 knockdown. Interestingly, we found and confirmed that miR-128-3p was a target of KCNQ1OT1 using online databases, dual luciferase reporter assays and quantitative real-time polymerase chain reaction, and that it inhibited the expression of miR-128-3p. Moreover, we confirmed that miR-128-3p directly targeted nuclear factor of activated T cell 5 (NFAT5), a protein that combines with osteoprotegerin and thus regulates osteoclastogenesis with the presence of the receptor activator of nuclear factor κB ligand. Furthermore, we demonstrated that both the knockdown of KCNQ1OT1 and the overexpression of miR-128-3p attenuate the expression of NFAT5, while upregulating the osteoclastogenesis markers c-Fos, NFATc1, and Ctsk. The results from overexpression of KCNQ1OT1 and the inhibition of miR-128-3p were contrary to the above. Finally, we found that the inhibition of osteoclast differentiation by KCNQ1OT1 overexpression could be rescued using a miR-128-3p mimic, while the enhancement of migration and osteoclast differentiation by si-NFAT5 could be reversed with a miR-128-3p inhibitor. These results suggested that KCNQ1OT1 regulates the osteoclast differentiation via the miR-128-3p/NFAT5 axis.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lu Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yu Shan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Linzeng Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
50
|
Petkevicius V, Thon C, Steponaitiene R, Skieceviciene J, Janciauskas D, Jechorek D, Malfertheiner P, Kupcinskas J, Link A. Differential Expression of Long Noncoding RNA HOTAIR in Intestinal Metaplasia and Gastric Cancer. Clin Transl Gastroenterol 2022; 13:e00483. [PMID: 35347094 PMCID: PMC9132515 DOI: 10.14309/ctg.0000000000000483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION High expression of HOTAIR promotes tumor growth and carries a dismal prognosis for the patient. We investigated the prognostic value of HOTAIR expression in gastric cancer (GC) and systematically delineate the expression in relation to Helicobacter pylori infection and preneoplastic changes. METHODS HOTAIR expression was analyzed in surgical paired tissue samples of patients with GC and biopsy samples from patients with atrophic gastritis and/or intestinal metaplasia (AG ± -IM), chronic nonatrophic gastritis, and controls. The cancer genome atlas (TCGA) data were used for validation. HOTAIR expression was evaluated in sera and ascites of patients with GC. Quantitative HOTAIR expression analysis was performed using quantitative polymerase chain reaction, and LINE-1 methylation was assessed by bisulfite pyrosequencing. RESULTS HOTAIR was more frequently detected in tumor tissues compared with adjacent gastric mucosa (65.4% vs 8.6%). HOTAIR expression was associated with depth of tumor invasion and tumor location and with shorter overall survival in patients with diffuse-type GC as confirmed in the TCGA cohort. HOTAIR was not detectable in controls but was found in 2.2% of patients with chronic nonatrophic gastritis and 18.3% of patients with AG ± IM, which was further associated with IM, grade of IM, and H. pylori positivity. DISCUSSION HOTAIR expression was associated with GC and preneoplastic changes of stomach mucosa. Although HOTAIR expression was strongly linked to IM, HOTAIR expression was only associated with worse prognosis in Lauren diffuse and not intestinal type of GC. Further studies are needed to evaluate the value of HOTAIR as diagnostic and predictive biomarker in IM and translational therapeutic relevance of HOTAIR in diffuse-type GC.
Collapse
Affiliation(s)
- Vytenis Petkevicius
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Ruta Steponaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius Janciauskas
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania; and
| | - Doerthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| |
Collapse
|