1
|
Luo L, Ji J, Dong J, He M, Jiang W, Liu Y, Wang W. Infiltration and subtype analysis of CD3 + CD20 + T cells in lung cancer. BMC Cancer 2025; 25:179. [PMID: 39885465 PMCID: PMC11783900 DOI: 10.1186/s12885-025-13581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND CD3 + CD20 + T cells (TB cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of TB cells in local tumor immunity remains uncertain, with limited research on their subtypes. METHODS Lung cancer surgical samples were stained using multi-color immunofluorescence to study the subtypes and distribution patterns of TB cells. RESULTS TB cells were confirmed to exist in a scattered pattern within tertiary lymphoid structures (TLS) in lung cancer tissues, with higher abundance in mature TLS. In subtype analysis, the CD4-CD8- double-negative TB cell subtype was predominant, comprising over 90% in samples with abundant TLS infiltration and over 60% in samples with poor infiltration. This was followed by the CD4 + CD8- and CD4-CD8 + single-positive TB cell subtypes, while the CD4 + CD8 + double-positive TB cell subtype was nearly absent. During the maturation of TLS, the proportion of B cells gradually increased, while the proportion of CD4-CD8- T cell subtype decreased. CONCLUSIONS TB cells extensively infiltrate the TLS regions in tumor tissues, with the double-negative subtype being predominant, potentially playing a crucial regulatory role in the local tumor immune microenvironment. This finding could facilitate the advancement of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Liping Luo
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ji
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Pulmonology, Meishan Cancer Hospital, Meishan, China
| | - Maotao He
- Pathology Department, Meishan Cancer Hospital, Meishan, China
| | - Wenjun Jiang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yang Liu
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Weidong Wang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Ring BZ, Cronister CT, Ring HZ, Ross DT, Seitz RS. Immune infiltrate populations within distinct tumor immune microenvironments predictive of immune checkpoint treatment outcome. Sci Rep 2025; 15:3126. [PMID: 39856115 PMCID: PMC11760962 DOI: 10.1038/s41598-024-83915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Understanding the dynamic tumor immune microenvironment (TIME) is important in guiding immunotherapy. We have previously validated signatures predictive of checkpoint inhibitor efficacy which distinguish immunomodulatory, mesenchymal stem-like, and mesenchymal phenotypes. Here we use twenty tumor types (7162 samples) to identify potentially conserved immune biology within these TIME spaces, genes co-expressed across distinct cell types involved these immune processes, and the association of these signatures with ICI response. One signature, which contained multiple B-cell markers, was associated with immunotherapy efficacy in three cohorts, including IMvigor210. This signature of potentially conserved B-cell biology in co-infiltrated immune cell ecosystems had a more consistent association with outcome than comparable single cell type models and likely reflects a complex immunological response involving multilayered relationships between distinct immune effector cell types. These signatures were most highly expressed in tumors with prominent immune cell invasion, however there was consistent identification of infiltrate presence in relatively immune restricted cases. This suggests that these immune population signatures may identify conserved immune cell type co-infiltrate physiology of the TIME that best captures immune physiology with potential clinical utility.
Collapse
Affiliation(s)
| | | | - Huijun Z Ring
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
3
|
Wynter C, Natarajan A, John C, Jain K, Paulmurugan R. Molecular Imaging of Tumor-Infiltrating Lymphocytes in Living Animals Using a Novel mCD3 Fibronectin Scaffold. Bioconjug Chem 2025; 36:104-115. [PMID: 39681342 DOI: 10.1021/acs.bioconjchem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The interaction between cancer cells and immune cells in the tumor microenvironment (TME) plays a crucial role in determining tumor growth, metastasis, and response to treatment. Tumor-infiltrating lymphocytes (TILs) in TME could be a predictive marker for treatment response in various therapeutic interventions, including chemotherapy and immunotherapy. Thus, imaging the tumor immune microenvironment is important for selecting the optimal treatment strategies in cancer therapy. The CD3 protein represents a promising target for diagnostic imaging of TILs in vivo to assess the immune state of the TME. Although many anti-CD3 antibodies have been explored for this application, the nonspecific immune activation by these antibodies limits their applications. To overcome this issue, we engineered a novel fibronectin III domain (FN3) protein binder (mCD3-FN3;11.8 kDa) against mouse CD3 antigen protein using a yeast display library to image TILs homing in vivo into the TME. We performed in vitro and in vivo assays to test the mCD3-FN3 binder purity as well as in vivo targetability in mouse models of syngeneic tumors. We used near-infrared 800 dye conjugated with mCD3-FN3 (IR800-mCD3-FN3) for in vivo tracking of TILs via optical imaging. We used three different syngeneic tumors in mice (mCD3+ EL4 tumor in C57BL/6 mice, mCD3- CT26 colon tumor, and mCD3- 4T1 breast tumor in BALB/c mice) for imaging TILs in vivo. C57BL/6 mice bearing EL4 tumors were separated into two groups (blocking [Blk] and nonblocking [Nblk]; n = 3 per group) and used for in vivo imaging. Blocking groups received 200 μg of unlabeled mCD3-FN3 2 h prior to the administration of IR800-mCD3-FN3 binder. Each mouse was administered with 25 μg of the IR800-mCD3-FN3 binder and tracked using an IVIS optical imaging system over time. C57BL/6/EL4 mice were imaged at 4 and 24 h post injection of the IR800-mCD3-FN3 binder, and mouse organs were collected at 24 h after final imaging and used for ex vivo histological imaging. In CT26 and 4T1 tumor models, TILs in TME were imaged 4, 24, and 48 h after binder injection. The NIR imaging of EL4 tumors showed that IR800-mCD3-FN3 can detect both TILs within the tumor and the tumor cells with a high signal-to-background ratio 24 h after initial binder injection with a total radiant efficiency (mean TRE ± SD) of 6.5 × 1010 ± 1.5 × 1010 [photons/s]/[μW/cm2]. The animals received preinjection of unlabeled mCD3-FN3(Blk) prior to IR800-mCD3-FN3 binder administration and showed a significant level of fluorescence signal reduction (mean TRE ± SD: 1.6 × 1010 ± 4.1 × 109) in the tumor when compared to the EL4-Nblk tumors (p = 0.006). The mouse group with CT26 and 4T1 tumors where the probe can only bind to TILs within the tumor showed a specific imaging signal (mean TRE ± SD) of 1.1 × 1011 ± 5.2 × 1010 and 9.5 × 1010 ± 4.6 × 1010, respectively, at 48 h p.i. For these groups, the ex vivo tumor-to-muscle ratios were 20- and 27-fold for CT26 and 4T1 tumors, respectively. These results clearly demonstrate the in vivo binding ability of the mCD3-FN3 binder to mCD3 marker expressed by T cells in the TME. The ex vivo histological analysis of tumors, and the organs of animals with EL4 tumors, and TILs imaging of CT26, and 4T1 tumors (at 48 p.i.) confirmed that the IR800-mCD3-FN3 probe was able to specifically bind to CD3 markers expressed by the T cells. In summary, both in vitro and in vivo data indicated that the engineered mCD3-FN3 binder by this study is a promising ligand for diagnostic imaging of tumors in vivo for the assessment of mCD3 expressing TILs in the TME. This can be used as a prognostic marker in evaluating tumor response to therapeutic intervention as well as a diagnostic marker in imaging tumor response to immune checkpoint blockade cancer therapies.
Collapse
Affiliation(s)
- Char Wynter
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Arutselvan Natarajan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Clyde John
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Kaahini Jain
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
4
|
Shen Y, Voigt A, Bhattacharyya I, Nguyen CQ. Single-Cell Transcriptomics Reveals a Pivotal Role of DOCK2 in Sjögren Disease. ACR Open Rheumatol 2024; 6:927-943. [PMID: 39382155 PMCID: PMC11638132 DOI: 10.1002/acr2.11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Sjögren disease (SjD) is an autoimmune condition characterized by the dysfunction of the salivary and lacrimal glands. The study aimed to decipher the pathogenic cell populations and their immunologic pathways in the salivary glands. We further determined the therapeutic effect of inhibiting dedicator of cytokinesis 2 (DOCK2) shared by novel clusters of CD8+ T cells in an SjD mouse model. METHODS This study employed single-cell RNA sequencing to examine the composition and dynamics of immune cells in the salivary glands of SjD mice. By analyzing the transcriptomic data and employing clustering analysis, a specific target was identified, leading to the treatment of mice with a targeted inhibitor. RESULTS The results showed diverse immune cell types, including B cells, CD4+ T cells, CD8+ T cells, macrophages, and natural killer cells. We identified specific clusters possessing phenotypic characteristics of immune cell subpopulations, thereby showing specific genes/pathways associated with the disease. The most striking finding was the elevated expression of DOCK2 in CD8+ T cells in the SjD model. This discovery is significant because subsequent treatment with a DOCK2 inhibitor 4-[3-(2-Chlorophenyl)-2-propen-1-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) led to a marked amelioration of SjD signs. CONCLUSION The effectiveness of DOCK2 inhibition in alleviating SjD signs highlights the potential of DOCK2 as a therapeutic target, opening new avenues for treatment strategies that could modulate the immune response more effectively in SjD.
Collapse
Affiliation(s)
- Yiran Shen
- University of Florida College of Veterinary MedicineGainesville
| | | | | | - Cuong Q. Nguyen
- University of Florida College of Veterinary Medicine and University of Florida College of Dentistry and University of Florida Center for Orphaned Autoimmune DiseasesGainesville
| |
Collapse
|
5
|
Stramazzo I, Mangino G, Capriello S, Romeo G, Ferrari SM, Fallahi P, Bagaglini MF, Centanni M, Virili C. CD20 + T lymphocytes in isolated Hashimoto's thyroiditis and type 3 autoimmune polyendocrine syndrome: a pilot study. J Endocrinol Invest 2024; 47:2865-2871. [PMID: 38642306 PMCID: PMC11473566 DOI: 10.1007/s40618-024-02370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND CD20+ T cells represent up to 5% of circulating T lymphocytes. These cells have been shown to produce higher levels of IL-17A and IFN-γ than those of CD20- T lymphocytes. Some reports described the role of CD20+ T cells in autoimmune disorders such as multiple sclerosis and rheumatoid arthritis possibly due to their ability to produce these inflammatory cytokines. This study is aimed at describing the behavior of CD20+ T lymphocytes in the most frequent autoimmune disorder, i.e., Hashimoto's thyroiditis (HT), presenting isolated or associated to further autoaggressive disorders in a frame of poly-autoimmunity. METHODS The study group encompasses 65 HT patients: 23 presenting in isolated form (IT) and 42 with an associated non-endocrine autoimmune disorder [16 with chronic atrophic gastritis (CAG), 15 with nonsegmental vitiligo (VIT), and 11 with celiac disease (CD)]. Twenty healthy donors act as control group (HD). Chronic use of interfering drugs, severe or chronic disorders, and pregnancy and lactation were used as exclusion criteria. Whole blood samples (100 µl) were stained with fluorescent-labeled antibodies (anti-CD45, anti-CD3, anti-CD19, anti-CD16, anti-CD56, anti-CD4, anti-CD8, anti-CD20). Red blood cells were then lysed by adding 1 ml of hypotonic buffer, and samples were acquired on a Flow Cytometer. RESULTS CD3+CD8+CD20+ T lymphocytes' percentages, were significantly higher in the whole group of autoimmune patients compared to healthy donors (p = 0.0145). Dividing HT patients based on the type of presentation of autoimmune thyroiditis, CAG group showed the highest percentage of these cells as compared to HD and CD (p = 0.0058). IT patients showed higher percentages of CD3+ CD8+CD20+ cells than those of HD patients although not reaching statistical significance. However, dividing IT group based on thyroid function, hypothyroid patients showed higher CD8+CD20+ cell percentages than those of HD and euthyroid patients (p = 0.0111). Moreover, in IT patients, these cells were negatively correlated with FT4 levels (p = 0.0171; r = -0.4921). CONCLUSIONS These preliminary findings indicate that CD8+CD20+ T cells are activated in patients with autoimmune thyroiditis and may behave differently according to the presence of poly-autoimmunity and hypothyroidism.
Collapse
Affiliation(s)
- Ilaria Stramazzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Capriello
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
Arneth B. Current Knowledge about CD3 +CD20 + T Cells in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:8987. [PMID: 39201672 PMCID: PMC11354236 DOI: 10.3390/ijms25168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by inflammation and autoimmune responses. This review explores the participation of T cells, particularly certain CD3+CD20+ T cells, in the clinical manifestations of MS and highlights their presence in diagnosed patients. These T cells show aberrant expression of CD20, normally considered a B-cell marker. In this review, relevant journal articles available in PubMed and CINAHL were identified by employing diverse search terms, such as MS, CD3+CD20+ T cells, the incidence and significance of CD3+CD20+ T cells in MS patients, and the impact of rituximab treatment. The search was limited to articles published in the ten-year period from 2014 to 2024. The results of this review suggest that most scholars agree on the presence of CD3+CD20+ T cells in cerebrospinal fluid. Emerging concepts relate to the fundamental role of CD20-expressing T cells in determining the target and efficacy of MS therapeutics and the presence of T cells in the cerebrospinal fluid of MS patients. The results clearly show that CD20+ T cells indicate disease chronicity and high disease activity.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
7
|
Catalano F, Brunelli M, Signori A, Rescigno P, Buti S, Galli L, Spada M, Masini C, Galuppini F, Vellone VG, Gaggero G, Maruzzo M, Merler S, Vignani F, Cavo A, Bimbatti D, Milella M, Dei Tos AP, Sbaraglia M, Murianni V, Damassi A, Cremante M, Maffezzoli M, Llaja Obispo MA, Banna GL, Fornarini G, Rebuzzi SE. Analyses of tumor microenvironment in patients with advanced renal cell carcinoma receiving immunotherapy (Meet-URO 18 study). Future Oncol 2024; 20:1495-1503. [PMID: 38682738 PMCID: PMC11441071 DOI: 10.2217/fon-2023-1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: The Meet-URO 18 study is a multicentric study of patients with metastatic renal cell carcinoma receiving nivolumab in the second-line and beyond, categorized as responders (progression-free survival ≥ 12 months) and non-responders (progression-free survival < 3 months).Areas covered: The current study includes extensive immunohistochemical analysis of T-lineage markers (CD3, CD4, CD8, CD8/CD4 ratio), macrophages (CD68), ph-mTOR, CD15 and CD56 expression on tumor cells, and PD-L1 expression, on an increased sample size including 161 tumor samples (113 patients) compared with preliminary presented data. Responders' tumor tissue (n = 90; 55.9%) was associated with lower CD4 expression (p = 0.014), higher CD56 expression (p = 0.046) and higher CD8/CD4 ratio (p = 0.030).Expert opinion/commentary: The present work suggests the regulatory role of a subpopulation of T cells on antitumor response and identifies CD56 as a putative biomarker of immunotherapy efficacy.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Matteo Brunelli
- Pathology Unit, Department of Diagnostics & Public Health, University & Hospital Trust of Verona, 37124, Verona, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, 16132, Genoa, Italy
| | - Pasquale Rescigno
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
- Translational & Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Luca Galli
- Medical Oncology Unit 2, Azienda Ospedaliera Universitaria Pisana, 56126, Pisa, Italy
| | - Massimiliano Spada
- UOC Oncologia Medica, Istituto Fondazione G. Giglio, 90015, Cefalù, Italy
| | - Cristina Masini
- Medical Oncology Unit, Clinical Cancer Centre, AUSL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128, Padua, Italy
| | - Valerio Gaetano Vellone
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Department of Integrated Surgical & Diagnostic Sciences (DISC), University of Genoa, 16132, Genoa, Italy
| | - Gabriele Gaggero
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV–IRCCS, 35128, Padua, Italy
| | - Sara Merler
- Section of Innovation Biomedicine–Oncology Area, Department of Engineering for Innovation Medicine, University of Verona & Verona University & Hospital Trust, Verona, 37134, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128, Turin, Italy
| | - Alessia Cavo
- Oncology Unit, Villa Scassi Hospital, 16149, Genoa, Italy
| | - Davide Bimbatti
- Oncology Unit 1, Istituto Oncologico Veneto IOV–IRCCS, 35128, Padua, Italy
| | - Michele Milella
- Section of Innovation Biomedicine–Oncology Area, Department of Engineering for Innovation Medicine, University of Verona & Verona University & Hospital Trust, Verona, 37134, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128, Padua, Italy
| | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128, Padua, Italy
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Alessandra Damassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | | | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, UK
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, 17100, Savona, Italy
- Department of Internal Medicine & Medical Specialties (Di.M.I.), University of Genoa, 16132, Genoa, Italy
| |
Collapse
|
8
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Rodrigues C, Laranjeira P, Pinho A, Silva I, Silva S, Coucelo M, Oliveira AC, Simões AT, Damásio I, Silva HM, Urbano M, Sarmento-Ribeiro AB, Geraldes C, Domingues MR, Almeida J, Criado I, Orfao A, Paiva A. CD20+ T cells in monoclonal B cell lymphocytosis and chronic lymphocytic leukemia: frequency, phenotype and association with disease progression. Front Oncol 2024; 14:1380648. [PMID: 38606091 PMCID: PMC11007165 DOI: 10.3389/fonc.2024.1380648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer. Methods Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease. Results and discussion CD20+ T cells were more represented within the CD8+ T cell compartment and they showed a predominant memory Tc1 phenotype. CD20+ T cells were less represented in MBL and CLL patients vs healthy controls, particularly among those with unmutated IGVH gene. The expansion of malignant B cells was accompanied by phenotypic and functional changes in CD20+ T cells, including an increase in follicular helper CD4+ CD20+ T cells and CD20+ Tc1 cells, in addition to the expansion of the TCR Vβ 5.1 in CD4+ CD20+ T cells in CLL.
Collapse
Affiliation(s)
- Cristiana Rodrigues
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Aryane Pinho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sandra Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Margarida Coucelo
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Catarina Oliveira
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Teresa Simões
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Inês Damásio
- Hematology Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Mafalda Urbano
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina Geraldes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Criado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra (ESTESC)-Coimbra Health School, Coimbra, Portugal
| |
Collapse
|
10
|
Kesse S, Xu Y, Shi S, Jin S, Ullah S, Dai Y, He M, Zheng A, Xu F, Du Z, Alolga RN, Peng J. MDSC-targeted liposomal all-trans retinoic acid suppresses mMdscs and improves immunotherapy in HBV infection. Expert Opin Drug Deliv 2024; 21:347-363. [PMID: 38406829 DOI: 10.1080/17425247.2024.2317936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are evolving as a prominent determinant in cancer occurrence and development and are functionally found to suppress T cells in cancer. Not much research is done regarding its involvement in viral infections. This research was designed to investigate the role of MDSCs in hepatitis B virus (HBV) infection and how targeting these cells with our novel all-trans retinoic acid encapsulated liposomal formulation could improve immunotherapy in C57BL/6 mice. METHODS Ten micrograms (10 μg) of plasmid adeno-associated virus (pAAV/HBV 1.2, genotype A) was injected hydrodynamically via the tail vein of C57BL/6 mice. An all-trans retinoic acid encapsulated liposomal formulation (L-ATRA) with sustained release properties was used in combination with tenofovir disoproxil fumarate (TDF), a nucleotide analog reverse transcriptase inhibitor (nRTI) to treat the HBV infection. The L-ATRA formulation was given at a dose of 5 mg/kg intravenously (IV) twice a week. The TDF was given orally at 30 mg/kg daily. RESULTS Our results revealed that L-ATRA suppresses MDSCs in HBV infected mice and enhanced T-cell proliferation in vitro. In vivo studies showed higher and improved immunotherapeutic effect in mice that received L-ATRA and TDF concurrently in comparison with the groups that received monotherapy. Lower HBV DNA copies, lower concentrations of HBsAg and HBeAg, lower levels of ALT and AST and less liver damage were seen in the mice that received the combination therapy of L-ATRA + TDF. CONCLUSIONS In effect, targeting MDSCs with the combination of L-ATRA and TDF effectively reduced mMDSC and improved immunotherapy in the HBV infected mice. Targeting MDSCs could provide a breakthrough in the fight against hepatitis B virus infection.
Collapse
Affiliation(s)
- Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogen Plant Resources in Western Yunnan, Dali University, Dali, China
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jin
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Shafi Ullah
- Shanghai Institute of Digestive Diseases, Renji Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchao Dai
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Miao He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogen Plant Resources in Western Yunnan, Dali University, Dali, China
| | - Anjie Zheng
- HighField Biopharmaceuticals Inc, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengwei Xu
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Zixiu Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Yao M, Wang W, Sun J, Guo T, Bian J, Xiao F, Li Y, Cong H, Wei Y, Zhang X, Liu J, Yin L. The landscape of PBMCs in AQP4-IgG seropositive NMOSD and MOGAD, assessed by high dimensional mass cytometry. CNS Neurosci Ther 2024; 30:e14608. [PMID: 38334017 PMCID: PMC10853888 DOI: 10.1111/cns.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES Data on peripheral blood mononuclear cells (PBMCs) characteristics of aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are lacking. In this study, we describe the whole PBMCs landscape of the above diseases using cytometry by time-of-flight mass spectrometry (CyTOF). METHODS The immune cell populations were phenotyped and clustered using CyTOF isolated from 27 AQP4-IgG seropositive NMOSD, 11 MOGAD patients, and 15 healthy individuals. RNA sequencing was employed to identify critical genes. Fluorescence cytometry and qPCR analysis were applied to further validate the algorithm-based results that were obtained. RESULTS We identified an increased population of CD11b+ mononuclear phagocytes (MNPs) in patients with high expression of CCR2, whose abundance may correlate with brain inflammatory infiltration. Using fluorescence cytometry, we confirmed the CCR2+ monocyte subsets in a second cohort of patients. Moreover, there was a wavering of B, CD4+ T, and NKT cells between AQP4-IgG seropositive NMOSD and MOGAD. CONCLUSIONS Our findings describe the whole landscape of PBMCs in two similar demyelinated diseases and suggest that, besides MNPs, T, NK and B, cells were all involved in the pathogenesis. The identified cell population may be used as a predictor for monitoring disease development or treatment responses.
Collapse
Affiliation(s)
- Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan HospitalCapital Medical UniversityBeijingChina
| | - Jiali Sun
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tianshu Guo
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fuyao Xiao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuanyuan Li
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianghong Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Zhang Y, Guo C, Zhou Y, Zhang W, Zhu Z, Wang W, Wan Y. A biphenotypic lymphocyte subset displays both T- and B-cell functionalities. Commun Biol 2024; 7:28. [PMID: 38182721 PMCID: PMC10770049 DOI: 10.1038/s42003-023-05719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
T cell/B cell mixed phenotypic lymphocytes have been observed in different disease contexts, yet their presence and function in physiological conditions remain elusive. Here, we provide evidence for the existence of a lymphocyte subset endogenously expressing both T- and B-cell lineage markers in mice. The majority of these T/B phenotypic lymphocytes (CD3+CD19+) show an origin of pro/pre B cells and distribute widely in mouse bone marrow, lymph nodes, spleen, and peripheral blood. Functional assays show that these biphenotypic lymphocytes can be activated through stimulating TCR or BCR signaling pathways. Moreover, we show that these cells actively participate both the humoral and cellular immune responses elicited by vaccination. Compared to conventional T cells, these biphenotypic lymphocytes can secrete a higher level of IL-2 but a lower level of TNF-α upon antigen specific stimulation. An equivalent lymphocyte subset is found in freshly isolated human PBMCs and exhibits similar functionality, albeit at a lower frequency than in mice.
Collapse
Affiliation(s)
- Yifan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Cuiyuan Guo
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yigong Zhou
- Life Science Department, Faculty of Agricultural and Environmental Sciences, Macdonald Campus of McGill University, Quebec, Canada
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China.
| | - Wanhai Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China.
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| |
Collapse
|
13
|
Jiang M, Dai J, Jiang C, Pan Y, Ren M, Xing M. Long noncoding RNA MEG8 induces an imbalance of Th17/Treg cells through the miR-107/STAT3 axis in Henoch-Schonlein purpura rats. Aging (Albany NY) 2023; 15:13854-13864. [PMID: 38054824 PMCID: PMC10756103 DOI: 10.18632/aging.205266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
T-helper (Th) 17/ T-regulatory (Treg) cell dysregulation underlies the pathogenesis of Henoch-Schonlein purpura (HSP). This research focused on the implication/s of the long noncoding RNA (lncRNAs) maternally expressed gene 8 (MEG8) in Th17 and Treg cell differentiation in HSP rats. MEG8, miR-107, signal transducer and activator of transcription-3 (STAT3), receptor-related orphan receptor γt (RORγt), and the transcription factor forkhead box P3 (Foxp3) expression levels were detected using real-time quantitative polymerase chain reaction and Western blot analyses. Flow cytometry was employed for measuring Th17 and Treg cells within the CD4+ T cell population. The interaction between miR-107 and MEG8 or STAT3 was examined. A low proportion of MEG8 and Treg cells together with Th17 cells were denoted within HSP rats. Moreover, MEG8 overexpression altered the Th17/Treg imbalance in peripheral blood CD4+ T-cell population, and the miR-107 mimic and STAT3 silencing reversed this effect. Thus, MEG8 served as a sponge for miR-107, lowering binding activity to STAT3 and thus overexpressing the molecule. Taken together, MEG8 induces an imbalance of Th17/Treg cells through the miR-107/STAT3 axis in HSP rats.
Collapse
Affiliation(s)
- Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jicheng Dai
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Chunming Jiang
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai 519060, P.R. China
| | - Yanbo Pan
- Department of Neurosurgery, Tieling Central Hospital, Tieling 112000, P.R. China
| | - Mingyong Ren
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Mengnan Xing
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
14
|
Zhong M, Chen H, Lan J, Lan C, Liang L, Yu J, Zhong H, Zhou X, Lu J, Tan X, Lu W. Th1 or Th2 cytokines are correlated with Tregs and T cell subsets and pregnancy outcomes in patients with autoimmune thyroid disease during early, middle, late pregnancy, and postpartum period. Hum Immunol 2023; 84:525-533. [PMID: 37563064 DOI: 10.1016/j.humimm.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Autoimmune thyroid disease (AITD) is a T lymphocytes-mediated autoimmune disorder affecting pregnant women. The current study sought to determine the correlations between T helper-1 (Th1)/T helper-2 (Th2) cytokines and regulatory T cells (Tregs) and T cell subsets and pregnancy outcomes in AITD patients during early pregnancy (T1), middle pregnancy (T2), late pregnancy (T3), and postpartum period (PP). A total of 60 patients with Graves' disease, 60 patients with Hashimoto's thyroiditis, and 30 healthy pregnant women were initially enrolled in the study. Thyroid hormones and antibodies, Th1 or Th2 cytokines, transforming growth factor-β, Tregs, CD4+ T helper cells (CD4+), CD8+ T helper cells (CD8+) levels were determined by means of Maglumi2000 automatic chemiluminescence instrument, enzyme-linked immunosorbent assay, and flow cytometry. Our findings demonstrated higher IFN-γ and IL-2 levels, along with lower IL-4, IL-10, TGF-β, Treg, and CD4+/CD8+ levels in AITD patients during T1, T2, T3, and PP. Furthermore, the TGF-β, Treg, and CD4+/CD8+ levels were lower in the IFN-γ/IL-2 high expression group but higher in the IL-4/IL-10 high expression group. The IFN-γ and IL-2 levels were higher, while IL-4 and IL-10 level were lower in AITD patients with adverse pregnancy outcomes. Lastly, Th1 cytokines were higher and Th2 cytokines were lower in AITD patients and elicited correlation with Tregs and CD4+/CD8+ levels. Collectively, our findings highlighted that up-regulation of Th1 cytokines may increase the percentage of adverse pregnancy outcomes in AITD patients.
Collapse
Affiliation(s)
- Mei Zhong
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China.
| | - Hui Chen
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Jiao Lan
- Research and Experimental Center, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Chunyong Lan
- Department of Ultrasound, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Lan Liang
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Jingming Yu
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Hua Zhong
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Jie Lu
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Xiaoyan Tan
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, PR China.
| |
Collapse
|
15
|
Li Y, Wang Z, Han F, Zhang M, Yang T, Chen M, Du J, Wang Y, Zhu L, Hou H, Chang Y, Han L, Lyu X, Zhang N, Sun W, Cai Z, Wei W. Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease. Ann Rheum Dis 2023; 82:1348-1358. [PMID: 37474274 DOI: 10.1136/ard-2023-224363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES The aim of this study is to profile the transcriptional landscapes of affected tissues and peripheral blood mononuclear cells (PBMCs) at the single-cell level in IgG4-related disease (IgG4-RD). Identifying the cell populations and crosstalk between immune cells and non-immune cells will assist us in understanding the aetiology of IgG4-RD. METHODS We performed single-cell RNA sequencing analysis on submandibular glands (SMGs) and PBMCs from patients with IgG4-RD and matched controls. Additionally, bulk RNA sequencing of PBMCs was used to construct the immune repertoire. Furthermore, multiplex immunofluorescence staining was performed to validate the transcriptomic results. RESULTS We identified three novel subsets of tissue-resident immune cells in the SMGs of patients with IgG4-RD. TOP2A_B cells and TOP2A_T cells had stemness signatures, and trajectory analysis showed that TOP2A_B cells may differentiate into IgG4+plasma cells and that TOP2A_T cells may differentiate into T follicular helper (Tfh) cells. ICOS_PD-1_B cells with Tfh-like characteristics appeared to be an intermediate state in the differentiation from B cells to IgG4+plasma cells. The cellular communication patterns within immune cells and between immune cells and non-immune cells were altered in IgG4-RD compared with controls. Consistently, infection-related pathways were shared in B cells and T cells from SMGs and PBMCs. Furthermore, immune clonotype analysis of PBMC samples showed the complementary determining region 3 amino acid CQQSYSTPYTF was expanded in patients with IgG4-RD. CONCLUSION Our data revealed the cellular and molecular changes at the single-cell resolution of IgG4-RD and provide valuable insights into the aetiology and novel therapeutic targets of the autoimmune disease.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Zhiqin Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Blood Science, Tianjin, China
| | - Feng Han
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Tong Yang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Ming Chen
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Jun Du
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Yin Wang
- Department of Oral Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Zhu
- Department of Ultrasound, Tianjin Medical University General Hospital, Tianjin, China
| | - Hou Hou
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Yanxia Chang
- Department of Research and Development, Seekgene Biotechnology Co, Ltd, Beijing, China
| | - Lin Han
- Department of Oral Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Lyu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Wenwen Sun
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Zhigang Cai
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Blood Science, Tianjin, China
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| |
Collapse
|
16
|
von Essen MR, Talbot J, Hansen RHH, Chow HH, Lundell H, Siebner HR, Sellebjerg F. Intrathecal CD8 +CD20 + T Cells in Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200140. [PMID: 37369602 DOI: 10.1212/nxi.0000000000200140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite accumulating evidence of intrathecal inflammation in patients with primary progressive multiple sclerosis (PPMS), immunomodulatory and suppressive treatment strategies have proven unsuccessful. With this study, we investigated the involvement of CD20+ T cells and the effect of dimethyl fumarate on CD20+ T cells in PPMS. METHODS The main outcomes in this observational, case-control study were flow cytometry assessments of blood and CSF CD20+ T cells and ELISA measurements of myelin basic protein and neurofilament light chain in untreated patients with PPMS and patients treated for 48 weeks with dimethyl fumarate or placebo. MRI measures included new and enlarging T2-weighted lesions over 48 weeks and lesion, normal-appearing white matter, cortical, and thalamic volume. RESULTS Assessing CD20+ T cells in patients with PPMS and controls showed an increased percentage of CD20+ T cells in the blood of untreated patients and a strong enrichment in the CSF. In addition, a higher frequency of CD8+CD20+ T cells in the CSF correlated with a higher concentration of myelin basic protein and T2-weighted lesion volume and with a lower normal-appearing white matter and thalamus volume. Furthermore, CD8+CD20+ T cells were associated with the development of new T2 lesions. After 48 weeks of treatment with dimethyl fumarate, total T cells in CSF were reduced; however, CD20+ T cells were unaffected. DISCUSSION This study shows an association between intrathecal CD8+CD20+ T cells, white matter injury, and thalamic atrophy in PPMS, suggesting a role of CD8+CD20+ T cells in the immunopathogenesis of PPMS. The results also suggest that limited efficacy of dimethyl fumarate in PPMS may, at least partly, be a consequence of failure to suppress CD8+CD20+ T cells in CSF.
Collapse
Affiliation(s)
- Marina Rode von Essen
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| | - Jacob Talbot
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Rikke Holm Holm Hansen
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Helene Højsgaard Chow
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Henrik Lundell
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Hartwig Roman Siebner
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Finn Sellebjerg
- From the Danish Multiple Sclerosis Center (M.R.E., J.T., R.H.H.H., H.H.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Clinical Medicine (H.R.S.), University of Copenhagen; and Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
17
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
18
|
Deng H, Zhang A, Pang DRR, Xi Y, Yang Z, Matheson R, Li G, Luo H, Lee KM, Fu Q, Zou Z, Chen T, Wang Z, Rosales IA, Peters CW, Yang J, Coronel MM, Yolcu ES, Shirwan H, García AJ, Markmann JF, Lei J. Bioengineered omental transplant site promotes pancreatic islet allografts survival in non-human primates. Cell Rep Med 2023; 4:100959. [PMID: 36863336 PMCID: PMC10040375 DOI: 10.1016/j.xcrm.2023.100959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023]
Abstract
The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for β cell replacement including the use of SC-islets or other types of novel cells in clinical settings.
Collapse
Affiliation(s)
- Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dillon Ren Rong Pang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yinsheng Xi
- School of Clinical Medicine, Southern Medical University, Foshan 528300, China
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rudy Matheson
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hao Luo
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kang M Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qiang Fu
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhongliang Zou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tao Chen
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ivy A Rosales
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cole W Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S Yolcu
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Haval Shirwan
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - James F Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Liu N, Yu W, Sun M, Zhang W, Zhou D, Sun J, Wang M. Outcome of COVID-19 Infection in Patients With Multiple Sclerosis Who Received Disease-Modifying Therapies: A Systematic Review and Meta-Analysis. J Clin Neurol 2023:19.e26. [PMID: 36929061 DOI: 10.3988/jcn.2022.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND PURPOSE A systematic review and meta-analysis was performed of the outcome of Coronavirus disease 2019 (COVID-19) infection in patients with multiple sclerosis (MS) who received disease-modifying therapies (DMTs). METHODS Relevant studies published before November 2022 in the PubMed, Cochrane Library, Chinese National Knowledge Infrastructure, and Web of Science databases were retrieved using the following search expression: ("multiple sclerosis" OR "MS") AND ("DMT" OR "disease modifying therapies") AND ("COVID-19"). Two authors independently screened the articles and extracted the data. Qualitative analyses and a meta-analysis constituted 22 of the 794 retrieved articles. Differences in the hospitalization and mortality rates were used as the main measures of efficacy, and the meta-analysis was performed using RevMan software. RESULTS 22 clinical trials were selected. The hospitalization rate was lower in the 3,216 patients who received DMTs than in the 774 patients who did not receive any treatment, with a moderate effect size of 0.43 (p<0.00001). The mortality rate was also lower among patients with MS treated using DMTs than in controls (odds ratio [OR]=0.19, 95% confidence interval [CI]=0.13-0.27, p<0.00001). The hospitalization rates for COVID-19 infection in patients with MS treated with anti-CD20 therapy also increased markedly (OR=3.32, 95% CI=2.63-4.20, p<0.00001). However, there was no significant difference between patients with MS who did and did not receive DMTs. CONCLUSIONS In summary, the application of DMTs was found to be valuable for patients with MS infected with COVID-19. However, more clinical studies are needed to determine the use of anti-CD20 drugs in patients with MS during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - WuHan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dan Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
20
|
Karal-ogly DD, Shumeev AN, Keburiya VV, Mintel MV, Rybtsov SA. Age-Related Changes in the Clustering of Blood Populations in Cynomolgus Monkeys Depend on Sex and Immune Status. Life (Basel) 2023; 13:life13020316. [PMID: 36836673 PMCID: PMC9965083 DOI: 10.3390/life13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Non-anthropoid primates cynomolgus monkeys (Macaca fascicularis), also known as crab-eating macaques, are increasingly used in biomedical and preclinical studies due to their evolutionary proximity to humans, sharing similar diets, infectious and senile diseases. Age-related changes and sexual dimorphism of the immune system of C. monkeys have not been sufficiently characterized in literature, though age and sex differences affect the course of diseases and sensitivity to medications. Aging in C. monkeys is accompanied by an increase in CD3+CD4+CD8+ (DP-T) cells, plasma B-cells, and a decrease in platelets. Erythromyeloid bias has also been noticed in older animals. There was an increase in eosinophils, haematocrit (HCT) and haemoglobin concentration (HGB). Senile decline in the function of the immune system had sex differences. An increase in the number of monocytes, cytotoxic lymphocytes (CTL) and a decrease in the T-helper population were more pronounced in older females. A significant reduction in the number of B-cells and activated T-cells was detected in males only. A moderate correlation with the regression model of aging was established for DP-T, HCT and HGB. The reduction in the B cells count in males and the increase in CTL level in females are moderately correlated with age. Other blood cell populations did not show significant correlations in the regression models due to their high sample variability. The novel cell population CD3-CD20loCD16/CD56+, presumably NK-cells subset, was revealed. This cell population demonstrated an increase trend with age in both sexes. Population-statistical age norms for different sexes for young and very old macaques were established. The blood population clusters associated with sex and immune status in older animals were also identified.
Collapse
Affiliation(s)
| | - Alexander N. Shumeev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | | | - Marina V. Mintel
- The Research Institute of Medical Primatology, 354383 Sochi, Russia
| | - Stanislav A. Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
- Correspondence:
| |
Collapse
|
21
|
Curran C, Vaitaitis G, Waid D, Volmer T, Alverez E, Wagner DH. Ocrevus reduces TH40 cells, a biomarker of systemic inflammation, in relapsing multiple sclerosis (RMS) and in progressive multiple sclerosis (PMS). J Neuroimmunol 2023; 374:578008. [PMID: 36535240 PMCID: PMC9868100 DOI: 10.1016/j.jneuroim.2022.578008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Treating MS has been difficult. One successful drug is Ocrelizumab (anti-CD20), used for the chronic relapsing MS (RMS) and the progressive MS (PMS) forms. TH40 cells are pathogenic effector T cells that increase in percentage and numbers during chronic inflammation. Here we show that in the earliest MS course, clinically isolated syndrome (CIS), TH40 cells expand in number. In PMS TH40 cell numbers remain expanded demonstrating sustained chronic inflammation. In RMS TH40 cells were found in CSF and express CD20. Ocrelizumab reduced TH40 cells to healthy control levels in patients. During treatment inflammatory cytokine producing TH40 cells were decreased.
Collapse
Affiliation(s)
- Christian Curran
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Gisela Vaitaitis
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Dan Waid
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Timothy Volmer
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Enrique Alverez
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - David H Wagner
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America.
| |
Collapse
|
22
|
Chen R, Li Y, Zhuang Y, Zhang Y, Wu H, Lin T, Chen S. Immune evaluation of granulocyte-macrophage colony stimulating factor loaded hierarchically 3D nanofiber scaffolds in a humanized mice model. Front Bioeng Biotechnol 2023; 11:1159068. [PMID: 37034265 PMCID: PMC10080111 DOI: 10.3389/fbioe.2023.1159068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Immune evaluation of biomaterials for tissue regeneration is a critical preclinical evaluation. The current evaluation criterion (ISO 10993-1 or GB/T 16886) uses rodents to perform the immune evaluation. However, the immune system of rodents is different from humans, the obtained results may not be reliable, which could lead directly to the failure of clinical trials. Granulocyte-macrophage colony-stimulating factor (GM-CSF) shows a great potential application in tissue regeneration by regulating local immune responses. The presented work combines the advantages of GM-CSF (immunoregulation) and hierarchically 3D nanofiber scaffolds (tissue regeneration). Methods: Firstly, we fabricated GM-CSF loaded 3D radially aligned nanofiber scaffolds, and then subcutaneous implantation was performed in humanized mice. The whole scaffold and surrounding tissue were harvested at each indicated time point. Finally, the cell infiltration and local immune responses were detected by histological observations, including H&E and Masson staining and immunochemistry. Results: We found significant cell migration and extracellular matrix deposition within the 3D radially aligned nanofiber scaffold after subcutaneous implantation. The locally released GM-CSF could accelerate the expression of human dendritic cells (CD11c) only 3 days after subcutaneous implantation. Moreover, higher expression of human cytotoxic T cells (CD3+/CD8+), M1 macrophages (CD68/CCR7) was detected within GM-CSF loaded radially aligned nanofiber scaffolds and their surrounding tissues. Conclusions: The 3D radially aligned scaffold can accelerate cell migration from surrounding tissues to regenerate the wound area. And the locally released GM-CSF enhances dendritic cell recruitment and activation of cytotoxic T cells and M1 macrophages. Taken together, the GM-CSF loaded 3D radially aligned nanofiber scaffolds have a promising potential for achieving tissue regeneration.
Collapse
Affiliation(s)
- Rui Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yujie Li
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yangyang Zhuang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhang
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| | - Tao Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Hailong Wu, ; Tao Lin, ; Shixuan Chen,
| |
Collapse
|
23
|
Scuiller Y, Hemon P, Le Rochais M, Pers JO, Jamin C, Foulquier N. YOUPI: Your powerful and intelligent tool for segmenting cells from imaging mass cytometry data. Front Immunol 2023; 14:1072118. [PMID: 36936977 PMCID: PMC10019895 DOI: 10.3389/fimmu.2023.1072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent emergence of imaging mass cytometry technology has led to the generation of an increasing amount of high-dimensional data and, with it, the need for suitable performant bioinformatics tools dedicated to specific multiparametric studies. The first and most important step in treating the acquired images is the ability to perform highly efficient cell segmentation for subsequent analyses. In this context, we developed YOUPI (Your Powerful and Intelligent tool) software. It combines advanced segmentation techniques based on deep learning algorithms with a friendly graphical user interface for non-bioinformatics users. In this article, we present the segmentation algorithm developed for YOUPI. We have set a benchmark with mathematics-based segmentation approaches to estimate its robustness in segmenting different tissue biopsies.
Collapse
Affiliation(s)
| | | | | | | | - Christophe Jamin
- LBAI, UMR 1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
- *Correspondence: Christophe Jamin,
| | | |
Collapse
|
24
|
Räuber S, Korsen M, Huntemann N, Rolfes L, Müntefering T, Dobelmann V, Hermann AM, Kölsche T, von Wnuck Lipinski K, Schroeter CB, Nelke C, Regner-Nelke L, Ingwersen J, Pawlitzki M, Teegen B, Barnett MH, Hartung HP, Aktas O, Albrecht P, Levkau B, Melzer N, Ruck T, Meuth SG, Kremer D. Immune response to SARS-CoV-2 vaccination in relation to peripheral immune cell profiles among patients with multiple sclerosis receiving ocrelizumab. J Neurol Neurosurg Psychiatry 2022; 93:978-985. [PMID: 35193952 PMCID: PMC8889453 DOI: 10.1136/jnnp-2021-328197] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leoni Rolfes
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander M Hermann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tristan Kölsche
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute of Molecular Medicine III, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Michael Harry Barnett
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,Sydney Neuroimaging Analysis Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Palacky University, Olomouc, Czech Republic
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Lee KH, Jung KH, Lee JH. Immuno-PET Imaging and Radioimmunotherapy of Lymphomas. Mol Pharm 2022; 19:3484-3491. [PMID: 36046954 DOI: 10.1021/acs.molpharmaceut.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoclonal antibodies (Ab) have revolutionized the management of lymphomas, the most common hematologic malignancy in adults. Indeed, incorporation of rituximab into the regimen for indolent non-Hodgkin's lymphomas (NHLs) has dramatically improved treatment response and disease outcome. Yet, newer Ab therapeutics against promising antigen targets need to be developed to treat refractory or relapsed patients. Treatment efficacy can be further enhanced by conjugating toxic molecules to the Abs. Radioimmunotherapy (RIT) harnesses Abs as vehicles for targeted delivery of therapeutic radionuclide payloads for direct killing of targeted tumor cells. Positron emission tomography (PET) with radiolabeled Abs (called immuno-PET) can facilitate the development of new Ab therapeutics and RIT by providing pharmacokinetic and pharmacodynamic information and by quantifying tumor antigen level relevant for treatment decision. Immuno-PET has recently gravitated toward labeling Abs with 89Zr, a radiometal with a 3.3 day half-life that is trapped following Ab internalization and thus provides high-resolution PET images with excellent contrast. Immuno-PET methods against major lymphoma antigens including CD20 and other promising targets are currently under development. With continued improvements, immuno-PET has the potential to be used in lymphoma management as an imaging biomarker for patient selection and assessment of treatment response.
Collapse
Affiliation(s)
- Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| |
Collapse
|
26
|
Badini K, Fatima S, Khan SA, Suchal Z, Islam N. Evaluation of Diagnostic Utility of the Immunohistochemical Markers in the Accurate Diagnosis of Thyroid Neoplasms: A Retrospective Study in a Tertiary Care Hospital of Pakistan. Cureus 2022; 14:e20953. [PMID: 35154933 PMCID: PMC8815323 DOI: 10.7759/cureus.20953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
Background Thyroid cancer is the most common endocrine malignancy across the globe and is among the fastest-growing cancers worldwide. Thyroid tumors are divided into differentiated and non-differentiated, with each having further subtypes, with papillary carcinoma being the most common one. Immunohistochemical (IHC) markers’ studies play a crucial role in the accurate diagnosis of thyroid neoplasms. To the best of our knowledge, this topic has been the least researched in Pakistan. Objectives This study was designed to determine the diagnostic utility of immunohistochemical markers in the diagnosis of thyroid cancers in correlation with histopathology as the gold standard. Methods This retrospective, single-center study was carried out on 124 patients with thyroid cancer treated at our institution. The type of cancer, patient gender, and immunohistochemical markers used in each patient were recorded, and the sensitivity and specificity of the markers used in each tumor case were calculated. Results The mean age of patients was found to be 48.5 ± 15.6 years; 56 (45.2%) of the patients were male and 68 (54.8%) were female. Out of the 124 patients, 75 (60.5%) had papillary, 19 (15.3%) had medullary, 16 (12.9%) had anaplastic, and eight (6.5%) had follicular carcinoma, while six (4.8%) had primary thyroid lymphoma. Thyroglobulin was found to be a reliable tumor marker in both papillary and follicular tumors. The cluster of differentiation56 (CD56) negativity was a useful double panel study along with thyroglobulin in the confirmation of papillary carcinomas. Tumor markers used in medullary carcinoma include calcitonin, chromogranin, and synaptophysin. Cytokeratin AE 1 and vimentin were found to be useful for anaplastic tumors, while Ki 67 was a reliable marker for primary thyroid lymphoma.
Collapse
|
27
|
Li J, Zhong J, Huang C, Guo J, Wang B. Integration of traditional Chinese medicine and nibble debridement and dressing method reduces thrombosis and inflammatory response in the treatment of thromboangiitis obliterans. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1413. [PMID: 34733965 PMCID: PMC8506740 DOI: 10.21037/atm-21-3752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Background Thromboangiitis obliterans (TAO), also known as Buerger's disease, is an occlusive arterial disease; however, the pathogenesis of TAO is still unclear. Research has shown that traditional Chinese medicine (TCM) has significant advantages in the treatment of TAO. Our purpose was to explore the underlying roles of TCM in combination with nibble debridement and dressing method (NDDM) in a TAO rat model. Methods We administered rats with 10 mg/mL sodium laurate to establish a TAO model, and then the TAO model rats were treated with notoginseng powder (NP), maifusheng (MFS), or the combination of NP or MFS and NDDM. Gangrene classification and blood rheology were evaluated; the pathological characteristics of rat limbs were examined by hematoxylin and eosin (H&E) staining and Masson staining; and cluster of differentiation 3+ (CD3+) and cluster of differentiation 20+ (CD20+) levels were measured by immunohistochemistry (IHC) and flow cytometry. In addition, inflammation-associated cytokines were analyzed by quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot, and enzyme-linked immunosorbent assay (ELISA). Results Integration of NP or MFS and NDDM dramatically reduced the gangrene classification and affected blood rheology parameters of TAO model rats compared with NP and MFS alone. Meanwhile, NP or MFS in combination with NDDM decreased CD3+CD20+ T cells, reduced thrombosis and inflammatory cell infiltration, and dramatically decreased the levels of inflammation-associated cytokines. Conclusions Our results suggested that integration of NP or MFS and NDDM could relieve the symptoms of TAO model rats induced by sodium laurate, which might provide a new management strategy for TAO.
Collapse
Affiliation(s)
- Jianhua Li
- Vasculitis Department, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jingfeng Zhong
- Vasculitis Department, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chunfa Huang
- Vasculitis Department, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiewen Guo
- Science and Education Section, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Bingyu Wang
- Science and Education Section, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Szepanowski F, Warnke C, Meyer Zu Hörste G, Mausberg AK, Hartung HP, Kleinschnitz C, Stettner M. Secondary Immunodeficiency and Risk of Infection Following Immune Therapies in Neurology. CNS Drugs 2021; 35:1173-1188. [PMID: 34657228 PMCID: PMC8520462 DOI: 10.1007/s40263-021-00863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Secondary immunodeficiencies (SIDs) are acquired conditions that may occur as sequelae of immune therapy. In recent years a number of disease-modifying therapies (DMTs) has been approved for multiple sclerosis and related disorders such as neuromyelitis optica spectrum disorders, some of which are frequently also used in- or off-label to treat conditions such as chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis, myositis, and encephalitis. In this review, we focus on currently available immune therapeutics in neurology to explore their specific modes of action that might contribute to SID, with particular emphasis on their potential to induce secondary antibody deficiency. Considering evidence from clinical trials as well as long-term observational studies related to the patients' immune status and risks of severe infections, we delineate long-term anti-CD20 therapy, with the greatest data availability for rituximab, as a major risk factor for the development of SID, particularly through secondary antibody deficiency. Alemtuzumab and cladribine have relevant effects on circulating B-cell counts; however, evidence for SID mediated by antibody deficiency appears limited and urgently warrants further systematic evaluation. To date, there has been no evidence suggesting that treatment with fingolimod, dimethyl fumarate, or natalizumab leads to antibody deficiency. Risk factors predisposing to development of SID include duration of therapy, increasing age, and pre-existing low immunoglobulin (Ig) levels. Prevention strategies of SID comprise awareness of risk factors, individualized treatment protocols, and vaccination concepts. Immune supplementation employing Ig replacement therapy might reduce morbidity and mortality associated with SIDs in neurological conditions. In light of the broad range of existing and emerging therapies, the potential for SID warrants urgent consideration among neurologists and other healthcare professionals.
Collapse
Affiliation(s)
- Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Cologne, Germany
| | | | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Medical University Vienna, Vienna, Austria
- Department of Neurology, Palacky University, Olomouc, Czech Republic
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
29
|
CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Sci Rep 2021; 11:20499. [PMID: 34654826 PMCID: PMC8520003 DOI: 10.1038/s41598-021-00007-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The presence of T cells that are dimly positive for the B cell marker CD20 is well-established in autoimmunity and correlates with disease severity in various diseases. Further, we previously identified that the level of CD20-positive T cells was three-fourfold elevated in ascites fluid of ovarian carcinoma patients, together suggesting a role in both autoimmunity and cancer. In this respect, treatment of autoimmune patients with the CD20-targeting antibody Rituximab has also been shown to target and deplete CD20-positive T cells, previously identified as IFN-gamma producing, low proliferative, CD8 cytotoxic T cells with an effector memory (EM) differentiation state. However, the exact phenotype and relevance of CD20-positive T cells remains unclear. Here, we set out to identify the transcriptomic profile of CD20-positive T cells using RNA sequencing. Further, to gain insight into potential functional properties of CD20 expression in T cells, CD20 was ectopically expressed on healthy human T cells and phenotypic, functional, migratory and adhesive properties were determined in vitro and in vivo. Together, these assays revealed a reduced transmigration and an enhanced adhesive profile combined with an enhanced activation status for CD20-positive T cells.
Collapse
|
30
|
Surface Ligand Valency and Immunoliposome Binding: when More Is Not Always Better. Pharm Res 2021; 38:1593-1600. [PMID: 34463936 DOI: 10.1007/s11095-021-03092-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE Nano-drug delivery systems are designed to contain surface ligands including antibodies for "active targeting". The number of ligands on each nanoparticle, known as the valency, is considered a critical determinant of the "targeting" property. We sought to understand the correlation between valency and binding properties using antibody conjugated liposomes, i.e. immunoliposomes (ILs), as the model. METHODS Anti-CD3 Fab containing a terminal cysteine residue were conjugated to DSPE-PEG-maleimide and incubated with preformed liposomes at 60°C. The un-incorporated antibodies were removed and the obtained ILs were characterized to contain in average 2-22 copies of anti-CD3 Fabs per liposome. The Biolayer Interferometry (BLI) probe surface was coated with various densities of CD3 epsilon&delta heterodimer (CD3D/E) to imitate different CD3 expression levels on target cells. The inference wavelength shifts upon anti-CD3 liposome binding were monitored and analyzed. RESULTS The data indicated ILs may bind either monovalently or multivalently, determined mainly by the surface ligand density rather than the ILs antibody valency. The ILs valency indeed correlated with the dissociation rate constant (Koff), but not with the association rate constant (Kon). Their binding capabilities also did not necessarily increase with the surface anti-CD3 valency. CONCLUSION We proposed a model for understanding the binding properties of ILs with different ligand valencies. The binding mode may change when the targeted surfaces had different antigen densities. The model should be important for the designing and optimization of active targeting drug delivery systems to fit different applications.
Collapse
|
31
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
32
|
Rituximab leads to early elimination of circulating CD20+ T and B lymphocytes in patients with iTTP despite ongoing TPEx. Blood Adv 2021; 4:477-481. [PMID: 32027742 DOI: 10.1182/bloodadvances.2019001148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
How TPEx impacts rituximab effectiveness in iTTP patients is not fully understood. In iTTP patients on therapeutic plasma exchange, rituximab eliminates circulating CD20+ B and T cells in 24 hours for at least 1 week.
Collapse
|
33
|
Zhang R, Ma C, Wei Y, Wang X, Jia J, Li J, Li K, Cao G, Yang P. Isolation, purification, structural characteristics, pharmacological activities, and combined action of Hedyotis diffusa polysaccharides: A review. Int J Biol Macromol 2021; 183:119-131. [PMID: 33905802 DOI: 10.1016/j.ijbiomac.2021.04.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022]
Abstract
Hedyotis diffusa polysaccharides, as the main component and an important bioactive substance of Hedyotis diffusa, are effective immunomodulators with various pharmacological activities, including antitumour, anti-inflammatory, antioxidant, anti-fatigue and immunity-enhancing activities. The total polysaccharides extracted from Hedyotis diffusa and Scutellaria barbata have great effects in treating liver cancer, gastric cancer, rectal cancer, glioma and nasopharyngeal carcinoma. Moreover, different materials and extraction methods result in differences in the structure and bioactivity of Hedyotis diffusa polysaccharides. Therefore, this paper summarizes the isolation, purification, structural characteristics, pharmacological activities, and combined action of Hedyotis diffusa polysaccharides to provide a reference for further study.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chuanjiang Ma
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yongli Wei
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xin Wang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Jia
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ji Li
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan 250014, China
| | - Guangshang Cao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Peimin Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
34
|
Increased proportion of CD20+ T cells after rituximab treatment in patient with neuromyelitis optica later diagnosed with lung B-cell lymphoma: A case report. J Neuroimmunol 2021; 355:577564. [PMID: 33862419 DOI: 10.1016/j.jneuroim.2021.577564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Neuromyelitis optica (NMO) is a rare inflammatory autoimmune disorder of the CNS. Rituximab is used to treat antibody-mediated autoimmune diseases. CASE PRESENTATION We report the case a patient with NMO, who was treated with rituximab and presented CD20+ T cells by flow cytometry after treatment, later diagnosed with lung B-cell lymphoma. CONCLUSION This is the first report of CD20+ T cell detection in an NMO patient. We found that CD20+ T cells recovered faster than B cells after rituximab treatment and that CD20+ T cells seemed to play a role in suppressing tumor growth and memory T cell activity.
Collapse
|
35
|
Etemadifar M, Aghababaee A, Sedaghat N, Rayani M, Nouri H, Abhari A, Salari M, Majdinasab N, Ghiasian M, Bayati A, Nabavi SM, Mansouri A. WITHDRAWN: Incidence and mortality of COVID-19 in Iranian multiple sclerosis patients treated with disease-modifying therapies. Rev Neurol (Paris) 2020:S0035-3787(20)30660-3. [PMID: 33039152 PMCID: PMC7492065 DOI: 10.1016/j.neurol.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
This article has been withdrawn at the request of the authors and editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- M Etemadifar
- Department of neurosurgery, Isfahan university of medical sciences, Isfahan, Iran; Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran
| | - A Aghababaee
- Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran
| | - N Sedaghat
- Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran.
| | - M Rayani
- Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran
| | - H Nouri
- Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran
| | - A Abhari
- Alzahra research institute, Isfahan university of medical sciences, Isfahan, Iran
| | - M Salari
- Department of neurological diseases, Shaid Beheshti university of medical sciences, Tehran, Iran
| | - N Majdinasab
- Department of neurology, Ahvaz Jundishapur university of medical sciences, Ahvaz, Iran
| | - M Ghiasian
- Department of neurology, Hamadan university of medical sciences, Hamadan, Iran
| | - A Bayati
- Shahrekord university of medical sciences, Shahrekord, Iran
| | - S M Nabavi
- Department of neurology and neuroregenerative, Royan institute, Tehran, Iran
| | - A Mansouri
- Hypertension research center, cardiovascular research institute, Isfahan university of medical sciences, Isfahan, Iran
| |
Collapse
|
36
|
Wang J, Wang Q, Chen Y, Wang L, Zhao A, Sha Z. Cloning, expression profile of the complement component C9 gene and influence of the recombinant C9 protein on peripheral mononuclear leukocytes transcriptome in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2020; 104:101-110. [PMID: 32464273 DOI: 10.1016/j.fsi.2020.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The ninth complement component (C9) is a terminal complement component (TCC) that is involved in creating the membrane attack complex (MAC) on the target cell surface. In this study, the CsC9 (C9 of Cynoglossus semilaevis) cDNA sequence was cloned and characterized. The full-length CsC9 cDNA measured 2,150 bp, containing an open reading frame (ORF) of 1,803 bp, a 5'-untranslated region (UTR) of 24 bp and a 3'-UTR of 323 bp. A domain search revealed that the CsC9 protein contains five domains, including two TSP1s, an LDLRA, an EGF, and a MACPF. Quantitative real-time PCR analysis showed that CsC9 at the mRNA level was expressed in all the tested tissues, with the highest expression being observed in the liver. CsC9 expression is significantly upregulated in the tested tissues after challenge with Vibrio anguillarum. To further characterize the role of CsC9, peripheral blood mononuclear cells of C. semilaevis were used for transcriptome analysis after incubation with recombinant CsC9 (rCsC9) protein. A total of 3,775 significant differentially expressed genes (DEGs) were identified between the control and the rCsC9-treated group, including 2,063 upregulated genes and 1,712 downregulated genes. KEGG analyses revealed that the DEGs were enriched in cell adhesion molecules, cytokine-cytokine receptor interactions, T cell receptor signaling pathways, B cell receptor signaling pathways and Toll-like receptor signaling pathways. The results of this study indicate that in addition to participating in MAC formation, CsC9 might play multiple roles in the innate and adaptive immunity of C. semilaevis.
Collapse
Affiliation(s)
- Jingchao Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qian Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Linqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Aiyun Zhao
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- College of Life Science, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
37
|
Falling prey to a wolf in sheep's clothing: T and NK cell neoplasms with aberrant CD20 expression. Virchows Arch 2020; 477:897-899. [PMID: 32803454 DOI: 10.1007/s00428-020-02911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
|
38
|
Liu Y, Ye S, Guo X, Li W, Xia Y, Wen X, Yu J, Jia Y, Liu X, Guo Y, Zhao Y. Discovery and characteristics of B cell-like T cells: A potential novel tumor immune marker? Immunol Lett 2020; 220:44-50. [PMID: 32014490 DOI: 10.1016/j.imlet.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND CD3 and CD19 are the characteristic surface markers of mature T lymphocytes and B lymphocytes of human respectively. A special subset of immune cells that characteristically expressed the surface markers CD19+ of B lymphocytes and CD3+ of T lymphocytes simultaneously (CD19+CD3+ cells, hereinafter referred to as B-T cells) was found in the peripheral blood of human, yet it has not been reported in cancer research before. Our aims were to characterize the expression and possible value of B-T cells in cancer patients. METHODS Flow cytometry was applied to analyse the CD19+CD3+ cells, and laser scanning confocal microscope was utilized to prove co-expressing CD19+ of B lymphocytes and CD3+ of T lymphocytes simultaneously on the surface of the cells. Then a total of 523 patients with malignant tumor were enrolled in this study, and 177 healthy donors were recruited as the control group. The levels of CD19+CD3+ cells in peripheral blood were measured by flow cytometry, and the differences between the two groups were compared. RESULTS The healthy donors and cancer patients all had B-T cells in their peripheral blood, but the percentage of B-T cells was 0.16 % ± 0.11 % and 0.58 % ± 0.38 % respectively, showing statistically significant (P < 0.0001). There was no significant correlation between the percentage of B-T cells and lymphocyte subsets (P > 0.05). The percentages of B-T cells in different tumor species were different. The proportion of B-T cells was high in esophageal cancer, non-Hodgkin's lymphoma and lung cancer, but it was low in pancreatic cancer, ovarian cancer and kidney cancer. Meanwhile, there was significant difference between esophageal cancer and kidney cancer (P < 0.001). The distribution of B-T cells in pancreatic cancer and kidney cancer was more concentrated, yet more dispersed in other cancers. Although there was a trend of increase in clinical stage Ⅲ+Ⅳ and a trend of decrease in age above 60 years for breast cancer, gastric cancer and liver cancer, there was no significant difference in the percentage of B-T cells in age, gender, different clinical stages, tumor metastasis, lymph node metastasis, and splenomegaly (P > 0.05). CONCLUSION The percentage of B-T cells in cancer patients was significantly higher than that of healthy donors. B-T cells maybe play a very complicated role in tumor, whether it could be a potential tumor immune marker or not and what are the specific phenotypes and functions of it to need be further verified.
Collapse
Affiliation(s)
- Yunhe Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China
| | - Songshan Ye
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Graduate School, Tianjin, China
| | - Xiaoxue Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Graduate School, Tianjin, China
| | - Wentao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China
| | - Ying Xia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Graduate School, Tianjin, China
| | - Xiaohua Wen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Graduate School, Tianjin, China
| | - Jianchun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China.
| | - Yingjie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Oncology Department, Tianjin, China
| | - Xu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Clinic Laboratory, Tianjin, China
| | - Yongtie Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Clinic Laboratory, Tianjin, China
| | - Yan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Clinic Laboratory, Tianjin, China
| |
Collapse
|