1
|
Gao S, Li X, Hu Z, Wang Z, Hao X. Dual targeting negative enrichment strategy for highly sensitive and purity detection of CTCs. Front Chem 2024; 12:1400988. [PMID: 38831912 PMCID: PMC11144890 DOI: 10.3389/fchem.2024.1400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Circulating tumor cells (CTCs) have significant clinical value in early tumor detection, dynamic monitoring and immunotherapy. CTC detection stands out as a leading non-invasive approach for tumor diagnostics and therapeutics. However, the high heterogeneity of CTCs and the occurrence of epithelial-mesenchymal transition (EMT) during metastasis pose challenges to methods relying on EpCAM-positive enrichment. To address these limitations, a method based on negative enrichment of CTCs using specific leukocyte targets has been developed. In this study, aiming to overcome the low purity associated with immunomagnetic beads targeting solely the leukocyte common antigen CD45, we introduced CD66b-modified immunomagnetic beads. CD66b, a specific target for neutrophils with abundant residues, was chosen as a complementary approach. The process involved initial collection of nucleated cells from whole blood samples using density gradient centrifugation. Subsequently, magnetically labeled leukocytes were removed by magnetic field, enabling the capture of CTCs with higher sensitivity and purity while retaining their activity. Finally, we selected 20 clinical blood samples from patients with various cancers to validate the effectiveness of this strategy, providing a new generalized tool for the clinical detection of CTCs.
Collapse
Affiliation(s)
- Siying Gao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xuejie Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zhiyuan Hu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- School of Nanoscience and Technology, SinoDanish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaopeng Hao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
CTC-5: A novel digital pathology approach to characterise circulating tumour cell biodiversity. Heliyon 2023; 9:e13044. [PMID: 36747925 PMCID: PMC9898658 DOI: 10.1016/j.heliyon.2023.e13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Metastatic progression and tumor evolution complicates the clinical management of cancer patients. Circulating tumor cell (CTC) characterization is a growing discipline that aims to elucidate tumor metastasis and evolution processes. CTCs offer the clinical potential to monitor cancer patients for therapy response, disease relapse, and screen 'at risk' groups for the onset of malignancy. However, such clinical utility is currently limited to breast, prostate, and colorectal cancer patients. Further understanding of the basic CTC biology of other malignancies is required to progress them towards clinical utility. Unfortunately, such basic clinical research is often limited by restrictive characterization methods and high-cost barrier to entry for CTC isolation and imaging infrastructure. As experimental clinical results on applications of CTC are accumulating, it is becoming clear that a two-tier system of CTC isolation and characterization is required. The first tier is to facilitate basic research into CTC characterization. This basic research then informs a second tier specialised in clinical prognostic and diagnostic testing. This study presented in this manuscript describes the development and application of a low-cost, CTC isolation and characterization pipeline; CTC-5. This approach uses an established 'isolation by size' approach (ScreenCell Cyto) and combines histochemical morphology stains and multiparametric immunofluorescence on the same isolated CTCs. This enables capture and characterization of CTCs independent of biomarker-based pre-selection and accommodates both single CTCs and clusters of CTCs. Additionally, the developed open-source software is provided to facilitate the synchronization of microscopy data from multiple sources (https://github.com/CTC5/). This enables high parameter histochemical and immunofluorescent analysis of CTCs with existing microscopy infrastructure without investment in CTC specific imaging hardware. Our approach confirmed by the number of successful tests represents a potential major advance towards highly accessible low-cost technology aiming at the basic research tier of CTC isolation and characterization. The biomarker independent approach facilitates closing the gap between malignancies with poorly, and well-defined CTC phenotypes. As is currently the case for some of the most commonly occurring breast, prostate and colorectal cancers, such advances will ultimately benefit the patient, as early detection of relapse or onset of malignancy strongly correlates with their prognosis.
Collapse
|
3
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
Zhou J, Zhang Z, Zhou H, Leng C, Hou B, Zhou C, Hu X, Wang J, Chen X. Preoperative circulating tumor cells to predict microvascular invasion and dynamical detection indicate the prognosis of hepatocellular carcinoma. BMC Cancer 2020; 20:1047. [PMID: 33129301 PMCID: PMC7603758 DOI: 10.1186/s12885-020-07488-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background This study explored the diagnostic power of preoperative circulating tumor cells (CTCs) for the presence of microvascular invasion (MVI) and the relationship between dynamic changes in postoperative CTCs and prognosis. Methods A total of 137 patients were recruited for the study. Preoperative blood samples were collected from all patients to detect CTCs. The time points for blood collection were before the operation, during the operation, and at 1 week, 1 month, 2 months, 3 months, 6 months, and 1 year after surgery. The predictive power of CTC count for the presence of MVI was analyzed by receiver operating characteristic (ROC) curve analysis. According to recurrence status, 137 patients were divided into three groups: no recurrence, early recurrence, and non-early recurrence groups. Results A threshold CTC count of 5 showed the most significant power for predicting the existence of MVI. In multivariate analysis, the parameters of preoperative CTC count, alpha-fetoprotein (AFP) and tumor diameter were independent predictors of MVI (P < 0.05). A CTC count greater than or equal to 5 had better predictive value than AFP > 400 μg/L and tumor diameter > 5 cm. The number of intraoperative CTCs in the three groups did not increase compared to that before surgery (P > 0.05). The number of CTCs in the nonrecurrence group and the non-early recurrence group decreased significantly 1 week after surgery compared with the intraoperative values (P < 0.001), although there was no significant difference in the early recurrence group (P = 0.95). Patients with mean CTC count ≥5 had significantly worse long-term outcomes than those with mean CTC count < 5 (P < 0.001). Conclusion The preoperative CTC counts in the peripheral blood of patients with HCC are closely correlated with MVI. The intraoperative manipulation of the lesion by the surgeon does not increase the number of CTCs in peripheral blood. Surgical removal of the tumor decreases the number of CTCs. The persistence of CTCs at a high level (≥ 5) after surgery suggests a risk of early recurrence. Clinical trial registration Registration number is ChiCTR-OOC-16010183, date of registration is 2016-12-18.
Collapse
Affiliation(s)
- Jiangmin Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Honghao Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bingwu Hou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chenyang Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xinsheng Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jinlin Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xiaoping Chen
- Translational Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Habli Z, AlChamaa W, Saab R, Kadara H, Khraiche ML. Circulating Tumor Cell Detection Technologies and Clinical Utility: Challenges and Opportunities. Cancers (Basel) 2020; 12:cancers12071930. [PMID: 32708837 PMCID: PMC7409125 DOI: 10.3390/cancers12071930] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
The potential clinical utility of circulating tumor cells (CTCs) in the diagnosis and management of cancer has drawn a lot of attention in the past 10 years. CTCs disseminate from tumors into the bloodstream and are believed to carry vital information about tumor onset, progression, and metastasis. In addition, CTCs reflect different biological aspects of the primary tumor they originate from, mainly in their genetic and protein expression. Moreover, emerging evidence indicates that CTC liquid biopsies can be extended beyond prognostication to pharmacodynamic and predictive biomarkers in cancer patient management. A key challenge in harnessing the clinical potential and utility of CTCs is enumerating and isolating these rare heterogeneous cells from a blood sample while allowing downstream CTC analysis. That being said, there have been serious doubts regarding the potential value of CTCs as clinical biomarkers for cancer due to the low number of promising outcomes in the published results. This review aims to present an overview of the current preclinical CTC detection technologies and the advantages and limitations of each sensing platform, while surveying and analyzing the published evidence of the clinical utility of CTCs.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
| | - Walid AlChamaa
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 77030 TX, USA;
| | - Massoud L. Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
- Correspondence:
| |
Collapse
|
6
|
Eggeling F, Hoffmann F. Microdissection—An Essential Prerequisite for Spatial Cancer Omics. Proteomics 2020; 20:e2000077. [DOI: 10.1002/pmic.202000077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ferdinand Eggeling
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| | - Franziska Hoffmann
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| |
Collapse
|
7
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
8
|
Salvianti F, Massi D, De Giorgi V, Gori A, Pazzagli M, Pinzani P. Evaluation of the liquid biopsy for the detection of BRAFV600E mutation in metastatic melanoma patients. Cancer Biomark 2020; 26:271-279. [PMID: 31524142 DOI: 10.3233/cbm-181647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Circulating tumor cells (CTCs) and circulating cell free DNA (ccfDNA) represent a liquid biopsy of a tumor allowing real time disease monitoring especially in advanced stages of cancer, but their analysis is technically challenging. OBJECTIVE We aimed to demonstrate the feasibility of two different technical approaches to detect the BRAFV600E mutation in the liquid biopsy of 20 metastatic melanoma patients by using both the enriched CTC fraction and circulating ccfDNA from the same blood sample. METHODS We detected CTCs by a filtration method in 20 metastatic melanoma patients and detected the BRAFV600E variant on CTCs and ccfDNA by an allele-specific qPCR assay; the mutated samples were confirmed by ICE-COLD PCR followed by Sanger sequencing. RESULTS We found CTCs in 70% of the samples, and identified the BRAFV600E variant on CTCs. We correlated the results with those obtained on ccfDNA from the same blood draw. We found some discordant results between CTCs and ccfDNA. CONCLUSIONS Our results underline the importance of investigating both CTCs and ccfDNA in a liquid biopsy approach to melanoma patients.
Collapse
Affiliation(s)
- Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Daniela Massi
- Division of Pathology, Department of Health Sciences (DSS), University of Florence, Italy
| | - Vincenzo De Giorgi
- Division of Dermatology, Department of Health Sciences (DSS), University of Florence, Italy
| | - Alessia Gori
- Division of Dermatology, Department of Health Sciences (DSS), University of Florence, Italy
| | - Mario Pazzagli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| |
Collapse
|
9
|
Johnson ES, Xu S, Yu HM, Fang WF, Qin Y, Wu L, Wang J, Zhao M, Schiro PG, Fujimoto B, Chen JL, Chiu DT. Isolating Rare Cells and Circulating Tumor Cells with High Purity by Sequential eDAR. Anal Chem 2019; 91:14605-14610. [PMID: 31646861 PMCID: PMC9847251 DOI: 10.1021/acs.analchem.9b03690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from the blood of patients at risk of metastatic cancers is a promising approach to improving cancer treatment. However, CTC isolation is difficult due to low CTC abundance and heterogeneity. Previously, we reported an ensemble-decision aliquot ranking (eDAR) platform for the rare cell and CTC isolation with high throughput, greater than 90% recovery, and high sensitivity, allowing detection of low surface antigen-expressing cells linked to metastasis. Here we demonstrate a sequential eDAR platform capable of isolating rare cells from whole blood with high purity. This improvement in purity is achieved by using a sequential sorting and flow stretching design in which whole blood is sorted and fluid elements are stretched using herringbone features and the parabolic flow profile being sorted a second time. This platform can be used to collect single CTCs in a multiwell plate for downstream analysis.
Collapse
Affiliation(s)
- Eleanor S. Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Shihan Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Hui-Min Yu
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Wei-Feng Fang
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Yuling Qin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Li Wu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jiasi Wang
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Perry G. Schiro
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Bryant Fujimoto
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jui-Lin Chen
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
10
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
11
|
Qin Y, Yang X, Zhang J, Cao X. Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths. Biomed Microdevices 2019; 21:54. [PMID: 31203429 DOI: 10.1007/s10544-019-0403-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aptamers have been widely used to recognize and capture their targets in sensitive detection applications, such as in detections of circulating tumor cells. In this study, we investigate the effects of different lengths of oligo-T spacers on surface tethered sgc8 aptamers and their target capturing performances. To achieve this, sgc8 aptamers were immobilized onto microfluidic channel surfaces via oligo-T spacers of different lengths, and the target capturing performances of these immobilized aptamers were studied using CCRF-CEM cells. We demonstrate that the capturing performances of the immobilized aptamers were significantly affected by steric hindrance. Our results also show that aptamers immobilized on surfaces via spacers of ten Ts demonstrated the best cell capturing performances; aptamers with either too short or too long oligo-T spacers showed reduced cell capturing performances. Therefore it can be concluded that spacer optimizations are critically important for surface tethered aptamers that are commonly used in microfluidic devices for sensitive target sensing and detections.
Collapse
Affiliation(s)
- Yubo Qin
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology, Haikou, 571126, China
| | - Jingchang Zhang
- Hainan Institute of Science and Technology, Haikou, 571126, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,Ottawa-Carleton Institute of Biomedical Engineering, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
12
|
Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O'Byrne K, Punyadeera C. The Prognostic Role of Circulating Tumor Cells (CTCs) in Lung Cancer. Front Oncol 2018; 8:311. [PMID: 30155443 PMCID: PMC6102369 DOI: 10.3389/fonc.2018.00311] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer affects over 1. 8 million people worldwide and is the leading cause of cancer related mortality globally. Currently, diagnosis of lung cancer involves a combination of imaging and invasive biopsies to confirm histopathology. Non-invasive diagnostic techniques under investigation include "liquid biopsies" through a simple blood draw to develop predictive and prognostic biomarkers. A better understanding of circulating tumor cell (CTC) dissemination mechanisms offers promising potential for the development of techniques to assist in the diagnosis of lung cancer. Enumeration and characterization of CTCs has the potential to act as a prognostic biomarker and to identify novel drug targets for a precision medicine approach to lung cancer care. This review will focus on the current status of CTCs and their potential diagnostic and prognostic utility in this setting.
Collapse
Affiliation(s)
- Joanna Kapeleris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Majid E. Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ian Vela
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Central Integrated Regional Cancer Service, Queensland Health, Brisbane, QLD, Australia
| | - Kenneth O'Byrne
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Broncy L, Njima BB, Méjean A, Béroud C, Romdhane KB, Ilie M, Hofman V, Muret J, Hofman P, Bouhamed HC, Paterlini-Bréchot AP. Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget 2018; 9:20058-20074. [PMID: 29732003 PMCID: PMC5929446 DOI: 10.18632/oncotarget.25102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/24/2018] [Indexed: 12/14/2022] Open
Abstract
CONTEXT Circulating Rare Cells (CRC) are non-haematological cells circulating in blood. They include Circulating Cancer Cells (CCC) and cells with uncertain malignant features (CRC-UMF) according to cytomorphology. Clear cell renal cell carcinomas frequently bear a mutated Von Hippel-Lindau (VHL) gene. AIM To match blind genetic analysis of CRC and tumor samples with CRC cytopathological diagnosis. RESULTS 29/30 patients harboured CRC (20 harboured CCC, 29 CRC-UMF) and 25/29 patients carried VHL mutations in their tumour. 205 single CRC (64 CCC, 141 CRC-UMF) provided genetic data. 57/57 CCC and 104/125 CRC-UMF from the 25 patients with VHL-mutated tumor carried the same VHL mutation detected in the tumor. Seven CCC and 16 CRC-UMF did not carry VHL mutations but were found in patients with wild-type VHL tumor tissue. CONCLUSIONS All the CCC and 83,2% (104/125) of the CRC-UMF were found to carry the same VHL mutation identified in the corresponding tumorous tissue, validating cytopathological identification of CCC in patients with clear cell renal cell carcinoma. METHODS The blood of 30 patients with clear cell renal cell carcinoma was treated by ISET® for CRC isolation, cytopathology and single-cell VHL mutations analysis, performed blindly and compared to VHL mutations of corresponding tumor tissues and leukocytes.
Collapse
Affiliation(s)
- Lucile Broncy
- INSERM Unit 1151, Faculté de Médecine Paris Descartes, Paris, France
| | - Basma Ben Njima
- Genetics and Pathology Departments, University of Tunis, Tunis, Tunisia
| | - Arnaud Méjean
- Service d'Urologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Christophe Béroud
- Aix Marseille University, INSERM, MMG, Marseille, France
- APHM, Hôpital TIMONE Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | | | - Marius Ilie
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | - Veronique Hofman
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | - Jane Muret
- Institut Curie, PSL Research University, Département d'Anesthésie Réanimation Douleur, Paris, France
| | - Paul Hofman
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | | | - And Patrizia Paterlini-Bréchot
- INSERM Unit 1151, Faculté de Médecine Paris Descartes, Paris, France
- Laboratoire de Biochimie A, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
14
|
Abstract
The majority of cancer-related deaths result from metastasis, the process by which cancer cells escape the primary tumor site and enter into the blood circulation in order to disseminate to secondary locations throughout the body. Tumor cells found within the circulation are referred to as circulating tumor cells (CTCs), and their detection and enumeration correlate with poor prognosis. The epithelial-to-mesenchymal transition (EMT) is a dynamic process that imparts epithelial cells with mesenchymal-like properties, thus facilitating tumor cell dissemination and contributing to metastasis. However, EMT also results in the downregulation of various epithelial proteins typically utilized by CTC technologies for enrichment and detection of these rare cells, resulting in reduced detection of some CTCs, potentially those with a more metastatic phenotype. In addition to the current clinical role of CTCs as a prognostic biomarker, they also have potential as a predictive biomarker via CTC characterization. However, CTC characterization is complicated by the unknown biological significance of CTCs possessing an EMT-like phenotype, and the ability to capture and understand this CTC subpopulation is an essential step in the utilization of CTCs for patient management. This chapter will review the process of EMT and its contribution to metastasis; discusses current and future clinical applications of CTCs; and describes both traditional and novel methods for CTC enrichment, detection, and characterization with a specific focus on CTCs with an EMT phenotype.
Collapse
|
15
|
Mamdani H, Ahmed S, Armstrong S, Mok T, Jalal SI. Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl Lung Cancer Res 2017; 6:648-660. [PMID: 29218268 DOI: 10.21037/tlcr.2017.09.03] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The therapeutic landscape of lung cancer has expanded significantly over the past decade. Advancements in molecularly targeted therapies, strategies to discover and treat resistance mutations, and development of personalized cancer treatments in the context of tumor heterogeneity and dynamic tumor biology have made it imperative to obtain tumor samples on several different occasions through the course of patient treatment. While this approach is critical to the delivery of optimal cancer treatment, it is fraught with a number of barriers including the need for invasive procedures with associated complications, access to limited amount of tissue, logistical delays in obtaining the biopsy, high healthcare cost, and in many cases inability to obtain tissue because of technically difficult location of the tumor. Given multiple limitations of obtaining tissue samples, the use of blood-based biomarkers ("liquid biopsies") may enable earlier diagnosis of cancer, lower costs by avoiding complex invasive procedures, tailoring molecular targeted treatments, improving patient convenience, and ultimately supplement clinical oncologic decision-making. In this paper, we review various blood-based biomarkers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), tumor derived exosomes, tumor educated platelets (TEPs), and microRNA; and highlight current evidence for their use in detection and treatment of lung cancer.
Collapse
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shahid Ahmed
- Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Samantha Armstrong
- Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tony Mok
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | - Shadia I Jalal
- Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
16
|
Chinen LTD, Abdallah EA, Braun AC, Flores BDCTDCP, Corassa M, Sanches SM, Fanelli MF. Circulating Tumor Cells as Cancer Biomarkers in the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:1-41. [PMID: 28560666 DOI: 10.1007/978-3-319-55947-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is believed that the development of metastatic cancer requires the presence of circulating tumor cells (CTCs) , which are found in a patient's circulation as rare abnormal cells comingled with billions of the normal red and white blood cells. The systems developed for detection of CTCs have brought progress to cancer treatment. The molecular characterization of CTCs can aid in the development of new drugs, and their presence during treatment can help clinicians determine the prognosis of the patient. Studies have been carried out in patients early in the disease course, with only primary tumors, and the role of CTCs in prognosis seems to be as important as it is in patients with metastatic disease. The published studies on CTCs have focused on their prognostic significance, their utility in real-time monitoring of therapies, the identification of therapeutic and resistance targets, and understanding the process of metastasis . The analysis of CTCs during the early stages, as a "liquid biopsy," helps to monitor patients at different points in the disease course, including minimal residual disease, providing valuable information about the very early assessment of treatment effectiveness. Finally, CTCs can be used to screen patients with family histories of cancer or with diseases that can lead to the development of cancer. With standard protocols, this easily obtained and practical tool can be used to prevent the growth and spread of cancer. In this chapter, we review some important aspects of CTCs , surveying the disease aspects where these cells have been investigated.
Collapse
Affiliation(s)
| | - Emne Ali Abdallah
- International Research Center, A. C. Camargo Cancer Center, Rua Taguá 440, São Paulo, SP, 01508-010, Brazil
| | - Alexcia Camila Braun
- International Research Center, A. C. Camargo Cancer Center, Rua Taguá 440, São Paulo, SP, 01508-010, Brazil
| | | | - Marcelo Corassa
- Department of Medical Oncology, A. C. Camargo Cancer Center, Rua Professor Antônio Prudente, São Paulo, SP, 01509-010, Brazil
| | - Solange Moraes Sanches
- Department of Medical Oncology, A. C. Camargo Cancer Center, Rua Professor Antônio Prudente, São Paulo, SP, 01509-010, Brazil
| | - Marcello Ferretti Fanelli
- Department of Medical Oncology, A. C. Camargo Cancer Center, Rua Professor Antônio Prudente, São Paulo, SP, 01509-010, Brazil
| |
Collapse
|
17
|
Chen K, Georgiev TZ, Sheng W, Zheng X, Varillas JI, Zhang J, Hugh Fan Z. Tumor cell capture patterns around aptamer-immobilized microposts in microfluidic devices. BIOMICROFLUIDICS 2017; 11:054110. [PMID: 29034054 PMCID: PMC5624804 DOI: 10.1063/1.5000707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 05/04/2023]
Abstract
Circulating tumor cells (CTCs) have shown potential for cancer diagnosis and prognosis. Affinity-based CTC isolation methods have been proved to be efficient for CTC detection in clinical blood samples. One of the popular choices for affinity-based CTC isolation is to immobilize capture agents onto an array of microposts in microchannels, providing high CTC capture efficiency due to enhanced interactions between tumor cells and capture agents on the microposts. However, how the cells interact with microposts under different flow conditions and what kind of capture pattern results from the interactions have not been fully investigated; a full understanding of these interactions will help to design devices and choose experimental conditions for higher CTC capture effeciency. We report our study on their interaction and cell distribution patterns around microposts under different flow conditions. Human acute lymphoblastic leukemia cells (CCRF-CEM) were used as target cancer cells in this study, while the Sgc8 aptamer that has specific binding with CCRF-CEM cells was employed as a capture agent. We investigated the effects of flow rates and micropost shapes on the cell capture efficiency and capture patterns on microposts. While a higher flow rate decreased cell capture efficiency, we found that the capture pattern around microposts also changed, with much more cells captured in the front half of a micropost than at the back half. We also found the ratio of cells captured on microposts to the cells captured by both microposts and channel walls increased as a function of the flow rate. We compared circular microposts with an elliptical shape and found that the geometry affected the capture distribution around microposts. In addition, we have developed a theoretical model to simulate the interactions between tumor cells and micropost surfaces, and the simulation results are in agreement with our experimental observation.
Collapse
Affiliation(s)
- Kangfu Chen
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | - Teodor Z Georgiev
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | - Weian Sheng
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | - Xiangjun Zheng
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | - Jose I Varillas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, USA
| | - Jinling Zhang
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, USA
| | | |
Collapse
|
18
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
19
|
Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma. Ann Surg 2017; 264:1073-1081. [PMID: 26756760 DOI: 10.1097/sla.0000000000001600] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We assessed circulating tumor cells (CTCs) with epithelial and mesenchymal phenotypes as a potential prognostic biomarker for patients with pancreatic adenocarcinoma (PDAC). BACKGROUND PDAC is the fourth leading cause of cancer death in the United States. There is an urgent need to develop biomarkers that predict patient prognosis and allow for better treatment stratification. METHODS Peripheral and portal blood samples were obtained from 50 patients with PDAC before surgical resection and filtered using the Isolation by Size of Epithelial Tumor cells method. CTCs were identified by immunofluorescence using commercially available antibodies to cytokeratin, vimentin, and CD45. RESULTS Thirty-nine patients (78%) had epithelial CTCs that expressed cytokeratin but not CD45. Twenty-six (67%) of the 39 patients had CTCs which also expressed vimentin, a mesenchymal marker. No patients had cytokeratin-negative and vimentin-positive CTCs. The presence of cytokeratin-positive CTCs (P < 0.01), but not mesenchymal-like CTCs (P = 0.39), was associated with poorer survival. The presence of cytokeratin-positive CTCs remained a significant independent predictor of survival by multivariable analysis after accounting for other prognostic factors (P < 0.01). The detection of CTCs expressing both vimentin and cytokeratin was predictive of recurrence (P = 0.01). Among patients with cancer recurrence, those with vimentin-positive and cytokeratin-expressing CTCs had decreased median time to recurrence compared with patients without CTCs (P = 0.02). CONCLUSIONS CTCs are an exciting potential strategy for understanding the biology of metastases, and provide prognostic utility for PDAC patients. CTCs exist as heterogeneous populations, and assessment should include phenotypic identification tailored to characterize cells based on epithelial and mesenchymal markers.
Collapse
|
20
|
Xu W, Wu B, Fu L, Chen J, Wang Z, Huang F, Chen J, Zhang M, Zhang Z, Lin J, Lan R, Chen R, Chen W, Chen L, Hong J, Zhang W, Ding Y, Okunieff P, Lin J, Zhang L. Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis. Oncol Rep 2017; 37:3219-3226. [PMID: 28498481 PMCID: PMC5442393 DOI: 10.3892/or.2017.5613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.
Collapse
Affiliation(s)
- Weifeng Xu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Bing Wu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lengxi Fu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junying Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zeng Wang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fei Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jinrong Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Jingan Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruilong Lan
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruiqing Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wei Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Long Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jinsheng Hong
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weijian Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuxiong Ding
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Jianhua Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lurong Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
21
|
Zheng X, Fan L, Zhou P, Ma H, Huang S, Yu D, Zhao L, Yang S, Liu J, Huang A, Cai C, Dai X, Zhang T. Detection of Circulating Tumor Cells and Circulating Tumor Microemboli in Gastric Cancer. Transl Oncol 2017; 10:431-441. [PMID: 28448959 PMCID: PMC5406582 DOI: 10.1016/j.tranon.2017.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS:Eighty-one gastric cancer patients consented to provide 5 ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS:CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P < .001). CTM positivity was an independent factor for determining the PFS (P = .016) and OS (P = .003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK−/Vimentin+/CD45− and CK+/Vimentin+/CD45− phenotypes were observed, but the CK+/Vimentin−/CD45− CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.
Collapse
Affiliation(s)
- Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Li Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Congli Cai
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China.
| |
Collapse
|
22
|
Qin Y, Yang X, Zhang J, Cao X. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections. Colloids Surf B Biointerfaces 2017; 151:39-46. [DOI: 10.1016/j.colsurfb.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
|
23
|
Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion. PLoS One 2017; 12:e0169427. [PMID: 28060956 PMCID: PMC5218415 DOI: 10.1371/journal.pone.0169427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET®in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.
Collapse
|
24
|
Williams A, Chung J, Yang C, Cote RJ. Fourier Ptychographic Microscopy for Rapid, High-Resolution Imaging of Circulating Tumor Cells Enriched by Microfiltration. Methods Mol Biol 2017; 1634:107-117. [PMID: 28819844 DOI: 10.1007/978-1-4939-7144-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Examining the hematogenous compartment for evidence of metastasis has increased significantly within the oncology research community in recent years, due to the development of technologies aimed at the enrichment of circulating tumor cells (CTCs), the subpopulation of primary tumor cells that gain access to the circulatory system and are responsible for colonization at distant sites. In contrast to other technologies, filtration-based CTC enrichment, which exploits differences in size between larger tumor cells and surrounding smaller, non-tumor blood cells, has the potential to improve CTC characterization through isolation of tumor cell populations with greater molecular heterogeneity. However, microscopic analysis of uneven filtration surfaces containing CTCs is laborious, time-consuming, and inconsistent, preventing widespread use of filtration-based enrichment technologies. Here, integrated with a microfiltration-based CTC and rare cell enrichment device we have previously described, we present a protocol for Fourier Ptychographic Microscopy (FPM), a method that, unlike many automated imaging platforms, produces high-speed, high-resolution images that can be digitally refocused, allowing users to observe objects of interest present on multiple focal planes within the same image frame. The development of a cost-effective and high-throughput CTC analysis system for filtration-based enrichment technologies could have profound clinical implications for improved CTC detection and analysis.
Collapse
Affiliation(s)
- Anthony Williams
- Department of Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Jaebum Chung
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Richard J Cote
- Department of Pathology, The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, USA.
- Department of Pathology, University of Miami-Miller School of Medicine, 1120 NW 14th Street, Suite 1416 (R-5), Miami, FL, 33136, USA.
| |
Collapse
|
25
|
Wang L, Wu C, Qiao L, Yu W, Guo Q, Zhao M, Yang G, Zhao H, Lou J. Clinical Significance of Folate Receptor-positive Circulating Tumor Cells Detected by Ligand-targeted Polymerase Chain Reaction in Lung Cancer. J Cancer 2017; 8:104-110. [PMID: 28123603 PMCID: PMC5264045 DOI: 10.7150/jca.16856] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
Background: As the heterogeneity of CTCs is becoming increasingly better understood, it is clear that identifying particular subtypes of CTCs would be more relevant. Methods: We detected folate receptor (FR)-positive circulating tumor cells (FR+-CTCs) by a novel ligand-targeted polymerase chain reaction (LT-PCR) detection technique. Results: In the none-dynamic study, FR+-CTC levels of patients with lung cancer were significantly higher than controls (patients with benign lung diseases and healthy controls). With a threshold of 8.7 CTC units, FR+-CTC showed a sensitivity of 77.7% and specificity of 89.5% in the diagnosis of lung cancer. When compared with established clinical biomarkers including carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and neuron-specific enolase (NSE), FR+-CTC showed the highest diagnostic efficiency. Notably, the combination of FR+-CTC, CEA, NSE, and CYFRA21-1 could significantly improve the diagnostic efficacy in differentiating patients with lung cancer from benign lung disease. In our dynamic surveillance study, the CTC levels of 62 non-small cell lung cancer (NSCLC) patients decreased significantly after tumor resection. Conclusion: We established a LT-PCR-based FR+-CTC detection platform for patients with lung cancer that exhibits high sensitivity and specificity. This platform would be clinical useful in lung cancer diagnosis and treatment response assessment.
Collapse
Affiliation(s)
- Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Chuanyong Wu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Lihua Qiao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Wenjun Yu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Qiaomei Guo
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Guohua Yang
- GenoSaber Biotech, 908 ziping Road, Bldg 26, Pudong, Shanghai, China
| | - Hang Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai 200030, China
| |
Collapse
|
26
|
Zhang X, Chen B, He M, Wang H, Hu B. Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens Bioelectron 2016; 86:736-740. [PMID: 27476054 DOI: 10.1016/j.bios.2016.07.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Sensitive detection of circulating tumor cells (CTCs) is of great significance in the early detection of cancer and cancer metastasis. This work reported an efficient, specific, and sensitive immunoassay protocol for detection of tumor cells by using inductively coupled plasma mass spectrometry (ICP-MS) with gold nanoparticles (AuNPs) labeling and hybridization chain reaction (HCR) amplification. In the established approach, antibodies against epithelial cell adhesion molecule (anti-EpCAM) conjugated magnetic beads (MBs) were used for selective capture of tumor cells from peripheral blood, aptamer was applied for the recognition of captured tumor cells, and AuNPs labeled DNA concatamer was used as the signal probe for tumor cell labeling and ICP-MS detection. Due to the dual amplification effect of AuNPs and HCR, the limit of detection of this ICP-MS based method for HepG2 cells was as low as 15 cells, and the linear range was 40-8000 cells with the relative standard deviation for seven replicate detections of 200 HepG2 cells was 8.7%. Furthermore, the applicability of the method for the analysis of peripheral blood samples was demonstrated by the spiking tests. The established method was highly specific and sensitive for the detection of HepG2 cells, and has a good application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China.
| |
Collapse
|
27
|
Forte VA, Barrak DK, Elhodaky M, Tung L, Snow A, Lang JE. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med 2016; 13:19-40. [PMID: 27144060 PMCID: PMC4850125 DOI: 10.28092/j.issn.2095-3941.2016.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer.
Collapse
Affiliation(s)
- Victoria A Forte
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Dany K Barrak
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Mostafa Elhodaky
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Stem Cell and Regenerative Medicine, USC, Los Angeles, CA 90033, USA
| | - Lily Tung
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Anson Snow
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Julie E Lang
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Abdallah EA, Fanelli MF, Souza E Silva V, Machado Netto MC, Gasparini Junior JL, Araújo DV, Ocea LMM, Buim MEC, Tariki MS, Alves VDS, Piana de Andrade V, Dettino ALA, Abdon Lopes de Mello C, Chinen LTD. MRP1 expression in CTCs confers resistance to irinotecan-based chemotherapy in metastatic colorectal cancer. Int J Cancer 2016; 139:890-8. [PMID: 26950035 DOI: 10.1002/ijc.30082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells are important markers of tumor progression and can reflect tumor behavior in metastatic colorectal cancer (mCRC). Identification of proteins that confer resistance to treatment is an important step to predict response and better selection of treatment for patients. Multidrug resistance-associated protein 1 (MRP1) and Multidrug resistance-associated protein 4 (MRP4) play a role in irinotecan-resistance, and Excision Repair Cross-Complementation group 1 (ERCC1) expression can confer resistance to platinum compounds. Here, we included 34 patients with mCRC and most of them received FOLFIRI or FOLFOX chemotherapy (91.1%). CTCs were isolated by ISET(®) Technology and identified in 30 patients (88.2%), with a median of 2.0 CTCs/mL (0-31.0). We analyzed the immunocytochemical expression of MRP1, MRP4 and ERCC1 only in patients who had previously detectable CTCs, accordingly to treatment received (n = 19, 15 and 13 patients, respectively). Among patients treated with irinotecan-based chemotherapy, 4 out of 19 cases with MRP1 positive CTCs showed a worse progression free survival (PFS) in comparison to those with MRP1 negative CTCs (2.1 months vs. 9.1 months; p = 0.003). None of the other proteins studied in CTCs had significant association with PFS. We analyzed also histological sections of primary tumors and metastases by immunohistochemistry, and found no association with clinicopathological characteristics or with PFS. Our results show MRP1 as a potential biomarker of resistance to treatment with irinotecan when found in CTCs from mCRC patients. This is a small proof-of-principle study and these early findings need to be validated in a larger cohort of patients.
Collapse
Affiliation(s)
- Emne Ali Abdallah
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Marcilei Eliza Cavicchioli Buim
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Health, Universidade Nove de Julho, São Paulo, Brazil
| | - Milena Shizue Tariki
- Department of Medical Oncology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Tan CRC, Zhou L, El-Deiry WS. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons. CURRENT COLORECTAL CANCER REPORTS 2016; 12:151-161. [PMID: 27516729 DOI: 10.1007/s11888-016-0320-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.
Collapse
Affiliation(s)
- Carlyn Rose C Tan
- Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lanlan Zhou
- Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wafik S El-Deiry
- Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
30
|
Soave A, Riethdorf S, Pantel K, Fisch M, Rink M. Do circulating tumor cells have a role in deciding on adjuvant chemotherapy after radical cystectomy? Curr Urol Rep 2016; 16:46. [PMID: 26025496 DOI: 10.1007/s11934-015-0520-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Radical cystectomy (RC) with bilateral pelvic lymphadenectomy with or without perioperative chemotherapy is the golden standard treatment in muscle invasive and recurrent high-grade non-muscle invasive urothelial carcinoma of the bladder (UCB). Despite treatment with curative intent, up to 50% of patients develop metastasis and die from UCB due to micro-metastatic disease undetectable for current staging techniques prior to definitive therapy. Tumor cell dissemination is a crucial step in the natural history of the metastatic cascade. Circulating tumor cells (CTC) are malignant epithelial cells detectable in the peripheral blood of patients with various malignancies. In UCB, CTC are detectable in a significant number of patients prior to RC and associated with inferior outcomes. In this review, we summarize the current literature regarding CTC in UCB, discussing their potential on clinical decision-making regarding multimodal treatment and implications on the application of novel targeted therapies in the future. There is reliable evidence that presence of CTC in clinically non-metastatic UCB patients treated with RC are a powerful predictor for unfavorable outcomes and may be useful for adjuvant chemotherapy decision-making and monitoring. However, currently, the evidence is limited, and thus, integration of CTC in future UCB clinical trials is strongly recommended to shed more light on the potential of this promising biomarker.
Collapse
Affiliation(s)
- Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
31
|
The incorporation of microfluidics into circulating tumor cell isolation for clinical applications. Curr Opin Chem Eng 2016; 11:59-66. [PMID: 27857883 DOI: 10.1016/j.coche.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The second leading cause of death in the United States, cancer is at its most dangerous as it spreads to secondary locations. Cancer cells in the blood stream, or circulating tumor cells (CTCs), present an opportunity to study metastasis provided they may be extracted successfully from blood. Engineers have accelerated the development of technologies that achieve this goal based on exploiting differences between tumor cells and surrounding blood cells such as varying expression patterns of membrane proteins or physical characteristics. Collaboration with biologists and clinicians has allowed additional analysis and will lead to the use of these rare cells to their full potential in the fight against cancer.
Collapse
|
32
|
ANDERGASSEN ULRICH, KÖLBL ALEXANDRAC, MAHNER SVEN, JESCHKE UDO. Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients (Review). Oncol Rep 2016; 35:1905-15. [DOI: 10.3892/or.2016.4608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/15/2015] [Indexed: 11/06/2022] Open
|
33
|
Ao Z, Moradi K, Cote RJ, Datar RH. Size-Based and Non-Affinity Based Microfluidic Devices for Circulating Tumor Cell Enrichment and Characterization. CIRCULATING TUMOR CELLS 2016. [DOI: 10.1007/978-1-4939-3363-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Alberter B, Klein CA, Polzer B. Single-cell analysis of CTCs with diagnostic precision: opportunities and challenges for personalized medicine. Expert Rev Mol Diagn 2015; 16:25-38. [PMID: 26567956 DOI: 10.1586/14737159.2016.1121099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of variant cancer cells is the major cause of acquired resistance against systemic therapies and consequently, of our inability to cure advanced cancer patients. Circulating tumor cells are gaining increasing clinical attention because they may enable the monitoring cancer progression and adjustment of treatment. In recent years multiple technologies for enrichment, isolation as well as molecular and functional analysis of circulating tumor cells have been developed. Implementation of these technologies in standardized and automated workflows in clinical diagnostics could provide valuable information for real-time monitoring of cancer and eventually new therapeutic strategies for the benefit of patients.
Collapse
Affiliation(s)
- Barbara Alberter
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| | - Christoph A Klein
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany.,b Experimental Medicine and Therapy Research , University of Regensburg , Regensburg , Germany
| | - Bernhard Polzer
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| |
Collapse
|
35
|
Rossi E, Facchinetti A, Zamarchi R. Notes for developing a molecular test for the full characterization of circulating tumor cells. Chin J Cancer Res 2015; 27:471-8. [PMID: 26543333 DOI: 10.3978/j.issn.1000-9604.2015.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proved association between the circulating tumor cell (CTC) levels and the patients' survival parameters has been growing interest to investigate the molecular profile of these neoplastic cells among which hide out precursors capable of initiating a new distant metastatic lesion. The full characterization of the tumor cells in peripheral blood of cancer patients is expected to be of help for understanding and (prospectively) for counteracting the metastatic process. The major hitch that is hampering the successful gaining of this result is the lack of a consensus onto standard operating procedures (SOPs) for performing what we generally define as the "liquid biopsy". Here we review the more recent acquisitions in the analysis of CTCs and tumor related nucleic acids, looking to the main open questions that are hampering their definitive employ in the routine clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rossi
- 1 Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy ; 2 IOV-IRCCS, Padova, Italy
| | - Antonella Facchinetti
- 1 Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy ; 2 IOV-IRCCS, Padova, Italy
| | - Rita Zamarchi
- 1 Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy ; 2 IOV-IRCCS, Padova, Italy
| |
Collapse
|
36
|
Dolfus C, Piton N, Toure E, Sabourin JC. Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters. Chin J Cancer Res 2015; 27:479-87. [PMID: 26543334 DOI: 10.3978/j.issn.1000-9604.2015.09.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Circulating tumor cells (CTCs) arise from primary or secondary tumors and enter the bloodstream by active or passive intravasation. Given the low number of CTCs, enrichment is necessary for detection. Filtration methods are based on selection of CTCs by size using a filter with 6.5 to 8 µm pores. After coloration, collected CTCs are evaluated according to morphological criteria. Immunophenotyping and fluorescence in situ hybridization techniques may be used. Selected CTCs can also be cultivated in vitro to provide more material. Analysis of genomic mutations is difficult because it requires adapted techniques due to limited DNA materials. Filtration-selected CTCs have shown prognostic value in many studies but multicentric validating trials are mandatory to strengthen this assessment. Other clinical applications are promising such as follow-up, therapy response prediction and diagnosis. Microfluidic emerging systems could optimize filtration-selected CTCs by increasing selection accuracy.
Collapse
Affiliation(s)
- Claire Dolfus
- 1 Department of Pathology, Rouen University Hospital, Rouen Cedex 76031, France ; 2 Inserm U1079, Institute for Biomedical Research and Innovation, University of Rouen, CS 76183, Rouen Cedex 76183, France
| | - Nicolas Piton
- 1 Department of Pathology, Rouen University Hospital, Rouen Cedex 76031, France ; 2 Inserm U1079, Institute for Biomedical Research and Innovation, University of Rouen, CS 76183, Rouen Cedex 76183, France
| | - Emmanuel Toure
- 1 Department of Pathology, Rouen University Hospital, Rouen Cedex 76031, France ; 2 Inserm U1079, Institute for Biomedical Research and Innovation, University of Rouen, CS 76183, Rouen Cedex 76183, France
| | - Jean-Christophe Sabourin
- 1 Department of Pathology, Rouen University Hospital, Rouen Cedex 76031, France ; 2 Inserm U1079, Institute for Biomedical Research and Innovation, University of Rouen, CS 76183, Rouen Cedex 76183, France
| |
Collapse
|
37
|
Deng Y, Yi L, Lin X, Lin L, Li H, Lin JM. A non-invasive genomic diagnostic method for bladder cancer using size-based filtration and microchip electrophoresis. Talanta 2015; 144:136-44. [DOI: 10.1016/j.talanta.2015.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/16/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022]
|
38
|
Johnson ES, Anand RK, Chiu DT. Improved Detection by Ensemble-Decision Aliquot Ranking of Circulating Tumor Cells with Low Numbers of a Targeted Surface Antigen. Anal Chem 2015; 87:9389-95. [DOI: 10.1021/acs.analchem.5b02241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Ren C, Han C, Fu D, Wang D, Chen H, Chen Y, Shen M. Circulating tumor cells in breast cancer beyond the genotype of primary tumor for tailored therapy. Int J Cancer 2015; 138:1586-600. [PMID: 26178386 DOI: 10.1002/ijc.29679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Although TNM staging based on tumor, node lymph status and metastasis status-is the most widely used method in the clinic to classify breast cancer (BC) and assess prognosis, it offers limited information for different BC subgroups. Circulating tumor cells (CTCs) are regarded as minimal residual disease and are proven to have a strong relationship with BC. Detection of ≥5 CTCs per 7.5 mL in peripheral blood predicts poor prognosis in metastatic BC irrespective of other clinical parameters, whereas, in early-stage BC, detection of CK19(+) CTCs are also associated with poor prognosis. Increasing data and clinical trials show that CTCs can improve prognostic accuracy and help tailor treatment for patients with BC. However, heterogeneous CTCs in the process of an epithelial-mesenchymal transition (EMT) in BC makes it a challenge to detect these rare cells. Moreover, the genotypic and phenotypic features of CTCs are different from primary BC tumors. Molecular analysis of CTCs in BC may benefit patients by identifying those amenable to tailored therapy. We propose that CTCs should be used alongside the TNM staging system and the genotype of primary tumor to guide tailored BC diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chongxu Han
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Deyuan Fu
- Breast Oncology Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Daxin Wang
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Hui Chen
- Geriatric Medicine Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yong Chen
- Oncology Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Ming Shen
- Department of Physical Chemistry, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Abstract
OBJECTIVES Isolation of circulating tumor cells (CTCs) holds the promise of diagnosing and molecular profiling cancers from a blood sample. Here, we test a simple new low-cost filtration device for CTC isolation in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Peripheral blood samples drawn from healthy donors and PDAC patients were filtered using ScreenCell devices, designed to capture CTCs for cytologic and molecular analysis. Giemsa-stained specimens were evaluated by a pancreatic cytopathologist blinded to the histological diagnosis. Circulating tumor cell DNA was subjected to KRAS mutational analysis. RESULTS Spiking experiments demonstrated a CTC capture efficiency as low as 2 cells/mL of blood. Circulating tumor cells were identified by either malignant cytology or presence of KRAS mutation in 73% of 11 patients (P = 0.001). Circulating tumor cells were identified in 3 of 4 patients with early (≤American Joint Committee on Cancer stage IIB) and in 5 of 7 patients with advanced (≥ American Joint Committee on Cancer stage III) PDAC. No CTCs were detected in blood from 9 health donors. CONCLUSIONS Circulating tumor cells can be found in most patients with PDAC of any stage, whether localized, locally advanced, or metastatic. The ability to capture, cytologically identify, and genetically analyze CTCs suggests a possible tool for the diagnosis and characterization of genetic alterations of PDAC.
Collapse
|
41
|
Görner K, Bachmann J, Holzhauer C, Kirchner R, Raba K, Fischer JC, Martignoni ME, Schiemann M, Alunni-Fabbroni M. Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study. Genomics 2015; 106:7-14. [PMID: 25812950 DOI: 10.1016/j.ygeno.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. RESULTS We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. CONCLUSIONS Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far.
Collapse
Affiliation(s)
- Karin Görner
- Beckman Coulter Biomedical GmbH, 81377 Munich, Germany
| | - Jeannine Bachmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | | | | | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapy, Heinrich-Heine Universität Düsseldorf, Medical Faculty, 40225 Düsseldorf, Germany
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapy, Heinrich-Heine Universität Düsseldorf, Medical Faculty, 40225 Düsseldorf, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | | |
Collapse
|
42
|
Toss A, Mu Z, Fernandez S, Cristofanilli M. CTC enumeration and characterization: moving toward personalized medicine. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:108. [PMID: 25489582 DOI: 10.3978/j.issn.2305-5839.2014.09.06] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/28/2014] [Indexed: 12/27/2022]
Abstract
The primary cause of tumor-related death in breast cancer (BC) is still represented by distant metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream cannot be early detected by standard imaging methods. The enumeration of circulating tumor cells (CTCs) represents an effective prognostic and predictive biomarker, which is able to monitor efficacy of adjuvant therapies, detect early development of (micro)metastases and at last, assess therapeutic responses of advanced disease earlier than traditional imaging methods. Moreover, since repeated tissue biopsies are invasive, costly and not always feasible, the assessment of tumor characteristics on CTCs, by a peripheral blood sample as a 'liquid biopsy', represents an attractive opportunity. The implementation of molecular and genomic characterization of CTCs could contribute to improve the treatment selection and thus, to move toward more personalized treatments. This review describes the current state of the art on CTC detection strategies, the evidence to demonstrate their clinical validity, and their potential impact for both future clinical trial design and, decision-making process in our daily practice.
Collapse
Affiliation(s)
- Angela Toss
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Zhaomei Mu
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Sandra Fernandez
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Massimo Cristofanilli
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
43
|
Chinen LTD, Mello CAL, Abdallah EA, Ocea LM, Buim ME, Breve NM, Gasparini JL, Fanelli MF, Paterlini-Bréchot P. Isolation, detection, and immunomorphological characterization of circulating tumor cells (CTCs) from patients with different types of sarcoma using isolation by size of tumor cells: a window on sarcoma-cell invasion. Onco Targets Ther 2014; 7:1609-17. [PMID: 25258541 PMCID: PMC4172081 DOI: 10.2147/ott.s62349] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Sarcomas are rare and heterogeneous neoplasms with poor prognosis that are thought to spread to distant organs mainly by hematogenous dissemination. However, circulating tumor cells (CTCs) have never been visualized in sarcomas. Objectives To investigate the feasibility of using isolation by size of tumor cells (ISET) for isolation, identification, and characterization of CTCs derived from patients with high-grade and metastatic sarcomas. Patients and methods We studied eleven patients with metastatic/recurrent or locally advanced soft-tissue sarcomas (STSs), six of whom had synovial sarcomas. Blood samples (8 mL) were collected from patients with advanced STS and treated by ISET, a marker- independent approach that isolates intact CTCs from blood, based on their larger size compared with leukocytes. CTCs were identified by cytomorphology and characterized by dual-color immunocytochemistry using antivimentin or anti-Pan CK, and anti-CD45. Results All patients with STS included in this study showed CTCs, with numbers ranging from two to 48 per 8 mL of blood. Conclusion This study shows the feasibility of isolating, identifying, and characterizing CTCs from patients with different types of sarcomas and the presence of circulating sarcoma cells in all the tested patients. Our results set the basis for further studies aimed at exploring the presence, number, and immunomolecular characteristics of CTCs in different types of sarcoma, and bring more light to the mechanisms of tumor invasion for these tumors.
Collapse
Affiliation(s)
| | - Celso A Lopes Mello
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Emne Ali Abdallah
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Luciana Mm Ocea
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Marcilei E Buim
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Natália M Breve
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Marcello F Fanelli
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
44
|
Williams A, Chung J, Ou X, Zheng G, Rawal S, Ao Z, Datar R, Yang C, Cote R. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:066007. [PMID: 24949708 PMCID: PMC4572097 DOI: 10.1117/1.jbo.19.6.066007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 05/21/2023]
Abstract
Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R² = 0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.
Collapse
Affiliation(s)
- Anthony Williams
- University of Miami, Miller School of Medicine, Department of Pathology, 1501 NW 10th Avenue BRB 742, Miami, Florida 33136
- University of Miami, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), 1501 NW 10th Avenue BRB 714, Miami Florida 33136
| | - Jaebum Chung
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering, and Medical Engineering, 1200 East California Boulevard MC 136-93, Pasadena, California 91125
| | - Xiaoze Ou
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering, and Medical Engineering, 1200 East California Boulevard MC 136-93, Pasadena, California 91125
| | - Guoan Zheng
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering, and Medical Engineering, 1200 East California Boulevard MC 136-93, Pasadena, California 91125
| | - Siddarth Rawal
- University of Miami, Miller School of Medicine, Department of Pathology, 1501 NW 10th Avenue BRB 742, Miami, Florida 33136
- University of Miami, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), 1501 NW 10th Avenue BRB 714, Miami Florida 33136
| | - Zheng Ao
- University of Miami, Miller School of Medicine, Department of Pathology, 1501 NW 10th Avenue BRB 742, Miami, Florida 33136
- University of Miami, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), 1501 NW 10th Avenue BRB 714, Miami Florida 33136
| | - Ram Datar
- University of Miami, Miller School of Medicine, Department of Pathology, 1501 NW 10th Avenue BRB 742, Miami, Florida 33136
- University of Miami, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), 1501 NW 10th Avenue BRB 714, Miami Florida 33136
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering, and Medical Engineering, 1200 East California Boulevard MC 136-93, Pasadena, California 91125
| | - Richard Cote
- University of Miami, Miller School of Medicine, Department of Pathology, 1501 NW 10th Avenue BRB 742, Miami, Florida 33136
- University of Miami, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), 1501 NW 10th Avenue BRB 714, Miami Florida 33136
- Address all correspondence to: Richard Cote, E-mail:
| |
Collapse
|
45
|
Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers (Basel) 2014; 6:323-32. [PMID: 24514165 PMCID: PMC3980594 DOI: 10.3390/cancers6010323] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/20/2022] Open
Abstract
Uveal melanoma is one of the most deadly diseases in ophthalmology for which markers able to predict the appearance of metastasis are needed. The study investigates the role of circulating tumor cells (CTC) as a prognostic factor in this disease. We report the detection of circulating tumor cells by Isolation by Size of Epithelial Tumor cells (ISET) in a cohort of 31 uveal melanoma patients: we identified single CTCs or clusters of cells in 17 patients, while the control population, subjects with choroidal nevi, showed no CTC in peripheral blood. The presence of CTCs did not correlate with any clinical and pathological parameter, such as tumor larger basal diameter (LBD), tumor height and TNM. By stratifying patients in groups on the basis of the number of CTC (lower or higher than 10 CTC per 10 mL blood) and the presence of CTC clusters we found a significant difference in LBD (p = 0.019), Tumor height (p = 0.048), disease-free and overall survival (p < 0.05). In conclusion, we confirm the role of CTC as a negative prognostic marker in uveal melanoma patients after a long follow-up period. Further characterization of CTC will help understanding uveal melanoma metastasization and improve patient management.
Collapse
|
46
|
Alix-Panabières C, Pantel K. Technologies for detection of circulating tumor cells: facts and vision. LAB ON A CHIP 2014; 14:57-62. [PMID: 24145967 DOI: 10.1039/c3lc50644d] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hematogeneous tumor cell dissemination is a key step in cancer progression. The detection of CTCs in the peripheral blood of patients with solid epithelial tumors (e.g., breast, prostate, lung and colon cancer) holds great promise, and many exciting technologies have been developed over the past years. However, the detection and molecular characterization of circulating tumor cells (CTCs) remain technically challenging. The identification and characterization of CTCs require extremely sensitive and specific analytical methods, which are usually a combination of complex enrichment and detection procedures. CTCs occur at very low concentrations of one tumor cell in the background of millions of normal blood cells and the epithelial-mesenchymal plasticity of CTCs can hamper their detection by the epithelial markers used in current CTC assays. In the present review, we summarize current methods for the enrichment and detection of CTCs and discuss the key challenges and perspectives of CTC analyses within the context of improved clinical management of cancer patients.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- University Medical Centre, Saint-Eloi Hospital, Department of Cellular and Tissue Biopathology of Tumors, Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier, France
| | | |
Collapse
|
47
|
King JD, Casavant BP, Lang JM. Rapid translation of circulating tumor cell biomarkers into clinical practice: technology development, clinical needs and regulatory requirements. LAB ON A CHIP 2014; 14:24-31. [PMID: 24190548 DOI: 10.1039/c3lc50741f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The great hope in circulating tumor cell (CTC) research lies in the use of these rare cells as an accessible "fluid biopsy" that would permit frequent, minimally invasive sampling of tumor cells for similar molecular assays that are performed on traditional biopsies. Given the rarity of CTCs in peripheral circulation, microscale methods show great promise and superiority to capture and analyze these cells from patients with solid tumors. Novel technologies that produce validated CTC biomarkers may finally provide medical oncologists the tools needed to provide precise, personalized medical care for patients with advanced cancer. However, few CTC technologies demonstrate both experimental and clinical evidence of an accurate, reliable and reproducible assay that also meets the regulatory requirements to enter routine clinical practice. Many opportunities exist to incorporate clinical needs and regulatory benchmarks into technology development to more quickly garner FDA approval to direct decisions on patient care. This review will address: 1) device development tailored to address predictive, prognostic and/or therapeutic needs across the multitude of malignancies and disease stages; 2) validation benchmarks for clinical assay development; 3) early establishment of standard operating procedures for sample acquisition and analysis; 4) demonstration of clinical utility; 5) clinical qualification of a novel biomarker; and 6) integration of a newly validated and qualified technology into routine clinical practice. Early understanding and incorporation of these regulatory requirements into assay development can simplify and speed the integration of these novel technologies into patient care. Meeting these benchmarks will lead to the true personalization of cancer therapies, directing initial and subsequent treatments for each individual based on initial tumor characteristics while monitoring for emerging mechanisms of resistance in these continually evolving tumors.
Collapse
Affiliation(s)
- Jonathan D King
- Department of Medicine, Wisconsin Institutes for Medical Research, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | |
Collapse
|
48
|
Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM, Altavilla G, Kirby BJ, Giannakakou P. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. LAB ON A CHIP 2014; 14:147-56. [PMID: 24202699 PMCID: PMC3921117 DOI: 10.1039/c3lc51039e] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a reliable source of tumor cells, and their concentration has prognostic implications. CTC capture offers real-time access to cancer tissue without the need of an invasive biopsy, while their phenotypic and molecular interrogation can provide insight into the biological changes of the tumor that occur during treatment. The majority of the CTC capture methods are based on EpCAM expression as a surface marker of tumor-derived cells. However, EpCAM protein expression levels can be significantly down regulated during cancer progression as a consequence of the process of epithelial to mesenchymal transition. In this paper, we describe a novel HER2 (Human Epidermal Receptor 2)-based microfluidic device for the isolation of CTCs from peripheral blood of patients with HER2-expressing solid tumors. We selected HER2 as an alternative to EpCAM as the receptor is biologically and therapeutically relevant in several solid tumors, like breast cancer (BC), where it is overexpressed in 30% of the patients and expressed in 90%, and gastric cancer (GC), in which HER2 presence is identified in more than 60% of the cases. We tested the performance of various anti HER2 antibodies in a panel of nine different BC cell lines with varying HER2 protein expression levels, using immunoblotting, confocal microscopy, live cells imaging and flow cytometry analyses. The antibody associated with the highest capture efficiency and sensitivity for HER2 expressing cells on the microfluidic device was the one that performed best in live cells imaging and flow cytometry assays as opposed to the fixed cell analyses, suggesting that recognition of the native conformation of the HER2 extracellular epitope on living cells was essential for specificity and sensitivity of CTC capture. Next, we tested the performance of the HER2 microfluidic device using blood from metastatic breast and gastric cancer patients. The HER2 microfluidic device exhibited CTC capture in 9/9 blood samples. Thus, the described HER2-based microfluidic device can be considered as a valid clinically relevant method for CTC capture in HER2 expressing solid cancers.
Collapse
|
49
|
Adams DL, Zhu P, Makarova OV, Martin SS, Charpentier M, Chumsri S, Li S, Amstutz P, Tang CM. The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv 2014; 9:4334-4342. [PMID: 25614802 DOI: 10.1039/c3ra46839a] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) disseminated into peripheral blood from a primary, or metastatic, tumor can be used for early detection, diagnosis and monitoring of solid malignancies. CTC isolation by size exclusion techniques have long interested researchers as a simple broad based approach, which is methodologically diverse for use in both genomic and protein detection platforms. Though a variety of these microfiltration systems are employed academically and commercially, the limited ability to easily alter microfilter designs has hindered the optimization for CTC capture. To overcome this problem, we studied a unique photo-definable material with a scalable and mass producible photolithographic fabrication method. We use this fabrication method to systematically study and optimize the parameters necessary for CTC isolation using a microfiltration approach, followed by a comparison to a "standard" filtration membrane. We demonstrate that properly designed microfilters can capture MCF-7 cancer cells at rate of 98 ± 2% if they consist of uniform patterned distributions, ≥160 000 pores, and 7 μm pore diameters.
Collapse
Affiliation(s)
- Daniel L Adams
- Creatv MicroTech, Inc., 9900 Belward Campus Drive, Suite 330, Rockville, MD 20850, USA
| | - Peixuan Zhu
- Creatv MicroTech, Inc., 9900 Belward Campus Drive, Suite 330, Rockville, MD 20850, USA
| | - Olga V Makarova
- Creatv MicroTech, Inc., 2242 W. Harrison Street, Suite 109B, Chicago, IL 60612-3515, USA
| | - Stuart S Martin
- University of Maryland Baltimore, Greenebaum Cancer Center, 655 W. Baltimore St Suite BRB 10-029, Baltimore, MD 21136, USA
| | - Monica Charpentier
- University of Maryland Baltimore, Greenebaum Cancer Center, 655 W. Baltimore St Suite BRB 10-029, Baltimore, MD 21136, USA
| | - Saranya Chumsri
- University of Maryland Baltimore, Greenebaum Cancer Center, 655 W. Baltimore St Suite BRB 10-029, Baltimore, MD 21136, USA
| | - Shuhong Li
- Creatv MicroTech, Inc., 9900 Belward Campus Drive, Suite 330, Rockville, MD 20850, USA
| | - Platte Amstutz
- Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac, MD 20854, USA
| | - Cha-Mei Tang
- Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac, MD 20854, USA
| |
Collapse
|
50
|
Nadal R, Lorente JA, Rosell R, Serrano MJ. Relevance of molecular characterization of circulating tumor cells in breast cancer in the era of targeted therapies. Expert Rev Mol Diagn 2013; 13:295-307. [PMID: 23570407 DOI: 10.1586/erm.13.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development in circulating tumor cells (CTCs) technologies represents a valuable tool for the better understanding of tumor biology. The clinical relevance of CTCs as a prognostic factor is well established both in metastatic and early-stage breast cancer patients. The eradication or decrease of CTCs following treatment is associated with improved clinical outcomes. Because of the availability of novel cancer treatments that specifically target tumor cells underlying signaling pathways, molecular characterization of CTCs has strong potential to translate into personalized treatments. A handful of studies have explored relevant markers such as the estrogen and progesterone receptor, HER2 and EGF receptor. However, there is not a single validation of a molecular marker in CTCs that provides prognostic information or predicts response to cancer therapies. This review describes the latest results on the characterization of breast cancer CTCs with a focus on CTC biology and implications in clinical practice.
Collapse
Affiliation(s)
- Rosa Nadal
- Hospital de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|