1
|
Zhao C, Li T, Zhang C, Li H, Wang Y, Li C, Wang Z, Zhao M, Shen M, Zhao W. Drying methods affect nutritional value, amino acids, bioactive compounds, and in vitro function of extract in mulberry leaves. Food Chem 2025; 481:144018. [PMID: 40245551 DOI: 10.1016/j.foodchem.2025.144018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/19/2025]
Abstract
Mulberry leaves (ML) are nutrient-rich and beneficial for food and feed. Our study evaluated five drying methods-sun drying (SD), air drying (AD), oven drying (OD), freeze drying (FD), and vacuum-microwave drying (MD) for preserving nutrients and bioactivity. In vitro models tested the bioactivities of ML extracts. Results showed that machine-based methods (OD, FD, and MD) were superior to natural processes (SD, AD) retaining nutrients and bioactivity. OD preserved amino acids effectively, FD and MD retained crude protein and fibers, and MD excelled in maintaining the total polyphenols, vitamin E, minerals, and bioactive compounds, enhancing the antioxidant capacity and beneficial effects on lipid metabolism, ROS scavenging, and anti-apoptotic in lipid-laden HepG2 cells. Overall, FD and MD are ideal for high-value products like food and pharmaceuticals, while OD is cost-effective for animal feed. SD and AD lead to significant nutrient loss and are not recommended unless cost is a major concern.
Collapse
Affiliation(s)
- Chengfeng Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Cangning Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yuhua Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhenjiang Wang
- Sericultura & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Saliba ASMC, Rosalen PL, Franchin M, Cunha GAD, Sartori AGDO, Matias de Alencar S. Fruits native to South America: a narrative review of their biological properties and chemical profiles. Food Funct 2025; 16:3774-3799. [PMID: 40326926 DOI: 10.1039/d5fo00549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Fruits native to South America have been recognized for their relevant levels of phytochemicals with bioactivities that offer human health benefits beyond nutrition; however, many of them remain unexplored. The objective of this study was to compile the recent literature regarding the phytochemical profiles and biological properties of fruits native to South America. Over 600 fruits were analyzed, and those with the most substantial scientific literature regarding their phytochemical profiles and antioxidant, anti-inflammatory, and antimicrobial activities were selected. Based on the reviewed literature, 40 selected fruits were analyzed, and antioxidant activity was reported for 38 fruits, antimicrobial activity for 31, and anti-inflammatory activity for 30. This data allowed for a comparative analysis of the bioactive potential of these fruits. However, factors like extraction methods, harvest time and location, and cultivar variations were found to have significant impacts on fruit bioactivity. Common limitations in properly investigating the phytochemical composition of fruits grown in the wild include lack of access to sufficient materials, lack of reproducibility of results owing to variations in chemical composition, and inability to use accurate techniques, such as mass spectrometry and nuclear magnetic resonance. Clinical trials should be encouraged to confirm the antioxidant and anti-inflammatory activities of fruits observed in vitro. Furthermore, extract refinement prior to antimicrobial analysis remains challenging to obtain reliable results. This review provides helpful information to guide further studies on these fruits and strategic public policies concerning the development of sustainable supply chains to preserve the biodiversity of South America.
Collapse
Affiliation(s)
| | - Pedro Luiz Rosalen
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | - Marcelo Franchin
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | - Gustavo Aparecido da Cunha
- Graduate Program in Biological Sciences, Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | | | - Severino Matias de Alencar
- Center of Nuclear Energy in Agriculture, University of São Paulo, CEP: 13416-000, Piracicaba, SP, Brazil.
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Davico B, Martin M, Condori AI, Chiappe EL, Gaete L, Tetzlaff WF, Yanez A, Osta V, Sáez MS, Bava A, Godoy MF, Palenque P, Ballerini MG, Trifone L, Rosso LG, Feliu MS, Brites F. Fatty Acids in Childhood Obesity: A Link Between Nutrition, Metabolic Alterations and Cardiovascular Risk. J Lipid Atheroscler 2025; 14:200-218. [PMID: 40492180 PMCID: PMC12145967 DOI: 10.12997/jla.2025.14.2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 06/11/2025] Open
Abstract
Objective Childhood obesity, affected by dietary choices, increases cardiovascular risk. Obesity is associated with inflammation and altered glucose, iron and lipid metabolism. This study explores connections between dietary habits, plasma fatty acid profile, cardiovascular risk factors and childhood obesity. Methods We conducted a case-control study including 20 children and adolescents with obesity and 20 controls. Anthropometric parameters and food frequency questionnaires were registered. Glucose metabolism, iron parameters, lipid profile, fatty acids profile, and lipoprotein-associated phospholipase A2 (Lp-PLA2), cholesteryl ester transfer protein and paraoxonase 1 (PON 1) activities were evaluated. Correlation, regression and mediation analyses were performed. Results The group with obesity consumed more bakery products and less cereals, and presented higher myristic, palmitoleic, margaric and gamma-linolenic acids, along with lower linoleic, arachidic, gadoleic, eicosatrienoic and eicosapentaenoic (EPA) acids (p<0.05). They also exhibited altered glucose metabolism, a more atherogenic lipid profile, higher Lp-PLA2 and lower PON 1 activities (p<0.05). Consumption of several food groups correlated with metabolic alterations. Different correlations between pro-inflammatory, anti-inflammatory and obesity-related fatty acids, and cardiometabolic biomarkers were found, including: myristic acid with Lp-PLA2 (r=0.32, p<0.05), EPA acid with hs-CRP (r=-0.36, p<0.05) and gadoleic acid with PON1 (r=0.39, p<0.05). Mediation analyses revealed fatty acids and cardiometabolic markers as mediators of the association between dietary habits and obesity. Conclusion Children and adolescents with obesity presented disrupted glucose and lipid metabolism, vascular inflammation, attenuated antioxidant function and altered fatty acid composition. Direct and indirect associations between dietary habits, fatty acids, cardiometabolic markers and the presence of obesity were found.
Collapse
Affiliation(s)
- Belen Davico
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Martin
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabel Impa Condori
- Laboratorio de Nutrición y Bromatologia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Lozano Chiappe
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Gaete
- Servicio de Nutrición y Diabetes, Hospital de Niños “Ricardo Gutierrez”, Buenos Aires, Argentina
| | - Walter F. Tetzlaff
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amanda Yanez
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Osta
- Laboratorio de Nutrición y Bromatologia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María S. Sáez
- Laboratorio Central, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Bava
- Laboratorio Central, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - María F. Godoy
- Laboratorio de Nutrición y Bromatologia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Palenque
- Servicio de Nutrición y Diabetes, Hospital de Niños “Ricardo Gutierrez”, Buenos Aires, Argentina
| | - María G. Ballerini
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Trifone
- Servicio de Nutrición y Diabetes, Hospital de Niños “Ricardo Gutierrez”, Buenos Aires, Argentina
| | - Leonardo Gómez Rosso
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María S. Feliu
- Laboratorio de Nutrición y Bromatologia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
5
|
Jaswal P, Bansal S, Chaudhary R, Basu J, Bansal N, Kumar S. Nitric oxide: Potential therapeutic target in Heat Stress-induced Multiple Organ Dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2535-2546. [PMID: 39466442 DOI: 10.1007/s00210-024-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
As climate change intensifies, urgent action is needed to address global warming and its associated health risks, particularly in vulnerable regions. Rising global temperature and increasing frequency of heatwaves present a hidden health risk, disrupting the body's temperature regulation and leading to severe consequences such as heat stress-induced multiple organ dysfunction (HS-MOD). Multiple organ injury triggered by heat stress involves complex molecular pathways such as nitric oxide dysregulation, inflammation, oxidative stress, mitochondrial dysfunction, calcium homeostasis disruption, and autophagy impairment that contribute to cellular damage. Understanding these molecular pathways is crucial for developing targeted therapeutic interventions to alleviate the impact of heat stress (HS). As we explore numerous therapeutic strategies, a remarkable molecule captures our attention: nitric oxide (NO). This colorless gas, mainly produced by nitric oxide synthase (NOS) enzymes, plays crucial roles in various body functions. From promoting vasodilation and neurotransmission to regulating the immune response, platelet function, cell signaling, and reproductive health, NO stands out for its versatility. Exploring it as a promising treatment for heat stress-induced multiple organ injury highlights its distinctive features in the journey towards effective therapeutic interventions. This involves exploring both pharmacological avenues, considering the use of NO donors and antioxidants, and non-pharmacological strategies, such as adopting nitrate-rich diets and engaging in exercise regimens. This review highlights the concept of heat stress, the molecular framework of the disease, and treatment options based upon some new interventions.
Collapse
Affiliation(s)
- Priya Jaswal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Seema Bansal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Rishabh Chaudhary
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jhilli Basu
- Department of Pharmacology, Institute of Medical Sciences Krishnanagar, Naida, West Bengal, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, India
| | - Subodh Kumar
- Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Sciences and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Sharma D, Patel D, Mandal P. In Vitro, In Vivo, and In Silico Investigation of Synbiotic-Mediated Activation of PPAR- α Curtails Nonalcoholic Steatohepatitis (NASH) in Wistar Rats by Inhibiting PNPLA3/SREBP1-c Lead Inflammatory Injury of Hepatic Cells. Mediators Inflamm 2025; 2025:9948679. [PMID: 40017524 PMCID: PMC11865469 DOI: 10.1155/mi/9948679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammation of the liver and a menace to human health. To treat NASH various pharmaceutical products have been used, but their prohibitive side effects limit their effectiveness. NASH, a multihit hypothesis involves high-fat diet and signals from the gut to the liver. Lactobacillus plantarum (probiotic) and aged garlic extract (AGE, a prebiotic) are antioxidative and anti-inflammatory and may be a latent combination therapy for NASH. The NASH model was developed using Wistar rats and treatments were administered to understand the mechanism. Initially, in the in vitro models, transepithelial electrical resistance (TEER) 2'-7'-dichlorodihydrofluorescein diacetate (DCFDA), 4-6-diamidino-2-phenylindole (DAPI) labeling and Oil Red O (ORO) conducted on HepG2 and Caco2 cells. Afterwards, in in vivo studies rat liver tissues were examined through confocal microscopy using the ORO staining and hematoxylin and eosin (H/E) stain, malondialdehyde (MDA), and biochemical indices were recorded. The levels of patatin-like phospholipase domain-containing protein 3 (PNPLA3) and sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferators activated receptors (PPARs)-α, inflammatory, and apoptotic biomarkers were quantified by qRT-PCR. Synbiotic reduced the hepatic inflammation and apoptosis examined through the levels of PNPLA3, SREBP-1c, IL-6, TGF-β, Bcl-2, and caspase-3 in NASH models. In turn, the gram-negative species and bacterial translocation associated were reduced. Consequently, the Insilco analysis supports the theory that each (eight) bioactive compound of AGE targets PNPLA3 and enhances the PPAR-α activity. Additionally, PPAR-α inhibitors upregulated the PNPLA3 and SREBP-1C expression. As a result, the synbiotic may inhibit NASH progression by affecting PNPLA3/SREBP1-c through PPAR-α.
Collapse
Affiliation(s)
- Dixa Sharma
- Department of Biology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 3888421, Gujarat, India
| | - Dhara Patel
- Department of Biology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 3888421, Gujarat, India
| | - Palash Mandal
- Department of Biology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 3888421, Gujarat, India
| |
Collapse
|
7
|
Blanco‐Doval A, Barron LJR, Bustamante MÁ, Aldai N. Characterization and monitoring of changes during lactation in the profile of multiple bioactive compounds of milk from grazing mares. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1894-1903. [PMID: 39420862 PMCID: PMC11726596 DOI: 10.1002/jsfa.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mare milk has often been considered a food product with potential functional properties. However, the bioactive compound composition of mare milk, including vitamins and other minor bioactive compounds, as well as factors affecting this composition have scarcely been studied. Therefore, the present study aimed to characterize the changes during lactation in the content of water- and fat-soluble vitamins and total polyphenols, and the total antioxidant capacity of mare milk from semi-extensive farms. A total of 310 individual milk samples from 18 mares belonging to three commercial farms and 12 lactation times were analyzed. Ascorbic acid (vitamin C), thiamine (vitamin B1), riboflavin (vitamin B2), nicotinic acid and niacinamide (vitamins B3), pantothenic acid (vitamin B5), pyridoxal and pyridoxine (vitamins B6), folic acid (vitamin B9), cyanocobalamin (vitamin B12), tocopherols and tocotrienols (vitamin E) and retinol and retinyl esters (vitamin A) were quantified using liquid chromatography. Total polyphenols and antioxidant capacity assays were analyzed using spectrophotometry. RESULTS The concentration of most bioactive compounds tended to decline as lactation progressed, with the exception of polyphenols and the total antioxidant capacity that oscillated during lactation. On the other hand, the effect of the different semi-extensive management of the farms was only significant for vitamin B3 content. CONCLUSION To the best of our knowledge, the present study provides the most in-depth description of the vitamin profile of mare milk as well as new insights into polyphenol content and antioxidant capacity of mare milk. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Blanco‐Doval
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - María Ángeles Bustamante
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| |
Collapse
|
8
|
Stabrauskiene J, Sadauskiene I, Liekis A, Mikniene Z, Bernatoniene J. Naringin vs. Citrus x paradisi L. Peel Extract: An In Vivo Journey into Oxidative Stress Modulation. Antioxidants (Basel) 2025; 14:157. [PMID: 40002344 PMCID: PMC11852006 DOI: 10.3390/antiox14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Citrus fruits, mainly grapefruit (Citrus x paradisi L.), are rich in bioactive compounds with potential antioxidant properties. This study investigated the antioxidant effects of naringin (NR) and ethanolic Citrus x paradisi L. peel (E) in reducing aluminum chloride (AlCl3)-induced oxidative stress in mice. Quantitative analysis using HPLC identified optimal extraction conditions, combination ultrasound and reflux extraction (UH50), resulting in high concentrations of naringin (49.13 mg/g) and naringenin (63.99 µg/g). Mice were treated with NR and E to evaluate their effects on key markers of oxidative stress: reduced glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The E effectively reduced MDA levels in blood, brain, and liver tissues, with a more substantial effect on controlling lipid peroxidation. In contrast, NR was more effective in restoring GSH levels and CAT activity, suggesting a broader enhancement of antioxidant defense. These findings provide information about specific mechanisms of NR and E and their therapeutic potential in managing oxidative stress and developing products with synergistic efficacy.
Collapse
Affiliation(s)
- Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania;
| | - Ilona Sadauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
| | - Zoja Mikniene
- Large Animal Clinic, Lithuania University of Health Science, Veterinary Academy, LT-44307 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Jiménez-Ortega LA, Kumar-Patra J, Kerry RG, Das G, Mota-Morales JD, Heredia JB. Synergistic Antioxidant Activity in Deep Eutectic Solvents: Extracting and Enhancing Natural Products. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:2776-2798. [DOI: 10.1021/acsfoodscitech.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Affiliation(s)
- Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado km 5.5, Campo el Diez, 80110 Culiacán, Sinaloa, México
| | - Jayanta Kumar-Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230 Querétaro, Querétaro, México
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado km 5.5, Campo el Diez, 80110 Culiacán, Sinaloa, México
| |
Collapse
|
10
|
Muñoz-Vargas MA, González-Gordo S, Taboada J, Palma JM, Corpas FJ. Activity and gene expression analysis of the NADP-dependent isocitrate dehydrogenase (NADP-ICDH) through pepper fruit ripening and its modulation by nitric oxide (NO). Molecular characterization of the peroxisomal isozyme. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112269. [PMID: 39313003 DOI: 10.1016/j.plantsci.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is one of the main sources of cellular reductant capacity in the form of NADPH. Although there is significant knowledge about the relevance of this enzyme during some physiological and stress processes, the available information about its involvement in fruit ripening is scarce. Using sweet green pepper (Capsicum annuum L.) fruits, a 50-75 % ammonium-sulfate-enriched protein fraction containing the NADP-ICDH activity allowed its biochemical characterization. The enzyme displayed a typical Michaelis-Menten kinetics and exhibited Vmax and Km values of 97 μUnits and 78 µM for isocitrate, and 92 μUnits and 46 µM for NADP+. Three NADP-ICDH isozymes were identified by non-denaturing PAGE designated as NADP-ICDH I to III, each representing 33 %, 24 %, and 43 %, respectively, of the total activity. Based on our previous transcriptome (RNA-Seq), three CaICDH genes (CaNADP-ICDH1, CaNADP-ICDH2, and CaNADP-ICDH3) were identified in sweet pepper fruits encoding isozymes potentially distributed in the cytosol, cytosol/mitochondrion, and peroxisome, according to their percentage of identity with the Arabidopsis isozymes. The time-course expression analysis of these genes during different fruit ripening stages including green immature (G), breaking point (BP), and red ripe (R), and in fruits subjected to nitric oxide (NO) treatments, showed dissimilar expression patterns. During ripening from green to red fruits, CaNADP-ICDH1 and CaNADP-ICDH2 were upregulated but were negatively affected by NO; however, CaNADP-ICDH3 was downregulated during ripening but unaffected by NO treatment. Furthermore, during ripening, the NADP-ICDH activity increased in red ripe fruits whereas the NO gas treatment produced a significant inhibition. These findings provide, to our knowledge, the first characterization of the NADP-ICDH family in this non-climacteric fruit and suggest that NADP-ICDH must play an important role in maintaining the supply of NADPH during pepper fruit ripening and that NO partially modulates this NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
11
|
Coyago-Cruz E, Barrigas A, Guachamin A, Heredia-Moya J, Zuñiga-Miranda J, Vera E. Bioactive Composition of Tropical Flowers and Their Antioxidant and Antimicrobial Properties. Foods 2024; 13:3766. [PMID: 39682838 DOI: 10.3390/foods13233766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated tropical flower petals' bioactive compounds and antioxidant and antimicrobial properties. The physicochemical characteristics, carotenoids, phenolics, anthocyanins, organic acids, and antioxidant activity of 67 flowers were analyzed. In addition, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis of 35 species was determined. A 2 × 3 experimental design was used for the extraction of carotenoids and phenolics, including solvents and ultrasonic agitation times. The mixture of methanol-acetone-dichloromethane (1:1:2) and acetone-methanol (2:1) resulted in the highest concentration of carotenoids, while acidified 80% methanol favoured phenolic extraction. Renealmia alpinia was extremely rich in carotenoids (292.5 mg β-carotene/g DW), Pleroma heteromallum in anthocyanins (7.35 mg C-3-gl/g DW), while a high content of citric acid was found in Hibiscus rosa-sinensis (17,819 mg/100 g DW). On the other hand, Thibaudia floribunda showed the highest antioxidant activity (7.8 mmol Trolox equivalent/g DW). The main phenolics were m-coumaric acid in Acalypha poiretii (12,044 mg/100 g DW), 4-hydroxybenzoic acid in Brugmansia arborea (10,729 mg/100 g DW), and kaempferol in Dahlia pinnata (8236 mg/100 g DW). The extract of Acalypha poiretii, Brownea macrophylla, and Cavendishia nobilis showed antibacterial activity, while the extract of Pleroma heteromallum was the only one active against Candida albicans. These findings highlight the potential health benefits from certain tropical flowers.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Alejandro Barrigas
- Maestría en Productos Farmacéuticos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zuñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Edwin Vera
- Departamento de Ciencia de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Escuela Politécnica Nacional, Quito 170524, Ecuador
| |
Collapse
|
12
|
Sugitha SKJ, Latha RG, Venkatesan R, Kim SC, Vetcher AA, Khan MR. Green Synthesis of Al-ZnO Nanoparticles Using Cucumis maderaspatanus Plant Extracts: Analysis of Structural, Antioxidant, and Antibacterial Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1851. [PMID: 39591090 PMCID: PMC11597471 DOI: 10.3390/nano14221851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanoparticles derived from biological sources are currently garnering significant interest due to their diverse range of potential applications. The purpose of the study was to synthesize Al-doped nanoparticles of zinc oxide (ZnO) from leaf extracts of Cucumis maderaspatanus and assess their antioxidant and antimicrobial activity using some bacterial and fungal strains. These nanoparticles were analyzed using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and thermogravimetric analysis/differential thermal analysis (TG-DTA). The average crystalline size was determined to be 25 nm, as evidenced by the XRD analysis. In the UV-vis spectrum, the absorption band was observed around 351 nm. It was discovered that the Al-ZnO nanoparticles had a bandgap of 3.25 eV using the Tauc relation. Furthermore, by FTIR measurement, the presence of the OH group, C=C bending of the alkene group, and C=O stretching was confirmed. The SEM analysis revealed that the nanoparticles were distributed uniformly throughout the sample. The EDAX spectrum clearly confirmed the presence of Zn, Al, and O elements in the Al-ZnO nanoparticles. The TEM results also indicated that the green synthesized Al-ZnO nanoparticles displayed hexagonal shapes with an average size of 25 nm. The doping of aluminum may enhance the thermal stability of the ZnO by altering the crystal structure or phase composition. The observed changes in TG, DTA, and DTG curves reflect the impact of aluminum doping on the structural and thermal properties of ZnO nanoparticles. The antibacterial activity of the Al-ZnO nanoparticles using the agar diffusion method showed that the maximum zone of inhibition has been noticed against organisms of Gram-positive S. aureus compared with Gram-negative E. coli. Moreover, antifungal activity using the agar cup method showed that the maximum zone of inhibition was observed on Aspergilus flavus, followed by Candida albicans. Al-doping nanoparticles increases the number of charge carriers, which can enhance the generation of reactive oxygen species (ROS) under UV light exposure. These ROS are known to possess strong antimicrobial properties. Al-doping can improve the crystallinity of ZnO, resulting in a larger surface area that facilitates more interaction with microbial cells. The structural and biological characteristics of Al-ZnO nanoparticles might be responsible for the enhanced antibacterial activity exhibited in the antibacterial studies. Al-ZnO nanoparticles with Cucumis maderaspatanus leaf extract produced via the green synthesis methods have remarkable antioxidant activity by scavenging free radicals against DPPH radicals, according to these results.
Collapse
Affiliation(s)
- S. K. Johnsy Sugitha
- Department of Chemistry, Holy Cross College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, TN, India;
| | - R. Gladis Latha
- Department of Chemistry and Research Centre, Holycross College, Nagercoil 629002, TN, India
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, TN, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Alexandre A. Vetcher
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Institute of Pharmacy and Biotechnology (IPhB), Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
13
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
14
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
15
|
Sanchis C, Plaza M, Checa I, Monleón C. Combined effects of a Mediterranean diet and respiratory muscle training on higher education woodwind musicians: A randomized controlled trial. Heliyon 2024; 10:e35495. [PMID: 39170324 PMCID: PMC11336701 DOI: 10.1016/j.heliyon.2024.e35495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
A two-factor within subjects and randomized controlled was conducted with three groups (two experimental and one control) to explore the effects of the Mediterranean diet and respiratory muscle training on ventilatory fatigue, stress, and emotional performance of woodwind musicians. 70 students from the Valencia Conservatory of Music were recruited and randomized into three groups: respiratory training group + nutrition program (RTG; n = 17), control group (CG; n = 35) and nutrition program group (NPG; n = 18). The nutritional program was based on Mediterranean a diet. Body composition, emotional intelligence, physiological stress and ventilatory response were assessed for all groups before and after intervention. Mixed ANOVA showed main effects of diet and training interventions on emotional attention (F = 8.042; p = 0.006), clarity (F = 9.306; p = 0.003), repair (F = 5.527; p = 0.022), Forced-Expiratory-Volume (F = 30.196; p < 0.000) and Forced-Vital-Capacity (F = 21.052; p < 0.000), with both interventions improving emotional intelligence and ventilatory variables. Bonferroni post-hoc analysis revealed significant differences of RTG and CG for emotional attention (MD = 4.60; p = 0.023), comprehension (MD = 5.734; p = 0.005), repair (MD = 8.576; p < 0.000), FEV1 (MD = 0.862; p = 0.005), and FCV (MD = 1.608; p < 0.001); with similar results when comparing NTG and CG: emotional attention (MD = 4.156; p = 0.041), comprehension (MD = 4.473; p = 0.033), repair (MD = 6.511; p = 0.001), Forced-Expiratory-Volume (MD = 1.608; p < 0.001), and Forced-Vital-Capacity (MD = 1.183; p < 0.001). No significant effects of experimental groups were observed for physiological stress variables (p > 0.05). This results suggests that respiratory training enhances emotional intelligence and lessens respiratory fatigue in musicians, and a combination of a Mediterranean diet and respiratory muscle training further boosts emotional intelligence, albeit with limited impact on physiological stress. This study represents a novel investigation into the approach by dietary interventions and respiratory muscle training in wind musicians since there are no studies that analyze it.
Collapse
Affiliation(s)
- Carlos Sanchis
- Catholic University of Valencia “San Vicente Mártir”, Faculty of Physical Education and Sports Sciences, Valencia, Spain
| | - Marcos Plaza
- Doctoral School, Catholic University of Valencia “San Vicente Mártir”, Faculty of Physical Education and Sports Sciences, Valencia, Spain
| | - Irene Checa
- Department of Developmental and Educational Psychology, Faculty of Psychology and Speech Therapy, University of Valencia, Valencia, Spain
| | - Cristina Monleón
- Catholic University of Valencia “San Vicente Mártir”, Faculty of Physical Education and Sports Sciences, Valencia, Spain
| |
Collapse
|
16
|
Bejenaru LE, Radu A, Segneanu AE, Biţă A, Manda CV, Mogoşanu GD, Bejenaru C. Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2133. [PMID: 39124251 PMCID: PMC11314045 DOI: 10.3390/plants13152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This review investigates innovative strategies for upcycling agricultural residues into valuable pharmaceutical compounds. The improper disposal of agricultural residues contributes to significant environmental issues, including increased greenhouse gas emissions and ecosystem degradation. Upcycling offers a sustainable solution, transforming these residues into high-value bioproducts (antioxidants, antitumor agents, antidiabetic compounds, anti-inflammatory agents, and antiviral drugs). Nanotechnology and microbial biotechnology have a crucial role in enhancing bioavailability and targeted delivery of bioactive compounds. Advanced techniques like enzymatic hydrolysis, green solvents, microwave processing, pyrolysis, ultrasonic processing, acid and alkaline hydrolysis, ozonolysis, and organosolv processes are explored for their effectiveness in breaking down agricultural waste and extracting valuable compounds. Despite the promising potential, challenges such as variability in residue composition, scalability, and high costs persist. The review emphasizes the need for future research on cost-effective extraction techniques and robust regulatory frameworks to ensure the safety, efficacy, and quality of bioproducts. The upcycling of agricultural residues represents a viable path towards sustainable waste management and production of pharmaceutical compounds, contributing to environmental conservation and public health improvements. This review provides an analysis of the current literature and identifies knowledge gaps, offering recommendations for future studies to optimize the use of agricultural residues in the drug industry.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Costel-Valentin Manda
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| |
Collapse
|
17
|
Zhao S, Huang X, Chen G, Qin H, Xu B, Luo Y, Liao Y, Wang S, Yan S, Zhao J. Causal inference and mechanism for unraveling the removal of four pesticides from lettuce (Lactuca sativa L.) via ultrasonic processing and various immersion solutions. ULTRASONICS SONOCHEMISTRY 2024; 108:106937. [PMID: 38896895 PMCID: PMC11239705 DOI: 10.1016/j.ultsonch.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
This study explores the reduction of carbamates (CAs) and pyrethroids (PYs) - commonly used pesticides - in lettuce using various immersion solutions and ultrasonic processing. It also examines the role of machine learning and molecular docking in understanding the mechanisms of pesticide reduction. The results revealed that the highest reduction of both CAs and PYs exceeded 80 % on lettuce leaves. In most samples, the reduction increased with the power of ultrasonic processing and processing time. The results of machine learning models (XGBoost and SHAP) showed that during the immersion cleaning of CAs and PYs, as well as during both immersion cleaning and ultrasonic processing of CAs + PYs, the reduction was most influenced by the initial pesticide levels and immersion time. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of lettuce's wax layer identified 24 compounds, including fatty alcohols, fatty acids, fatty acid esters, and triterpenoids. Despite the absence of active sites, the lipophilic nature of long-chain aliphatic compounds aids in pesticide binding, while triterpenoids form strong hydrogen bonds with pesticides, indicating a robust adsorption on the lettuce surface. This study aims to offer insights into the efficient removal of chemical pesticide residues from fruits and vegetables, addressing critical concerns for food safety and human health.
Collapse
Affiliation(s)
- Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Xinyi Huang
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Guanyu Chen
- College of Physics and Electronic Engineering, Sichuan Normal University, Sichuan 610101, China
| | - Haixiong Qin
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Bowen Xu
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Yu Luo
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Ying Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Shufang Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation 450000, Zhengzhou, Henan, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
18
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
19
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Rehman AU, Khan AU, Sohaib M, Rehman H. Comparative Analysis of Nutritional Properties, Phytochemical Profile, and Antioxidant Activities between Red and Green Water Chestnut ( Trapa natans) Fruits. Foods 2024; 13:1883. [PMID: 38928824 PMCID: PMC11202977 DOI: 10.3390/foods13121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024] Open
Abstract
The present study explored the nutritional composition, phytochemicals analysis, and antioxidant capacity of two indigenous varieties of red and green water chestnut (WCN) fruit grown in Pakistan. Accordingly, this study was designed to investigate the proximate composition (moisture, ash, fiber, proteins, fat, and energy), physicochemical properties (pH, °Brix, and glycemic index), minerals, and vitamins. The methanolic extracts of WCN fruits were explored for phytochemicals (total phenolic and flavonoid content), and antioxidant potential was examined in vitro by 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity (DPPH) and Ferric reducing antioxidant power (FRAP). Quantitative determination of mineral (sodium, potassium, calcium, phosphorus, iron, manganese, copper, and zinc) and vitamin (vitamin C, vitamin B6, vitamin B2, vitamin B3, vitamin A, and β-Carotene) composition was also assessed. Based on the findings, the proximate compositions of WCN green and red varieties varied greatly as WCN green contained significantly higher protein (1.72%), fat (0.65%), dietary fiber (2.21%), moisture (70.23%), ash (1.16%), and energy content (112.8 Kcal) than WCN red. In WCN green, the macro-micromineral concentrations were significantly higher than WCN red. Among the minerals analyzed, potassium was the most abundant mineral found in both varieties. Levels of vitamin C, B6, A, and β-Carotene were significantly higher in WCN green. In this study, methanolic extract showed higher extraction efficiency than acetone, ethanol, and distilled water. WCN green had a significantly higher quantum of total phenolic (91.13 mg GAE/g) and total flavonoid (36.6 mg QE/g) and presented significantly higher antioxidant activity than the WCN red. This study showed that, among both varieties, WCN green extract has therapeutic potential against free radical mediated health conditions and suggested the potential use of this fruit as a source of natural antioxidants in nutraceuticals.
Collapse
Affiliation(s)
- Aniq Ur Rehman
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Azmat Ullah Khan
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan;
| |
Collapse
|
21
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
22
|
Corpas FJ, González-Gordo S, Palma JM. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2716-2732. [PMID: 38442039 PMCID: PMC11066807 DOI: 10.1093/jxb/erae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Ascorbate peroxidase (APX) is one of the enzymes of the ascorbate-glutathione cycle and is the key enzyme that breaks down H2O2 with the aid of ascorbate as an electron source. APX is present in all photosynthetic eukaryotes from algae to higher plants and, at the cellular level, it is localized in all subcellular compartments where H2O2 is generated, including the apoplast, cytosol, plastids, mitochondria, and peroxisomes, either in soluble form or attached to the organelle membranes. APX activity can be modulated by various post-translational modifications including tyrosine nitration, S-nitrosation, persulfidation, and S-sulfenylation. This allows the connection of H2O2 metabolism with other relevant signaling molecules such as NO and H2S, thus building a complex coordination system. In both climacteric and non-climacteric fruits, APX plays a key role during the ripening process and during post-harvest, since it participates in the regulation of both H2O2 and ascorbate levels affecting fruit quality. Currently, the exogenous application of molecules such as NO, H2S, H2O2, and, more recently, melatonin is seen as a new alternative to maintain and extend the shelf life and quality of fruits because they can modulate APX activity as well as other antioxidant systems. Therefore, these molecules are being considered as new biotechnological tools to improve crop quality in the horticultural industry.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
23
|
Thaise de Oliveira Faoro D, Artuzo FD, Rossi Borges JA, Foguesatto CR, Dewes H, Talamini E. Are organics more nutritious than conventional foods? A comprehensive systematic review. Heliyon 2024; 10:e28288. [PMID: 38571600 PMCID: PMC10987935 DOI: 10.1016/j.heliyon.2024.e28288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The growing consumer interest fueled by the belief in the superiority of organic foods raises questions about their actual nutritional superiority over conventional ones. This assumption remains a controversial issue. The present study addresses scientific evidence to clarify this controversy and provide relevant insights for informed decision-making regarding dietary choices. We collected 147 scientific articles containing 656 comparative analyses based on 1779 samples of 68 vegetable, fruit, and other (cereals, pulses, etc.) foods, 22 nutritional properties, and nine residues. Results show that in 191 (29.1%) comparisons, there were significant differences between organic and conventional foods. In a similar quantity of cases (190; 29.0%), there were divergences in the results since some studies reported significant differences while others did not. Finally, most of the comparative analyses (275; 41.9%) showed no significant difference between organic and conventional foods. Therefore, the results herein show no generalizable superiority of organic over conventional foods. Claims for nutritious advantages would eventually be applied to specific comparisons, depending on the food type and nutritional parameter.
Collapse
Affiliation(s)
- Daiane Thaise de Oliveira Faoro
- Interdisciplinary Center for Studies and Research in Agribusiness – CEPAN, Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | - Felipe Dalzotto Artuzo
- Brazilian Institute of Bioeconomy – INBBIO. Bioeconomics Applied to Agribusiness Research Group. Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | | | | | - Homero Dewes
- Department of Biophysics, Institute of Biophysics, and Interdisciplinary Center for Studies and Research in Agribusiness – CEPAN, Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | - Edson Talamini
- Department of Economics and International Relations – DERI, Faculty of Economics – FCE, and Bioeconomics Applied to Agribusiness Research Group, Interdisciplinary Center for Studies and Research in Agribusiness – CEPAN, Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| |
Collapse
|
24
|
Mejías N, Vega-Galvez A, Gomez-Perez LS, Pasten A, Uribe E, Cortés A, Valenzuela-Barra G, Camus J, Delporte C, Bernal G. Health-Promoting Properties of Processed Red Cabbage ( Brassica oleracea var. capitata f. rubra): Effects of Drying Methods on Bio-Compound Retention. Foods 2024; 13:830. [PMID: 38540820 PMCID: PMC10969148 DOI: 10.3390/foods13060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 05/14/2025] Open
Abstract
The aim of this work is to describe the effect of convective drying (CD), vacuum drying (VD), infrared drying (IRD), low-temperature vacuum drying (LTVD) and freeze drying (FD) on bio-compound retention of red cabbage and its beneficial health properties. The total phenolics content (TPC), flavonoids (TFC), anthocyanin (TAC) and glucosinolates (TGC) were determined by spectrophotometry. The profiles of phenolic acids, amino acids and fatty acids were determined by HPLC-UV-DAD, LC-DAD and GC-FID, respectively. Antioxidant potential was verified by DPPH and ORAC assays. The antiproliferative activity was measured in the human gastric cell line (AGS). Anti-inflammatory activity was evaluated by phorbol 12-myristate 13-acetate and arachidonic acid models. VD showed high values of TPC = 11.89 ± 0.28 mg GAE/g d.m.; TFC = 11.30 ± 0.9 mg QE/g d.m.; TAC = 0.265 ± 0.01 mg Cya3glu/g d.m.; and TGC = 51.15 ± 3.31 µmol SE/g d.m. Caffeic acid, ferulic acid and sinapic acid were identified. The predominant amino acid and fatty acid were glutamic acid and γ-linolenic acid, respectively. The antioxidant potential was dependent on drying methods for both DPPH and ORAC assays. Dried red cabbage extracts showed clear anti-inflammatory and antiproliferative activity. The dehydration process is an alternative for the retention of bio-compounds and health-promoting properties of red cabbage.
Collapse
Affiliation(s)
- Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Elsa Uribe
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
- Instituto Interdisciplinario de Investigación y Postgrado, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Anielka Cortés
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | - Javiera Camus
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Carla Delporte
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | - Giuliano Bernal
- Laboratorio de Biología Molecular y Celular del Cáncer, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile;
| |
Collapse
|
25
|
English CJ, Jones M, Lohning AE, Mayr HL, MacLaughlin H, Reidlinger DP. Associations between healthy food groups and platelet-activating factor, lipoprotein-associated phospholipase A 2 and C-reactive protein: a cross-sectional study. Eur J Nutr 2024; 63:445-460. [PMID: 38063929 PMCID: PMC10899352 DOI: 10.1007/s00394-023-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-associated phospholipase A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy. METHODS A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake (via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into food groups. Correlations and multiple regressions were performed with adjustment for confounders. RESULTS A one-serve increase in cruciferous vegetables per day was associated with 20-24% lower PAF levels. An increase of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level. CONCLUSION The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food groups in a non-pandemic setting.
Collapse
Affiliation(s)
- Carolyn J English
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Mark Jones
- Faculty of Health Sciences and Medicine, Institute of Evidence-Based Healthcare, Bond University, Robina, QLD, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Hannah L Mayr
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Helen MacLaughlin
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- Nutrition Research Collaborative, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Dianne P Reidlinger
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.
| |
Collapse
|
26
|
de Lima DP, Dos Santos Pinto Júnior E, de Menezes AV, de Souza DA, de São José VPB, da Silva BP, de Almeida AQ, de Carvalho IMM. Chemical composition, minerals concentration, total phenolic compounds, flavonoids content and antioxidant capacity in organic and conventional vegetables. Food Res Int 2024; 175:113684. [PMID: 38129028 DOI: 10.1016/j.foodres.2023.113684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/28/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The demand for organic vegetables is increasing worldwide, which has led to the growth of organic agriculture. However, information on chemical composition and antioxidant activity in vegetables grown organically under controlled conditions remains uncertain. For this study, 3 vegetables widely consumed in Brazil were cultivated in controlled organic and conventional cultivation systems: lettuce, coriander and tomato. Their chemical composition, mineral concentration, phenolic compound content, flavonoids and antioxidant activity (AA) were evaluated. The analyses of chemical and mineral composition revealed differences between the cultivation systems. Organic lettuce presented higher content of ashes, calcium and potassium. A higher content of phenolic compounds and flavonoids was observed in most organic vegetables. Using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay, the organic tomato exhibited higher AA compared to conventional, while the ferric-reducing antioxidant power (FRAP) method showed higher AA for organic coriander and tomato than theirs conventional version. The correlation between bioactive compounds and AA was positive, higher and stronger for organic vegetables, considering phenolic compounds (including flavonoids) and DPPH or FRAP antioxidant activity. Principal Component Analysis (PCA) disclosed that organic lettuce and coriander were grouped according bioactive components. In general, organic vegetables showed better results for bioactive compounds and antioxidant activity.
Collapse
Affiliation(s)
- Daniele Pinto de Lima
- Post-Graduate Program in Nutrition Science, Federal University of Sergipe (UFS), São Cristóvão, Brazil
| | | | - Anely Vieira de Menezes
- Post-Graduate Program in Nutrition Science, Federal University of Sergipe (UFS), São Cristóvão, Brazil
| | - Daniel Alves de Souza
- Post-Graduate Program in Nutrition Science, Federal University of Sergipe (UFS), São Cristóvão, Brazil
| | | | | | - André Quintão de Almeida
- Department of Agricultural Engineering, Federal University of Sergipe (UFS), São Cristóvão, Brazil
| | | |
Collapse
|
27
|
Rivi V, Batabyal A, Lukowiak K. The multifaceted effects of flavonoids on neuroplasticity. Restor Neurol Neurosci 2024; 42:93-111. [PMID: 38995810 DOI: 10.3233/rnn-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the human population with life expectancy increasing in the current times. This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids, found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids being used complementarily rather than as replacements to classical drugs bringing about a healthier future.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, India
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Zhou Y, Huang L, Liu S, Zhao M, Liu J, Lin L, Liu K. Physiological and transcriptomic analysis of IAA-induced antioxidant defense and cell wall metabolism in postharvest mango fruit. Food Res Int 2023; 174:113504. [PMID: 37986499 DOI: 10.1016/j.foodres.2023.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Mango fruit tend to oxidize and senescence rapidly after harvesting, significantly reducing their commercial value. This study investigated the effect of exogenous auxin indole-3-acetic acid (IAA) on fruit quality, antioxidant system, and cell wall metabolism of mango fruit during storage. The results showed that the 1.0 mM IAA treatment delayed weight loss and maintained the firmness, pH and contents of total soluble solids (TSS) and titratable acidity (TA) of the mango fruit. The 1.0 mM IAA treatment increased the peroxidase (POD) and phenylalanine ammonia-lyase (PAL) activities and the ascorbic acid (AsA) and total phenols (TP) contents but decreased the polyphenol oxidase (PPO) activity in postharvest mango fruit. Moreover, beta-galactosidase (β-Gal) and polygalacturonase (PG) activities were increased, but the pectinesterase (PME) activity was decreased in the IAA-treated fruit. Transcriptome analysis showed that the differentially expressed genes (DEGs) in the IAA vs. control groups were mainly associated with oxidative stress responses, cell wall metabolism, and transcription factors (TFs). The IAA treatment upregulated the antioxidant-related genes (SOD, CAT1, PODs, GSTs, Prxs, and Trxs) and MYB TFs, and downregulated cell wall metabolism-related genes (PG, PME31 and two PME63) and 11 ethylene-responsive transcription factors (ERFs). These results suggested that exogenous IAA could improve the antioxidant system and maintain the storage quality of mango fruit by regulating gene expression and metabolic pathways. The results provide insights into the mechanisms involved in IAA-mediated delayed ripening and senescence of mango fruit.
Collapse
Affiliation(s)
- Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Lei Huang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Shuyi Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Miaoyu Zhao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jiameng Liu
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Lijing Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
29
|
Guagliano M, Cristiani C, Dell’Anno M, Dotelli G, Finocchio E, Lacalamita M, Mesto E, Reggi S, Rossi L, Schingaro E. A Commercial Clay-Based Material as a Carrier for Targeted Lysozyme Delivery in Animal Feed. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2965. [PMID: 37999319 PMCID: PMC10674955 DOI: 10.3390/nano13222965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The controlled supply of bioactive molecules is a subject of debate in animal nutrition. The release of bioactive molecules in the target organ, in this case the intestine, results in improved feed, as well as having a lower environmental impact. However, the degradation of bioactive molecules' in transit in the gastrointestinal passage is still an unresolved issue. This paper discusses the feasibility of a simple and cost-effective procedure to bypass the degradation problem. A solid/liquid adsorption procedure was applied, and the operating parameters (pH, reaction time, and LY initial concentration) were studied. Lysozyme is used in this work as a representative bioactive molecule, while Adsorbo®, a commercial mixture of clay minerals and zeolites which meets current feed regulations, is used as the carrier. A maximum LY loading of 32 mgLY/gAD (LY(32)-AD) was obtained, with fixing pH in the range 7.5-8, initial LY content at 37.5 mgLY/gAD, and reaction time at 30 min. A full characterisation of the hybrid organoclay highlighted that LY molecules were homogeneously spread on the carrier's surface, where the LY-carrier interaction was mainly due to charge interaction. Preliminary release tests performed on the LY(32)-AD synthesised sample showed a higher releasing capacity, raising the pH from 3 to 7. In addition, a preliminary Trolox equivalent antioxidant capacity (TEAC) assay showed an antioxidant capacity for the LY of 1.47 ± 0.18 µmol TroloxEq/g with an inhibition percentage of 33.20 ± 3.94%.
Collapse
Affiliation(s)
- Marianna Guagliano
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Cinzia Cristiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Matteo Dell’Anno
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Giovanni Dotelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Elisabetta Finocchio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Via Opera Pia 15, 16145 Genova, Italy;
| | - Maria Lacalamita
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| | - Serena Reggi
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Luciana Rossi
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| |
Collapse
|
30
|
Skaperda Z, Tekos F, Vardakas P, Nechalioti PM, Kourti M, Patouna A, Makri S, Gkasdrogka M, Kouretas D. Development of a Holistic In Vitro Cell-Free Approach to Determine the Redox Bioactivity of Agricultural Products. Int J Mol Sci 2023; 24:16447. [PMID: 38003634 PMCID: PMC10671064 DOI: 10.3390/ijms242216447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a strong consumer demand for food products that provide nutritional benefits to human health. Therefore, the assessment of the biological activity is considered as an important parameter for the promotion of high-quality food products. Herein, we introduce a novel methodology comprising a complete set of in vitro cell-free screening techniques for the evaluation of the bioactivity of various food products on the basis of their antioxidant capacity. These assays examine the free radical scavenging activities, the reducing properties, and the protective ability against oxidative damage to biomolecules. The adoption of the proposed battery of antioxidant assays is anticipated to contribute to the holistic characterization of the bioactivity of the food product under examination. Consumer motivations and expectations with respect to nutritious food products with bio-functional properties drive the global food market toward food certification. Therefore, the development and application of scientific methodologies that examine the quality characteristics of food products could increase consumers' trust and promote their beneficial properties for human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.); (M.K.); (A.P.); (S.M.); (M.G.)
| |
Collapse
|
31
|
Sha SP, Modak D, Sarkar S, Roy SK, Sah SP, Ghatani K, Bhattacharjee S. Fruit waste: a current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front Microbiol 2023; 14:1260071. [PMID: 37942074 PMCID: PMC10628478 DOI: 10.3389/fmicb.2023.1260071] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Fruits are crucial components of a balanced diet and a good source of natural antioxidants, that have proven efficacy in various chronic illnesses. Various kinds of waste generated from fruit industries are considered a global concern. By utilizing this fruit waste, the international goal of "zero waste" can be achieved by sustainable utilization of these waste materials as a rich source of secondary metabolites. Moreover, to overcome this waste burden, research have focused on recovering the bioactive compounds from fruit industries and obtaining a new strategy to combat certain chronic diseases. The separation of high-value substances from fruit waste, including phytochemicals, dietary fibers, and polysaccharides which can then be used as functional ingredients for long-term health benefits. Several novel extraction technologies like ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) could provide an alternative approach for successful extraction of the valuable bioactives from the fruit waste for their utilization as nutraceuticals, therapeutics, and value-added products. Most of these waste-derived secondary metabolites comprise polyphenols, which have been reported to have anti-inflammatory, insulin resistance-treating, cardiovascular disease-maintaining, probiotics-enhancing, or even anti-microbial and anti-viral capabilities. This review summarizes the current knowledge of fruit waste by-products in pharmacological, biological, and probiotic applications and highlights several methods for identifying efficacious bioactive compounds from fruit wastes.
Collapse
Affiliation(s)
- Shankar Prasad Sha
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sumit Prasad Sah
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Kriti Ghatani
- Food Microbiology Laboratory, Department of Food Technology, University of North Bengal, Raja Rammohunpur, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
32
|
Guevara-Ramírez P, Paz-Cruz E, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Felix ML, Simancas-Racines D, Zambrano AK. Molecular pathways and nutrigenomic review of insulin resistance development in gestational diabetes mellitus. Front Nutr 2023; 10:1228703. [PMID: 37799768 PMCID: PMC10548225 DOI: 10.3389/fnut.2023.1228703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Gestational diabetes mellitus is a condition marked by raised blood sugar levels and insulin resistance that usually occurs during the second or third trimester of pregnancy. According to the World Health Organization, hyperglycemia affects 16.9% of pregnancies worldwide. Dietary changes are the primarily alternative treatment for gestational diabetes mellitus. This paper aims to perform an exhaustive overview of the interaction between diet, gene expression, and the metabolic pathways related to insulin resistance. The intake of foods rich in carbohydrates can influence the gene expression of glycolysis, as well as foods rich in fat, can disrupt the beta-oxidation and ketogenesis pathways. Furthermore, vitamins and minerals are related to inflammatory processes regulated by the TLR4/NF-κB and one carbon metabolic pathways. We indicate that diet regulated gene expression of PPARα, NOS, CREB3L3, IRS, and CPT I, altering cellular physiological mechanisms and thus increasing or decreasing the risk of gestational diabetes. The alteration of gene expression can cause inflammation, inhibition of fatty acid transport, or on the contrary help in the modulation of ketogenesis, improve insulin sensitivity, attenuate the effects of glucotoxicity, and others. Therefore, it is critical to comprehend the metabolic changes of pregnant women with gestational diabetes mellitus, to determine nutrients that help in the prevention and treatment of insulin resistance and its long-term consequences.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Maria L. Felix
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
33
|
Coyago-Cruz E, Guachamin A, Méndez G, Moya M, Martínez A, Viera W, Heredia-Moya J, Beltrán E, Vera E, Villacís M. Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato ( Solanum betaceum) at Different Altitudes. Foods 2023; 12:3494. [PMID: 37761202 PMCID: PMC10530088 DOI: 10.3390/foods12183494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tree tomato (Solanum betaceum) is susceptible to nematode attack; for this reason, grafting is used as an alternative to reduce this impact. In this study, the bioactive compounds of the fruit (shell, pulp, and seed jelly) of two tree tomato ecotypes ('giant orange' and 'giant purple') were evaluated in both control and grafted plants grown at different altitudes (2010-2250, 2260-2500, 2510-2750 and 2760-3000 masl). Commercial quality, vitamin C, organic acids, phenolics, carotenoids and antioxidant activity were determined by microextraction and quantified by liquid chromatography (RRLC) or spectrophotometry (microplate reader). The results showed high concentrations of vitamin C, organic acids and antioxidant activity in the seed jelly, organic acids in the pulp and phenolic compounds, carotenoids, and antioxidant activity in the shell. The main phenolics were ferulic acid, caffeic acid and luteolin, while the main carotenoids were lutein, B-cryptoxanthin and B-carotene. Multivariate analysis showed that tree tomato quality was mainly influenced by altitude and fruit part and that grafting positively affected soluble solids for both ecotypes and all altitudes.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador (G.M.)
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador (G.M.)
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador (G.M.)
| | - Melany Moya
- Facultad de Ciencias Médicas, Carrera de Obstetricia, Universidad Central del Ecuador, Iquique, Luis Sodiro N14-121, Quito 170146, Ecuador;
| | - Aníbal Martínez
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Programa de Fruticultura, Av. Interoceánica Km15 y Eloy Alfaro, Quito 170518, Ecuador; (A.M.); (W.V.)
| | - William Viera
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Programa de Fruticultura, Av. Interoceánica Km15 y Eloy Alfaro, Quito 170518, Ecuador; (A.M.); (W.V.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador;
| | - Elena Beltrán
- Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito 170527, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Av. 12 de octubre N2422 y Veintimilla, Quito 170524, Ecuador; (E.V.); (M.V.)
| | - Michael Villacís
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Av. 12 de octubre N2422 y Veintimilla, Quito 170524, Ecuador; (E.V.); (M.V.)
| |
Collapse
|
34
|
Saleh EAM, Al-Dolaimy F, Qasim Almajidi Y, Baymakov S, Kader M MA, Ullah MI, Abbas AHR, Khlewee IH, Bisht YS, Alsaalamy AH. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol Res Pract 2023; 249:154664. [PMID: 37573621 DOI: 10.1016/j.prp.2023.154664] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | | | - Sayfiddin Baymakov
- Department of General surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | - Mohammed Abdul Kader M
- Department Restorative Dental science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka, 72388 Aljouf, Saudi Arabia
| | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
35
|
Lin Y, Zhou C, Li D, Wu Y, Dong Q, Jia Y, Yu H, Miao P, Pan C. Integrated non-targeted and targeted metabolomics analysis reveals the mechanism of inhibiting lignification and optimizing the quality of pea sprouts by combined application of nano-selenium and lentinans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5096-5107. [PMID: 36974656 DOI: 10.1002/jsfa.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Asma U, Morozova K, Ferrentino G, Scampicchio M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants (Basel) 2023; 12:1456. [PMID: 37507993 PMCID: PMC10376361 DOI: 10.3390/antiox12071456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in utilizing natural antioxidants as alternatives to synthetic additives in food products. Apples and apple by-products have gained attention as a potential source of natural antioxidants due to their rich phenolic content. However, the extraction techniques applied for the recovery of phenolic compounds need to be chosen carefully. Studies show that ultrasound-assisted extraction is the most promising technique. High yields of phenolic compounds with antioxidant properties have been obtained by applying ultrasound on both apples and their by-products. Promising results have also been reported for green technologies such as supercritical fluid extraction, especially when a co-solvent is used. Once extracted, recent studies also indicate the feasibility of using these compounds in food products and packaging materials. The present review aims to provide a comprehensive overview of the antioxidant properties of apples and apple by-products, their extraction techniques, and potential applications in food products because of their antioxidant or nutritional properties. The findings reported here highlight the proper utilization of apples and their by-products in food to reduce the detrimental effect on the environment and provide a positive impact on the economy.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
37
|
Bonasia A, Conversa G, Lazzizera C, Elia A. Characterization of Targeted Phenolic Compounds in Globe Artichoke Heads and Waste from Vegetatively and "Seed"-Propagated Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2579. [PMID: 37447138 DOI: 10.3390/plants12132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
In the globe artichoke, both the edible portion and the waste biomass are recognized as valuable sources of bioactive compounds. For this study, heads with 30 cm-long floral stems including two to three leaves were harvested from five genotypes, which included two traditional vegetative-propagated varietal types ("Brindisino" and "Violetto di Foggia") and three "seed"-propagated hybrids ("Tempo", "Opal", and "Madrigal"). The study aimed to determine the total and individual polyphenolic concentrations (measured spectrophotometrically and using HPLC) and antioxidant activity (AA) in different artichoke parts, namely the "hearts" (H), head waste (HW), stem waste (SW), and leaf waste (LW). "Brindisino" SW exhibited the highest accumulation of luteolin (26,317 mg kg-1 F.W.), while "Tempo" H displayed the highest cynarin content (190 mg kg-1 F.W.). "Tempo" HW and H showed the highest levels of apigenin (640 mg kg-1 F.W.), and the greatest source of chlorogenic acid was found in the HW of "Opal" and the H of "Brindisino" (4300 mg kg-1 F.W.). The hybrids generally exhibited lower total polyphenolic concentrations than the traditional genotypes, particularly evident in the LW. The SW demonstrated the highest concentration of total polyphenols (18,000 mg kg-1 F.W.), followed by the edible H and non-edible HW (12,000 mg kg-1 F.W.), while the LW exhibited the lowest concentration (2000 mg kg-1 F.W.). Interestingly, the AA did not precisely align with the total polyphenolic concentration, showing slight variations between the examined parts and genotypes.
Collapse
Affiliation(s)
- Anna Bonasia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Giulia Conversa
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Corrado Lazzizera
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Antonio Elia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
38
|
Bano A, Gupta A, Rai S, Sharma S, Upadhyay TK, Al-Keridis LA, Alshammari N, Pathak N, Iriti M, Saeed M. Bioactive Compounds, Antioxidant, and Antibacterial Activity Against MDR and Food-Borne Pathogenic Bacteria of Psidium guajava. L Fruit During Ripening. Mol Biotechnol 2023:10.1007/s12033-023-00779-y. [PMID: 37316612 DOI: 10.1007/s12033-023-00779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.
Collapse
Affiliation(s)
- Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Smita Rai
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Swati Sharma
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat, 391760, India
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia
| | - Neelam Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia.
| |
Collapse
|
39
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
40
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
41
|
Nurkhoeriyati T, Arefi A, Kulig B, Sturm B, Hensel O. Non-destructive monitoring of quality attributes kinetics during the drying process: A case study of celeriac slices and the model generalisation in selected commodities. Food Chem 2023; 424:136379. [PMID: 37229901 DOI: 10.1016/j.foodchem.2023.136379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
The potential of Visual-NIR hyperspectral imaging (VNIR-HSI, 425-1700 nm) to predict celeriac quality attributes during the drying process was investigated. The HSI-Gaussian Process Regression (GPR) fusion method excellently predicted moisture content (MC, R2 ≈ 1.00, RMSE = 0.77 gw 100 gs-1) and water activity (aw, R2 = 0.98, RMSE = 0.04). Moreover, the rehydration ratio (RR, R2 = 0.89, RMSE = 0.04) and colour indices (R2 = 0.80-0.93, RMSE = 0.17-1.45) were reasonably predicted. However, antioxidant activity (AA) and total phenolic compounds (TPC) were poorly predicted. These results are potentially due to MC variations dominating the NIR region, masking phenolic compounds. Finally, the celeriac-based-trained model was assessed by predicting the MC of apple, cocoyam, and carrot slices. The results were encouraging; however, a GPR model trained on the data of all four commodities was more robust (R2 ≈ 1.00, RMSE = 1-2 gw 100 gs-1).
Collapse
Affiliation(s)
- Tina Nurkhoeriyati
- Department of Agricultural and Biosystems Engineering, Faculty of Organic Agricultural Sciences, University of Kassel, 37213 Witzenhausen, Germany; Study Program of Food Technology, Faculty of Engineering, International University Liaison Indonesia (IULI), 15310 Tangerang, Indonesia.
| | - Arman Arefi
- Department of Agricultural and Biosystems Engineering, Faculty of Organic Agricultural Sciences, University of Kassel, 37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany.
| | - Boris Kulig
- Department of Agricultural and Biosystems Engineering, Faculty of Organic Agricultural Sciences, University of Kassel, 37213 Witzenhausen, Germany
| | - Barbara Sturm
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany; Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Oliver Hensel
- Department of Agricultural and Biosystems Engineering, Faculty of Organic Agricultural Sciences, University of Kassel, 37213 Witzenhausen, Germany
| |
Collapse
|
42
|
Kritsi E, Tsiaka T, Sotiroudis G, Mouka E, Aouant K, Ladika G, Zoumpoulakis P, Cavouras D, Sinanoglou VJ. Potential Health Benefits of Banana Phenolic Content during Ripening by Implementing Analytical and In Silico Techniques. Life (Basel) 2023; 13:332. [PMID: 36836689 PMCID: PMC9962436 DOI: 10.3390/life13020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Banana ranks as the fifth most cultivated agricultural crop globally, highlighting its crucial socio-economic role. The banana's health-promoting benefits are correlated with its composition in bioactive compounds, such as phenolic compounds. Thus, the present study attempts to evaluate the potential health benefits of banana phenolic content by combing analytical and in silico techniques. Particularly, the total phenolic content and antioxidant/antiradical activity of banana samples during ripening were determined spectrophotometrically. In parallel, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was implemented to unravel the variations in the phenolic profile of banana samples during ripening. Chlorogenic acid emerged as a ripening marker of banana, while apigenin and naringenin were abundant in the unripe fruit. In a further step, the binding potential of the elucidated phytochemicals was examined by utilizing molecular target prediction tools. Human carbonic anhydrase II (hCA-II) and XII (hCA-XII) enzymes were identified as the most promising targets and the inhibitory affinity of phenolic compounds was predicted through molecular docking studies. This class of enzymes is linked to a variety of pathological conditions, such as edema, obesity, hypertension, cancer, etc. The results assessment indicated that all assigned phenolic compounds constitute great candidates with potential inhibitory activity against CA enzymes.
Collapse
Affiliation(s)
- Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Elizabeth Mouka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Konstantinos Aouant
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Georgia Ladika
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| |
Collapse
|
43
|
Liposomes for encapsulation of liposoluble vitamins (A, D, E and K): Comparation of loading ability, storage stability and bilayer dynamics. Food Res Int 2023; 163:112264. [PMID: 36596175 DOI: 10.1016/j.foodres.2022.112264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
To understand the encapsulation difference and stability mechanism of nanoliposomes (NLPs) loaded with different kinds and loads of liposoluble vitamins (LSV, including VA, VD, VE, and VK), the physicochemical stability during three-months storage and bilayer membrane properties of LSV-NLPs were evaluated. The results suggested that VD and VE were not suitable for high-load (≥30 wt%) encapsulation, but the stability of other LSV-NLPs was excellent during storage. Their particle size was less than 100 nm, the polydispersity index was less than 0.3, and the retention rate of VE and VK remained above 85 %. LSV encapsulation inhibited malondialdehyde production, decreased liposome surface roughness, and improved nanoliposome rigidity. The order of occupying capacity of LSV to the hydrophobic zone of the bilayer was VK>VD>VE>VA, and the stability of LSV located in the hydrophobic region was better. Except for high-load VD and VE, the other LSV encapsulation increased the microviscosity of the lipid-water interface and hydrophobic zone by 0.5 ∼ 7.1 times and 0.5 ∼ 20 times, respectively. The accumulation of acyl chain was enhanced by 0.2 ∼ 4 times, and the interchain longitudinal and intra-chain transverse order degree was increased by 10.89 %∼144.35 % and 3.26 %∼115.52 %, respectively. High microviscosity and tight chain stacking limited bilayer fluidity and thus improve LSV-NLPs stability. This work will contribute to the application of nanoliposomes as liposoluble vitamin carriers in the food industry.
Collapse
|
44
|
Fumaric Acid Production by R. arrhizus NRRL 1526 Using Apple Pomace Enzymatic Hydrolysates: Kinetic Modelling. Processes (Basel) 2022. [DOI: 10.3390/pr10122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fumaric acid is one of the most promising biorefinery platform chemicals, fruit residues being a very suitable raw material for its production in second generation biorefineries. In particular, apple pomace is a plentiful residue from the apple juice industry, with apple being the second largest fruit crop in the world, with a production that increased from 46 to 86 Mtons in the 1994–2021 period. With a global apple juice production of more than 4.5 Mtons, a similar amount of apple pomace is produced yearly. In this work, apple pomace hydrolysate has been obtained by enzymatic hydrolysis and further characterized for its content in sugars, phenolics and nitrogen using different analytic methods, based on HPLC and colorimetric techniques. Previous to the use of this hydrolysate (APH), we studied if the addition of fructose to the usual glucose-rich broth could lead to high fumaric acid yields, titers and productivities. Afterwards, APH fermentation was performed and improved using different nitrogen initial amounts, obtaining production yields (0.32 gFumaric acid/gconsumed sugar) similar to those obtained with synthetic media (0.38 gFumaric acid/gconsumed sugar). Kinetic modelling was employed to evaluate, explain, and understand the experimental values and trends of relevant components in the fermentation broth as functions of the bioprocess time, proposing a suitable reaction scheme and a non-structured, non-segregated kinetic model based on it.
Collapse
|
45
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Christodoulou MC, Orellana Palacios JC, Hesami G, Jafarzadeh S, Lorenzo JM, Domínguez R, Moreno A, Hadidi M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants (Basel) 2022; 11:2213. [PMID: 36358583 PMCID: PMC9686769 DOI: 10.3390/antiox11112213] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in the application of antioxidants in food and pharmaceuticals due to their association with beneficial health effects against numerous oxidative-related human diseases. The antioxidant potential can be measured by various assays with specific mechanisms of action, including hydrogen atom transfer, single electron transfer, and targeted scavenging activities. Understanding the chemistry of mechanisms, advantages, and limitations of the methods is critical for the proper selection of techniques for the valid assessment of antioxidant activity in specific samples or conditions. There are various analytical techniques available for determining the antioxidant activity of biological samples, including food and plant extracts. The different methods are categorized into three main groups, such as spectrometry, chromatography, and electrochemistry techniques. Among these assays, spectrophotometric methods are considered the most common analytical technique for the determination of the antioxidant potential due to their sensitivity, rapidness, low cost, and reproducibility. This review covers the mechanism of actions and color changes that occur in each method. Furthermore, the advantages and limitations of spectrophotometric methods are described and discussed in this review.
Collapse
Affiliation(s)
| | - Jose C. Orellana Palacios
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Golnaz Hesami
- Department of Food Science and Technology, Sanandaj Branch, Islamic Azad University, Pasdaran St., Sanandaj P.O. Box 618, Iran
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
47
|
Lacivita V, Marziliano M, Del Nobile MA, Conte A. Artisanal fresh filled pasta with pomegranate peels as natural preservative. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Exploring the industrial importance of a miracle herb Withania somnifera (L.) Dunal: Authentication through chemical profiling, in vitro studies and computational analyses. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Wongwaiwech D, Kamchonemenukool S, Ho CT, Li S, Thongsook T, Majai N, Premjet D, Sujipuli K, Weerawatanakorn M. Nutraceutical Difference between Two Popular Thai Namwa Cultivars Used for Sun Dried Banana Products. Molecules 2022; 27:5675. [PMID: 36080440 PMCID: PMC9458235 DOI: 10.3390/molecules27175675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Musa (ABB group) “Kluai Namwa” bananas (Musa sp.) are widely grown throughout Thailand. Mali Ong is the most popular Kluai Namwa variety used as raw material for sun-dried banana production, especially in the Bangkratum District, Phitsanulok, Thailand. The sun-dried banana product made from Nanwa Mali Ong is well recognized as the best dried banana product of the country, with optimal taste compared to one made from other Kluai Namwa varieties. However, the production of Mali Ong has fluctuated substantially in recent years, leading to shortages. Consequently, farmers have turned to using other Kluai Namwa varieties including Nuanchan. This study investigated the nutraceutical contents of two popular Namwa varieties, Mali Ong and Nuanchan, at different ripening stages. Nutraceuticals in the dried banana products made from these two Kluai Namwa varieties and four commercial dried banana products were compared. Results indicated that the content of moisture, total sugar, and total soluble solids (TSS) (°Brix) increased, while total solids and texture values decreased during the ripening stage for both Kluai Namwa varieties. Rutin was the major flavonoid found in both Namwa Mali Ong and Nuanchan varieties ranging 136.00−204.89 mg/kg and 129.15−260.38 mg/kg, respectively. Rutin, naringenin, quercetin and catechin were abundant in both Namwa varieties. All flavonoids increased with ripening except for rutin, gallocatechin and gallocatechin gallate. There were no significant differences (p < 0.05) in flavonoid contents between both varieties. Tannic acid, ellagic acid, gallic acid, chlorogenic acid and ferulic acid were the main phenolic acids found in Mali Ong and Nuanchan varieties, ranging from 274.61−339.56 mg/kg and 293.13−372.66 mg/kg, respectively. Phenolic contents of both varieties decreased, increased and then decreased again during the development stage. Dopamine contents increased from 79.26 to 111.77 mg/kg and 60.38 to 125.07 mg/kg for Mali Ong and Nuanchan, respectively, but the amounts were not significantly different (p < 0.5) between the two Namwa varieties at each ripening stage. Inulin as fructooligosaccharide (FOS) increased with ripening steps. Production stages of sun-dried banana products showed no statistically significant differences (p < 0.05) between the two Namwa varieties. Therefore, when one variety is scarce, the other could be used as a replacement in terms of total flavonoids, phenolic acid, dopamine and FOS. In both Namwa varieties, sugar contents decreased after the drying process. Sugar contents of the dried products were 48.47 and 47.21 g/100 g. The drying process caused a reduction in total flavonoid contents and phenolic acid at 63−66% and 64−70%, respectively. No significant differences (p < 0.05) were found for total flavonoid and phenolic contents between the dried banana products made from the two Namwa varieties (178.21 vs. 182.53 mg/kg and 96.06 vs. 102.19 mg/kg, respectively). Products made from Nuanchan varieties (24.52 mg/kg) contained significantly higher dopamine than that from Mali Ong (38.52 mg/kg). The data also suggest that the banana maturity stage for production of the sun dried products was also optimum in terms of high nutraceutical level.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Faculty of Science and Agricultural Technology, Rajamangala University of Technology, Lanna Tak, 41/1 Moo 7 Paholayothin Road, Mai Ngam, Muang, Tak 63000, Thailand
| | - Sudthida Kamchonemenukool
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Shiming Li
- College of Life Sciences, Huanggang Normal University, Huanggang 438000, China
| | - Tipawan Thongsook
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Nutthaporn Majai
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Duangporn Premjet
- Departmant of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Kawee Sujipuli
- Departmant of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| |
Collapse
|
50
|
Osipova VP, Polovinkina MA, Kolumbet AD, Kutlalieva EN, Velikorodov AV, Berberova NT. Antiradical Activity of Polycyclic Compounds with Indole and Isoindole Moieties. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|