1
|
Fakhraei O, Rostamani H, Aliebrahim Nosh Abad A, Valizadeh S, Bakhshayeshi MM, Rafienia M. Enhanced biological properties of polyvinyl alcohol-polycaprolactone/hyaluronic acid-coated electrospun scaffolds for articular cartilage regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-29. [PMID: 40267156 DOI: 10.1080/09205063.2025.2492462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
This study provides a cohesive framework to putting forth PVA-PCL scaffolds coated with hyaluronic acid (HA) hydrogel to mimic the characteristics of articular cartilage, as a cost-effective tissue engineering alternative. PVA and PCL solutions were prepared and electrospun under measured conditions, with parameters adjusted to fabricate aligned and random fiber orientations. Afterward, the scaffold was integrated with the optimal hydrogel, selected for its superior water absorption and hydrophilicity. The thickness of the hydrogel layer satisfied the criteria for supporting chondrocyte function, and the study assesses its effect on cell viability. Scaffolds were characterized using field emission scanning electron microscopy (FE-SEM) for morphology, energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, Fourier transform infrared (FTIR) spectroscopy for chemical composition, and tensile tests for mechanical behavior. The surface wettability was determined by contact angle measurements. Biological properties were assessed through cytotoxicity, protein absorption assays and cell adhesion tests with visualization of cell distribution using DAPI staining, fluorescence microscopy, and FE-SEM. Using a hydrolytic mechanism, biodegradation was assessed using pH variations and weight loss measurements. Accordingly, randomly oriented hydrogel-coated scaffolds yielded the most favorable biological outcomes to produce a tissue-friendly, biologically robust graft that closely mimics the natural cartilage extracellular matrix. The pore size and distribution of these scaffolds were more uniform than those of aligned structures. The findings suggest possibilities for customizing scaffold properties through fiber orientation, polymer blending, and surface coating to optimize cell response and tissue formation. Combining electrospun PVA-PCL with chondrocytes-seeded hydrogels offers a way to improve articular cartilage regeneration.
Collapse
Affiliation(s)
- Omid Fakhraei
- Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
| | - Hosein Rostamani
- Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shaniya Valizadeh
- Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
| | | | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Yadav S, Arya DK, Kanaujiya S, Kumar S, Kushwaha D, Kumar A, Pandey P, Kapoor DD, Kumar A, Gupta RK, Ahmed IZ, Rajinikanth PS. Poly(vinyl alcohol)/Polycaprolactone Nanofiber Enriched with Lichenysin against Multidrug-Resistance Bacterial Infection in Wound Healing: In Vitro Studies and In Vivo Evaluation in Wistar Rats. ACS APPLIED BIO MATERIALS 2025; 8:2847-2866. [PMID: 40074674 DOI: 10.1021/acsabm.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of Bacillus licheniformis, has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats. The LCN-loaded PVA-PCL nanofiber scaffolds were characterized for their physicochemical, antimicrobial, in vitro cell line on L-929, hemocompatibility, flow cytometry, in vivo infectious wound healing, and enzyme-linked immuno sorbent assay (ELISA). Morphological analysis via scanning electron microscopy (SEM) images confirmed smooth and porous nanofibers with diameters in the range 200-300 nm. Fourier transform infrared and X-ray diffraction (XRD) results demonstrated the structural integrity, chemical compatibility, and amorphous nature of developed scaffolds. The scaffolds loaded with LCN demonstrated excellent water retention, moderate biodegradability, and sustained release of LCN for up to 72 h. Mechanical characterization demonstrated a robust tensile strength conducive to wound healing applications. Antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) showed substantial antibacterial and antibiofilm activity. In vitro cell line studies showed enhanced cell adhesion, proliferation, migration, and viability, signifying the cytocompatibility of these scaffolds. In vivo studies demonstrated exceptional infectious wound healing potential in diabetic rats. These findings indicate that LCN-enriched PVA-PCL scaffolds hold significant potential as a therapeutic strategy for the treatment of MDR infectious wounds in diabetic rats through a multifaceted approach.
Collapse
Affiliation(s)
- Swati Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Deepshikha Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Anit Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Deshraj Deepak Kapoor
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Abhishek Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Ravi Kr Gupta
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Iffat Zareen Ahmed
- Department of Bioengineering, Natural Products Laboratory, IIRC 2, Integral University, Lucknow 226026, India
| | - Parauvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
- School of Pharmacy, Taylor's University, Lakeside Campus, Subang Jaya, Kuala Lumpur 47500, Malaysia
| |
Collapse
|
3
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
4
|
Wang X, Huo H, Cao L, Zhong Y, Gong J, Lin Z, Xie X, Bao Z, Zhang P. Curcumin-release antibacterial dressings with antioxidation and anti-inflammatory function for diabetic wound healing and glucose monitoring. J Control Release 2025; 378:153-169. [PMID: 39662680 DOI: 10.1016/j.jconrel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Diabetic wound healing remains a challenge due to high levels of oxidative stress, excessive inflammation, and bacterial infection. Smart dressings loaded with natural active monomers are proving to be effective strategies for enhancing diabetic wound healing. Herein, the bio-composites (PTIGA-Cur and PTIGA-Cur-Ag) with curcumin (Cur) responsive release were reported for promoting angiogenesis and diabetic wound repair, showing excellent anti-inflammatory, antioxidant, and antibacterial properties. The integration of three-dimensional networks and chemical bonds endowed the bio-composites with superior thermodynamic, mechanical, and self-healing properties. Notably, pH-responsive Schiff base as well as ester groups in the matrix enable the Cur to be released in a controlled manner. A biosensor assembled from PTIGA-Cur-Ag demonstrated electronic conductivity based on in-situ synthesis of AgNPs, which enabled sensitive monitoring of blood glucose levels. In addition, the release of AgNPs enhanced the antibacterial and anti-inflammatory properties. Expectedly, the bio-composites exhibited remarkable biocompatibility, effectively promoting the polarization of macrophages to M2 phenotype, and reducing the expression of proinflammatory cytokines. The full-thickness diabetic wound model revealed that PTIGA-Cur and PTIGA-Cur-Ag were able to effectively promote collagen deposition, neovascularization, and granulation tissue regeneration through their anti-inflammatory, antioxidant, and antibacterial properties. This study provides evidence supporting the potential utility of bio-composites with both pro-healing properties and monitoring functions in the management of diabetic wounds.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Haoling Huo
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China
| | - Lin Cao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China
| | - Yanming Zhong
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Zhen Bao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China.
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Park H, Patil TV, Lee J, Kim H, Cho SJ, Lim KT. NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication. J Biol Eng 2025; 19:2. [PMID: 39905514 DOI: 10.1186/s13036-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
The rise of antibiotic resistance has made bacterial infections a persistent global health issue. In particular, extracellular polymeric substances (EPS) secreted by bacteria limit the effectiveness of conventional antibiotics, making biofilm removal challenging. To address this, we created ND@PDA nanoparticles by coating the surface of nanodiamonds (ND) with polydopamine (PDA). These nanoparticles were then integrated into polyvinyl alcohol to fabricate PVA/ND@PDA nanofiber scaffolds, resulting in an innovative platform with enhanced photothermal, antibacterial and antibiofilm properties. Upon exposure to near-infrared (NIR) light, the scaffolds exhibited a significant photothermal activity, oxidative stress and effectively damaging key bacterial components, such as biofilm, bacterial membranes, and proteins. Additionally, the catechol groups in PDA provided strong cell adhesion and high biocompatibility on the nanofiber surface. Our research proposes a platform that not only effectively addresses antibiotic-resistant infections but also contributes to advancements in wound healing therapies by enabling controlled antibacterial action with minimal toxicity.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
6
|
Arya DK, Pandey P, Kumar A, Chidambaram K, Fatease AA, Pandey G, Srivastava S, Rajinikanth PS. Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy. J Liposome Res 2025:1-15. [PMID: 39895032 DOI: 10.1080/08982104.2025.2457453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Personalized treatment strategies have greatly improved the efficacy of anticancer drugs. Nanocarriers, especially liposomes, function as excellent platform for the delivery of both hydrophilic and hydrophobic agents. iRGD is a peptide composed of 9-amino acid denoted as (iRGDP), enhances selective and intratumoral delivery of anticancer drugs. Trastuzumab (TMAB), mainly targets HER2-positive advanced stage breast cancer is an FDA-approved monoclonal antibody. Gefitinib (GEB) is an anticancer drug, effective against metastatic breast cancer (MBC), while Lycorine hydrochloride (LCOH), a naturally derived compound, possess both anti-inflammatory and anticancer properties. This research is mainly emphasizing on the preparation of GEB and LCOH-entrapped TPGS-COOH coated-liposomes, camouflaged with an antibody (TMAB) and cyclic peptide (iRGDP) for targeted delivery in MBC therapy. The developed multifunctional liposomes were studied for extensive in vitro cell line studies on MCF-7 cells. The half-maximum inhibitory concentration (IC-50) values of GEB and LCOH co-loaded single functionalized liposome (SFL) (iRGDP-LiP, and TMAB-LiP) and dual-functionalized liposome (DFL) (iRGDP-TMAB-LiP) on MCF-7 cells were 1.04 ± 0.023 μg/mL, 0.71 ± 0.018 μg/mL, and 0.56 ± 0.028 μg/mL, respectively. Inverted confocal laser scanning microscopy (ICLSM) revealed enhanced cellular internalization in SFL and DFL-treated groups tagged with coumarin-6 and rhodamine-B dye as compared to conventional liposome. The scratch assay revealed a marked reduction in cell migration, while DAPI staining confirmed enhanced nuclear condensation (NC) and nuclear fragmentation (NF) in SFL and DFL-treated groups. Moreover, flow cytometry demonstrated enhanced early and late apoptosis in SFL and DFL groups. These findings indicate that GEB and LCOH co-loaded multifunctional liposome holds promise as a multifaceted therapeutic approach for MBC therapy.
Collapse
Affiliation(s)
- Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anit Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Giriraj Pandey
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- School of Pharmacy, Taylor's University, Lakeside Campus, Subang Jaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Krasian T, Daranarong D, Punyodom W, Manokruang K, Somsunan R, Jantrawut P, Chaiwarit T, Panraksa P, Jantanasakulwong K, Rachtanapun P, Worajittiphon P. Electrospun composite membranes of ethyl cellulose and MXene (Ti 3C 2T x): Biocompatible platforms for enhanced drug delivery and antibacterial wound healing. Int J Biol Macromol 2025; 287:138596. [PMID: 39662568 DOI: 10.1016/j.ijbiomac.2024.138596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ethyl cellulose (EC), a degradable cellulose derivative, served as a primary component in membranes fabricated by electrospinning for in vitro drug delivery applications. An effective strategy to enhance drug release was incorporating high-surface-area nanomaterials into polymeric drug carriers, which facilitated drug attachment to both the polymer matrix and additive surfaces, promoting release. MXene (Ti3C2Tx) demonstrated promising potential in improving tensile mechanical properties, antibacterial activity, and curcumin (Cur) release performance of EC membrane. Compared to Cur-loaded EC/MXene membranes, the toughness of Cur-loaded EC-based carriers significantly increased by 53.58 %, reaching 3.821 kJ/m3. This composite membrane exhibited exceptional antibacterial efficacy, notably reducing Staphylococcus aureus colonies by 52.4 × 107 CFU/mL after 168 h, through the dilution spread plate method. Using MTT assay, the composite membrane demonstrated biocompatibility, as evidenced by >70 % viability of mouse fibroblast L929 cells with observable cell attachment after 168 h. Importantly, the EC/MXene membrane achieved a Cur release amount of 69.82 % compared to 7.11 % from Cur-loaded EC membranes within 168 h, representing a 62.71 % enhancement in Cur release. The EC/MXene composite membrane is a promising drug delivery candidate, particularly for Cur, by utilizing the sustainability of EC as the primary drug carrier component.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
8
|
Li S, Chen H, Dan X, Ju Y, Li T, Liu B, Li Y, Lei L, Fan X. Silk fibroin for cosmetic dermatology. CHEMICAL ENGINEERING JOURNAL 2025; 506:159986. [DOI: 10.1016/j.cej.2025.159986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
9
|
Sakthivel S, Thangavel P, Saravanakumar I, Muthuvijayan V. Fabrication of Thymol-loaded Isabgol/Konjac Glucomannan-based Microporous Scaffolds with Enriched Antioxidant and Antibacterial Properties for Skin Tissue Engineering Applications. Chem Asian J 2024; 19:e202400839. [PMID: 39340792 DOI: 10.1002/asia.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
An antioxidant, antibacterial, and biocompatible biomaterial is essential to repair skin wounds effectively. Here, we have employed two natural biopolymers, isabgol (ISAB) and konjac glucomannan (KGM), to prepare microporous scaffolds by freezing and lyophilization. The scaffolds are loaded with thymol (THY) to impart potent antioxidant and antibacterial activities. The physicochemical properties of the ISAB+KGM+THY scaffold, like porosity (41.8±2.4 %), swelling, and biodegradation, were optimal for tissue regeneration application. Compared to the control, ISAB+KGM+THY scaffolds promote attachment, migration, and proliferation of L929 fibroblasts. The antioxidant activity of the ISAB+KGM+THY scaffold was significantly improved after loading THY. This would protect the tissues from oxidative damage. The antibacterial activity of the ISAB+KGM+THY scaffold was significantly higher than that of the control, which would help prevent bacterial infection. The vascularization ability of the ISAB+KGM scaffold was not altered by incorporating THY in the ISAB+KGM scaffold. Therefore, a strong antioxidant, antibacterial, and biocompatible nature of the ISAB+KGM+THY scaffold could be useful for various biomedical applications.
Collapse
Affiliation(s)
- Shruthi Sakthivel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
10
|
Yang M, Cheng Q, Zhou G, Wei T, Zhong S, Lu L, Yan C, Wang Y, Fang M, Yang M, Ping W. Electrospinning Aligned SF/Magnetic Nanoparticles-Blend Nanofiber Scaffolds for Inducing Skeletal Myoblast Alignment and Differentiation. ACS APPLIED BIO MATERIALS 2024; 7:7710-7718. [PMID: 39446025 DOI: 10.1021/acsabm.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In the realm of skeletal muscle tissue engineering, anisotropic materials that emulate natural tissues show substantial promise. Electrospun scaffolds, mimicking the fibrillar structure of the extracellular matrix, are commonly employed but often fall short in achieving optimal alignment and mechanical strength. Silk fibroin has emerged as a versatile material in tissue engineering, valued for its biocompatibility, mechanical robustness, and biodegradability. However, conventional electrospinning methods of SF result in randomly oriented fibers, limiting their efficacy. In this work, we developed a straightforward method to fabricate directional tissue scaffolds using silk fibroin. By integrating a magnetic field collecting device and incorporating Fe3O4 nanoparticles into the spinning solution, we successfully produced well-aligned silk nanofiber scaffolds. These aligned fibers not only improved scaffold orientation and mechanical properties but also exhibited magnetic responsiveness. The aligned SF scaffolds effectively guided the adhesion, proliferation, and differentiation of mesenchymal stem cells along the fiber direction. Cultured on these scaffolds, myoblast C2C12 cells demonstrated oriented growth, highlighting the potential of aligned SF fibers in advancing skeletal muscle engineering for biomedical applications.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qichao Cheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Guanshan Zhou
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Suting Zhong
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Leihao Lu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Chi Yan
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yecheng Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mingzheng Fang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Weidong Ping
- Department of Plastic Surgery, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou 310013, P. R. China
| |
Collapse
|
11
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
12
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Sasan S, Molavi AM, Moqadam KH, Farrokhi N, Oroojalian F. Enhanced wound healing properties of biodegradable PCL/alginate core-shell nanofibers containing Salvia abrotanoides essential oil and ZnO nanoparticles. Int J Biol Macromol 2024; 279:135152. [PMID: 39214210 DOI: 10.1016/j.ijbiomac.2024.135152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Electrospun nanofibrous membranes, with their unique structural features, can potentially enhance wound healing through controlled delivery of active agents. Here, an innovative porous nanofibrous membrane was developed as a dressing patch with antibacterial and anti-inflammatory functionalities for cutaneous wound healing. Zinc oxide nanoparticles (ZnO NPs) and Salvia abrotanoides essential oil (SAEO) were incorporated into sodium alginate, which served as the shell. Poly(ε-caprolactone) was used as the core of coaxial electrospun wound dressing nanofibers (PCL/SA@ZnO/SAEO). With the addition of ZnO NPs and SAEO, the average diameter of nanofibers was 187 ± 51 nm, with improved tensile strength (4.7 ± 0.4 MPa), elongation at break (32.9 ± 2.1), and elastic modulus (21.4 ± 2.0). Concurrent application of ZnO NPs and SAEO increased antimicrobial activity against Staphylococcus aureus and Escherichia coli and promoted the proliferation, attachment, and viability (>90 %) of L929 cells. The PCL/SA@ZnO/SAEO scaffold accelerated the healing time with total wound healing over 14 days in mouse models carrying full-thickness wounds compared to the nanofibrous scaffold without additives. Histopathological examinations demonstrated better tissue regeneration, i.e., enhanced collagen deposition, improved re-epithelialization, and neovascularization, and increased quantity of hair follicles. Moreover, the chicken chorioallantoic membrane assay confirmed the synergistic angiogenic effects of SAEO and ZnO NPs. Finally, the in vitro and in vivo results proposed the bioactive core-shell nanofibers synthesized as encouraging wound dressing materials for hastening the healing of cutaneous wounds.
Collapse
Affiliation(s)
- Samira Sasan
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd 74877-94149, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| |
Collapse
|
14
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
15
|
Islam MR, Manir MS, Razzak M, Mamun MA, Mortuza MF, Islam MJ, Yang S, Pan H, Alam AKMM, Shubhra QTH. Silk-enriched hydrogels with ROS-scavenging dendrimers for advanced wound care. Int J Biol Macromol 2024; 280:135567. [PMID: 39288850 DOI: 10.1016/j.ijbiomac.2024.135567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study explores the development of novel hydrogel composites for wound care, incorporating silk fibroin and reactive oxygen species (ROS)-scavenging dendrimers into a polyvinyl alcohol (PVA) matrix. Utilizing ionizing gamma radiation, we fabricated pristine PVA, silk-PVA (SPVA) binary, and dendrimer-silk-PVA (DSPVA) ternary hydrogel composites, with their composition confirmed via UV-visible absorption spectroscopy. Fourier-transform infrared (FTIR) and Raman spectroscopy analyses indicated complex interactions between the hydrogel components, enhancing their structural and biocompatible properties. Scanning electron microscopy (SEM) analysis revealed that dendrimer integration in DSPVA hydrogels significantly increased surface porosity, vital for tissue regeneration. The DSPVA hydrogels demonstrated effective ROS scavenging, reducing hydrogen peroxide (H2O2) concentrations by approximately 70 % within 24 h. In vivo wound healing studies in a diabetic mouse model showed enhanced wound closure in the DSPVA group, with a relative wound area reduction to 30 ± 4.3 % on day 10, compared to 56.5 ± 2.7 % in the control group. By the 16th day, the treated group exhibited near-complete wound contraction, markedly outperforming the control group. These findings underscore the potential of DSPVA hydrogels in diabetic wound management, combining silk fibroin's mechanical support, dendrimers' antioxidative properties, and PVA's structural benefits. Thus, DSPVA hydrogels are promising candidates for advanced wound care applications.
Collapse
Affiliation(s)
- M R Islam
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M S Manir
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M Razzak
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M A Mamun
- Materials Science Division, AECD, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M F Mortuza
- Gamma Source Division, IFRB, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M J Islam
- Veterinary Drug Residue Analysis Division, IFRB, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - Shumin Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - A K M M Alam
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh.
| | - Quazi T H Shubhra
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003, Katowice, Poland; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
16
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
17
|
Doostan M, Maleki H, Khoshnevisan K, Baharifar H, Doostan M, Bahrami S. Accelerating healing of infected wounds with G. glabra extract and curcumin Co-loaded electrospun nanofibrous dressing. J Biomater Appl 2024; 39:249-265. [PMID: 38838691 DOI: 10.1177/08853282241252729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This study aimed to construct a nanofibrous wound dressing composed of polyvinyl alcohol (PVA) and chitosan (CS) containing curcumin and Glycyrrhiza glabra root extract to inhibit infection and accelerate wound healing. Loading 10 wt% of G. glabra extract-curcumin (50:50) by electrospinng technique resulted in the formation of nanofibers (NFs) with diameter distribution 303 ± 38 and had a uniform and defect-free morphology. FTIR analysis confirmed the loading of the components without adverse interactions. Also, the results showed extremely high porosity, extraordinary liquid absorption capacity, and complete wettability. In addition, G. glabra extract-curcumin showed significant antioxidant activity and their release profile from NFs was continuous and sustained. Also, the prepared NF could inhibit the growth of both Gram-positive Saureus and Gram-negative E. coli strains. Wound healing evaluation in the infected animal model showed that the NFs caused full wound closure and accelerated skin regeneration. The studies on inhibiting the bacteria growth at the wound site also revealed complete inhibitory effects. Moreover, histopathology studies confirmed the complete regeneration of skin layers, formation of collagen fibers, and angiogenesis. Finally, PVA/CS NFs containing G. glabra extract-curcumin as a multifunctional bioactive wound dressing presented a promising approach for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hadi Baharifar
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sonia Bahrami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
19
|
Abdulhameed EA, Rani KA, AlGhalban FM, Abou Neel EA, Khalifa N, Khalil KA, Omar M, Samsudin AR. Managing Oxidative Stress Using Vitamin C to Improve Biocompatibility of Polycaprolactone for Bone Regeneration In Vitro. ACS OMEGA 2024; 9:31776-31788. [PMID: 39072128 PMCID: PMC11270701 DOI: 10.1021/acsomega.4c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Increased oxidative stress in bone cells is known to negatively alter favorable bone regeneration. This study aimed to develop a porous polycaprolactone (PCL) membrane incorporated with 25 wt % Vitamin C (PCL-Vit C) and compared it to the PCL membrane to control oxidative stress and enhance biomineralization in vitro. Both membranes were characterized using SEM-EDS, FTIR spectroscopy, and surface hydrophilicity. Vitamin C release was quantified colorimetrically. Assessments of the viability and attachment of human fetal osteoblast (hFOB 1.19) cells were carried out using XTT assay, SEM, and confocal microscopy, respectively. ROS generation and wound healing percentage were measured using flow cytometry and ImageJ software, respectively. Mineralization study using Alizarin Red in the presence or absence of osteogenic media was carried out to measure the calcium content. Alkaline phosphatase assay and gene expression of osteogenic markers (alkaline phosphatase (ALP), collagen Type I (Col1), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN)) were analyzed by real-time PCR. SEM images revealed smooth, fine, bead-free fibers in both membranes. The FTIR spectrum of pure vitamin C was replaced with peaks at 3436.05 and 2322.83 cm-1 in the PCL-Vit C membrane. Vitamin C release was detected at 15 min and 1 h. The PCL-Vit C membrane was hydrophilic, generated lower ROS, and showed significantly higher viability than the PCL membrane. Although both PCL and PCL-Vit C membranes showed similar cellular and cytoskeletal morphology, more cell clusters were evident in the PCL-Vit C membrane. Lower ROS level in the PCL-Vit C membrane displayed improved cell functionality as evidenced by enhanced cellular differentiation with more intense alizarin staining and higher calcium content, supported by upregulation of osteogenic markers ALP, Col1, and OPN even in the absence of osteogenic supplements. The presence of Vitamin C in the PCL-Vit C membrane may have mitigated oxidative stress in hFOB 1.19 cells, resulting in enhanced biomineralization facilitating bone regeneration.
Collapse
Affiliation(s)
- Elaf Akram Abdulhameed
- Restorative
& Preventive Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School
of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - K.G. Aghila Rani
- Research
Institute for Medical and Health Sciences RIMHS, University of Sharjah, Sharjah 27272, United Arab
Emirates
| | - Fatima Mousa AlGhalban
- Research
Institute for Medical and Health Sciences RIMHS, University of Sharjah, Sharjah 27272, United Arab
Emirates
| | - Ensanya A. Abou Neel
- Restorative
& Preventive Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- UCL Eastman
Dental Institute, Biomaterials & Tissue Engineering Division, Royal Free Hospital, Rowland Hill Street, London WC1E 6BT, U.K.
| | - Nadia Khalifa
- Restorative
& Preventive Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Marzuki Omar
- School
of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ab Rani Samsudin
- Oral
& Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
20
|
Tuanchai A, Iamphring P, Suttaphakdee P, Boupan M, Mikule J, Pérez Aguilera JP, Worajittiphon P, Liu Y, Ross GM, Kunc S, Mikeš P, Unno M, Ross S. Bilayer Scaffolds of PLLA/PCL/CAB Ternary Blend Films and Curcumin-Incorporated PLGA Electrospun Nanofibers: The Effects of Polymer Compositions and Solvents on Morphology and Molecular Interactions. Polymers (Basel) 2024; 16:1679. [PMID: 38932029 PMCID: PMC11207424 DOI: 10.3390/polym16121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue engineering scaffolds have been dedicated to regenerating damaged tissue by serving as host biomaterials for cell adhesion, growth, differentiation, and proliferation to develop new tissue. In this work, the design and fabrication of a biodegradable bilayer scaffold consisting of a ternary PLLA/PCL/CAB blend film layer and a PLGA/curcumin (CC) electrospun fiber layer were studied and discussed in terms of surface morphology, tensile mechanical properties, and molecular interactions. Three different compositions of PLLA/PCL/CAB-60/15/25 (TBF1), 75/10/15 (TBF2), and 85/5/10 (TBF3)-were fabricated using the solvent casting method. The electrospun fibers of PLGA/CC were fabricated using chloroform (CF) and dimethylformamide (DMF) co-solvents in 50:50 and 60:40 volume ratios. Spherical patterns of varying sizes were observed on the surfaces of all blend films-TBF1 (17-21 µm) > TBF2 (5-9 µm) > TBF3 (1-5 µm)-caused by heterogeneous surfaces inducing bubble nucleation. The TBF1, TBF2, and TBF3 films showed tensile elongation at break values of approximately 170%, 94%, and 43%, respectively. The PLGA/CC electrospun fibers fabricated using 50:50 CF:DMF had diameters ranging from 100 to 400 nm, which were larger than those of the PLGA fibers (50-200 nm). In contrast, the PLGA/CC electrospun fibers fabricated using 60:40 CF:DMF had diameters mostly ranging from 200 to 700 nm, which were larger than those of PLGA fibers (200-500 nm). Molecular interactions via hydrogen bonding were observed between PLGA and CC. The surface morphology of the bilayer scaffold demonstrated adhesion between these two solid surfaces resembling "thread stitches" promoted by hydrophobic interactions, hydrogen bonding, and surface roughness.
Collapse
Affiliation(s)
- Areeya Tuanchai
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Phakanan Iamphring
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Pattaraporn Suttaphakdee
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Medta Boupan
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Jaroslav Mikule
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Juan Pablo Pérez Aguilera
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Gareth Michael Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Stepan Kunc
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| |
Collapse
|
21
|
Ge X, Zhang L, Wei X, Long X, Han Y. Plasma Surface Treatment and Application of Polyvinyl Alcohol/Polylactic Acid Electrospun Fibrous Hemostatic Membrane. Polymers (Basel) 2024; 16:1635. [PMID: 38931986 PMCID: PMC11207798 DOI: 10.3390/polym16121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, an improved PVA/PLA fibrous hemostatic membrane was prepared by electrospinning technology combined with air plasma modification. The plasma treatment was used to modify PLA to enhance the interlayer bonding between the PVA and PLA fibrous membranes first, then modify the PVA to improve the hemostatic capacity. The surfaces of the PLA and PVA were oxidized after air plasma treatment, the fibrous diameter was reduced, and roughness was increased. Plasma treatment enhanced the interfacial bond strength of PLA/PVA composite fibrous membrane, and PLA acted as a good mechanical support. Plasma-treated PVA/PLA composite membranes showed an increasing liquid-enrichment capacity of 350% and shortened the coagulation time to 258 s. The hemostatic model of the liver showed that the hemostatic ability of plasma-treated PVA/PLA composite membranes was enhanced by 79% compared to untreated PVA membranes, with a slight improvement over commercially available collagen. The results showed that the plasma-treated PVA/PLA fibers were able to achieve more effective hemostasis, which provides a new strategy for improving the hemostatic performance of hemostatic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (X.G.); (L.Z.); (X.W.); (X.L.)
| |
Collapse
|
22
|
Kanaujiya S, Arya DK, Pandey P, Singh S, Pandey G, Anjum S, Anjum MM, Ali D, Alarifi S, MR V, Sivakumar S, Srivastava S, Rajinikanth PS. Resveratrol-Ampicillin Dual-Drug Loaded Polyvinylpyrrolidone/Polyvinyl Alcohol Biomimic Electrospun Nanofiber Enriched with Collagen for Efficient Burn Wound Repair. Int J Nanomedicine 2024; 19:5397-5418. [PMID: 38863647 PMCID: PMC11164821 DOI: 10.2147/ijn.s464046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Background The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.
Collapse
Affiliation(s)
- Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Singh
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Giriraj Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People’s Republic of China
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijayakumar MR
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sri Sivakumar
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
23
|
Pan M, Jiang K, Jin Y, Mao Y, Lu W, Jiang W, Chen W. Study on the Structure and Properties of Silk Fibers Obtained from Factory All-Age Artificial Diets. Int J Mol Sci 2024; 25:6129. [PMID: 38892315 PMCID: PMC11172905 DOI: 10.3390/ijms25116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The traditional production mode of the sericulture industry is no longer suitable for the development requirements of modern agriculture; to facilitate the sustainable development of the sericulture industry, factory all-age artificial diet feeding came into being. Understanding the structural characteristics and properties of silk fibers obtained from factory all-age artificial diet feeding is an important prerequisite for application in the fields of textiles, clothing, biomedicine, and others. However, there have been no reports so far. In this paper, by feeding silkworms with factory all-age artificial diets (AD group) and mulberry leaves (ML group), silk fibers were obtained via two different feeding methods. The structure, mechanical properties, hygroscopic properties, and degradation properties were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Structurally, no new functional groups appeared in the AD group. Compared with the ML group, the structure of the two groups was similar, and there was no significant difference in mechanical properties and moisture absorption. The structure of degummed silk fibers is dominated by crystalline regions, but α-chymotrypsin hydrolyzes the amorphous regions of silk proteins, so that after 28 d of degradation, the weight loss of both is very small. This provides further justification for the feasibility of factory all-age artificial diets for silkworms.
Collapse
Affiliation(s)
- Mengyao Pan
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Kexin Jiang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Yuwei Jin
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Ying Mao
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Wangyang Lu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Wenbin Jiang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
24
|
de Souza A, Santo GE, Amaral GO, Sousa KSJ, Parisi JR, Achilles RB, Ribeiro DA, Renno ACM. Electrospun skin dressings for diabetic wound treatment: a systematic review. J Diabetes Metab Disord 2024; 23:49-71. [PMID: 38932903 PMCID: PMC11196489 DOI: 10.1007/s40200-023-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/26/2023] [Indexed: 06/28/2024]
Abstract
Abstract Diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia associated with a lack of insulin production or insulin resistance. In diabetic patients, the capacity for healing is generally decreased, leading to chronic wounds. One of the most common treatments for chronic wounds is skin dressings, which serve as protection from infection, reduce pain levels, and stimulate tissue healing. Furthermore, electrospinning is one of the most effective techniques used for manufacturing skin dressings. Objective The purpose of this study was to perform a systematic review of the literature to examine the effects of electrospun skin dressings from different sources in the process of healing skin wounds using in vivo experiments in diabetic rats. Methods The search was carried out according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the Medical Subject Headings (MeSH) descriptors were defined as "wound dressing," "diabetes," "in vivo," and "electrospun." A total of 14 articles were retrieved from PubMed and Scopus databases. Results The results were based mainly on histological analysis and macroscopic evaluation, demonstrating moderate evidence synthesis for all experimental studies, showing a positive effect of electrospun skin dressings for diabetic wound treatment. Conclusion This review confirms the significant benefits of using electrospun skin dressings for skin repair and regeneration. All the inks used were demonstrated to be suitable for dressing manufacturing. Moreover, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna E. Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Gustavo O. Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Karolyne S. J. Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Julia R. Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glicerio Avenue, Santos, SP 11045002 Brazil
| | - Rodrigo B. Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana C. M. Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
25
|
Katiyar S, Singh D, Tripathi AD, Chaurasia AK, Singh RK, Srivastava PK, Mishra A. In vitro and in vivo assessment of curcumin-quercetin loaded multi-layered 3D-nanofibroporous matrix prepared by solution blow-spinning for full-thickness burn wound healing. Int J Biol Macromol 2024; 270:132269. [PMID: 38744363 DOI: 10.1016/j.ijbiomac.2024.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 μm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
26
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
27
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
28
|
Khasteband M, Sharifi Y, Akbari A. Chrysin loaded polycaprolactone-chitosan electrospun nanofibers as potential antimicrobial wound dressing. Int J Biol Macromol 2024; 263:130250. [PMID: 38368985 DOI: 10.1016/j.ijbiomac.2024.130250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
In this study, various concentrations of chrysin (chry) were loaded into polycaprolactone-chitosan (PCL-CTS) nanofibers to develop a potential wound dressing materials using electrospinning method. The structural composition and the morphology of the produced PCL-CTS5, PCL-CTS10 and PCL-CTS15 were analyzed by FE-SEM and FTIR, respectively. By increasing the amount of chry, the average diameter of the nanofibres was also increased to 191 ± 65 nm, 203 ± 72 nm, and 313 ± 69 nm for PCL-CTS5, PCL-CTS10, and PCL-CTS15, respectively. Moreover, the physicochemical characteristics and biological properties of synthesized nanofibers such as tensile testing, in-vitro drug release, porosity, decomposition rate, water absorption rate, water vapor permeability rate, cell viability, antioxidant and antibacterial activity were evaluated. By using Korsmeyer-Peppas and Higuchi kinetic models, the chry release mechanism in all nanofibers was studied in PBS solution, which suggested a Fick's diffusion. In-vitro antioxidant experiments by DPPH assay indicated 24, 43, 61 and 78 % free radical scavenging activity for PCL-CTS, PCL-CTS5, PCL-CTS10 and PCL-CTS15. In-vitro antibacterial examination showed that chry-loaded nanofibers had high antibacterial activity in which were comparable with the standard reagents. In-vitro cytotoxicity results obtained by MTT assay indicated a desired cytocompatibility towards fibroblast cells.
Collapse
Affiliation(s)
- Motahare Khasteband
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Sabarees G, Velmurugan V, Gouthaman S, Solomon VR, Kandhasamy S. Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study. Pharmaceutics 2024; 16:462. [PMID: 38675123 PMCID: PMC11054860 DOI: 10.3390/pharmaceutics16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional motifs (QFM) embedded in silk fibroin (SF)-spun fibers (SF-QFM) for preclinical skin repair therapies. The verification of the novel QFM structural arrangement was characterized using ATR-FTIR, NMR, and ESI-MS spectroscopy analysis. Extensive characterization of the spun SF-QFM fibrous mats revealed their excellent antibacterial and antioxidant properties, biocompatibility, biodegradability, and remarkable mechanical and controlled drug release capabilities. SF-QFM mats were studied for drug release in pH 7.4 PBS over 72 h. The QFM-controlled release is mainly driven by diffusion and follows Fickian's law. Significant QFM release (40%) occurred within the first 6 h, with a total release of 79% at the end of 72 h, which is considered beneficial in effectively reducing bacterial load and helping expedite the healing process. Interestingly, the SF-QFM-spun mat demonstrated significantly improved NIH 3T3 cell proliferation and migration compared to the pure SF mat, as evidenced by the complete migration of NIH 3T3 cells within 24 h in the scratch assay. Furthermore, the in vivo outcome of SF-QFM was demonstrated by the regeneration of fresh fibroblasts and the realignment of collagen fibers deposition at 9 days post-operation in a preclinical rat full-thickness skin defect model. Our findings collectively indicate that the SF-QFM electrospun nanofiber scaffolds hold significant capability as a cost-effective and efficient bioactive spun architecture for use in wound healing applications.
Collapse
Affiliation(s)
- Govindaraj Sabarees
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Vadivel Velmurugan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Siddan Gouthaman
- Organic Material Laboratory, Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India;
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Gr. Hyderabad, Sangareddy 502294, India;
| | - Subramani Kandhasamy
- School of Mechanical and Electrical Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China
| |
Collapse
|
30
|
Nanda A, Pandey P, Rajinikanth PS, Singh N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation - A review. Int J Biol Macromol 2024; 260:129416. [PMID: 38224810 DOI: 10.1016/j.ijbiomac.2024.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes. Moreover, the electrospinning process allows for integrating various additives, such as antioxidants, antimicrobial agents, and flavoring compounds, into the zein nanofibers, enhancing their functionalities for food preservation. In this comprehensive review, the various electrospinning techniques employed for crafting zein-based nanofibers, and we delve into their enhanced properties. Furthermore, the review illuminates the potential applications of zein nanofibers in active and intelligent packaging materials by incorporating diverse constituents. Altogether, this review highlights the considerable prospects of zein-based nanocomposites in the realm of food packaging, offering sustainable and innovative solutions for food industry.
Collapse
Affiliation(s)
- Alka Nanda
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, Kuala Lumpur, Malaysia.
| | - Neetu Singh
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
31
|
Wang HY, Zhang Y, Zhang M, Zhang YQ. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol 2024; 259:129099. [PMID: 38176506 DOI: 10.1016/j.ijbiomac.2023.129099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Silk fibroin (SF) from the silkworm Bombyx mori is a fibrous protein identified as a widely suitable biomaterial due to its biocompatibility, tunable degradation, and mechanical strength. Various modifications of SF protein can give SF fibers new properties and functions, broadening their applications in textile and biomedical industries. A diverse array of functional modifications on various forms of SF has been reported. In order to provide researchers with a more systematic understanding of the types of functional modifications of SF protein, as well as the corresponding applications, we comprehensively review the different types of functional modifications, including transgenic modification, modifications with chemical groups or biologically active substance, cross-linking and copolymerization without chemical reactions, their specific modification methods and applications. Furthermore, recent applications of SF in various medical biomaterials are briefly discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yun Zhang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Meng Zhang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Yang X, Li W, Liu Y, Cao N, He Y, Sun Q, Zhou S. Charged Fibrous Dressing to Promote Diabetic Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2302183. [PMID: 37830231 DOI: 10.1002/adhm.202302183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Diabetic chronic wounds cause a significant amount of pain to patients because of their low cure rates and high recurrence rates. Traditional approaches to treating diabetic chronic wounds often involve the delivery of drugs or cytokines that regulate the microenvironment and eliminate bacterial infection in the wound area, but they are passive in controlling cell behaviors and may lead to drug resistance. Emerging drug-free wound treatments are important for convenient, effective, and safe treatment strategies. However, the current approaches cannot fully promote tissue regeneration or prevent bacterial infections. Here, the efficacy of a negatively charged fiber dressing in promoting diabetic chronic wound healing is investigated. The negatively charged fiber dressing can generate reactive oxygen species to inhibit bacterial reproduction with the assistance of ultrasound during the inflammatory phase. Furthermore, the dressing provides an electrostatic field that regulates cellular behavior during the inflammatory and proliferative phases. In particular, the dressing can promote fibroblast migration and induce macrophage polarization and neovascularization without any additional drugs. It is demonstrated that this strategy enables the healing of diabetic chronic wounds in a mouse model, achieving effective wound closure over a 12-day treatment cycle and providing a drug-free therapeutic strategy for diabetic chronic wound care.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Youmei Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ni Cao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiangqiang Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
33
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
34
|
Kazemi MH, Sajadimajd S, Gorgin Karaji Z. In vitro investigation of wound healing performance of PVA/chitosan/silk electrospun mat loaded with deferoxamine and ciprofloxacin. Int J Biol Macromol 2023; 253:126602. [PMID: 37652316 DOI: 10.1016/j.ijbiomac.2023.126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Electrospinning is an advanced method used for developing wound dressings. Biopolymer-based electrospun mats have been extensively studied in tissue engineering due to their similarity to the extracellular matrix. In this study, electrospun poly(vinyl alcohol)/chitosan/silk fibroin (PChS) mat demonstrated improved mechanical properties, including tensile strength, strain at break, and Young's modulus, compared to electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/chitosan mats. Similarly, the swelling capability, thermal stability, and hydrophilicity were higher in the PChS mat compared to the other ones. Hence, the PChS mat was selected for further investigation. Ciprofloxacin (CIP) was added to the PChS electrospinning solution at 5 % and 10 % concentration, and deferoxamine (DFO) was immobilized on CIP-loaded mats at 1 and 2 g/L concentration using a polydopamine linker. Evaluating mats with the dimensions of 1 × 1 cm2 showed that those containing 5 % and 10 % CIP exhibited bactericidal activity against Escherichia coli and Staphylococcus aureus. Moreover, Human dermal fibroblast cells were compatible with the fabricated mats, as confirmed by the MTT assay. Finally, drug-loaded mats had a positive effect on wound healing in a scratch test, and mats with 10 % CIP and 2 g/L DFO showed the highest effect on promoting wound healing, indicating potential for use as a wound dressing.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Mechanical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah 67141-15111, Iran
| | - Zahra Gorgin Karaji
- Department of Mechanical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran.
| |
Collapse
|
35
|
Ghafouri Azar M, Wiesnerova L, Dvorakova J, Chocholata P, Moztarzadeh O, Dejmek J, Babuska V. Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin. Gels 2023; 9:900. [PMID: 37998990 PMCID: PMC10670940 DOI: 10.3390/gels9110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.
Collapse
Affiliation(s)
- Mina Ghafouri Azar
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Omid Moztarzadeh
- Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 80, 304 60 Pilsen, Czech Republic;
| | - Jiri Dejmek
- Department of Biophysics, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic;
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| |
Collapse
|
36
|
Anjum S, Arya DK, Saeed M, Ali D, Athar MS, Yulin W, Alarifi S, Wu X, Rajinikanth P, Ao Q. Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration. Front Bioeng Biotechnol 2023; 11:1302594. [PMID: 38026845 PMCID: PMC10665524 DOI: 10.3389/fbioe.2023.1302594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Electrospun composite nanofiber scaffolds are well known for their bone and tissue regeneration applications. This research is focused on the development of PVP and PVA nanofiber composite scaffolds enriched with hydroxyapatite (HA) nanoparticles and alendronate (ALN) using the electrospinning technique. The developed nanofiber scaffolds were investigated for their physicochemical as well as bone regeneration potential. The results obtained from particle size, zeta potential, SEM and EDX analysis of HA nanoparticles confirmed their successful fabrication. Further, SEM analysis verified nanofiber's diameters within 200-250 nm, while EDX analysis confirmed the successful incorporation of HA and ALN into the scaffolds. XRD and TGA analysis revealed the amorphous and thermally stable nature of the nanofiber composite scaffolds. Contact angle, FTIR analysis, Swelling and biodegradability studies revealed the hydrophilicity, chemical compatibility, suitable water uptake capacity and increased in-vitro degradation making it appropriate for tissue regeneration. The addition of HA into nanofiber scaffolds enhanced the physiochemical properties. Additionally, hemolysis cell viability, cell adhesion and proliferation by SEM as well as confocal microscopy and live/dead assay results demonstrated the non-toxic and biocompatibility behavior of nanofiber scaffolds. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) assays demonstrated osteoblast promotion and osteoclast inhibition, respectively. These findings suggest that developed HA and ALN-loaded PVP/PVA-ALN-HA nanofiber composite scaffolds hold significant promise for bone regeneration applications.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mohammad Saeed
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Wang Yulin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Oryan A, Alemzadeh E, Mohammadi S. Healing potential of curcumin nanomicelles in cutaneous burn wounds: an in vitro and in vivo study. Connect Tissue Res 2023; 64:555-568. [PMID: 37458277 DOI: 10.1080/03008207.2023.2235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE/AIM OF THE STUDY Curcumin is the active substance of turmeric and has been shown to enhance the healing potential of burn wounds. However, its high hydrophobicity and rapid degradability are great challenges for its clinical applications. The development of new curcumin formulations may provide a potential solution to these issues. METHODS AND RESULTS In this study, we investigated the use of curcumin nanomicelles for wound dressing and evaluated their effects on fibroblast migration and proliferation in vitro. We found that the application of curcumin nanomicelles to the wounds significantly improved wound contraction and increased the expression of transforming growth factor-1 and basic fibroblast growth factor at day 14 of the healing process. Furthermore, curcumin nanomicelles reduced the expression of interleukin-1 at days 7 and 14 post-wounding. Histopathological analysis revealed that the curcumin nanomicelles-treated burn wounds exhibited more organized granulation tissue, improved angiogenesis, and enhanced re-epithelialization. Additionally, the curcumin treatment led to increased hydroxyproline content and enhanced TGF-β1 expression level in the wounds. The in vitro studies also demonstrated that the curcumin nanomicelles induced proliferation and migration of fibroblasts. CONCLUSION Overall, our findings suggest that curcumin nanomicelles can be a promising candidate for the treatment of burn wounds.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Soroush Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
38
|
Razavi MS, Ebrahimnejad P, Javar HA, Weppelmann TA, Akbari J, Amoli FA, Atyabi F, Dinarvand R. Development of dual-functional core-shell electrospun mats with controlled release of anti-inflammatory and anti-bacterial agents for the treatment of corneal alkali burn injuries. BIOMATERIALS ADVANCES 2023; 154:213648. [PMID: 37812983 DOI: 10.1016/j.bioadv.2023.213648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas A Weppelmann
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Asadi Amoli
- Ophthalmic Pathology Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, Leicester, UK.
| |
Collapse
|
39
|
Anjum S, Li T, Arya DK, Ali D, Alarifi S, Yulin W, Hengtong Z, Rajinikanth PS, Ao Q. Biomimetic electrospun nanofibrous scaffold for tissue engineering: preparation, optimization by design of experiments (DOE), in-vitro and in-vivo characterization. Front Bioeng Biotechnol 2023; 11:1288539. [PMID: 38026878 PMCID: PMC10646156 DOI: 10.3389/fbioe.2023.1288539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Electrospinning is a versatile method for fabrication of précised nanofibrous materials for various biomedical application including tissue engineering and drug delivery. This research is aimed to fabricate the PVP/PVA nanofiber scaffold by novel electrospinning technique and to investigate the impact of process parameters (flow rate, voltage and distance) and polymer concentration/solvent combinations influence on properties of electrospun nanofibers. The in-vitro and in-vivo degradation studies were performed to evaluate the potential of electrospun PVP/PVA as a tissue engineering scaffold. The solvents used for electrospinning of PVP/PVA nanofibers were ethanol and 90% acetic acid, optimized with central composite design via Design Expert software. NF-2 and NF-35 were selected as optimised nanofiber formulation in acetic acid and ethanol, and their characterization showed diameter of 150-400 nm, tensile strength of 18.3 and 13.1 MPa, respectively. XRD data revealed the amorphous nature, and exhibited hydrophilicity (contact angles: 67.89° and 58.31° for NF-2 and NF-35). Swelling and in-vitro degradability studies displayed extended water retention as well as delayed degradation. FTIR analysis confirmed solvent-independent interactions. Additionally, hemolysis and in-vitro cytotoxicity studies revealed the non-toxic nature of fabricated scaffolds on RBCs and L929 fibroblast cells. Subcutaneous rat implantation assessed tissue response, month-long biodegradation, and biocompatibility through histological analysis of surrounding tissue. Due to its excellent biocompatibility, this porous PVP/PVA nanofiber has great potential for biomedical applications.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, National Engineering Research Centre for Biomaterials, Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wang Yulin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, National Engineering Research Centre for Biomaterials, Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Hengtong
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, National Engineering Research Centre for Biomaterials, Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan, China
| | - P. S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, National Engineering Research Centre for Biomaterials, Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
41
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
42
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
43
|
Dodda JM, Azar MG, Bělský P, Šlouf M, Gajdošová V, Kasi PB, Anerillas LO, Kovářík T. Bioresorbable films of polycaprolactone blended with poly(lactic acid) or poly(lactic-co-glycolic acid). Int J Biol Macromol 2023; 248:126654. [PMID: 37659482 DOI: 10.1016/j.ijbiomac.2023.126654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Recent complications on the use of polypropylene meshes for hernia repair has led to the development of meshes or films, which were based on resorbable polymers such as polycaprolactone (PCL), polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA). These materials are able to create suitable bioactive environment for the growth and development of cells. In this research, we mainly focused on the relations among structure, mechanical performance and biocompatiblity of PCL/PLA and PCL/PLGA and blends prepared by solution casting. The films were characterized regarding the chemical structure, morphology, physicochemical properties, cytotoxicity, biocompatibility and cell growth. All the films showed high tensile strength ranging from 9.5 to 11.8 MPa. SAXS showed that the lamellar stack structure typical for PCL was present even in the blend films while the morphological parameters of the stacks varied slightly with the content of PLGA or PLA in the blends. WAXS indicated preferential orientation of crystallites (and thus, also the lamellar stacks) in the blend films. In vitro studies revealed that PCL/PLGA films displayed better cell adhesion, spreading and proliferation than PCL/PLA and PCL films. Further the effect of blending on the degradation was investigated, to understand the significant variable within the process that could provide further control of cell adhesion. The results showed that the investigated blend films are promising materials for biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic.
| | - Mina Ghafouri Azar
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic
| | - Petr Bělský
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Veronika Gajdošová
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Phanindra Babu Kasi
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Plzeň, Czech Republic
| | | | - Tomáš Kovářík
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic
| |
Collapse
|
44
|
Roopesh M, Davis D, Jyothi MS, Vandana M, Thippeswamy BS, Hegde G, Vinod TP, Keri RS. Wound healing efficacy of curcumin-loaded sandalwood bark-derived carbon nanosphere/PVA nanofiber matrix. RSC Adv 2023; 13:24320-24330. [PMID: 37583666 PMCID: PMC10424055 DOI: 10.1039/d3ra04181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The present investigation deals with the evaluation of the wound healing efficacy of sandalwood bark-derived carbon nanospheres loaded with curcumin-embedded polyvinyl alcohol (PVA) nanofiber membranes (NF). Carbon nanospheres (CNS) were prepared by pyrolyzing sandal wood bark powder at 750 °C. The morphology was confirmed by field emission scanning electron micrographs and a rich amount of carbon was confirmed by the energy dispersive X-ray technique. Curcumin, an active wound healing drug was loaded onto synthesized CNS and confirmed by ATR-IR studies. Drug-loaded CNS were anchored in a PVA matrix via electrospun nanofiber fabrication. The fabricated nanofiber membranes were characterized and evaluated for wound healing efficiency. The cytotoxicity assay proved the non-toxic nature of the prepared PVA/CNS-curcumin-loaded NF. Membranes with active CNS/drug showed better antimicrobial activity against S. aureus and E. coli, which was estimated using the zone of inhibition (ZOI) test. The in vitro scratch wound healing assay of prepared PVA/CNS-curcumin nanofibers was efficient enough and showed 92 to 98% wound closure, which was greater than the control (without drug) nanofiber membranes. The PVA nanofiber matrix with interconnected structure and carbon nanostructures together enhanced the wound healing efficacy of the considered wound healing membrane, which is a promising novel approach for future wound healing patches.
Collapse
Affiliation(s)
- M Roopesh
- Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura, Jakkasandra Post, Kanakapura Road, Ramanagara District Bangalore Karnataka India - 562112 +918027577199
| | - Deljo Davis
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - M S Jyothi
- Department of Chemistry, AMC Engineering College Bannerughatta Main Road Bengaluru-560083 India
| | - M Vandana
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - B S Thippeswamy
- Department of Biomedical Science, College of Pharmacy, Shaqra University Al-Dawadmi Campus Kingdom of Saudi Arabia
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India +91-7019202135
| | - T P Vinod
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - Rangappa S Keri
- Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura, Jakkasandra Post, Kanakapura Road, Ramanagara District Bangalore Karnataka India - 562112 +918027577199
| |
Collapse
|
45
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
46
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Tran HQ, Shahriar SS, Yan Z, Xie J. Recent Advances in Functional Wound Dressings. Adv Wound Care (New Rochelle) 2023; 12:399-427. [PMID: 36301918 PMCID: PMC10125407 DOI: 10.1089/wound.2022.0059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/24/2022] [Indexed: 12/15/2022] Open
Abstract
Significance: Nowadays, the wound dressing is no longer limited to its primary wound protection ability. Hydrogel, sponge-like material, three dimensional-printed mesh, and nanofiber-based dressings with incorporation of functional components, such as nanomaterials, growth factors, enzymes, antimicrobial agents, and electronics, are able to not only prevent/treat infection but also accelerate the wound healing and monitor the wound-healing status. Recent Advances: The advances in nanotechnologies and materials science have paved the way to incorporate various functional components into the dressings, which can facilitate wound healing and monitor different biological parameters in the wound area. In this review, we mainly focus on the discussion of recently developed functional wound dressings. Critical Issues: Understanding the structure and composition of wound dressings is important to correlate their functions with the outcome of wound management. Future Directions: "All-in-one" dressings that integrate multiple functions (e.g., monitoring, antimicrobial, pain relief, immune modulation, and regeneration) could be effective for wound repair and regeneration.
Collapse
Affiliation(s)
- Huy Quang Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - S.M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
48
|
Ataei M, Gumpricht E, Kesharwani P, Jamialahmadi T, Sahebkar A. Recent advances in curcumin-based nanoformulations in diabetes. J Drug Target 2023:1-44. [PMID: 37354074 DOI: 10.1080/1061186x.2023.2229961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Diabetes is predicted to affect 700 million people by the year 2045. Despite the potential benefits for diabetics, curcumin's low bioavailability significantly reduces its utility. However, newer formulation methods of decreasing particle size, such as through nanotechnological advances, may improve curcumin's bioavailability and cell-absorption properties. Various curcumin nanoformulations such as nanofibers, nanoparticles-like nanostructured lipid carriers (NLCs), Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS), and nanohydrogels have been evaluated. These studies reported increased bioavailability of nanoformulated curcumin compared to free curcumin. Here, we provide a detailed review of the antidiabetic effects of nanocurcumin compounds and subsequent effects on diabetic complications. Overall, various nanocurcumin formulations highly increase curcumin water-solubility and bioavailability, and these safe formulations can positively affect managing some diabetes-related manifestations and complications. Moreover, nanocurcumin efficacy in various diabetes complications is discussed. These complications included inflammation, neuropathy, depression, anxiety, keratopathy, cataract, cardiomyopathy, myocardial infarction (MI), nephropathy, erectile dysfunction, and diabetic wound. Moreover, several nanocurcumin formulations improved wound healing in the diabetic. However, few studies have been performed in humans, and most results have been reported from cellular and animal studies. Therefore, more human studies are needed to prove the antidiabetic effects of nanocurcumin.
Collapse
Affiliation(s)
- Mahshid Ataei
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Toxicology & Pharmacology, School of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Pandey G, Pandey P, Arya DK, Kanaujiya S, Deepak Kapoor D, Gupta RK, Ranjan S, Chidambaram K, Manickam B, Rajinikanth P. Multilayered nanofibrous scaffold of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing. Int J Pharm 2023; 638:122918. [PMID: 37030638 DOI: 10.1016/j.ijpharm.2023.122918] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Electrospun nanofibers scaffolds show promising potential in wound healing applications. This work aims to fabricate nanofibrous wound dressing as a novel approach for a topical drug delivery system. Herein, the electrospinning technique is used to design and fabricate bioabsorbable nanofibrous scaffolds of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with thrombin (TMB) as hemostatic agent and vancomycin (VCM) as anti-bacterial agent for a multifunctional platform to control excessive blood loss, inhibit bacterial growth and enhance wound healing. SEM, FTIR, XRD, in vitro drug release, antimicrobial studies, biofilm, cell viability assay, and in vivo study in a rat model were used to assess nanofiber's structural, mechanical, and biological aspects. SEM images confirms the diameter of nanofibers which falls within the range from 150 to 300 nm for all the batches. Excellent swelling index data makes it suitable to absorb wound exudates. In-vitro drug release data shows sustained release behavior of nanofiber. Nanofibers scaffolds showed biomimetic behavior and excellent biocompatibility. Moreover, scaffolds exhibited excellent antimicrobial and biofilm activity against Staphylococcus aureus. Nanofibrous scaffolds showed less bleeding time, rapid blood coagulation, and excellent wound closure in a rat model. ELISA study demonstrated the decreasing level of inflammatory markers, such as TNF-α, IL1β, and IL-6, making formulation promising for hemostatic wound healing applications. Finally, the study concludes that nanofibrous scaffolds loaded with TMB and VCM have promising potential as a dressing material for hemostatic wound healing applications.
Collapse
|
50
|
Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15041144. [PMID: 37111630 PMCID: PMC10142830 DOI: 10.3390/pharmaceutics15041144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic β cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21938, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|