1
|
Fragal EH, Poirier A, Bleses D, Faria Guimarães Silva Y, Baccile N, Rharbi Y. Microbial biosurfactant hydrogels with tunable rheology for precision 3D printing of soft scaffolds. SOFT MATTER 2025. [PMID: 40365691 DOI: 10.1039/d5sm00248f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Bio-based surfactants, derived from microbial fermentation, are appealing biocompatible amphiphiles traditionally employed in depollution, pest control, personal care, cosmetics, and medicine, although their potential in biomedical scaffolds remains largely unexplored due to the limited adaptability of their rheological properties for extrusion-based 3D printing. This work demonstrates that microbial biosurfactants can function as low-molecular-weight gelators with facile, tunable rheological functionalities, enabling their integration into additive-free 3D printing processes. A hydrogel, formed by complexing a single-glucose oleyl lipid surfactant with calcium ions, exhibits shear-thinning behavior, viscoelasticity, yield stress, thixotropic response, and elongational properties, all essential for extrusion-based printing. A comprehensive rheological study reveals that the hydrogel's shear-thinning behavior allows controlled extrusion using conventional methods, while its yield stress ensures structural integrity by resisting capillary and gravitational stresses during deposition. Furthermore, the hydrogel demonstrates rapid stress recovery, enabling it to rebuild yield stress post-extrusion and prevent spreading. It's controlled fragility under stretching and shear ensures that structures can be printed without significant deformation, maintaining high fidelity throughout the process. Beyond its printability, the hydrogel exhibits stimuli-responsive functionality, particularly pH sensitivity, unlocking opportunities for 4D printing applications, where material properties evolve dynamically post-fabrication. This work positions biosurfactant-based hydrogels as a sustainable, high-performance material platform, paving the way for the use of this class of molecules for soft material engineering.
Collapse
Affiliation(s)
| | - Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Didier Bleses
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France.
| | | | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Yahya Rharbi
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France.
| |
Collapse
|
2
|
Cao Y, Su J, Xiao Y, Ren J, Algadi H, Yeszhanova E, Sartayeva A, Huang J, Guo Z, Tynybekov B, Min Y. Functional biomass/biological macromolecular phase change composites and their applications in different scenarios: A review. Int J Biol Macromol 2025; 306:141377. [PMID: 39988159 DOI: 10.1016/j.ijbiomac.2025.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
With the growth of energy demand and the depletion of fossil fuels, the need for new energy storage materials is urgent. Phase change materials (PCMs) play a key role in thermal energy storage and can effectively balance energy supply and demand. There is increasing interest in biological macromolecules derived from nature, which have good biocompatibility, non-toxicity, easy biodegradability and tunable mechanical properties. The integration of PCMs with biological macromolecules is highly promising as it combines the advantages of both to meet the requirements of eco-friendly energy solutions. This paper reviews the recent research on this topic, covering biomass source selection, the functionalization process, various phase change composites based on biological macromolecules and biomass, as well as biomass-derived PCMs. Furthermore, the paper explores their performance across various application domains, including degradable materials, solar energy storage and utilization, building energy conservation, multifunctional wearable devices, electromagnetic interference shielding, flame retardant materials, and thermally stimulated drug delivery. Finally, the paper outlines prospective avenues for future research.
Collapse
Affiliation(s)
- Yan Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingtao Su
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongshuang Xiao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Juanna Ren
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK; College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hassan Algadi
- Department of electrical engineering, college of engineering, Najran university, Najran 11001, Saudi Arabia
| | - Elmira Yeszhanova
- Faculty of biology and biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Akmaral Sartayeva
- The Department of Biology, Institute of natural science, Kazakh National Women's Teacher Training University, Almaty 050040, Kazakhstan
| | - Jintao Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Bekzat Tynybekov
- Faculty of biology and biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
| | - Yonggang Min
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Wu J, Sang L, Kang R, Li M, Cheng C, Liu A, Ji J, Jian A. A Novel 3D Bioprinting Crosslinking Method Based on Solenoid Valve Control. Macromol Biosci 2025:e2500039. [PMID: 40271813 DOI: 10.1002/mabi.202500039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The crosslinking method of bioinks is essential for scaffold formation in 3D bioprinting. Currently, the crosslinking process of bioinks presents challenges in control, resulting in diminished stability and reliability of the gel and the presence of residual crosslinking agents that may adversely affect cell viability within the gel. This study utilizes sodium alginate as the printing ink and calcium chloride as the crosslinking agent, employing a dual-mode 3D bioprinter for alternating printing. A crosslinking agent is injected through a solenoid valve after using an extrusion-based printing method to create multilayer cell scaffolds. By controlling the printing intervals and opening times of the valve, precise localized crosslinking is achieved, and multiple alternating prints can be performed according to the required thickness of the scaffold. The results indicate that this solenoid valve crosslinking technology significantly enhances the stability and biological properties of the scaffolds, including excellent hydrophilicity, decreased swelling rate, slow degradation rate, and improved mechanical properties. Additionally, due to the reduced residual crosslinking agent, the cell proliferation rate has significantly increased. This technology advances 3D bioprinting toward a more mature stage and provides significant implications for the development of dual-mode printing.
Collapse
Affiliation(s)
- Jiaxin Wu
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Luxiao Sang
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rihui Kang
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Meng Li
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Caiwang Cheng
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Anguo Liu
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianlong Ji
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aoqun Jian
- Shanxi Key Laboratory of Artificial Intelligence& Micro Nano Sensors, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
4
|
Abu Elella MH, Kamel AM, López-Maldonado EA, Uzondu SW, Abdallah HM. A review of recent progress in alginate-based nanocomposite materials for tissue engineering applications. Int J Biol Macromol 2025; 297:139840. [PMID: 39814276 DOI: 10.1016/j.ijbiomac.2025.139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications. This review thoroughly overviews various nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanomaterials, MXenes, and hydroxyapatite, that modify alginate-based nanocomposites. It covers multiple preparation techniques, including layer-by-layer assembly, blending, 3D printing, and in situ synthesis. These techniques apply to tissue engineering applications, including bone tissue engineering, cardiac tissue engineering, neural tissue engineering, wound healing, and skin regeneration. Additionally, it highlights current advancements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | | | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Caiado Decarli M, Ferreira HP, Sobreiro‐Almeida R, Teixeira FC, Correia TR, Babilotte J, Olijve J, Custódio CA, Gonçalves IC, Mota C, Mano JF, Moroni L. Embedding Bioprinting of Low Viscous, Photopolymerizable Blood-Based Bioinks in a Crystal Self-Healing Transparent Supporting Bath. SMALL METHODS 2025; 9:e2400857. [PMID: 38970553 PMCID: PMC11740956 DOI: 10.1002/smtd.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Biomaterials & Biomedical TechnologyUniversity Medical Center Groningen/University of GroningenA. Deusinglaan 1GroningenAV 9713The Netherlands
| | - Helena P. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde/INEB – Instituto de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen 208Porto4200‐180Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPorto4050‐313Portugal
| | - Rita Sobreiro‐Almeida
- CICECO – Department of ChemistryAveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Filipa C. Teixeira
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Tiago R. Correia
- CICECO – Department of ChemistryAveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Joanna Babilotte
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Jos Olijve
- Rousselot BiomedicalExpertise CenterMeulestedekaai 81Ghent9000Belgium
| | - Catarina A. Custódio
- CICECO – Department of ChemistryAveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Metatissue, PCICreative Science Park Aveiro RegionVia do ConhecimentoÍlhavo3830‐352Portugal
| | - Inês C. Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde/INEB – Instituto de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen 208Porto4200‐180Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPorto4050‐313Portugal
| | - Carlos Mota
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - João F. Mano
- CICECO – Department of ChemistryAveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
6
|
Contreras DC, Cisternas MA, Congreve RC, Varaprasad K, Chandrasekaran K, Sadiku ER. Antimicrobial hydrogel scaffolds from Barba de Viejo microfibers, alginate and Ag o nanoparticles via green synthesis. Int J Biol Macromol 2025; 284:138048. [PMID: 39608553 DOI: 10.1016/j.ijbiomac.2024.138048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Natural fibers are being employed in the development of the next generation of biomaterials, due to their reduced environmental impact and the ease of their functionalization with natural polymers. In this study, Barba del Viejo fibers were treated with NaOH and bonded with alginate through ionic gelation by using CaCℓ2, which facilitates ionic interactions between alginate and Ca2+ions. Additionally, antimicrobial Barba del Viejo/alginate/silver nanoparticles(BVA/Ago) scaffolds were developed from the NaOH-treated BV-microfibers, silver salt and sodium alginate, with mint leaves extract as a nucleating agent. The functional and crystalline structure of microfibers and the hydrogels developed were analyzed using the FTIR and XRD. SEM explained that the diameter of the NaOH-treated microfibers was ⁓1.32 μm. The morphological images of the hydrogels, confirm the functionalization of alginate with microfibers and the formation of Ago nanoparticles within the hydrogels network. The swelling ratio of the hydrogels increased with alginate functionalization on BV-microfibers, improving NaOH treatment, but decreased the degradation rate. UV-spectra showed absorption peaks in the wavelength range of between 432 and 442 nm, confirming the surface plasmon resonance effect of the Ago nanoparticles within the scaffolds. TEM analysis confirms that the Ago nanoparticles in hydrogels were spherical in shape, with sizes ranging from ⁓2 and 10 nm. The zeta potential analysis indicates that the Ago nanoparticles possess negative charges, providing a stable surface that helps to prevent aggregation and, therefore, demonstrating a homogeneous distribution throughout all the BVA/Ago scaffolds prepared. The antimicrobial studies reveal that the BVA/Ago scaffolds exhibit significant antibacterial activity against E.coli and S.aureus bacteria. Further investigations are affirmed to study the potential applications of these scaffolds in infection-control wound dressing.
Collapse
Affiliation(s)
- Daniel Cid Contreras
- Facultad de Ingeniería, Arquitectura y Diseño, Bionanomaterials Lab, Universidad San Sebastian, Concepción, Chile
| | - Matías Araneda Cisternas
- Facultad de Ingeniería, Arquitectura y Diseño, Bionanomaterials Lab, Universidad San Sebastian, Concepción, Chile
| | - Rodrigo Cáceres Congreve
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Diseño, Bionanomaterials Lab, Universidad San Sebastian, Concepción, Chile.
| | - Karthikeyan Chandrasekaran
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Emmanuel Rotimi Sadiku
- Institute for NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
7
|
Wang Y, Shen Z, Wang H, Song Z, Yu D, Li G, Liu X, Liu W. Progress in Research on Metal Ion Crosslinking Alginate-Based Gels. Gels 2024; 11:16. [PMID: 39851986 PMCID: PMC11765348 DOI: 10.3390/gels11010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Alginate is an important natural biopolymer and metal ion-induced gelation is one of its most significant functional properties. Alginate-based hydrogels crosslinked with metal ions are commonly utilized in the food, biomedical, tissue engineering, and environment fields. The process of metal ion-induced alginate gelation has been the subject of thorough research over the last few decades. This review aims to summarize the mechanisms of alginate hydrogels induced by different cations (primarily including Ca2+, Ba2+, Cu2+, Sr2+, Fe2+/Fe3+, and Al3+). Metal ion-induced alginate gelation shows different preferences for α-L-guluronic acid (G), β-D-mannuronic acid (M), and GM blocks. Some metal ions can also selectively bind to the carboxyl groups of guluronic acid. The properties and applications of these alginate-based hydrogels are also discussed. The primary objective of this review is to provide useful information for exploring the practical applications of alginate.
Collapse
Affiliation(s)
| | | | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, China; (Y.W.); (Z.S.); (Z.S.); (D.Y.); (G.L.); (X.L.); (W.L.)
| | | | | | | | | | | |
Collapse
|
8
|
Wu Y, Jiang Z, Wang Y, Jiang X, Hou J, Wei B. TEMPO oxidized cellulose nanofiber-reinforced sodium alginate encapsulated poly(acrylamide) microcapsules and its releasing behaviours for enhancing oil recovery. Int J Biol Macromol 2024; 281:135707. [PMID: 39389854 DOI: 10.1016/j.ijbiomac.2024.135707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Poly(acrylamide) (PAM) has excellent thickening ability as a conventional flooding agent. However, PAM confronts the problems of high injection pressure and high shear loss in the process of oil extraction, which have limited its application in this field. In this work, 2, 2, 6, 6-Tetramethylpiperidinooxy oxidized cellulose nanofibers (TOCNFs) enhanced sodium alginate (SA) shell was used to encapsulate PAM to form microcapsule. The composition, morphology, structure and the releasing behaviours of TOCNFs enhanced microcapsules was tested. Mechanical stirring was used to simulate the state of polymer subjected to shear during stratigraphic transport. The release performance of the microcapsules was characterized by measuring the change of viscosity with time. The ratio of the shell material with the best performance was explored, and the enhancement mechanism of the SA shell by TOCNFs was discussed. The experiments showed that the release time of PAM from the microcapsules was significantly prolonged with the addition of TOCNFs. The longest release time was observed when the ratio of SA and TOCNFs was 5: 1, with the release time of the microcapsules from the original 8 h to 16 h. The enhanced shear resistance of the microcapsules was attributed to the semi-interpenetrating network structure of SA and TOCNFs via Ca2+ cross-linking as well as hydrogen bonding. The prepared microcapsules have promising applications in enhancing oil recovery.
Collapse
Affiliation(s)
- Yaowei Wu
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zuming Jiang
- Exploration and Development Research Institute of Shengli Oilfield, SINOPEC, Dongying, China.
| | - Yuhao Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jian Hou
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Bei Wei
- National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
9
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
10
|
Sever M, Škrinjar D, Maver T, Belak M, Zupanič F, Anžel I, Zidarič T. The Impact of Temperature and the Duration of Freezing on a Hydrogel Used for a 3D-Bioprinted In Vitro Skin Model. Biomedicines 2024; 12:2028. [PMID: 39335542 PMCID: PMC11428255 DOI: 10.3390/biomedicines12092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels' printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research.
Collapse
Affiliation(s)
- Maja Sever
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Dominik Škrinjar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Monika Belak
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Franc Zupanič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Ivan Anžel
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| |
Collapse
|
11
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
12
|
Ghorbani F, Kim M, Ghalandari B, Zhang M, Varma SN, Schöbel L, Liu C, Boccaccini AR. Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomater 2024; 181:188-201. [PMID: 38642788 DOI: 10.1016/j.actbio.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with β-Lactoglobulin (β-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the β-LG layer on the surface of network-like scaffolds. The β-LG-coated scaffolds exhibited improved swelling capacity as a function of the β-LG concentration. Compared to ADA-GEL/PDA scaffolds, the β-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of β-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of β-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. β-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of β-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with β-Lactoglobulin (β-LG), represents a novel approach to potentially enhance subchondral bone repair. β-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom; Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Minjoo Kim
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingjing Zhang
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Lisa Schöbel
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| |
Collapse
|
13
|
Wang X, Wang M, Xu Y, Yin J, Hu J. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Int J Biol Macromol 2024; 271:131980. [PMID: 38821790 DOI: 10.1016/j.ijbiomac.2024.131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024]
Abstract
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meiling Wang
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Yiqiang Xu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Zhang MQ, Huang LH, Gong MC, Hong WM, Xie R, Wang J, Zhou LL, Chen ZH. Dual targeting total saponins of Pulsatilla of natural polymer crosslinked gel beads with multiple therapeutic effects for ulcerative colitis. Eur J Pharm Biopharm 2024; 199:114309. [PMID: 38704102 DOI: 10.1016/j.ejpb.2024.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.
Collapse
Affiliation(s)
- Min-Quan Zhang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Hui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Min-Cheng Gong
- Jiangxi Pharmaceutical School, Nanchang 330001, PR China
| | - Wei-Man Hong
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Rong Xie
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Liang Zhou
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Zhen-Hua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
15
|
Patel DK, Jung E, Won SY, Priya S, Han SS. Nanocellulose-assisted mechanically tough hydrogel platforms for sustained drug delivery. Int J Biol Macromol 2024; 271:132374. [PMID: 38754669 DOI: 10.1016/j.ijbiomac.2024.132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The controlled delivery of the desired bioactive molecules is required to achieve the maximum therapeutic effects with minimum side effects. Biopolymer-based hydrogels are ideal platforms for delivering the desired molecules owing to their superior biocompatibility, biodegradability, and low-immune response. However, the prolonged delivery of the drugs through biopolymer-based hydrogels is restricted due to their weak mechanical stability. We developed mechanically tough and biocompatible hydrogels to address these limitations using carboxymethyl chitosan, sodium alginate, and nanocellulose for sustained drug delivery. The hydrogels were cross-linked through calcium ions to enhance their mechanical strength. Nanocellulose-added hydrogels exhibited improved mechanical strength (Young's modulus; 23.36 → 30.7 kPa, Toughness; 1.39 → 5.65 MJm-3) than pure hydrogels. The composite hydrogels demonstrated increased recovery potential (66.9 → 84.5 %) due to the rapid reformation of damaged polymeric networks. The hydrogels were stable in an aqueous medium and demonstrated reduced swelling potential. The hydrogels have no adverse effects on embryonic murine fibroblast (3 T3), showing their biocompatibility. No bacterial growth was observed in hydrogels-treated groups, indicating their antibacterial characteristics. The sustained drug released was observed from nanocellulose-assisted hydrogel scaffolds compared to the pure polymer hydrogel scaffold. Thus, hydrogels have potential and could be used as a sustained drug carrier.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Du G, Zhang J, Shuai Q, Li L, Zhang Q, Shi R. Development of alginate-collagen interpenetrating network for osteoarthritic cartilage by in situ softening. Int J Biol Macromol 2024; 266:131259. [PMID: 38574937 DOI: 10.1016/j.ijbiomac.2024.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
This study presents an alginate-collagen interpenetrating network (IPN) matrix of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation. The resulting matrix closely mimics the physiological and pathological stiffness range of the chondrocyte pericellular matrix (PCM). Chondrocytes were cultured within three-dimensional (3D) alginate-collagen IPN matrices with varying stiffness, namely Firm, Medium, and Soft. Alginate lyase was introduced to study the effects of the changes in stiffness of the Firm on chondrocyte response by in situ softening. The developed alginate-collagen IPN matrix displayed good cell-biocompatibility. Compared with stiffer tissue culture plastic (TCP), chondrocytes grown within Firm displayed a stabilized differentiated phenotype characterized by higher expression levels of aggrecan, collagen II, and SOX-9. Moreover, the developed alginate-collagen IPN matrix exhibited a gradually increased percentage of propidium iodide (PI)-positive dead cells with decreasing stiffness. Softer matrices directed cells towards higher proliferation rates and spherical morphologies while stimulating chondrocyte cluster formation. Furthermore, reducing Firm stiffness by in situ softening decreased aggrecan expression, contributing to matrix degradation similar to that seen in osteoarthritis (OA). Hence, the 3D alginate-collagen IPN constructs hold significant potential for in vitro replicating PCM stiffness changes observed in OA cartilage.
Collapse
Affiliation(s)
- Genlai Du
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China.
| | - Jiaqi Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Qizhi Shuai
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Li Li
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Ruyi Shi
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China.
| |
Collapse
|
17
|
Chkirida S, El Mernissi N, Zari N, Qaiss AEK, Bouhfid R. In-situ magnetic alginate coated chitosan core@shell beads with excellent performance in simulated and real wastewater treatment: Behavior, mechanisms, and new perspectives. Int J Biol Macromol 2024; 260:129389. [PMID: 38232882 DOI: 10.1016/j.ijbiomac.2024.129389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Herein, a new hybrid magnetic core@shell biocomposite was prepared based on an alginate-bentonite core and a chitosan shell layer (mAB@Cs) where magnetic Fe3O4 NPs (50.7 nm) were in-situ generated on the surface via a simple non-thermal co-precipitation approach. The biocomposite has a high ability to magnetically separate and remove organic (ciprofloxacin (CPX)) and seven toxic inorganic (Cu2+, Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Hg2+) contaminants from simulated wastewater. Experimental results showed a CPX monolayer chemisorption with a Langmuir maximum adsorption capacity of 264.7 mg/g, maintained effectiveness up to the fifth cycle, and high removal rates of heavy metals ranging from 74.89 % to 99.86 % corresponding to adsorption capacities ranging from 12 to 20 mg/g. For a more accurate evaluation, the biocomposite was tested on a real urban wastewater sample (RWW) and it has manifested a noteworthy efficiency in removing a mixture of inorganic pollutants in terms of potassium K+ and orthophosphate phosphorous P-PO43-, and organic matter in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) with 46 %, 90 %, 84 %, and 64 % removal efficiencies, respectively. On top of this, a high inactivation rate of E. coli of the order of 96 % was recorded, making the prepared magnetic biocomposite adept for the simultaneous removal of emergent wastewater pollutants, from organic, inorganic, to pathogen microorganisms.
Collapse
Affiliation(s)
- Soulaima Chkirida
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratory of Organic and heterocyclic chemistry, Mohammed V University of Rabat, Faculty of Sciences, Rabat, Morocco
| | - Najib El Mernissi
- Biotechnologie Verte, Foundation Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed Jazzouli, Madinat El Irfane 10100, Rabat, Morocco
| | - Nadia Zari
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
18
|
Chowdhury SR, Mondal G, Ratnayake P, Basu B. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties. ACS Biomater Sci Eng 2024; 10:1040-1061. [PMID: 38294204 DOI: 10.1021/acsbiomaterials.3c01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The compositional formulations and the optimization of process parameters to fabricate hydrogel scaffolds with urological tissue-mimicking biophysical properties are not yet extensively explored, including a comprehensive assessment of a spectrum of properties, such as mechanical strength, viscoelasticity, antimicrobial property, and cytocompatibility. While addressing this aspect, the present work provides mechanistic insights into process science, to produce shape-fidelity compliant alginate-based biomaterial ink blended with gelatin and synthetic nanocellulose. The composition-dependent pseudoplasticity, viscoelasticity, thixotropy, and gel stability over a longer duration in physiological context have been rationalized in terms of intermolecular hydrogen bonding interactions among the biomaterial ink constituents. By varying the hybrid hydrogel ink composition within a narrow compositional window, the resulting hydrogel closely mimics the natural urological tissue-like properties, including tensile stretchability, compressive strength, and biophysical properties. Based on the printability assessment using a critical analysis of gel strength, we have established the buildability of the acellular hydrogel ink and have been successful in fabricating shape-fidelity compliant urological patches or hollow cylindrical grafts using 3D extrusion printing. Importantly, the new hydrogel formulations with good hydrophilicity, support fibroblast cell proliferation and inhibit the growth of Gram-negative E. coli bacteria. These attributes were rationalized in terms of nanocellulose-induced physicochemical changes on the scaffold surface. Taken together, the present study uncovers the process-science-based understanding of the 3D extrudability of the newly formulated alginate-gelatin-nanocellulose-based hydrogels with urological tissue-specific biophysical, cytocompatibility, and antibacterial properties.
Collapse
Affiliation(s)
- Sulob Roy Chowdhury
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Garga Mondal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
20
|
Rovelli R, Cecchini B, Zavagna L, Azimi B, Ricci C, Esin S, Milazzo M, Batoni G, Danti S. Emerging Multiscale Biofabrication Approaches for Bacteriotherapy. Molecules 2024; 29:533. [PMID: 38276612 PMCID: PMC10821506 DOI: 10.3390/molecules29020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Bacteriotherapy is emerging as a strategic and effective approach to treat infections by providing putatively harmless bacteria (i.e., probiotics) as antagonists to pathogens. Proper delivery of probiotics or their metabolites (i.e., post-biotics) can facilitate their availing of biomaterial encapsulation via innovative manufacturing technologies. This review paper aims to provide the most recent biomaterial-assisted strategies proposed to treat infections or dysbiosis using bacteriotherapy. We revised the encapsulation processes across multiscale biomaterial approaches, which could be ideal for targeting different tissues and suit diverse therapeutic opportunities. Hydrogels, and specifically polysaccharides, are the focus of this review, as they have been reported to better sustain the vitality of the live cells incorporated. Specifically, the approaches used for fabricating hydrogel-based devices with increasing dimensionality (D)-namely, 0D (i.e., particles), 1D (i.e., fibers), 2D (i.e., fiber meshes), and 3D (i.e., scaffolds)-endowed with probiotics, were detailed by describing their advantages and challenges, along with a future overlook in the field. Electrospinning, electrospray, and 3D bioprinting were investigated as new biofabrication methods for probiotic encapsulation within multidimensional matrices. Finally, examples of biomaterial-based systems for cell and possibly post-biotic release were reported.
Collapse
Affiliation(s)
- Roberta Rovelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Beatrice Cecchini
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Lorenzo Zavagna
- PEGASO Doctoral School of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| |
Collapse
|
21
|
Lee SY, Phuc HD, Um SH, Mongrain R, Yoon JK, Bhang SH. Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases. J Tissue Eng 2024; 15:20417314241282476. [PMID: 39345255 PMCID: PMC11437565 DOI: 10.1177/20417314241282476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Huynh Dai Phuc
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montréal, QC, Canada
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|
23
|
Agrawal A, Hussain CM. 3D-Printed Hydrogel for Diverse Applications: A Review. Gels 2023; 9:960. [PMID: 38131946 PMCID: PMC10743314 DOI: 10.3390/gels9120960] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels have emerged as a versatile and promising class of materials in the field of 3D printing, offering unique properties suitable for various applications. This review delves into the intersection of hydrogels and 3D printing, exploring current research, technological advancements, and future directions. It starts with an overview of hydrogel basics, including composition and properties, and details various hydrogel materials used in 3D printing. The review explores diverse 3D printing methods for hydrogels, discussing their advantages and limitations. It emphasizes the integration of 3D-printed hydrogels in biomedical engineering, showcasing its role in tissue engineering, regenerative medicine, and drug delivery. Beyond healthcare, it also examines their applications in the food, cosmetics, and electronics industries. Challenges like resolution limitations and scalability are addressed. The review predicts future trends in material development, printing techniques, and novel applications.
Collapse
Affiliation(s)
- Arpana Agrawal
- Department of Physics, Shri Neelkantheshwar Government Post-Graduate College, Khandwa 450001, India;
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
24
|
Bâldea I, Lung I, Opriş O, Stegarescu A, Kacso I, Soran ML. Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations. Gels 2023; 9:901. [PMID: 37998991 PMCID: PMC10671504 DOI: 10.3390/gels9110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Our study aimed to investigate the biological effects of a common-plantain (Plantago major L.) extract, encapsulated in alginate, on dermal human fibroblast cultures in vitro, in view of its potential use as a wound healing adjuvant therapy. Common-plantain extracts were obtained by infusion and ultrasound extraction, and their total polyphenolic content and antioxidant capacity were determined by spectrophotometry. The best extract, which was obtained by infusion, was further encapsulated in sodium alginate in two different formulations. Fourier Transform Infrared Spectroscopy (FTIR) was used to demonstrate the existing interactions in the obtained common-plantain extract in the alginate formulations. The encapsulation efficiency was evaluated based on the total polyphenol content. These alginate gel formulations were further used in vitro to determine their biocompatibility and antioxidant and anti-inflammatory effects by spectrophotometry and ELISA, as well as their ability to stimulate fibroblast migration (scratch test assay) at different time points. In addition, the collagen 1 and 3 levels were determined by Western blot analysis. The data showed that the microencapsulated plantain extract formulations induced an antioxidant, anti-inflammatory effect, enhanced collagen production and increased wound closure in the first 8 h of their application. These results are encouraging for the use of this alginate plantain extract formulation as an adjuvant for skin wound healing.
Collapse
Affiliation(s)
- Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania;
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.L.); (O.O.); (A.S.); (I.K.)
| |
Collapse
|
25
|
Sanaei K, Zamanian A, Mashayekhan S, Ramezani T. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. IRANIAN BIOMEDICAL JOURNAL 2023; 27:280-93. [PMID: 37873644 PMCID: PMC10707813 DOI: 10.61186/ibj.27.5.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 12/17/2023]
Abstract
Background In the present study, a novel bioink was suggested based on the oxidized alginate (OAlg), gelatin (GL), and silk fibroin (SF) hydrogels. Methods The composition of the bioink was optimized by the rheological and printability measurements, and the extrusion-based 3D bioprinting process was performed by applying the optimum OAlg-based bioink. Results The results demonstrated that the viscosity of bioink was continuously decreased by increasing the SF/GL ratio, and the bioink displayed a maximum achievable printability (92 ± 2%) at 2% (w/v) of SF and 4% (w/v) of GL. Moreover, the cellular behavior of the scaffolds investigated by MTT assay and live/dead staining confirmed the biocompatibility of the prepared bioink. Conclusion The bioprinted OAlg-GL-SF scaffold could have the potential for using in skin tissue engineering applications, which needs further exploration.
Collapse
Affiliation(s)
- Khadijeh Sanaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Tayebe Ramezani
- Faculty of biological sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
26
|
Almajidi YQ, Abdullaev SS, Alani BG, Saleh EAM, Ahmad I, Ramadan MF, Al-Hasnawi SS, Romero-Parra RM. Chitosan-gelatin hydrogel incorporating polyvinyl alcohol and MnFe double-layered hydroxide nanocomposites with biological activity. Int J Biol Macromol 2023; 246:125566. [PMID: 37392927 DOI: 10.1016/j.ijbiomac.2023.125566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
In this research, a novel nanocomposite scaffold was developed based on a natural chitosan-gelatin (CS-Ge) hydrogel by incorporating synthetic polyvinyl alcohol (PVA) and MnFe layered double hydroxides (LDHs). The CS-Ge/PVP/MnFe LDH nanocomposite hydrogels was characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive X-Ray (EDX), vibrating-sample magnetometer (VSM), and Thermal gravimetric analysis (TGA). The biological tests conducted showed cell viability of the healthy cell line exceeding 95 % after 48 and 72 h. Additionally, the nanocomposite demonstrated high antibacterial activity against P. aeruginosa bacteria biofilm, as confirmed through Anti-biofilm assays. Furthermore, mechanical tests revealed that the storage modulus was greater than the loss modulus (G'/G" > 1), confirming the appropriate elastic state of the nanocomposite.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Baghdad College of Medical Sciences, Department of Pharmacy (Pharmaceutics), Baghdad, Iraq
| | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Science and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan.
| | - Baraa G Alani
- College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | |
Collapse
|
27
|
Lee S, Choi G, Yang YJ, Joo KI, Cha HJ. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Carbohydr Polym 2023; 313:120895. [PMID: 37182936 DOI: 10.1016/j.carbpol.2023.120895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kye Il Joo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
28
|
Hafezi M, Khorasani SN, Khalili S, Neisiany RE. Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay. Int J Biol Macromol 2023; 242:124962. [PMID: 37207752 DOI: 10.1016/j.ijbiomac.2023.124962] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Today, tissue engineering strategies need the improvement of advanced hydrogels with biological and mechanical properties similar to natural cartilage for joint regeneration. In this study, an interpenetrating network (IPN) hydrogel composed of gelatin methacrylate (GelMA)/alginate (Algin)/nano-clay (NC) with self-healing ability was developed with particular consideration to balancing of the mechanical properties and biocompatibility of bioink material. Subsequently, the properties of the synthesized nanocomposite IPN, including the chemical structure, rheological behavior, physical properties (i.e. porosity and swelling), mechanical properties, biocompatibility, and self-healing performance were evaluated to investigate the potential application of the developed hydrogel for cartilage tissue engineering (CTE). The synthesized hydrogels showed highly porous structures with dissimilar pore sizes. The results revealed that the NC incorporation improved the properties of GelMA/Algin IPN, such as porosity, and mechanical strength (reached 170 ± 3.5 kPa), while the NC incorporation decreased the degradation (63.8 %) along with retaining biocompatibility. Therefore, the developed hydrogel showed a promising potential for the treatment of tissue defects in cartilage.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Chemical Engineering Group, Pardis College, Isfahan University of Technology, Isfahan 8415683111, Iran; Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| |
Collapse
|
29
|
Munoz-Perez E, Perez-Valle A, Igartua M, Santos-Vizcaino E, Hernandez RM. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. BIOMATERIALS ADVANCES 2023; 149:213414. [PMID: 37031611 DOI: 10.1016/j.bioadv.2023.213414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
The formulation of hydrogels that meet the necessary flow characteristics for their extrusion-based 3D printing while providing good printability, resolution, accuracy and stability, requires long development processes. This work presents the technological development of a hydrogel-based ink of Laponite and alginate and evaluates its printing capacity. As a novelty, this article reports a standardizable protocol to quantitatively define the best printing parameters for the development of novel inks, providing new printability evaluation parameters such as the Printing Accuracy Escalation Index. As a result, this research develops a printable Laponite-Alginate hydrogel that presents printability characteristics. This ink is employed for the reproducible manufacture of 3D printed scaffolds with versatile and complex straight or curved printing patterns for a better adaptation to different final applications. Obtained constructs prove to be stable over time thanks to the optimization of a curing process. In addition, the study of the swelling and degradation behavior of the Laponite and alginate 3D printed scaffolds in different culture media allows the prediction of their behavior in future in vitro or in vivo developments. Finally, this study demonstrates the absence of cytotoxicity of the printed formulations, hence, setting the stage for their use in the field of biomedicine.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Arantza Perez-Valle
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Yan X, Wang C, Ma Y, Wang Y, Song F, Zhong J, Wu X. Development of air-assisted atomization device for the delivery of cells in viscous biological ink prepared with sodium alginate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:044101. [PMID: 38081259 DOI: 10.1063/5.0102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/19/2023] [Indexed: 12/18/2023]
Abstract
Skin wounds, especially large-area skin trauma, would bring great pain and even fatal risk to patients. In recent years, local autologous cell transplantation has shown great potential for wound healing and re-epithelialization. However, when the cell suspension prepared with normal saline is delivered to the wound, due to its low viscosity, it is easy to form big drops in the deposition and lose them from the wound bed, resulting in cell loss and uneven coverage. Here, we developed a novel air-assisted atomization device (AAAD). Under proper atomization parameters, 1% (w/v) sodium alginate (SA) solution carrier could be sprayed uniformly. Compared with normal saline, the run-off of the SA on the surface of porcine skin was greatly reduced. In theory, the spray height of AAAD could be set to achieve the adjustment of a large spray area of 1-12 cm2. In the measurement of droplet velocity and HaCaT cell viability, the spray height of AAAD would affect the droplet settling velocity and then the cell delivery survival rate (CSR). Compared with the spray height of 50 mm, the CSR of 100 mm was significantly higher and could reach 91.09% ± 1.82% (92.82% ± 2.15% in control). For bio-ink prepared with 1% (w/v) SA, the viability remained the same during the 72-h incubation. Overall, the novel AAAD uniformly atomized bio-ink with high viscosity and maintained the viability and proliferation rate during the delivery of living cells. Therefore, AAAD has great potential in cell transplantation therapy, especially for large-area or irregular skin wounds.
Collapse
Affiliation(s)
- Xintao Yan
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Xiaodong Wu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| |
Collapse
|
31
|
Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int J Biol Macromol 2023; 232:123283. [PMID: 36657541 DOI: 10.1016/j.ijbiomac.2023.123283] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.
Collapse
|
32
|
Moghaddam FD, Heidari G, Zare EN, Djatoubai E, Paiva-Santos AC, Bertani FR, Wu A. Carbohydrate polymer-based nanocomposites for breast cancer treatment. Carbohydr Polym 2023; 304:120510. [PMID: 36641174 DOI: 10.1016/j.carbpol.2022.120510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Breast cancer is known as the most common invasive malignancy in women with the highest mortality rate worldwide. This concerning disease may be presented in situ (relatively easier treatment) or be invasive, especially invasive ductal carcinoma which is highly worrisome nowadays. Among several strategies used in breast cancer treatment, nanotechnology-based targeted therapy is currently being investigated, as it depicts advanced technological features able of preventing drugs' side effects on normal cells while effectively acting on tumor cells. In this context, carbohydrate polymer-based nanocomposites have gained particular interest among the biomedical community for breast cancer therapy applications due to their advantage features, including abundance in nature, biocompatibility, straightforward fabrication methods, and good physicochemical properties. In this review, the physicochemical properties and biological activities of carbohydrate polymers and their derivate nanocomposites were discussed. Then, various methods for the fabrication of carbohydrate polymer-based nanocomposites as well as their application in breast cancer therapy and future perspectives were discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
| | | | - Essossimna Djatoubai
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MPFE), Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, PR China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
33
|
Self-Healing Hydrogels Fabricated by Introducing Antibacterial Long-Chain Alkyl Quaternary Ammonium Salt into Marine-Derived Polysaccharides for Wound Healing. Polymers (Basel) 2023; 15:polym15061467. [PMID: 36987247 PMCID: PMC10051109 DOI: 10.3390/polym15061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The development of hydrogels as wound dressings has gained considerable attention due to their promising ability to promote wound healing. However, in many cases of clinical relevance, repeated bacterial infection, which might obstruct wound healing, usually occurs due to the lack of antibacterial properties of these hydrogels. In this study, we fabricated a new class of self-healing hydrogel with enhanced antibacterial properties based on dodecyl quaternary ammonium salt (Q12)-modified carboxymethyl chitosan (Q12-CMC), aldehyde group- modified sodium alginate (ASA), Fe3+ via Schiff bases and coordination bonds (QAF hydrogels). The dynamic Schiff bases and coordination interactions conferred excellent self-healing abilities to the hydrogels, while the incorporation of dodecyl quaternary ammonium salt gave the hydrogels superior antibacterial properties. Additionally, the hydrogels displayed ideal hemocompatibility and cytocompatibility, crucial for wound healing. Our full-thickness skin wound studies demonstrated that QAF hydrogels could result in rapid wound healing with reduced inflammatory response, increased collagen disposition and improved vascularization. We anticipate that the proposed hydrogels, possessing both antibacterial and self-healing properties, will emerge as a highly desirable material for skin wound repair.
Collapse
|
34
|
Song Y, Zhang Y, Qu Q, Zhang X, Lu T, Xu J, Ma W, Zhu M, Huang C, Xiong R. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226:14-36. [PMID: 36436602 DOI: 10.1016/j.ijbiomac.2022.11.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.
Collapse
Affiliation(s)
- Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
35
|
Nandhini SN, Sisubalan N, Vijayan A, Karthikeyan C, Gnanaraj M, Gideon DAM, Jebastin T, Varaprasad K, Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023; 9:e13128. [PMID: 36747553 PMCID: PMC9898667 DOI: 10.1016/j.heliyon.2023.e13128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly. In the green bioprocess, plant, algal, fungal and cyanobacterial extract solutions have been utilized as nucleation/capping agents to develop effective nanomaterials for advanced medical applications. Several metal salts, such as silver, zinc, titanium and other inorganic salts, were utilized to fabricate innovative nanoparticles for healthcare applications. Irrespective of the type of wound, infection in the wound area is a widespread problem. Micro-organisms, the prime reason for wound complications, are gradually gaining resistance against the commonly used antimicrobial drugs. This necessitates the need to generate nanoparticles with efficient antimicrobial potential to keep the pathogenic microbes under control. These nanoparticles can be topically applied as an ointment and also be used by incorporating them into hydrogels, sponges or electrospun nanofibers. The main aim of this review is to highlight the recent advances in the Ag, ZnO and TiO2 nanoparticles with possible wound healing applications, coupled with the bactericidal ability of a green synthesis process.
Collapse
Affiliation(s)
- Shankar Nisha Nandhini
- PG and Research Department of Botany, St. Joseph's College (Autonomous), Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India,Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea,Corresponding author. Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India.;
| | - Arumugam Vijayan
- Department of Microbiology, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli, 621105, TN, India
| | | | - Muniraj Gnanaraj
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Daniel Andrew M. Gideon
- Department of Biochemistry, St. Joseph's University, Langford Road, Bengaluru, 560027, Karnataka, India
| | - Thomas Jebastin
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Deseno, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile,Corresponding author. Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile.;
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria, 1083, South Africa
| |
Collapse
|
36
|
Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023; 15:polym15020355. [PMID: 36679236 PMCID: PMC9861663 DOI: 10.3390/polym15020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
37
|
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydr Polym 2022; 300:120267. [DOI: 10.1016/j.carbpol.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
38
|
Wang L, Shen M, Hou Q, Wu Z, Xu J, Wang L. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway. Int J Biol Macromol 2022; 222:1175-1191. [PMID: 36181886 DOI: 10.1016/j.ijbiomac.2022.09.236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Mingkui Shen
- School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Jing Xu
- Southern University of Science and Technology Hospital, 6019 Liuxian Avenue, Shenzhen 518055, China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China.
| |
Collapse
|