1
|
Tandukar S, Sthapit N, Thakali O, Baral R, Tiwari A, Shakya J, Tuladhar R, Joshi DR, Sharma B, Shrestha BR, Sherchan SP. Long-term longitudinal monitoring of SARS CoV-2 in urban rivers and sewers of Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175138. [PMID: 39089378 DOI: 10.1016/j.scitotenv.2024.175138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
In regions without adequate centralized wastewater treatment plants, sample collection from rivers and sewers can be an alternative sampling strategy for wastewater surveillance. This study aimed to assess the feasibility of alternative sampling strategies by testing samples collected from rivers (n = 246) and sewers (n = 244) in the Kathmandu Valley between March 2021 and February 2022. All samples were concentrated using the skimmed-milk flocculation method and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was quantified using the nucleocapsid (N) and envelope (E) genes qPCR assays. Of the total, 75 % (371/490) of the samples tested positive using at least one qPCR assay, with concentrations ranging from 3.0 to 8.3 log10 gene copies/L. No significant correlation between concentrations of SARS-CoV-2 from both sewers and river with the number of confirmed coronavirus disease 2019 (COVID-19) cases in the Kathmandu valley was observed (p > 0.05). Despite the high concentration of SARS-CoV-2 in rivers and sewers, we hypothesize this finding to be a result of inaccurate number of clinical cases possibly due to inadequate clinical testing. This longitudinal study further supports the statement to consider sampling strategies from sewers and rivers for WBS in Nepal and other low and middle-income countries.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Rakshya Baral
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, United States of America
| | - Ananda Tiwari
- Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Jivan Shakya
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Samendra P Sherchan
- Organization for Public Health and Environment Management, Lalitpur, Nepal; Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, United States of America; Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal; Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, United States of America.
| |
Collapse
|
2
|
Bustin SA. RT-qPCR Testing and Performance Metrics in the COVID-19 Era. Int J Mol Sci 2024; 25:9326. [PMID: 39273275 PMCID: PMC11394961 DOI: 10.3390/ijms25179326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The COVID-19 pandemic highlighted the crucial role of diagnostic testing in managing infectious diseases, particularly through the use of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) tests. RT-qPCR has been pivotal in detecting and quantifying viral RNA, enabling the identification and management of SARS-CoV-2 infections. However, despite its widespread use, there remains a notable gap in understanding fundamental diagnostic metrics such as sensitivity and specificity among many scientists and healthcare practitioners. This gap is not merely academic; it has profound implications for interpreting test results, making public health decisions, and affecting patient outcomes. This review aims to clarify the distinctions between laboratory- and field-based metrics in the context of RT-qPCR testing for SARS-CoV-2 and summarise the global efforts that led to the development and optimisation of these tests during the pandemic. It is intended to enhance the understanding of these fundamental concepts among scientists and healthcare professionals who may not be familiar with the nuances of diagnostic test evaluation. Such knowledge is crucial for accurately interpreting test results, making informed public health decisions, and ultimately managing infectious disease outbreaks more effectively.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
3
|
Nawab M, Riaz SK, Ismail E, Ahamed A, Tariq A, Malik MFA, Qusty NF, Bantun F, Slama P, Umair M, Haque S, Bonilla-Aldana DK, Rodriguez-Morales AJ. Integrated approach for detection of SARS-CoV-2 and its variant by utilizing LAMP and ARMS-PCR. Ann Clin Microbiol Antimicrob 2024; 23:11. [PMID: 38303011 PMCID: PMC10836012 DOI: 10.1186/s12941-023-00665-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Global impact of COVID-19 pandemic has heightened the urgency for efficient virus detection and identification of variants such as the Q57H mutation. Early and efficient detection of SARS-CoV-2 among densely populated developing countries is paramount objective. Although RT-PCR assays offer accuracy, however, dependence on expansive kits and availability of allied health resources pose an immense challenge for developing countries. In the current study, RT-LAMP based detection of SARS-Cov-2 with subsequent confirmation of Q57H variant through ARMS-PCR was performed. Among the 212 collected samples, 134 yielded positive results, while 78 tested negative using RT-LAMP. Oropharyngeal swabs of suspected individuals were collected and processed for viral RNA isolation. Isolated viral RNA was processed further by using either commercially available WarmStart Master Mix or our in house developed LAMP master mix separately. Subsequently, the end results of each specimen were evaluated by colorimetry. For LAMP assays, primers targeting three genes (ORF1ab, N and S) were designed using PrimerExplorer software. Interestingly, pooling of these three genes in single reaction tube increased sensitivity (95.5%) and specificity (93.5%) of LAMP assay. SARS-CoV-2 positive specimens were screened further for Q57H mutation using ARMS-PCR. Based on amplicon size variation, later confirmed by sequencing, our data showed 18.5% samples positive for Q57H mutation. Hence, these findings strongly advocate use of RT-LAMP-based assay for SARS-CoV-2 screening within suspected general population. Furthermore, ARMS-PCR also provides an efficient mean to detect prevalent mutations against SARS-Cov-2.
Collapse
Affiliation(s)
- Maryam Nawab
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syeda Kiran Riaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Eiman Ismail
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Alfar Ahamed
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Aaysha Tariq
- Molecular Diagnostic Unit, Clinical Pathology Department, PAEC General Hospital, Islamabad, Pakistan
| | | | - Naeem F Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Makkah, Al Abdeyah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Massab Umair
- Department of Virology, National Institute of Health (NIH), Islamabad, Pakistan
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| | | | - Alfonso J Rodriguez-Morales
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Master Program on Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, Universidad Científica del Sur, Lima, 15046, Peru
| |
Collapse
|
4
|
Hempel EM, Bharmal A, Li G, Minhas A, Manan R, Doull K, Hamilton L, Cheung B, Chan M, Gunadasa K, Chow R, Lee T, Tsang F, Krajden M, Mooder K, Kassan T, Prystajecky N, Jassem A, Hoang LMN. Prospective, clinical comparison of self-collected throat-bilateral nares swabs and saline gargle compared to health care provider collected nasopharyngeal swabs among symptomatic outpatients with potential SARS-CoV-2 infection. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2024; 8:283-298. [PMID: 38250616 PMCID: PMC10797771 DOI: 10.3138/jammi-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 01/23/2024]
Abstract
Background In British Columbia (BC), self-collected saline gargle (SG) is the only alternative to health care provider (HCP)-collected nasopharyngeal (NP) swabs to detect SARS-CoV-2 in an outpatient setting by polymerase chain reaction (PCR). However, some individuals cannot perform a SG. Our study aimed to assess combined throat-bilateral nares (TN) swabbing as a swab-based alternative. Methods Symptomatic individuals greater than 12 years of age seeking a COVID-19 PCR test at one of two COVID-19 collection centres in Metro Vancouver were asked to participate in this study. Participants provided a HCP-collected NP sample and a self-collected SG and TN sample for PCR testing, which were either HCP observed or unobserved. Results Three-hundred and eleven individuals underwent all three collections. Compared against HCP-NP, SG was 99% sensitive and 98% specific (kappa 0.97) and TN was 99% sensitive and 99% specific (kappa 0.98). Using the final clinical test interpretation as the reference standard, NP was 98% sensitive and 100% specific (kappa 0.98), and both SG and TN were 99% sensitive and 100% specific (both kappa 0.99). Mean cycle threshold values for each viral target were higher in SG specimens compared to the other sample types; however, this did not significantly impact the clinical performance, because the positivity rates were similar. The clinical performance of all specimen types was comparable within the first 7 days of symptom onset, regardless of the observation method. SG self-collections were rated the most acceptable, followed by TN. Conclusions TN provides another less invasive self-collection modality for symptomatic outpatient SARS-CoV-2 PCR testing.
Collapse
Affiliation(s)
- Eric M Hempel
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Aamir Bharmal
- British Columbia Centre for Disease Control Public Health Response, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guiyun Li
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Aileen Minhas
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Ramndip Manan
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Kathy Doull
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Lynsey Hamilton
- British Columbia Centre for Disease Control Knowledge Translation, Vancouver, British Columbia, Canada
| | - Branco Cheung
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Michael Chan
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Kingsley Gunadasa
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Ron Chow
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Tracy Lee
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Frankie Tsang
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Mooder
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Trushna Kassan
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Natalie Prystajecky
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda MN Hoang
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Abbasi H, Nikoo HR, Fotouhi F, Khosravi A. Development of a robust TaqMan probe-based one-step multiplex RT-qPCR for simultaneous detection of SARS-CoV-2 and Influenza A/B viruses. BMC Microbiol 2023; 23:335. [PMID: 37951883 PMCID: PMC10640757 DOI: 10.1186/s12866-023-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, the simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A, and Influenza B viruses is essential for rapid differential diagnosis in patients with similar symptoms, especially during "flu season" in the post-pandemic era. So far, several multiplex methods have been approved for the simultaneous detection of SARS-CoV-2, Influenza A, and Influenza B. However, due to the rapid mutation rate of the SARS-CoV-2 genome and the emergence of new variants, existing methods must be improved and updated. METHODS To identify a highly conserved region in the SARS-CoV-2 N-gene, a genomic survey was performed to increase the sensitivity and specificity of primer and probe sets targeting the SARS-CoV-2 genome. The 95% LLOD (95% lower limits of detection) were calculated by probit analysis. A total of 70 predetermined clinical samples using singleplex RT-qPCR assays, were included. The clinical performance of the multiplex RT-qPCR assay was determined and compared with a commercial multiplex kit. The Cohen's kappa coefficient, P-value (McNemar's test), Passing-Bablok regression, and Bland Altman agreement analysis were determined to monitor the agreement of the assays. RESULTS The novel SARS-CoV-2 primer and probe set designed in this assay was able to detect all variants of concern (VOCs) and variants of interest (VOIs) with high analytical and clinical performance. The 95% LLOD for the multiplex RT-qPCR was 20 copies per reaction for the N gene of SARS-CoV-2, 2 copies per reaction for M1 gene of Influenza A and NS1 gene of Influenza B. The diagnostic sensitivity of the multiplex RT-qPCR was 94.4%, 93.7%, and 100% for the detection of SARS-CoV-2, Influenza A, and Influenza B genomes, respectively. Moreover, the specificity was identical (100%) in both assays. According to the agreement analysis results, there was no statistical difference between our multiplex assay and the commercial kit. CONCLUSIONS In this study, we developed a novel in-house made multiplex RT-qPCR assay, with high sensitivity, specificity, and reliability for the diagnosis of SARS-CoV-2 infection in clinical samples. This is valuable during Influenza seasons when influenza co-circulates with SARS-CoV-2, as it saves costs, time, and thus specific and timely treatment of patients.
Collapse
Affiliation(s)
- Hamidreza Abbasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Fatemeh Fotouhi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Kervancioglu Demirci E, Dursun M, Seviç E, Ergül RB, Önel M, Ağaçfidan A, Kadıoğlu A. Evidence for residual SARS-CoV-2 in corpus cavernosum of patients who recovered from COVID-19 infection. Andrology 2023; 11:1016-1022. [PMID: 36426580 DOI: 10.1111/andr.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The COVID-19 is an ongoing health problem with millions of cases and deaths worldwide. Although the virus is transmitted with droplets through the respiratory system, the involvement of different organs has been reported. OBJECTIVES The pandemic caused urological procedures to be postponed when patient is infected with SARS-CoV-2. However, the reliability of 1 month postpone period and long-term complications of the virus, such as a possible erectile dysfunction (ED) is not clarified. We aimed to compare the corpus cavernosum of patients 1 and 7 months after COVID-19 infection with control patients who had not COVID-19 and search for SARS-CoV-2 in tissues using immunohistochemistry and electron microscopy. MATERIALS AND METHODS Three groups of subjects underwent penile prosthesis implantation and Nesbit procedure for Peyronie's disease 1 and 7 months after COVID-19 infection and control group without previous COVID-19 infection. We searched for SARS-CoV-2 in penile tissue using RT-PCR, electron microscopy and immunohistochemistry. RESULTS Electron microscopy and immunohistochemical staining showed SARS CoV-2 virus in the penile corpus cavernosum of patients 1 month after COVID-19 recovery. Immunohistochemical staining intensity correlated with the severity of previous infection. Transmission electron microscopy revealed intracellular virtual particles of about 80 nm with a typical morphology of prominent spikes and electron-dense dots of nucleocapsid in addition to vesicles filled with virus-like particles. Cells showed increased membrane trafficking. The 1 month after COVID-19 group showed an increased number of fibroblasts. The 7 months after COVID-19 group had similar morphology and immunoreactivity as control group. DISCUSSION This is the first study of late post-COVID examination of penis and the second study of early post-COVID examination of corpus cavernosum. For 1 month post-COVID patients, the aetiology of ED could be the viral infection that is also affecting corpora cavernosa. We hypothesize that viral infection affects the endocytic and exocytic pathways, hence the metabolic activity of cells that can be the reason of altered functions in some post-COVID patients. CONCLUSION This study is important because it did not detect any virus residue in the tissue samples at the seventh month. In addition, we can say that the penile surgeries should be postponed more than 1 month after the COVID infection according to this study. But, there is a need for new studies with large series and high levels of evidence that can show how long the virus remains in the corpus cavernosum. Patients should be followed in this respect.
Collapse
Affiliation(s)
- Elif Kervancioglu Demirci
- Department of Histology and Embryology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Dursun
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erva Seviç
- Department of Histology and Embryology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Rıfat Burak Ergül
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Önel
- Department of Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Ağaçfidan
- Department of Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Plasencia-Martínez JM, Moreno-Pastor A, Lozano-Ros M, Jiménez-Pulido C, Herves-Escobedo I, Pérez-Hernández G, García-Santos JM. Digital tomosynthesis improves chest radiograph accuracy and reduces microbiological false negatives in COVID-19 diagnosis. Emerg Radiol 2023; 30:465-474. [PMID: 37358654 DOI: 10.1007/s10140-023-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Diagnosing pneumonia by radiograph is improvable. We aimed (a) to compare radiograph and digital thoracic tomosynthesis (DTT) performances and agreement for COVID-19 pneumonia diagnosis, and (b) to assess the DTT ability for COVID-19 diagnosis when polymerase chain reaction (PCR) and radiograph are negative. METHODS Two emergency radiologists with 11 (ER1) and 14 experience-years (ER2) retrospectively evaluated radiograph and DTT images acquired simultaneously in consecutively clinically suspected COVID-19 pneumonia patients in March 2020-January 2021. Considering PCR and/or serology as reference standard, DTT and radiograph diagnostic performance and interobserver agreement, and DTT contributions in unequivocal, equivocal, and absent radiograph opacities were analysed by the area under the curve (AUC), Cohen's Kappa, Mc-Nemar's and Wilcoxon tests. RESULTS We recruited 480 patients (49 ± 15 years, 277 female). DTT increased ER1 (from 0.76, CI95% 0.7-0.8 to 0.79, CI95% 0.7-0.8; P=.04) and ER2 (from 0.77 CI95% 0.7-0.8 to 0.80 CI95% 0.8-0.8, P=.02) radiograph-AUCs, sensitivity, specificity, predictive values, and positive likelihood ratio. In false negative microbiological cases, DTT suggested COVID-19 pneumonia in 13% (4/30; P=.052, ER1) and 20% (6/30; P=.020, ER2) more than radiograph. DTT showed new or larger opacities in 33-47% of cases with unequivocal opacities in radiograph, new opacities in 2-6% of normal radiographs and reduced equivocal opacities by 13-16%. Kappa increased from 0.64 (CI95% 0.6-0.8) to 0.7 (CI95% 0.7-0.8) for COVID-19 pneumonia probability, and from 0.69 (CI95% 0.6-0.7) to 0.76 (CI95% 0.7-0.8) for pneumonic extension. CONCLUSION DTT improves radiograph performance and agreement for COVID-19 pneumonia diagnosis and reduces PCR false negatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Pérez-Hernández
- Hospital Universitario Morales Meseguer, 30008, Murcia, ZC, Spain
- Current affiliation: Hospital Clínico, 50009, Zaragoza, ZC, Spain
| | | |
Collapse
|
8
|
Choi JW, Seo WH, Kang T, Kang T, Chung BG. Droplet digital recombinase polymerase amplification for multiplexed detection of human coronavirus. LAB ON A CHIP 2023; 23:2389-2398. [PMID: 37083004 DOI: 10.1039/d3lc00025g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the outbreak of coronavirus 2019 (COVID-19), detection technologies have been attracting a great deal of attention in molecular diagnosis applications. In particular, the droplet digital PCR (ddPCR) has become a promising tool as it offers absolute quantification of target nucleic acids with high specificity and sensitivity. In recent years, the combination of the isothermal amplification strategies has made ddPCR a popular method for on-site testing by enabling amplification at a constant temperature. However, the current isothermal ddPCR assays are still challenging due to inherent non-specific amplification. In this paper, we present a multiplexed droplet digital recombinase polymerase amplification (MddRPA) with precise initiation of the reaction. First, the reaction temperature and dynamic range of reverse transcription (RT) and RPA were characterized by real-time monitoring of fluorescence intensities. Using a droplet-based microfluidic chip, the master mix and the initiator were fractionated and rapidly mixed within well-confined droplets. Due to the high heat transfer and mass transfer of the droplets, the precise initiation of the amplification was enabled and the entire assay could be conducted within 30 min. The concentrations of target RNA in the range from 5 copies per μL to 2500 copies per μL could be detected with high linearity (R2 > 0.999). Furthermore, the multiplexed detection of three types of human coronaviruses was successfully demonstrated with high specificity (>96%). Finally, we compared the performance of the assay with a commercial RT-qPCR system using COVID-19 clinical samples. The MddRPA assay showed a 100% concordance with the RT-qPCR results, indicating its reliability and accuracy in detecting SARS-CoV-2 nucleic acids in clinical samples. Therefore, our MddRPA assay with rapid detection, precise quantification, and multiplexing capability would be an interesting method for molecular diagnosis of viral infections.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Won Ho Seo
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| |
Collapse
|
9
|
Regina de Oliveira T, Oliveira Leite TH, Miranda WN, Manuli ER, Leal F, Sabino E, Pott-Junior H, Melendez M, Faria RC. Molecular test for COVID-19 diagnosis based on a colorimetric genomagnetic assay. Anal Chim Acta 2023; 1257:341167. [PMID: 37062564 PMCID: PMC10066033 DOI: 10.1016/j.aca.2023.341167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The world is in a long pandemic period caused by the SARS-CoV-2 virus and massive diagnostic tests to assist efforts to control the spread of the disease and also to avoid new coronavirus variants are still needed. Herein, we propose a simple and accurate saliva-based colorimetric test for the diagnosis of COVID-19. Magnetic beads (MBs) modified with a sequence of single-strand DNA (ssDNA) complementary to the N gene of the SARS-CoV-2 RNA were developed and used for magnetic capture and separation from a complex saliva sample. A second biotinylated ssDNA sequence was applied, and the colorimetric detection was carried out by adding streptavidin-horseradish peroxidase conjugate, H2O2, and tetramethylbenzidine (TMB) as chromogenic substrate. The test does not require viral RNA isolation, transcription, or amplification steps and can be performed at room temperature. The molecular assay test can be run using 96-well microplates, allowing the diagnosis of a large number of samples in 90 min. A simple support for magnets was designed and constructed using a 3D printer that allows the magnetic separations directly in the 96-well microplate. The colorimetric test showed an excellent ability to discriminate between healthy individuals and patients infected with SARS-CoV-2, with 92% and 100% of clinical sensitivity and specificity, respectively. This performance was similar to that achieved using the gold standard RT-PCR technique. The proposed genomagnetic assay offers an opportunity to greatly increase population testing, contribute to controlling the spread of the virus, and improve health equity in testing for COVID-19.
Collapse
Affiliation(s)
| | | | - Wyllian Neves Miranda
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Erika Regina Manuli
- Municipal University of São Caetano do Sul, São Caetano do Sul, SP, 09521-160, Brazil
| | - Fábio Leal
- Municipal University of São Caetano do Sul, São Caetano do Sul, SP, 09521-160, Brazil
| | - Ester Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Matias Melendez
- Cloning Solutions Ltda, Barretos, SP, 14780-459, Brazil; Molecular Carcinogenesis Program, National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
10
|
Investigating the Use of SARS-CoV-2 (COVID-19) Odor Expression as a Non-Invasive Diagnostic Tool-Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040707. [PMID: 36832195 PMCID: PMC9955788 DOI: 10.3390/diagnostics13040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been enormous interest in the development of measures that would allow for the swift detection of the disease. The rapid screening and preliminary diagnosis of SARS-CoV-2 infection allow for the instant identification of possibly infected individuals and the subsequent mitigation of the disease spread. Herein, the detection of SARS-CoV-2-infected individuals was explored using noninvasive sampling and low-preparatory-work analytical instrumentation. Hand odor samples were obtained from SARS-CoV-2-positive and -negative individuals. The volatile organic compounds (VOCs) were extracted from the collected hand odor samples using solid phase microextraction (SPME) and analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Sparse partial least squares discriminant analysis (sPLS-DA) was used to develop predictive models using the suspected variant sample subsets. The developed sPLS-DA models performed moderately (75.8% (±0.4) accuracy, 81.8% sensitivity, 69.7% specificity) at distinguishing between SARS-CoV-2-positive and negative -individuals based on the VOC signatures alone. Potential markers for distinguishing between infection statuses were preliminarily acquired using this multivariate data analysis. This work highlights the potential of using odor signatures as a diagnostic tool and sets the groundwork for the optimization of other rapid screening sensors such as e-noses or detection canines.
Collapse
|
11
|
Kang J, Jang H, Kim TH, Cho U, Bang H, Jang J, Lee W, Joo H, Noh J, Lee GY, Shin DH, Kang CK, Choe PG, Kim NJ, Oh MD, Song M, Kwon S, Veas F, Park WB. Accurate Diagnosis of COVID-19 from Self-Collectable Biospecimens Using Synthetic Apolipoprotein H Peptide-Coated Nanoparticle Assay. Anal Chem 2022; 94:17186-17194. [PMID: 36399654 PMCID: PMC9718094 DOI: 10.1021/acs.analchem.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.
Collapse
Affiliation(s)
- Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul03080, Korea
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
| | - Tae Hyun Kim
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Untack Cho
- QuantaMatrix Inc., Seoul08506, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul03080, Korea
| | | | | | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Hyelyn Joo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
| | - Jinsung Noh
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Gi Yoon Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Dong Hoon Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Manki Song
- International Vaccine Institute, Seoul08826, Korea
| | - Sunghoon Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
- QuantaMatrix Inc., Seoul08506, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul03080, Korea
| | - Francisco Veas
- Copernicus Integrated Solutions for Biosafety Risks (CISBR), Mauguio34130, France
- ApoH-Technologies, 94 Allée des Fauvettes, La Grande Motte34280, France
- UMR5151/French Research Institute for Development (IRD), University of Montpellier (UM), Montpellier 34093, France
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| |
Collapse
|
12
|
Farahat RA, Abdelaal A, Umar TP, El-Sakka AA, Benmelouka AY, Albakri K, Ali I, Al-Ahdal T, Abdelazeem B, Sah R, Rodriguez-Morales AJ. The emergence of SARS-CoV-2 Omicron subvariants: current situation and future trends. LE INFEZIONI IN MEDICINA 2022; 30:480-494. [PMID: 36482957 PMCID: PMC9714996 DOI: 10.53854/liim-3004-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 Omicron variant (B.1.1.529) has been the most recent variant of concern (VOC) established by the World Health Organization (WHO). Because of its greater infectivity and immune evasion, this variant quickly became the dominant type of circulating SARS-CoV-2 worldwide. Our literature review thoroughly explains the current state of Omicron emergence, particularly by comparing different omicron subvariants, including BA.2, BA.1, and BA.3. Such elaboration would be based on structural variations, mutations, clinical manifestation, transmissibility, pathogenicity, and vaccination effectiveness. The most notable difference between the three subvariants is the insufficiency of deletion (Δ69-70) in the spike protein, which results in a lower detection rate of the spike (S) gene target known as (S) gene target failure (SGTF). Furthermore, BA.2 had a stronger affinity to the human Angiotensin-converting Enzyme (hACE2) receptor than other Omicron sub-lineages. Regarding the number of mutations, BA.1.1 has the most (40), followed by BA.1, BA.3, and BA.3 with 39, 34, and 31 mutations, respectively. In addition, BA.2 and BA.3 have greater transmissibility than other sub-lineages (BA.1 and BA.1.1). These characteristics are primarily responsible for Omicron's vast geographical spread and high contagiousness rates, particularly BA.2 sub-lineages.
Collapse
Affiliation(s)
| | - Abdelaziz Abdelaal
- Harvard Medical School, Boston, MA,
USA
- Boston University, MA,
USA
- General Practitioner, Tanta University Hospitals,
Egypt
| | | | | | | | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa,
Jordan
| | - Iftikhar Ali
- Department of Pharmacy, Paraplegic Center, Peshawar,
Pakistan
| | - Tareq Al-Ahdal
- Institute of Global Health (HIGH), Heidelberg University, Heidelberg,
Germany
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, Michigan,
USA
- Department of Internal Medicine, Michigan State University, East Lansing, Michigan,
USA
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu,
Nepal
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra,
India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de Las Américas, Pereira, Risaralda,
Colombia
- Faculty of Medicine, Institución Universitaria Vision de Las Americas, Pereira, Risaralda,
Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36,
Lebanon
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima,
Perú
| |
Collapse
|
13
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Patel AB, Sharma N, Chen ZS. Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacol Rep 2022; 74:1120-1148. [PMID: 36214969 PMCID: PMC9549062 DOI: 10.1007/s43440-022-00425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of β-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
14
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
15
|
Siavash Moakhar R, del Real Mata C, Jalali M, Shafique H, Sanati A, de Vries J, Strauss J, AbdElFatah T, Ghasemi F, McLean M, I. Hosseini I, Lu Y, Yedire SG, Mahshid SS, Tabatabaiefar MA, Liang C, Mahshid S. A Versatile Biomimic Nanotemplating Fluidic Assay for Multiplex Quantitative Monitoring of Viral Respiratory Infections and Immune Responses in Saliva and Blood. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204246. [PMID: 36253095 PMCID: PMC9685479 DOI: 10.1002/advs.202204246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 05/17/2023]
Abstract
The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
| | | | - Mahsa Jalali
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Houda Shafique
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Alireza Sanati
- Biosensor Research CenterIsfahan University of Medical SciencesIsfahan81746‐73461Iran
| | - Justin de Vries
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Julia Strauss
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Tamer AbdElFatah
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Fahimeh Ghasemi
- Biosensor Research CenterIsfahan University of Medical SciencesIsfahan81746‐73461Iran
| | - Myles McLean
- Department of MedicineMcGill UniversityMontrealQuebecH4A 3J1Canada
- Lady Davis Institute for Medical Research and McGill AIDS CentreJewish General HospitalMontrealQCH3T 1E2Canada
| | - Imman I. Hosseini
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | - Yao Lu
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| | | | - Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular BiologySchool of MedicineIsfahan University of Medical SciencesIsfahan81746‐73461Iran
| | - Chen Liang
- Department of MedicineMcGill UniversityMontrealQuebecH4A 3J1Canada
- Lady Davis Institute for Medical Research and McGill AIDS CentreJewish General HospitalMontrealQCH3T 1E2Canada
| | - Sara Mahshid
- Department of BioengineeringMcGill UniversityMontrealQuebecH3A 0E9Canada
| |
Collapse
|
16
|
Salinas M, Aguirre D, Baldeón L, Pérez-Galarza J. Diagnostic evaluation of nCoV-QS, nCoV-QM-N, and nCoV-OM detection kits based on rRT-PCR for detection of SARS-CoV-2 in Ecuador. Heliyon 2022; 8:e11137. [PMID: 36278117 PMCID: PMC9580219 DOI: 10.1016/j.heliyon.2022.e11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ecuador was harshly impacted by COVID-19, in the region was the epicenter of the pandemic with the highest mortality rates and with the lowest rates of processed samples. Real-time reverse transcription PCR assays are essential to identify and manage the SARS-CoV-2 outbreak. Because of the global emergency, in Ecuador several commercial kits were introduced for use without clinical validation. In this manner, having the need to perform an evaluation with clinical samples before use for population screening. Objective This study aimed to evaluate the diagnostic performance of the nCoV-QS, nCoV-QM-N, nCoV-OM detection kits lately available in Ecuador, against the LightMix E/RdRp kit using nasopharyngeal swab (NPS) samples. Materials and methods 198 nasopharyngeal samples were used (66 fresh NPS and 132 RNA stored samples). All samples were analyzed for SARS-CoV-2 with nCoV-QS, nCoV-QM-N, nCoV-OM detection kits and compared the concordance (Cohen's Kappa index, positive percentage agreement and negative percentage agreement) to LightMix E/RdRp as reference detection kit. Results The 198 samples presented strong concordance (96% nCoV-QM-N, 100% nCoV-OM and 100% nCoV-QS). The individual performance of each gene showed that the nCoV-OM kit had a higher number of samples detected with the ORF3a (52.5%) and N (53.5%) genes. The combined genes demonstrated that ORF3a/N of nCoV-OM and nCoV-QS kits presented a higher percentage of detection with 52.5% and 48.5%, respectively. Finally, the detection rate and cycle threshold were not different between ORF3a, N, and E target genes. Conclusion The nCoV-QS, nCoV-QM-N, and nCoV-OM Detection kits have comparable diagnostic performance to the emergency approved LightMix E/RdRp kit for SARS-CoV-2 detection in suspected COVID-19 patients.
Collapse
Affiliation(s)
- Marco Salinas
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador,Corresponding author.
| | - Diana Aguirre
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador
| | - Lucy Baldeón
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador,Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador
| | - Jorge Pérez-Galarza
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador,Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador
| |
Collapse
|
17
|
Hardoon V, Pierce BA, Mbanefo SC, Shah HN, Markan K, Forsythe ML. Effects of Social Distancing and Lockdown Protocols on Fatality Rates of COVID-19 in the U.S. during the First Year of the Pandemic. INTERNATIONAL JOURNAL OF MEDICAL STUDENTS 2022. [DOI: 10.5195/ijms.2022.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: SARS-CoV-2, the coronavirus strain responsible for the COVID-19 pandemic, can lead to respiratory diseases ranging in severity. In the early stages, each U.S. state implemented a transition or “phasing” policy that included varying degrees of safety protocols. This allowed the states to slowly reopen while controlling transmission. The initial lockdown was observed to help suppress the pandemic, and our study aimed to determine if there was a correlation between fatality rates and the phase transitions across the states.
Methods: Six states from regions with different caseloads were chosen for this study: Florida, California, New York, Washington, Kansas, and Texas. Incidence and mortality rate of COVID-19 were obtained from their respective government websites, allowing case fatality rates to be calculated and compared using Bayesian logistic mixed models.
Results: When examining the fatality rates across phases grouped by state, there was a downward trend with each transition except in Texas. However, when the states were combined the overall downward trend was clear, with a median fatality rate of 0.039 in phase 0 dropping to 0.010 by phase 4.
Conclusion: Implemented safety protocols and phase transitions were shown to assist in controlling the spread of COVID-19 as the states re-opened. Differences in fatality rates throughout the U.S. can likely be explained by how disciplined each state was with quarantine requirements and social distancing policies. This allowed certain states to control the infectious spread more efficiently than others, thus allowing the states to progress through the phase transitions at different rates.
Collapse
|
18
|
Ciuffreda L, González-Montelongo R, Alcoba-Florez J, García-Martínez de Artola D, Gil-Campesino H, Rodríguez-Pérez H, Íñigo-Campos A, De Miguel-Martínez I, Tosco-Nuñez T, Díez-Gil O, Valenzuela-Fernández A, Lorenzo-Salazar JM, Flores C. Tracing the trajectories of SARS-CoV-2 variants of concern between December 2020 and September 2021 in the Canary Islands (Spain). Front Cell Infect Microbiol 2022; 12:919346. [PMID: 36159654 PMCID: PMC9504278 DOI: 10.3389/fcimb.2022.919346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Several variants of concern (VOCs) explain most of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic waves in Europe. We aimed to dissect the spread of the SARS-CoV-2 VOCs in the Canary Islands (Spain) between December 2020 and September 2021 at a micro-geographical level. We sequenced the viral genome of 8,224 respiratory samples collected in the archipelago. We observed that Alpha (B.1.1.7) and Delta (B.1.617.2 and sublineages) were ubiquitously present in the islands, while Beta (B.1.351) and Gamma (P.1/P.1.1) had a heterogeneous distribution and were responsible for fewer and more controlled outbreaks. This work represents the largest effort for viral genomic surveillance in the Canary Islands so far, helping the public health bodies in decision-making throughout the pandemic.
Collapse
Affiliation(s)
- Laura Ciuffreda
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Isabel De Miguel-Martínez
- Servicio de Microbiología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Tomás Tosco-Nuñez
- Servicio de Microbiología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Servicio de Microbiología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Fomenko A, Weibel S, Moezi H, Menger K, Schmucker C, Metzendorf M, Motschall E, Falcone V, Huzly D, Panning M, Rücker G, Hengel H. Assessing severe acute respiratory syndrome coronavirus 2 infectivity by reverse-transcription polymerase chain reaction: A systematic review and meta-analysis. Rev Med Virol 2022; 32:e2342. [PMID: 35366033 PMCID: PMC9111068 DOI: 10.1002/rmv.2342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
The cornerstone of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection is reverse-transcription polymerase chain reaction (RT-PCR) of viral RNA. As a surrogate assay SARS-CoV-2 RNA detection does not necessarily imply infectivity. Only virus isolation in permissive cell culture systems can indicate infectivity. Here, we review the evidence on RT-PCR performance in detecting infectious SARS-CoV-2. We searched for any studies that used RT-PCR and cell culture to determine infectious SARS-CoV-2 in respiratory samples. We assessed (i) diagnostic accuracy of RT-PCR compared to cell culture as reference test, (ii) performed meta-analysis of positive predictive values (PPV) and (iii) determined the virus isolation probabilities depending on cycle threshold (Ct) or log10 genome copies/ml using logistic regression. We included 55 studies. There is substantial statistical and clinical heterogeneity. Seven studies were included for diagnostic accuracy. Sensitivity ranged from 90% to 99% and specificity from 29% to 92%. In meta-analysis, the PPVs varied across subgroups with different sampling times after symptom onset, with 1% (95% confidence interval [CI], 0%-7%) in sampling beyond 10 days and 27% (CI, 19%-36%) to 46% (CI, 33%-60%) in subgroups that also included earlier samples. Estimates of virus isolation probability varied between 6% (CI, 0%-100%) and 50% (CI, 0%-100%) at a Ct value of 30 and between 0% (CI, 0%-22%) and 63% (CI, 0%-100%) at 5 log10 genome copies/ml. Evidence on RT-PCR performance in detecting infectious SARS-CoV-2 in respiratory samples was limited. Major limitations were heterogeneity and poor reporting. RT-PCR and cell culture protocols need further standardisation.
Collapse
Affiliation(s)
- Alexey Fomenko
- Institute of VirologyFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephanie Weibel
- Department of AnaesthesiologyIntensive Care, Emergency and Pain MedicineUniversity Hospital WuerzburgWuerzburgGermany
| | - Helia Moezi
- Department of AnaesthesiologyIntensive Care, Emergency and Pain MedicineUniversity Hospital WuerzburgWuerzburgGermany
| | - Kristina Menger
- Department of AnaesthesiologyIntensive Care, Emergency and Pain MedicineUniversity Hospital WuerzburgWuerzburgGermany
| | - Christine Schmucker
- Institute for Evidence in MedicineFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Maria‐Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders GroupInstitute of General PracticeMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Edith Motschall
- Institute of Medical Biometry and StatisticsFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Valeria Falcone
- Institute of VirologyFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Daniela Huzly
- Institute of VirologyFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Marcus Panning
- Institute of VirologyFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Gerta Rücker
- Institute of Medical Biometry and StatisticsFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| | - Hartmut Hengel
- Institute of VirologyFaculty of Medicine and Medical CenterUniversity of FreiburgFreiburgGermany
| |
Collapse
|
20
|
Qin Z, Sun Y, Zhang J, Zhou L, Chen Y, Huang C. Lessons from SARS‑CoV‑2 and its variants (Review). Mol Med Rep 2022; 26:263. [PMID: 35730623 PMCID: PMC9260876 DOI: 10.3892/mmr.2022.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has swept through mainland China by human-to-human transmission. The rapid spread of SARS-CoV-2 and its variants, including the currently prevalent Omicron strain, pose a serious threat worldwide. The present review summarizes epidemiological investigation and etiological analysis of genomic, epidemiological, and pathological characteristics of the original strain and its variants, as well as progress in diagnosis and treatment. Prevention and control measures used during the current Omicron pandemic are discussed to provide further knowledge of SARS-CoV-2.
Collapse
Affiliation(s)
- Ziwen Qin
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Yan Sun
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jian Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Zhou
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yujuan Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
21
|
Tijunelyte I, Teillet J, Bruand P, Courson R, Lecestre A, Joseph P, Bancaud A. Hybridization-based DNA biosensing with a limit of detection of 4 fM in 30 s using an electrohydrodynamic concentration module fabricated by grayscale lithography. BIOMICROFLUIDICS 2022; 16:044111. [PMID: 35992636 PMCID: PMC9385222 DOI: 10.1063/5.0073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Speeding up and enhancing the performances of nucleic acid biosensing technologies have remained drivers for innovation. Here, we optimize a fluorimetry-based technology for DNA detection based on the concentration of linear targets paired with probes. The concentration module consists of a microfluidic channel with the shape of a funnel in which we monitor a viscoelastic flow and a counter-electrophoretic force. We report that the technology performs better with a target longer than 100 nucleotides (nt) and a probe shorter than 30 nt. We also prove that the control of the funnel geometry in 2.5D using grayscale lithography enhances sensitivity by 100-fold in comparison to chips obtained by conventional photolithography. With these optimized settings, we demonstrate a limit of detection of 4 fM in 30 s and a detection range of more than five decades. This technology hence provides an excellent balance between sensitivity and time to result.
Collapse
Affiliation(s)
- Inga Tijunelyte
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Jeffrey Teillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Paul Bruand
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Rémi Courson
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | - Pierre Joseph
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
22
|
Dewald F, Suárez I, Johnen R, Grossbach J, Moran-Tovar R, Steger G, Joachim A, Rubio GH, Fries M, Behr F, Kley J, Lingnau A, Kretschmer A, Gude C, Baeza-Flores G, Del Valle DL, Roblero-Hernandez A, Magana-Cerino J, Hernandez AT, Ruiz-Quinones J, Schega K, Linne V, Junker L, Wunsch M, Heger E, Knops E, Di Cristanziano V, Meyer M, Hünseler C, Weber LT, Lüers JC, Quade G, Wisplinghoff H, Tiemann C, Zotz R, Jomaa H, Pranada A, Herzum I, Cullen P, Schmitz FJ, Philipsen P, Kirchner G, Knabbe C, Hellmich M, Buess M, Wolff A, Kossow A, Niessen J, Jeworutzki S, Schräpler JP, Lässig M, Dötsch J, Fätkenheuer G, Kaiser R, Beyer A, Rybniker J, Klein F. Effective high-throughput RT-qPCR screening for SARS-CoV-2 infections in children. Nat Commun 2022; 13:3640. [PMID: 35752615 PMCID: PMC9233713 DOI: 10.1038/s41467-022-30664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities and high costs. Here, we developed a high-throughput approach ('Lolli-Method') for SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >106 copies/ml and >103 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SEIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%), ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences and with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 36.8% increase for multiple (≥2 children) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and can support infection control in schools and daycare facilities.
Collapse
Affiliation(s)
- Felix Dewald
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Suárez
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Ronja Johnen
- CECAD Research center, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- CECAD Research center, University of Cologne, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Gertrud Steger
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Joachim
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gibran Horemheb Rubio
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Mira Fries
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Health department of Cologne, Cologne, Germany
| | - Florian Behr
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Health department of Cologne, Cologne, Germany
| | - Joao Kley
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Lingnau
- Ministry of Schools and Education of North Rhine-Westphalia, Düsseldorf, Germany
| | - Alina Kretschmer
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carina Gude
- CECAD Research center, University of Cologne, Cologne, Germany
| | - Guadelupe Baeza-Flores
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - David Laveaga Del Valle
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - Alberto Roblero-Hernandez
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - Jesus Magana-Cerino
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | | | - Jesus Ruiz-Quinones
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | | | - Viktoria Linne
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Junker
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marie Wunsch
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Meike Meyer
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Hünseler
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Christoffer Lüers
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gustav Quade
- MVZ Labor Dr. Quade & Kollegen GmbH, Cologne, Germany
| | | | | | - Rainer Zotz
- Institute for Laboratory Medicine ZotzKlimas, Düsseldorf, Germany
- Department of Haemostasis, Haemotherapy and Transfusion Medicine, Heinrich Heine University Medical Centre, Düsseldorf, Germany
| | | | - Arthur Pranada
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, Dortmund, Germany
| | - Ileana Herzum
- Medizinische Laboratorien Düsseldorf, Düsseldorf, Germany
| | | | | | - Paul Philipsen
- Labor Mönchengladbach MVZ Dr. Stein und Kollegen, Mönchengladbach, Germany
| | - Georg Kirchner
- Eurofins Laborbetriebsgesellschaft Gelsenkirchen GmbH & Eurofins MVZ Medizinisches Labor Gelsenkirchen GmbH, Gelsenkirchen, Germany
| | - Cornelius Knabbe
- Heart- and Diabetes Center NRW, Medical Faculty, Ruhr-University Bochum, Institute for Laboratory and Transfusion Medicine, Bad Oeynhausen, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Anna Wolff
- Health department of Cologne, Cologne, Germany
| | - Annelene Kossow
- Health department of Cologne, Cologne, Germany
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | | | | | - Jörg-Peter Schräpler
- Faculty of Social Science, Ruhr-University Bochum, Bochum, Germany
- German Socio Economic Panel Study (SOEP), Berlin, Germany
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerd Fätkenheuer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Andreas Beyer
- CECAD Research center, University of Cologne, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Jan Rybniker
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Rana DRSJB, Pokhrel N, Dulal S. Rational Primer and Probe Construction in PCR-Based Assays for the Efficient Diagnosis of Drifting Variants of SARS-CoV-2. Adv Virol 2022; 2022:2965666. [PMID: 35601113 PMCID: PMC9122727 DOI: 10.1155/2022/2965666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
The genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been evolving via genomic drifts resulting in "emerging/drifting variants" circulating worldwide. The construction of polymerase chain reaction (PCR) assays for the reliable, efficient, and specific diagnosis of the drifting variants of SARS-CoV-2 is specifically governed by the selection and construction of primers and probes. The efficiency of molecular diagnosis is impacted by the identity/homology of the genome sequence of SARS-CoV-2 with other coronaviruses, drifting variants or variants of concern (VOCs) circulating in communities, inherent capacity of mutation(s) of various target genes of SARS-CoV-2, and concentration of genes of interest in host cells. The precise amplicon selection and construction of primers and probes for PCR-based assays can efficiently discriminate specific SARS-CoV-2 drifting variants. The construction of single nucleotide polymorphism (SNP)-specific primers and probes for PCR assays is pivotal to specifically distinguish SARS-CoV-2 variants present in the communities and contributes to better diagnosis and prevention of the ongoing COVID-19 pandemic. In this study, we have utilized in silico-based bioinformatic tools where the alignment for genes, the positions and types of SNPs/mutations of VOCs, and the relative number of SNPs per nucleotide in different genomic regions were investigated. Optimal and specific genome region (amplicon) selection with comparatively lower mutability in the SARS-CoV-2 genome should be prioritized to design/construct PCR assays for reliable and consistent diagnosis in various regions of the world for a longer duration of time. Further, the rational selection of target genes that is at an optimal detectable concentration in biological samples can bolster PCR assays of high analytical sensitivity. Hence, the construction of primers and probes with the rational selection of targeting specific E gene, genomic regions with highly conserved sequences, multiple target genes with relatively lower mutability and detectable level of concentration, SNP-specific binding regions of spike (S gene) protein, and shorter amplicon size (100-150 bp) are vital for the PCR assays to achieve optimal efficiency in the point-of-care laboratory diagnosis of circulating drifting variants of SARS-CoV-2 with optimal accuracy.
Collapse
Affiliation(s)
- Divya RSJB Rana
- Hari Khetan Multiple Campus, Tribhuvan University, Birgunj, Nepal
| | | | - Santosh Dulal
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal
| |
Collapse
|
24
|
Genome sequencing reveals existence of SARS-CoV-2 B.1.1.529 variant in Egypt. J Genet Eng Biotechnol 2022; 20:70. [PMID: 35543892 PMCID: PMC9092035 DOI: 10.1186/s43141-022-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Several SARS-CoV-2 variants with increased transmissibility and/or potential immune escape have emerged and rapidly spread worldwide. Ongoing surveillance analyses are performed worldwide to designate new variants of concern (VOC) of coronavirus. Main text This report identifies the first Egyptian patient with a confirmed SARS-CoV-2 omicron variant. The patient showed positivity on reverse transcriptase-polymerase chain reaction and full genome sequencing was performed to confirm the variant. The mutations found in the variant were compared with the GISAID reference strain hCoV-19/Wuhan/WIV04/2019. Genome BLAST showed the highest similarity to omicron variants isolated in South Africa. Phylogenetic analysis revealed that the variant belongs to the 21K clade. Conclusions The study indicates the importance of information-sharing among global public health partners. Moreover the importance of implementation of full genome sequencing to rapidly identify and track the new SARS-CoV-2 variants.
Collapse
|
25
|
Radvánszka M, Paul ED, Hajdu R, Boršová K, Kováčová V, Putaj P, Bírová S, Čirková I, Čarnecký M, Buranovská K, Szobi A, Vojtaššáková N, Drobná D, Čabanová V, Sláviková M, Ličková M, Vaňová V, Fumačová Havlíková S, Lukáčiková Ľ, Kajanová I, Koči J, Rusňáková D, Sedláčková T, Max KEA, Tuschl T, Szemes T, Klempa B, Čekan P. Sequential development of several RT-qPCR tests using LNA nucleotides and dual probe technology to differentiate SARS-CoV-2 from influenza A and B. Microb Biotechnol 2022; 15:1995-2021. [PMID: 35316574 PMCID: PMC9111289 DOI: 10.1111/1751-7915.14031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022] Open
Abstract
Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.
Collapse
Affiliation(s)
- Monika Radvánszka
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Roman Hajdu
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,College of Medical, Veterinary and Life Sciences, School of Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Kristína Boršová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,Institute for Biological Physics, University of Cologne, Zülpicher Str. 77, Köln, 50937, Germany
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Viktória Čabanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Martina Ličková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Sabína Fumačová Havlíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ľubomíra Lukáčiková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ivana Kajanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Koči
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Diana Rusňáková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Tatiana Sedláčková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Klaas E A Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Tomáš Szemes
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| |
Collapse
|
26
|
Diaz Badial P, Bothorel H, Kherad O, Dussoix P, Tallonneau Bory F, Ramlawi M. A new screening tool for SARS-CoV-2 infection based on self-reported patient clinical characteristics: the COV 19-ID score. BMC Infect Dis 2022; 22:187. [PMID: 35209872 PMCID: PMC8867452 DOI: 10.1186/s12879-022-07164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Background While several studies aimed to identify risk factors for severe COVID-19 cases to better anticipate intensive care unit admissions, very few have been conducted on self-reported patient symptoms and characteristics, predictive of RT-PCR test positivity. We therefore aimed to identify those predictive factors and construct a predictive score for the screening of patients at admission. Methods This was a monocentric retrospective analysis of clinical data from 9081 patients tested for SARS-CoV-2 infection from August 1 to November 30 2020. A multivariable logistic regression using least absolute shrinkage and selection operator (LASSO) was performed on a training dataset (60% of the data) to determine associations between self-reported patient characteristics and COVID-19 diagnosis. Regression coefficients were used to construct the Coronavirus 2019 Identification score (COV19-ID) and the optimal threshold calculated on the validation dataset (20%). Its predictive performance was finally evaluated on a test dataset (20%). Results A total of 2084 (22.9%) patients were tested positive to SARS-CoV-2 infection. Using the LASSO model, COVID-19 was independently associated with loss of smell (Odds Ratio, 6.4), fever (OR, 2.7), history of contact with an infected person (OR, 1.7), loss of taste (OR, 1.5), muscle stiffness (OR, 1.5), cough (OR, 1.5), back pain (OR, 1.4), loss of appetite (OR, 1.3), as well as male sex (OR, 1.05). Conversely, COVID-19 was less likely associated with smoking (OR, 0.5), sore throat (OR, 0.9) and ear pain (OR, 0.9). All aforementioned variables were included in the COV19-ID score, which demonstrated on the test dataset an area under the receiver-operating characteristic curve of 82.9% (95% CI 80.6%–84.9%), and an accuracy of 74.2% (95% CI 74.1%–74.3%) with a high sensitivity (80.4%, 95% CI [80.3%–80.6%]) and specificity (72.2%, 95% CI [72.2%–72.4%]). Conclusions The COV19-ID score could be useful in early triage of patients needing RT-PCR testing thus alleviating the burden on laboratories, emergency rooms, and wards. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07164-1.
Collapse
Affiliation(s)
- Pablo Diaz Badial
- Department of Emergency Medicine, La Tour Hospital, 1217, Geneva, Switzerland
| | - Hugo Bothorel
- Research Department, La Tour Hospital, 1217, Geneva, Switzerland.
| | - Omar Kherad
- Department of Internal Medicine, La Tour Hospital and University of Geneva, 1217, Geneva, Switzerland
| | - Philippe Dussoix
- Department of Emergency Medicine, La Tour Hospital, 1217, Geneva, Switzerland
| | | | - Majd Ramlawi
- Department of Emergency Medicine, La Tour Hospital, 1217, Geneva, Switzerland
| |
Collapse
|
27
|
Thongpradit S, Prasongtanakij S, Srisala S, Kumsang Y, Chanprasertyothin S, Boonkongchuen P, Pitidhammabhorn D, Manomaipiboon P, Somchaiyanon P, Chandanachulaka S, Hirunrueng T, Ongphiphadhanakul B. A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:4867626. [PMID: 35242195 PMCID: PMC8888108 DOI: 10.1155/2022/4867626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Background Since its initial appearance in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Wastewater surveillance has been demonstrated as capable of identifying infection clusters early. The purpose of this study was to investigate a quick and simple method to detect SARS-CoV-2 in wastewater in Thailand during the early stages of the second outbreak wave when the prevalence of the disease and the virus concentration in wastewater were low. Methods Wastewater samples were collected from a hospital caring for patients with COVID-19 and from 35 markets, two of which were associated with recently reported COVID-19 cases. Then, samples were concentrated by membrane filtering prior to SARS-CoV-2 detection by RT-qPCR. Results SARS-CoV-2 RNA was detected in the wastewater samples from the hospital; the Ct values for the N, ORF1ab, and S genes progressively increased as the number of patients admitted to the treatment floor decreased. Notably, the ORF1ab and S genes were still detectable in wastewater even when only one patient with COVID-19 remained at the hospital. SARS-CoV-2 RNA was detected in the wastewater samples from fresh market where COVID-19 cases were reported. Conclusions Our findings suggest that wastewater surveillance for SARS-CoV-2 is sensitive and can detect the virus even in places with a high ambient temperature and relatively low prevalence of COVID-19.
Collapse
Affiliation(s)
- Supranee Thongpradit
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Somsak Prasongtanakij
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Yothin Kumsang
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | | | - Pairoj Boonkongchuen
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Samut Prakan, Thailand
| | - Dhanesh Pitidhammabhorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Samut Prakan, Thailand
| | | | | | | | | | - Boonsong Ongphiphadhanakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| |
Collapse
|
28
|
Sisay A, Abera A, Dufera B, Endrias T, Tasew G, Tesfaye A, Hartnack S, Beyene D, Desta AF. Diagnostic accuracy of three commercially available one step RT-PCR assays for the detection of SARS-CoV-2 in resource limited settings. PLoS One 2022; 17:e0262178. [PMID: 35051204 PMCID: PMC8775315 DOI: 10.1371/journal.pone.0262178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting. Methods A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard. Results Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973–1.000), 0.961(0.930–0.991) and 0.916(0.875–0.952) and considerably lower sensitivities with 0.813(0.658–0.938), 0.836(0.712–0.940) and 0.810(0.687–0.920) for TIB MOLBIOL, Da An and BGI respectively were found. Conclusions While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix.
Collapse
Affiliation(s)
- Abay Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Adugna Abera
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Boja Dufera
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tujuba Endrias
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abraham Tesfaye
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Diagnostic Unit, Center for Innovative Drug Development and Therapeutic Trials for Africa, CDT- Africa, Addis Ababa, Ethiopia
| | - Sonja Hartnack
- Section of Epidemiology, University of Zurich, Zurich, Switzerland
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Moabelo KL, Martin DR, Fadaka AO, Sibuyi NRS, Meyer M, Madiehe AM. Nanotechnology-Based Strategies for Effective and Rapid Detection of SARS-CoV-2. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7851. [PMID: 34947447 PMCID: PMC8703409 DOI: 10.3390/ma14247851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has gained worldwide attention and has prompted the development of innovative diagnostics, therapeutics, and vaccines to mitigate the pandemic. Diagnostic methods based on reverse transcriptase-polymerase chain reaction (RT-PCR) technology are the gold standard in the fight against COVID-19. However, this test might not be easily accessible in low-resource settings for the early detection and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of access to well-equipped clinical laboratories, requirement for the high level of technical competence, and the cost of the RT-PCR test are the major limitations. Moreover, RT-PCR is unsuitable for application at the point-of-care testing (PoCT) as it is time-consuming and lab-based. Due to emerging mutations of the virus and the burden it has placed on the health care systems, there is a growing urgency to develop sensitive, selective, and rapid diagnostic devices for COVID-19. Nanotechnology has emerged as a versatile technology in the production of reliable diagnostic tools for various diseases and offers new opportunities for the development of COVID-19 diagnostic systems. This review summarizes some of the nano-enabled diagnostic systems that were explored for the detection of SARS-CoV-2. It highlights how the unique physicochemical properties of nanoparticles were exploited in the development of novel colorimetric assays and biosensors for COVID-19 at the PoCT. The potential to improve the efficiency of the current assays, as well as the challenges associated with the development of these innovative diagnostic tools, are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (K.L.M.); (D.R.M.); (A.O.F.); (N.R.S.S.)
| | - Abram M. Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (K.L.M.); (D.R.M.); (A.O.F.); (N.R.S.S.)
| |
Collapse
|
30
|
Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract 2021; 225:153565. [PMID: 34333398 PMCID: PMC8305226 DOI: 10.1016/j.prp.2021.153565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
Collapse
|
31
|
Comparison of analytical sensitivity of SARS-CoV-2 molecular detection kits. Int J Infect Dis 2021; 111:233-241. [PMID: 34428543 PMCID: PMC8379823 DOI: 10.1016/j.ijid.2021.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a significant impact on global public health systems, making nucleic acid detection an important tool in epidemic prevention and control. Detection kits based on real-time reverse transcriptase PCR (rRT-PCR) have been used widely in clinics, but their analytical sensitivity (limit of detection, LOD) remains controversial. Moreover, there is limited research evaluating the analytical sensitivity of other molecular detection kits. Methods In this study, armored ribonucleic acid reference materials developed in-house were used to evaluate the analytical sensitivity of SARS-CoV-2 detection kits approved by the National Medical Products Administration. These were based on rRT-PCR and other molecular detection assays. Results The percentage retesting required with rRT-PCR kits was as follows: 0%, 7.69%, 15.38%, and 23.08% for samples with concentrations ranging from 50 000 to 781 copies/ml. In total, 93% of rRT-PCR kits had a LOD <1000 copies/ml. Only one kit had an LOD >1000 copies/ml. The LOD of other molecular detection kits ranged from 68 to 2264 copies/ml. Conclusions The study findings can help pharmaceutical companies optimize and improve detection kits, guide laboratories in selecting kits, and assist medical workers in their daily work.
Collapse
|
32
|
False-Negative Results in Taqman One-Step RT-PCR Test: Evaluation of Endogenous Internal Control Function Used in SARS-CoV-2 Detection Tests. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Taqman one-step real-time PCR (RT-PCR) has special importance due to its high sensitivity and specificity in the diagnosis of infectious diseases such as viral infections. In the recent pandemic of SARS-CoV-2, diagnostic kits based on this method are commonly used for molecular detection. One of the main systematic errors that misinterpret the results is using inaccurate internal control in RT-PCR diagnostic kits. Designing primers and probes that span exon-exon junction will avoid genomic DNA amplification and lead to obtaining high specific results. Objectives: This study aimed to evaluate the endogenous internal control of primers and probe for RNase P RNA to reduce false-negative results in respiratory samples. Methods: In this study, 30 samples of patients who were negative for SARS-CoV-2, influenza A, and influenza B were re-evaluated for SARS-CoV-2 using newly designed primers and probes for RNase P RNA (ultra-specific primers and probe). We also performed bioinformatics analysis on CDC-approved primers and probes of RNase P endogenous internal control. Results: In this analysis, we specified the location of these newly designed primers and probe on target mRNA and genomic DNA. Then, the Taqman one-step RT-PCR method was performed using both CDC-approved primers and probes along with our ultra-specific primers and probe for RNase P RNA. Based on bioinformatics analysis, the attachment sites of the CDC-approved primers and probe for endogenous internal control of RNase P are located on the first exon of this gene. In addition to identifying the target gene sequence, these primers and probe also non-specifically detect similar sequences on the genomic DNA. Conclusions: The present study showed that the use of specific primers and probes introduced by CDC for SARS-CoV-2 and influenza virus may cause false results due to non-specific binding to the genomic DNA. Therefore, choosing the right internal control for RNase P RNA can be useful in achieving very accurate results.
Collapse
|
33
|
Brukner I, Resendes A, Eintracht S, Papadakis AI, Oughton M. Sample Adequacy Control (SAC) Lowers False Negatives and Increases the Quality of Screening: Introduction of "Non-Competitive" SAC for qPCR Assays. Diagnostics (Basel) 2021; 11:diagnostics11071133. [PMID: 34206413 PMCID: PMC8305439 DOI: 10.3390/diagnostics11071133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 01/15/2023] Open
Abstract
Sample Adequacy Control (SAC) has critical analytical, clinical and epidemiological value that increases confidence in a negative test result. The SAC is an integral qPCR assay control, which ensures that all pre-analytical and analytical steps are adequate for accurate testing and reporting. As such, a negative SAC with a negative result on pathogen screen specifies that the result should be reported as inconclusive instead of negative. Despite this, many regulatory approved tests do not incorporate SAC into their assay design. Herein, we emphasize the universal value of SAC and offer for the first time, a simple technical strategy to introduce non-competitive SAC which does not interfere with the limit of detection for the screened pathogen. Integration of SAC can provide key benefits towards identifying, isolating, quarantining and contact tracing infected individuals and in turn can improve worldwide efforts in infection control.
Collapse
Affiliation(s)
- Ivan Brukner
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (A.R.); (A.I.P.)
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Correspondence: (I.B.); (M.O.); Tel.: +1-514-8038782 (I.B.); +1-514-3408222 (ext. 22662) (M.O.)
| | - Alex Resendes
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (A.R.); (A.I.P.)
| | - Shaun Eintracht
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Andreas I. Papadakis
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (A.R.); (A.I.P.)
| | - Matthew Oughton
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Correspondence: (I.B.); (M.O.); Tel.: +1-514-8038782 (I.B.); +1-514-3408222 (ext. 22662) (M.O.)
| |
Collapse
|
34
|
Alcoba-Florez J, Lorenzo-Salazar JM, Gil-Campesino H, Íñigo-Campos A, Martínez de Artola DG, García-Olivares V, Díez-Gil O, Valenzuela-Fernández A, Ciuffreda L, González-Montelongo R, Flores C. Monitoring the rise of the SARS-CoV-2 lineage B.1.1.7 in Tenerife (Spain) since mid-December 2020. J Infect 2021; 82:e1-e3. [PMID: 33857576 PMCID: PMC8056784 DOI: 10.1016/j.jinf.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife 38010, Spain.
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife 38600, Spain.
| | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife 38010, Spain.
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife 38600, Spain.
| | | | - Victor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife 38600, Spain.
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife 38010, Spain.
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, San Cristóbal de La Laguna 38200, Spain.
| | - Laura Ciuffreda
- Research Unit, Unidad de Investigación, Hospital Universitario N. S. de Candelaria, Carretera del Rosario s/n, Santa Cruz de Tenerife 38010, Spain.
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife 38600, Spain; Research Unit, Unidad de Investigación, Hospital Universitario N. S. de Candelaria, Carretera del Rosario s/n, Santa Cruz de Tenerife 38010, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB) Universidad de La Laguna, San Cristóbal de La Laguna 38200, Spain.
| |
Collapse
|
35
|
Rahman S, Montero MTV, Rowe K, Kirton R, Kunik F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol 2021; 14:601-621. [PMID: 33705239 PMCID: PMC8095162 DOI: 10.1080/17512433.2021.1902303] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The COVID-19 pandemic has created a public health crisis, infected millions of people, and caused a significant number of deaths. SARS-CoV-2 transmits from person to person through several routes, mainly via respiratory droplets, which makes it difficult to contain its spread into the community. Here, we provide an overview of the epidemiology, pathogenesis, clinical presentation, diagnosis, and treatment of COVID-19. AREAS COVERED Direct person-to-person respiratory transmission has rapidly amplified the spread of coronavirus. In the absence of any clinically proven treatment options, the current clinical management of COVID-19 includes symptom management, infection prevention and control measures, optimized supportive care, and intensive care support in severe or critical illness. Developing an effective vaccine is now a leading research priority. Some vaccines have already been approved by the regulatory authorities for the prevention of COVID-19. EXPERT OPINION General prevention and protection measures regarding the containment and management of the second or third waves are necessary to minimize the risk of infection. Until now, four vaccines reported variable efficacies of between 62-95%, and two of them (Pfizer/BioNTech and Moderna) received FDA emergency use authorization. Equitable access and effective distribution of these vaccines in all countries will save millions of lives.
Collapse
Affiliation(s)
- Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences (AUIS), Bridgetown, Barbados
| | | | - Kherie Rowe
- School of Medicine, American University of Integrative Sciences (AUIS), Bridgetown, Barbados
| | - Rita Kirton
- School of Medicine, American University of Integrative Sciences (AUIS), Bridgetown, Barbados
| | - Frank Kunik
- School of Medicine, American University of Integrative Sciences (AUIS), Bridgetown, Barbados
| |
Collapse
|
36
|
Mahmoud SA, Ibrahim E, Thakre B, Teddy JG, Raheja P, Ganesan S, Zaher WA. Evaluation of pooling of samples for testing SARS-CoV- 2 for mass screening of COVID-19. BMC Infect Dis 2021; 21:360. [PMID: 33865325 PMCID: PMC8052526 DOI: 10.1186/s12879-021-06061-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The current pandemic of the SARS-CoV-2 virus, widely known as COVID-19, has affected millions of people around the world. The World Health Organization (WHO) has recommended vigorous testing to differentiate SARS-CoV-2 from other respiratory infections to aid in guiding appropriate care and management. Situations like this have demanded robust testing strategies and pooled testing of samples for SARS-CoV-2 virus has provided the solution to mass screening of people for COVID-19. A pooled testing strategy can be very effective in testing when resources are limited, yet it comes with its own limitations. These benefits and limitations need critical consideration when it comes to testing highly infectious diseases like COVID-19. METHODS This study evaluated the pooled testing of nasopharyngeal swabs for SARS-COV-2 by comparing the sensitivity of individual sample testing with 4-and 8-pool sample testing. Median cycle threshold (Ct) values were compared, and the precision of pooled testing was assessed through an inter- and intra-assay of pooled samples. Coefficient of variance was calculated for inter- and intra-assay variability. RESULTS The sensitivity becomes considerably lower when the samples are pooled. There is a high percentage of false negative reports with larger sample pool size and when the patient viral load is low or weak positive samples. High variability was seen in the intra- and inter-assay, especially among weak positive samples and when more number of samples are pooled together. CONCLUSION As COVID - 19 infection numbers and need for testing remain high, we must meticulously evaluate the testing strategy for each country depending on its testing capacity, infrastructure, economic strength, and need to determine the optimal balance on the cost-effective strategy of resource saving and risk/ cost of missing positive patients.
Collapse
|
37
|
Tapia CV, Marcia C, Ivone M, Nadia P, Lesly M, Camila G, Valentina A, Paula I, Fabien M. Performance of Saliva Samples for COVID-19 Diagnosis by Using the Allplex TM 2019-nCoV Assay Kit. Front Med (Lausanne) 2021; 8:617399. [PMID: 33718401 PMCID: PMC7943474 DOI: 10.3389/fmed.2021.617399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Although the nasopharyngeal swab (NPS) is the reference sampling method for the detection of SARS-Cov-2, it is not always possible to collect NPS in some patients. Saliva represents an interesting sampling method because it is less invasive and more convenient in patients with nasal or pharyngeal lesions. Objective: To compare the RT-qPCR test performances of saliva samples with nasal mid-turbinate swab (NMTS) and NPS samples in a cohort of ambulatory patients suspected of having COVID-19. Study Design: For each of the 112 enrolled patients, NPS, NMTS, and saliva samples were collected and tested for SARS-Cov-2 detection using three different target genes (RdRP, N and E genes) by RT-qPCR. Results: Among the positive samples (56/112), saliva samples showed a lower percentage of SARS-Cov-2 detection compared to NPS samples, (85.7 vs. 96.4%), while still a lower percentage was observed for NMTS samples (78.6%). In average, saliva samples showed higher Ct values for all tested target genes, compared to those from NPS and NMTS samples. Conclusions: By using the AllplexTM 2019-nCoV Assay Kit, saliva samples showed lower sensitivity for SARS CoV-2 compared to NPS samples; however, the not detected cases had lower viral burden in NPS samples (CT values >33) representing an interesting alternative sampling method in patients in which it is not possible to take a NPS sample.
Collapse
Affiliation(s)
| | - Campos Marcia
- Laboratorio de Especialidad Clínica Dávila, Santiago, Chile
| | - Mora Ivone
- Laboratorio de Especialidad Clínica Dávila, Santiago, Chile
| | - Pozas Nadia
- Laboratorio de Especialidad Clínica Dávila, Santiago, Chile
| | - Morales Lesly
- Laboratorio de Especialidad Clínica Dávila, Santiago, Chile
| | - Guzmán Camila
- Laboratorio de Especialidad Clínica Dávila, Santiago, Chile
| | | | | | - Magne Fabien
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Beslow LA, Linds AB, Fox CK, Kossorotoff M, Zuñiga Zambrano YC, Hernández-Chávez M, Hassanein SMA, Byrne S, Lim M, Maduaka N, Zafeiriou D, Dowling MM, Felling RJ, Rafay MF, Lehman LL, Noetzel MJ, Bernard TJ, Dlamini N. Pediatric Ischemic Stroke: An Infrequent Complication of SARS-CoV-2. Ann Neurol 2021; 89:657-665. [PMID: 33332607 DOI: 10.1002/ana.25991] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Severe complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include arterial ischemic stroke (AIS) in adults and multisystem inflammatory syndrome in children. Whether stroke is a frequent complication of pediatric SARS-CoV-2 is unknown. This study aimed to determine the proportion of pediatric SARS-CoV-2 cases with ischemic stroke and the proportion of incident pediatric strokes with SARS-CoV-2 in the first 3 months of the pandemic in an international cohort. METHODS We surveyed 61 international sites with pediatric stroke expertise. Survey questions included: numbers of hospitalized pediatric (≤ 18 years) patients with SARS-CoV-2; numbers of incident neonatal and childhood ischemic strokes; frequency of SARS-CoV-2 testing for pediatric patients with stroke; and numbers of stroke cases positive for SARS-CoV-2 from March 1 to May 31, 2020. RESULTS Of 42 centers with SARS-CoV-2 hospitalization numbers, 8 of 971 (0.82%) pediatric patients with SARS-CoV-2 had ischemic strokes. Proportions of stroke cases positive for SARS-CoV-2 from March to May 2020 were: 1 of 108 with neonatal AIS (0.9%), 0 of 33 with neonatal cerebral sinovenous thrombosis (CSVT; 0%), 6 of 166 with childhood AIS (3.6%), and 1 of 54 with childhood CSVT (1.9%). However, only 30.5% of neonates and 60% of children with strokes were tested for SARS-CoV-2. Therefore, these proportions represent 2.9, 0, 6.1, and 3.0% of stroke cases tested for SARS-CoV-2. Seven of 8 patients with SARS-CoV-2 had additional established stroke risk factors. INTERPRETATION As in adults, pediatric stroke is an infrequent complication of SARS-CoV-2, and SARS-CoV-2 was detected in only 4.6% of pediatric patients with ischemic stroke tested for the virus. However, < 50% of strokes were tested. To understand the role of SARS-CoV-2 in pediatric stroke better, SARS-CoV-2 testing should be considered in pediatric patients with stroke as the pandemic continues. ANN NEUROL 2021;89:657-665.
Collapse
Affiliation(s)
- Lauren A Beslow
- Division of Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alexandra B Linds
- Division of Neurology, Department of Paediatrics, and Child Health Evaluative Sciences Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christine K Fox
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA
| | - Manoëlle Kossorotoff
- French Center for Pediatric Stroke, Pediatric Neurology Department, APHP University Hospital Necker-Enfants Maladies, Paris, France
| | | | - Marta Hernández-Chávez
- Unit of Neurology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sahar M A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Susan Byrne
- Evelina London Children's Hospital, London, UK.,FutureNeuro, Royal College of Surgeons, Dublin, Ireland
| | - Ming Lim
- Evelina London Children's Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nkechi Maduaka
- Paediatric Department, King's College Hospital, London, UK
| | - Dimitrios Zafeiriou
- Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Michael M Dowling
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mubeen F Rafay
- Section of Neurology, Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael J Noetzel
- Departments of Neurology and Pediatrics, Division of Pediatric and Developmental Neurology, Washington University School of Medicine, Neurorehabilitation Program, St. Louis Children's Hospital, St. Louis, MO
| | - Timothy J Bernard
- Section of Child Neurology, Children's Hospital Colorado, Departments of Pediatrics and Neurology, Hemophilia and Thrombosis Center, University of Colorado School of Medicine, Aurora, CO
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, and Child Health Evaluative Sciences Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
39
|
Real Time PCR and Culture-Based Virus Isolation Test in Clinically Recovered Patients: Is the Subject Still Infectious for SARS-CoV2? J Clin Med 2021; 10:jcm10020309. [PMID: 33467628 PMCID: PMC7829794 DOI: 10.3390/jcm10020309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The highly variable manifestation of the COVID-19 disease, from completely asymptomatic to fatal, is both a clinical and a public health issue. The criteria for discharge of hospitalized patients have been based so far on the negative result of Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) tests, but the persistence of viral fragments may exceed that of the integral virus by weeks. The aim of our study was to verify the clearance of the virus at viral culture in patients hospitalized for COVID-19 that have clinically recovered but are still positive on nasopharyngeal swab. METHODS The study was conducted in hospitalized patients with positive RT-PCR on nasopharyngeal swab. Patients included were from asymptomatic to severe cases and performed nasopharyngeal control swabbing on day 14 for asymptomatic patient or at least three days after remission of symptoms. RT-PCR positive specimens were sent to a biosafety level 3 laboratory for viral culture. RESULTS We performed a combined analysis of RT-PCR and a highly sensitive in vitro culture from 84 samples of hospitalized patients. The average age was 46 ± 20.29, and 40.5% of the subjects had radiologically confirmed pneumonia, with average PaO2 of 72.35 ± 12.12and P/F ratio of 315 ± 83.15. Ct values for the N gene were lower in the first swab than in the control one (p < 0.001). The samples from 83 patients were negative at viral culture, and RT-PCR on the respective supernatants always confirmed the absence of viral growth. CONCLUSIONS Our preliminary results demonstrate that patients clinically recovered for at least three days show the viral clearance at viral culture, and presumably they continued to not be contagious.
Collapse
|
40
|
Andryukov BG, Besednova NN, Kuznetsova TA, Fedyanina LN. Laboratory-Based Resources for COVID-19 Diagnostics: Traditional Tools and Novel Technologies. A Perspective of Personalized Medicine. J Pers Med 2021; 11:jpm11010042. [PMID: 33451039 PMCID: PMC7828525 DOI: 10.3390/jpm11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus infection 2019 (COVID-19) pandemic, caused by the highly contagious SARS-CoV-2 virus, has provoked a global healthcare and economic crisis. The control over the spread of the disease requires an efficient and scalable laboratory-based strategy for testing the population based on multiple platforms to provide rapid and accurate diagnosis. With the onset of the pandemic, the reverse transcription polymerase chain reaction (RT-PCR) method has become a standard diagnostic tool, which has received wide clinical use. In large-scale and repeated examinations, these tests can identify infected patients with COVID-19, with their accuracy, however, dependent on many factors, while the entire process takes up to 6–8 h. Here we also describe a number of serological systems for detecting antibodies against SARS-CoV-2. These are used to assess the level of population immunity in various categories of people, as well as for retrospective diagnosis of asymptomatic and mild COVID-19 in patients. However, the widespread use of traditional diagnostic tools in the context of the rapid spread of COVID-19 is hampered by a number of limitations. Therefore, the sharp increase in the number of patients with COVID-19 necessitates creation of new rapid, inexpensive, sensitive, and specific tests. In this regard, we focus on new laboratory technologies such as loop mediated isothermal amplification (LAMP) and lateral flow immunoassay (LFIA), which have proven to work well in the COVID-19 diagnostics and can become a worthy alternative to traditional laboratory-based diagnostics resources. To cope with the COVID-19 pandemic, the healthcare system requires a combination of various types of laboratory diagnostic testing techniques, whodse sensitivity and specificity increases with the progress in the SARS-CoV-2 research. The testing strategy should be designed in such a way to provide, depending on the timing of examination and the severity of the infection in patients, large-scale and repeated examinations based on the principle: screening–monitoring–control. The search and development of new methods for rapid diagnostics of COVID-19 in laboratory, based on new analytical platforms, is still a highly important and urgent healthcare issue. In the final part of the review, special emphasis is made on the relevance of the concept of personalized medicine to combat the COVID-19 pandemic in the light of the recent studies carried out to identify the causes of variation in individual susceptibility to SARS-CoV-2 and increase the efficiency and cost-effectiveness of treatment.
Collapse
Affiliation(s)
- Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Correspondence: ; Tel.: +7-4232-304-647
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| |
Collapse
|
41
|
Passarelli VC, Faico-Filho K, Moreira LVL, Cunha AP, Carvalho JMA, Barbosa GR, Camargo C, Conte DD, Perosa AH, Bellei N. Asymptomatic COVID-19 in hospital visitors: The underestimated potential of viral shedding. Int J Infect Dis 2021; 102:412-414. [PMID: 33129961 PMCID: PMC7592020 DOI: 10.1016/j.ijid.2020.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In a single day, six of 150 (4%) asymptomatic visitors were diagnosed with COVID-19 at a hospital with a universal masking policy. Two inpatients (contacts) subsequently developed symptoms. More rigorous protective measures during visitation periods may need to be included in infection control practices to reduce nosocomial transmissions.
Collapse
Affiliation(s)
- Victor C Passarelli
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil.
| | - Klinger Faico-Filho
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Luiz Vinicius Leão Moreira
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana Paula Cunha
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Joseane Mayara Almeida Carvalho
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Gabriela Rodrigues Barbosa
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Clarice Camargo
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil; Instituto de Pesquisa PENSI-Sabará Hospital Infantil, São Paulo, Brazil
| | - Danielle D Conte
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana H Perosa
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Nancy Bellei
- Universidade Federal de São Paulo, Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
42
|
Andryukov BG, Lyapun IN. COVID-19 diagnostic laboratory strategies: modern technologies and development trends (review of literature). ACTA ACUST UNITED AC 2020; 65:757-766. [DOI: 10.18821/0869-2084-2020-65-12-757-766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic, associated with the new coronavirus SARS-CoV-2, has caused a surge in incidence worldwide, as well as a severe crisis in global health and economy. Therefore, fast and accurate diagnosis of infection is key to timely treatment and elimination of the spread of the virus. Currently, the standard method for detecting coronavirus is reverse transcription polymerase chain reaction (RT-PCR). However, this method requires expensive equipment and trained personnel, which limits the conduct of mass testing and lengthens the time to obtain a research result. Serological tests for antibodies against SARS-CoV-2 and the determination of protective immunity in various populations are used to retrospectively identify patients with asymptomatic and mild forms of infection, monitor the course of infection in hospitalized patients, and also track contacts and epidemiological surveillance. The use of standard methods for diagnosing COVID-19 in conditions of mass morbidity, especially in conditions of insufficient resources and lack of appropriate infrastructure, is associated with a number of limitations. Therefore, the search and development of new, fast, inexpensive, simple, device-free and no less sensitive and specific tests is an urgent task. Therefore, the search and development of new, fast, inexpensive, simple, device-free and no less sensitive and specific tests is an urgent task. The review examines new laboratory technologies for diagnosing a new infection - loop isothermal amplification (LAMP) and immunochromatographic analysis (ICA), which can become a real alternative to the used molecular and enzyme immunoassay methods. The dynamic development of these methods in recent years expands the prospects for their use both for diagnosing COVID-19 and monitoring a pandemic.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science; Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I. N. Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
43
|
Asai T. COVID-19: accurate interpretation of diagnostic tests-a statistical point of view. J Anesth 2020; 35:328-332. [PMID: 33306137 PMCID: PMC7729143 DOI: 10.1007/s00540-020-02875-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Takashi Asai
- Department of Anesthesiology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, 343-8555, Japan.
| |
Collapse
|
44
|
Li L, Liang Y, Hu F, Yan H, Li Y, Xie Z, Huang L, Zhao J, Wan Z, Wang H, Shui J, Cai W, Tang S. Molecular and serological characterization of SARS-CoV-2 infection among COVID-19 patients. Virology 2020; 551:26-35. [PMID: 33011520 PMCID: PMC7521453 DOI: 10.1016/j.virol.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND SARS-CoV-2 is a novel coronavirus and the cause of COVID-19. More than 80% of COVID-19 patients exhibit mild or moderate symptoms. In this study, we investigated the dynamics of viral load and antibodies against SARS-CoV-2 in a longitudinal cohort of COVID-19 patients with severe and mild/moderate diseases. METHODS Demographic and clinical information were obtained. Serial samples of blood, nasal and pharyngeal and anal swabs were collected at different time points post-onset. SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies were measured by qRT-PCR and immunoassays, respectively. RESULTS Respiratory SARS-CoV-2 RNA was detectable in 58.0% (58/100) COVID-19 patients upon admission and lasted for a median of 13 days post-onset. In addition, 5.9% (1/17) and 20.2% (19/94) of the blood and anal swab specimens were positive for SARS-CoV-2 RNA, respectively. Anal viral RNA was more frequently detected in the patients who were positive for viral RNA in the respiratory samples upon admission. Specific anti-SARS-CoV-2 antibody developed within two weeks after onset, reached peak approximately 17 days post-onset and then maintained at relatively high level up to 50 days we analyzed in most patients. However, the levels of antibodies were variable among the patients. High titers of antibodies appeared to be associated with the severity of the disease. Furthermore, viral proteins from different sources showed significant difference of serological sensitivity especially during the first week post-onset. CONCLUSIONS Our results indicate rapid clearance or self-elimination of viral RNA in about half of the COVID-19 patients upon admission. Viral RNA shedding of SARS-CoV-2 occurred in multiple tissues including the respiratory system, blood, and intestine. Variable levels of specific anti-SARS-CoV-2 antibody may be associated with disease severity. These findings have shed light on viral kinetics and antibody response in COVID-19 patients and provide scientific evidence for infection control and patient management.
Collapse
Affiliation(s)
- Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Yuanhao Liang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Huanchang Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Zhiwei Xie
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Liping Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianhui Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhengwei Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Shui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Hospital of Dermatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Increasing SARS-CoV-2 RT-qPCR testing capacity by sample pooling. Int J Infect Dis 2020; 103:19-22. [PMID: 33220439 PMCID: PMC7674967 DOI: 10.1016/j.ijid.2020.11.155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Limited testing capacity has characterized the ongoing coronavirus disease 2019 (COVID-19) pandemic in Spain, hampering timely control of outbreaks and opportunities to reduce the escalation of community transmission. This study investigated the potential to use sample pooling, followed by one-step retrotranscription and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) to increase testing capacity for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). METHODS Various pool sizes (five, 10 and 15 samples) were evaluated prior to RNA extraction followed by standard RT-qPCR for the diagnosis of COVID-19. The pool size achieving reproducible results with individual sample testing was subsequently used to assess nasopharyngeal samples in a tertiary hospital in August 2020. RESULTS A pool size of five samples had higher sensitivity compared with pool sizes of 10 and 15 samples, showing a mean cycle threshold (Ct) shift of 3.5 [standard deviation (SD) 2.2] between the pooled test and positive samples in the pool. Next, a pool size of five was used to test a total of 895 pools (4475 prospective samples) using two different RT-qPCR kits. The Real Accurate Quadruplex corona-plus PCR Kit (PathoFinder) reported the lowest mean Ct shift [2.2 (SD 2.4)] between the pool and individual samples. This strategy enables detection of individual positive samples in positive pools with Ct of 16.7-39.4. CONCLUSIONS Grouping samples into pools of five for RT-qPCR resulted in an increase in SARS-CoV-2 testing capacity with minimal loss of sensitivity compared with testing each sample individually.
Collapse
|
46
|
Performance of Targeted Library Preparation Solutions for SARS-CoV-2 Whole Genome Analysis. Diagnostics (Basel) 2020; 10:diagnostics10100769. [PMID: 33003465 PMCID: PMC7601271 DOI: 10.3390/diagnostics10100769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022] Open
Abstract
Single next-generation sequencing (NGS) proved to be an important tool for monitoring the SARS-CoV-2 outbreak at the global level Until today, thousands of SARS-CoV-2 genome sequences have been published at GISAID (Global Initiative on Sharing All Influenza Data) but only a portion are suitable for reliable variant analysis. Here we report on the comparison of three commercially available NGS library preparation kits. We discuss advantages and limitations from the perspective of required input sample quality and data quality for advanced SARS-CoV-2 genome analysis.
Collapse
|