1
|
Gao X, Zhang W, Wang F. Circulating branched-chain amino acids and risk of psychiatric disorders: A two-sample Mendelian randomization study. J Psychosom Res 2025; 192:112101. [PMID: 40107167 DOI: 10.1016/j.jpsychores.2025.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Several studies have identified biomarkers that help in the prevention, diagnosis, and treatment of psychiatric disorders. The current study aimed to explore the association between circulating branched-chain amino acids (BCAA) and the risk of five psychiatric disorders. METHODS GWAS summary statistics were obtained from the UK Biobank and the FinnGen Biobank. The inverse variance weighted (IVW) method was used as a primary method to assess causal effects. The heterogeneity test, the horizontal pleiotropy test, and leave-one-out analysis were used to assess the robustness and reliability of the results. RESULTS Total BCAA levels were not significantly associated with the risk of anxiety disorders, alcohol dependence, depression, panic disorder, and bipolar affective disorders. Separate analyses for each BCAA showed that the levels of valine and leucine were not associated with the risk of the mentioned five psychiatric disorders, and the levels of isoleucine were not associated with the risk of depression, panic disorder, and bipolar affective disorders, but with the risk of anxiety disorders (IVW: OR = 0.814, 95 %CI = 0.716-0.925) and alcohol dependence (IVW: 0.690, 95 %CI = 0.560-0.849). CONCLUSIONS Circulating isoleucine was a protective factor for anxiety disorders and alcohol dependence, offering a new research direction and theoretical basis for preventing and managing psychiatric disorders.
Collapse
Affiliation(s)
- Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu, China.
| | - Weichao Zhang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu, China
| | - Fang Wang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Habibi A, Letafatkar N, Sattari N, Nobakht S, Rafat Z, Soltani Moghadam S, Mirdamadi A, Javid M, Jamilian P, Hassanipour S, Keivanlou MH, Amini-Salehi E. Modulation of inflammatory markers in type 2 diabetes mellitus through gut microbiome-targeted interventions: An umbrella review on meta-analyses. Clin Nutr ESPEN 2025; 65:93-104. [PMID: 39551350 DOI: 10.1016/j.clnesp.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus (T2DM) poses a significant global health challenge due to various lifestyle factors contributing to its prevalence and associated complications. Chronic low-grade inflammation, characterized by elevated levels of inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), plays a pivotal role in the pathogenesis of T2DM. Modulation of the gut microbiota through microbiome-targeted therapy (MTT), including probiotics, prebiotics, and synbiotics, has emerged as a potential strategy to mitigate inflammation and improve metabolic outcomes in T2DM. METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines to evaluate the impact of MTT on inflammatory markers in patients with T2DM. Searches were performed in PubMed, Scopus, and Web of Science databases up to June 2024, with inclusion criteria limited to English-language meta-analyses of randomized controlled trials (RCTs) assessing the effects of probiotics, prebiotics, or synbiotics on inflammatory markers in T2DM patients. RESULTS Ten meta-analyses met the inclusion criteria, comprising studies investigating the effects of various MTT interventions on CRP, IL-6, and TNF-α levels in T2DM patients. Meta-analysis results indicated significant reductions in CRP (SMD: -0.070; 95 % CI: -0.119 to -0.020) and TNF-α (SMD: -0.370; 95 % CI: -0.554 to -0.186) levels following MTT, while IL-6 reductions (SMD: -0.070; 95 % CI: -0.269 to 0.129) did not reach statistical significance. However, heterogeneity in study quality, intervention protocols, and participant demographics posed challenges in interpretation. CONCLUSIONS While improvements in inflammatory markers with MTT have been observed, significant limitations-such as heterogeneity in study quality and variation in intervention protocols-highlight the need for further research to confirm its efficacy and clarify underlying mechanisms. Future studies should aim to address these limitations by exploring variations in dosage, supplement formulations, and bacterial strains, which are crucial for improving the reliability and broader applicability of MTT in the management of T2DM.
Collapse
Affiliation(s)
- Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Nobakht
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Rafat
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Xu D, Wang X, Hou X, Wang X, Shi W, Hu Y. The effect of Lonicerae flos and Rhizoma curcumae longae extract on the intestinal development and function of broilers. Poult Sci 2024; 103:104225. [PMID: 39217666 PMCID: PMC11402626 DOI: 10.1016/j.psj.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.
Collapse
Affiliation(s)
- Dahai Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China; State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojiao Hou
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Xiumin Wang
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Jonić N, Koprivica I, Chatzigiannis CM, Tsiailanis AD, Kyrkou SG, Tzakos EP, Pavić A, Dimitrijević M, Jovanović A, Jovanović MB, Marinho S, Castro-Almeida I, Otašević V, Moura-Alves P, Tzakos AG, Stojanović I. Development of FluoAHRL: A Novel Synthetic Fluorescent Compound That Activates AHR and Potentiates Anti-Inflammatory T Regulatory Cells. Molecules 2024; 29:2988. [PMID: 38998940 PMCID: PMC11243367 DOI: 10.3390/molecules29132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Christos M. Chatzigiannis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Antonis D. Tsiailanis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Stavroula G. Kyrkou
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | | | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Andjelina Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
| | - Milan B. Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sérgio Marinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Castro-Almeida
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vesna Otašević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Pedro Moura-Alves
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andreas G. Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| |
Collapse
|
5
|
Zabłocka A, Jakubczyk D, Leszczyńska K, Pacyga-Prus K, Macała J, Górska S. Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line. Probiotics Antimicrob Proteins 2024; 16:1012-1025. [PMID: 37227688 PMCID: PMC11126500 DOI: 10.1007/s12602-023-10093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Bifidobacterium species are one of the most important probiotic microorganisms which are present in both, infants and adults. Nowadays, growing data describing their healthy properties arise, indicating they could act at the cellular and molecular level. However, still little is known about the specific mechanisms promoting their beneficial effects. Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), is involved in the protective mechanisms in the gastrointestinal tract, where it can be provided by epithelial cells, macrophages, or bacteria. The present study explored whether induction of iNOS-dependent NO synthesis in macrophages stems from the cellular action of Bifidobacterium species. The ability of ten Bifidobacterium strains belonging to 3 different species (Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium animalis) to activate MAP kinases, NF-κB factor, and iNOS expression in a murine bone-marrow-derived macrophages cell line was determined by Western blotting. Changes in NO production were determined by the Griess reaction. It was performed that the Bifidobacterium strains were able to induce NF-қB-dependent iNOS expression and NO production; however, the efficacy depends on the strain. The highest stimulatory activity was observed for Bifidobacterium animalis subsp. animals CCDM 366, whereas the lowest was noted for strains Bifidobacterium adolescentis CCDM 371 and Bifidobacterium longum subsp. longum CCDM 372. Both TLR2 and TLR4 receptors are involved in Bifidobacterium-induced macrophage activation and NO production. We showed that the impact of Bifidobacterium on the regulation of iNOS expression is determined by MAPK kinase activity. Using pharmaceutical inhibitors of ERK 1/2 and JNK, we confirmed that Bifidobacterium strains can activate these kinases to control iNOS mRNA expression. Concluding, the induction of iNOS and NO production may be involved in the protective mechanism of action observed for Bifidobacterium in the intestine, and the efficacy is strain-dependent.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | - Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Leszczyńska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Józefa Macała
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
6
|
Wójcik R, Małaczewska J, Tobolski D, Miciński J, Kaczorek-Łukowska E, Zwierzchowski G. The Effect of Orally Administered Multi-Strain Probiotic Formulation ( Lactobacillus, Bifidobacterium) on the Phagocytic Activity and Oxidative Metabolism of Peripheral Blood Granulocytes and Monocytes in Lambs. Int J Mol Sci 2024; 25:5068. [PMID: 38791112 PMCID: PMC11120738 DOI: 10.3390/ijms25105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Probiotic feed additives have attracted considerable research interest in recent years because the effectiveness of probiotics can differ across microbial strains and the supplemented macroorganisms. The present study was conducted on 16 lambs divided equally into two groups (C-control and E-experimental). The examined lambs were aged 11 days at the beginning of the experiment and 40 days at the end of the experiment. The diet of group E lambs was supplemented with a multi-strain probiotic formulation (Lactobacillus plantarum AMT14, Lactobacillus plantarum AMT4, Lactobacillus rhamnosus AMT15, and Bifidobacterium animalis AMT30), whereas group C lambs did not receive the probiotic additive. At the beginning of the experiment (day 0) and on experimental days 15 and 30, blood was sampled from the jugular vein to determine and compare: phagocytic activity (Phagotest) and oxidative metabolism (Phagoburst) of peripheral blood granulocytes and monocytes by flow cytometry. An analysis of the phagocytic activity of granulocytes and monocytes revealed significantly higher levels of phagocytic activity (expressed as the percentage of phagocytic cells and mean fluorescence intensity) in lambs that were administered the multi-strain probiotic formulation compared with lambs in the control group. The probiotic feed additive also exerted a positive effect on the oxidative metabolism of both granulocytes and monocytes (expressed as the percentage of oxidative metabolism and mean fluorescence intensity) after stimulation with Escherichia coli bacteria and with PMA (4-phorbol-12-β-myristate-13-acetate). These findings suggest that the tested probiotic formulation may have a positive effect on the immune status of lambs.
Collapse
Affiliation(s)
- Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Dawid Tobolski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland;
| | - Jan Miciński
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-917 Olsztyn, Poland;
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Grzegorz Zwierzchowski
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Li L, Jiang H, Qiu Z, Wang Z, Hu Z. EFFECT OF MIR-21-3P ON INTESTINAL INJURY IN RATS WITH TRAUMATIC HEMORRHAGIC SHOCK RESUSCITATED WITH THE SODIUM BICARBONATE RINGER'S SOLUTION. Shock 2024; 61:776-782. [PMID: 38517274 DOI: 10.1097/shk.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.
Collapse
Affiliation(s)
| | | | | | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | |
Collapse
|
8
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
9
|
Saksida T, Paunović V, Koprivica I, Mićanović D, Jevtić B, Jonić N, Stojanović I, Pejnović N. Development of Type 1 Diabetes in Mice Is Associated with a Decrease in IL-2-Producing ILC3 and FoxP3 + Treg in the Small Intestine. Molecules 2023; 28:molecules28083366. [PMID: 37110604 PMCID: PMC10141349 DOI: 10.3390/molecules28083366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Recent data indicate the link between the number and function of T regulatory cells (Treg) in the gut immune tissue and initiation and development of autoimmunity associated with type 1 diabetes (T1D). Since type 3 innate lymphoid cells (ILC3) in the small intestine are essential for maintaining FoxP3+ Treg and there are no data about the possible role of ILC3 in T1D pathogenesis, the aim of this study was to explore ILC3-Treg link during the development of T1D. Mature diabetic NOD mice had lower frequencies of IL-2-producing ILC3 and Treg in small intestine lamina propria (SILP) compared to prediabetic NOD mice. Similarly, in multiple low doses of streptozotocin (MLDS)-induced T1D in C57BL/6 mice, hyperglycemic mice exhibited lower numbers of ILC3, IL-2+ ILC3 and Treg in SILP compared to healthy controls. To boost T1D severity, mice were treated with broad-spectrum antibiotics (ABX) for 14 days prior to T1D induction by MLDS. The higher incidence of T1D in ABX-treated mice was associated with significantly lower frequencies of IL-2+ ILC3 and FoxP3+ Treg in SILP compared with mice without ABX treatment. The obtained findings show that the lower proportions of IL-2-expressing ILC3 and FoxP3+ Treg in SILP coincided with diabetes progression and severity.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dragica Mićanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
10
|
Antibacterial and Immunostimulatory Activity of Potential Probiotic Lactic Acid Bacteria Isolated from Ethiopian Fermented Dairy Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Lactic acid bacteria (LAB) form a group of bacteria to which most probiotics belong and are commonly found in fermented dairy products. Fermented foods and beverages are foods made through desired microbial growth and enzymatic conversions of food components. In this study, 43 LAB were isolated from Ethiopian traditional cottage cheese, cheese, and yogurt and evaluated for their functional and safety properties as candidate probiotics. Twenty-seven isolates, representative of each fermented food type, were selected and identified to the species level. Limosilactobacillus fermentum was found to be the predominant species in all samples studied (70.4%), while 11.1% of isolates were identified as Lactiplantibacillus plantarum. All 27 isolates tested showed resistance to 0.5% bile salt, while 26 strains were resistant to pH 3. The LAB isolates were also evaluated for antagonistic properties against key pathogens, with strain-specific features observed for their antimicrobial activity. Five strains from cottage cheese (Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and Pediococcus pentosaceus 95E) showed inhibitory activity against indicator pathogens that are key causes of gastrointestinal infections in Ethiopia, i.e., Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Strain-specific immunomodulatory activity monitored as nuclear factor kappa B (NF-κB) and interferon regulatory factor (IRF) activation was documented for Lactiplantibacillus plantarum 54B, 55A and P. pentosaceus 95E. Antibiotic susceptibility testing confirmed that all LAB isolates were safe concerning their antibiotic resistance profiles. Five isolates (especially Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and P. pentosaceus 95E) showed promising results in all assays and are novel probiotic candidates of interest for clinical trial follow-up.
Collapse
|
11
|
Wu R, Dong X, Wang Q, Zhang Z, Wang J, Wang X. D1018 with higher stability and excellent lipopolysaccharide binding affinity has potent anti-bacterial and anti-inflammatory activity. Front Microbiol 2022; 13:1010017. [PMID: 36532445 PMCID: PMC9751974 DOI: 10.3389/fmicb.2022.1010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/02/2022] [Indexed: 03/20/2025] Open
Abstract
Escherichia coli (E. coli) infection and LPS-induced inflammation are still of severe threat to human health. With the increasing problem of antibiotic resistance, there is a desperate need to develop new approaches to solve the problem. Antimicrobial peptide (AMP) IDR-1018 exhibited potential antimicrobial and immunoregulation activity. However, moderate antimicrobial efficiency and susceptibility to protease cleavage limited its therapeutic application. Therefore, the derived 1018M which has better activity against MRSA and whole sequence D-amino acids substitution peptides (D1018 and D1018M) were synthesized in this study. The resistance of D1018 and D1018M against tested proteases increased (2-4 times), particularly in D1018. The antibacterial activity of D1018 was the same as that of the parent peptide IDR-1018, but the antimicrobial activity of D1018M was slightly increased (2-fold). Though the hemolysis of IDR-1018 and D1018 was about 2%, at the concentration of 8×MIC, the cytotoxicity of IDR-1018, D1018, and 1018M was negligible. The peptides could interact with E. coli cell wall and cytoplasmic membrane, penetrate the membrane, cause leakage of contents, and disrupt genomic DNA. Among them, D1018 is the most prominent one. In addition, IDR-1018 and D1018 showed potent binding ability to LPS, thus leading to excellent inhibition capacity to LPS-induced proinflammation response. Taken together, these data demonstrate that D1018 is a promising peptide candidate for the treatment of E. coli infection.
Collapse
Affiliation(s)
- Runzhe Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xunxi Dong
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiang Wang
- School of Food and Pharmacy, Ningbo University, Ningbo, Zhejiang, China
| | - Zirui Zhang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jianhua Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Zhang S, Paul S, Kundu P. NF-κB Regulation by Gut Microbiota Decides Homeostasis or Disease Outcome During Ageing. Front Cell Dev Biol 2022; 10:874940. [PMID: 35846362 PMCID: PMC9285657 DOI: 10.3389/fcell.2022.874940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human beings and their indigenous microbial communities have coexisted for centuries, which led to the development of co-evolutionary mechanisms of communication and cooperation. Such communication machineries are governed by sophisticated multi-step feedback loops, which typically begin with the recognition of microbes by pattern recognition receptors (PRRs), followed by a host transcriptional response leading to the release of effector molecules. Our gastrointestinal tract being the main platform for this interaction, a variety of host intestinal cells tightly regulate these loops to establish tolerance towards the microbial communities of the gut and maintain homeostasis. The transcription factor, nuclear factor kappa B (NF-κB) is an integral component of such a communication apparatus, which plays a critical role in determining the state of homeostasis or inflammation associated with dysbiosis in the host. Here we outline the crucial role of NF-κB in host response to microbial cues in the context of ageing and associated diseases.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Soumyajeet Paul
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Parag Kundu,
| |
Collapse
|
13
|
How Gut Bacterial Dysbiosis Can Promote Candida albicans Overgrowth during Colonic Inflammation. Microorganisms 2022; 10:microorganisms10051014. [PMID: 35630457 PMCID: PMC9147621 DOI: 10.3390/microorganisms10051014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a commensal opportunistic yeast, which is capable of colonising many segments of the human digestive tract. Excessive C. albicans overgrowth in the gut is associated with multiple risk factors such as immunosuppression, antibiotic treatment associated with changes to the gut microbiota and digestive mucosa that support C. albicans translocation across the digestive intestinal barrier and haematogenous dissemination, leading to invasive fungal infections. The C. albicans cell wall contains mannoproteins, β-glucans, and chitin, which are known to trigger a wide range of host cell activities and to circulate in the blood during fungal infection. This review describes the role of C. albicans in colonic inflammation and how various receptors are involved in the immune defence against C. albicans with a special focus on the role of mannose-binding lectin (MBL) and TLRs in intestinal homeostasis and C. albicans sensing. This review highlights gut microbiota dysbiosis during colonic inflammation in a dextran sulphate sodium (DSS)-induced colitis murine model and the effect of fungal glycan fractions, in particular β-glucans and chitin, on the modification of the gut microbiota, as well as how these glycans modulate the immuno-inflammatory response of the host.
Collapse
|
14
|
Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022; 11:1401. [PMID: 35626971 PMCID: PMC9140538 DOI: 10.3390/foods11101401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Daniel Adams
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| |
Collapse
|
15
|
West AJ, Deswaerte V, West AC, Gearing LJ, Tan P, Jenkins BJ. Inflammasome-Associated Gastric Tumorigenesis Is Independent of the NLRP3 Pattern Recognition Receptor. Front Oncol 2022; 12:830350. [PMID: 35299732 PMCID: PMC8921257 DOI: 10.3389/fonc.2022.830350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are important multiprotein regulatory complexes of innate immunity and have recently emerged as playing divergent roles in numerous inflammation-associated cancers. Among these include gastric cancer (GC), the third leading cause of cancer-associated death worldwide, and we have previously discovered a pro-tumorigenic role for the key inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) in the spontaneous genetic gp130F/F mouse model for GC. However, the identity of the specific pattern recognition receptors (PRRs) that activate tumor-promoting inflammasomes during GC is unknown. Here, we investigated the role of the best-characterized inflammasome-associated PRR, nucleotide-binding domain, and leucine-rich repeat containing receptor, pyrin domain-containing (NLRP) 3, in GC. In gastric tumors of gp130F/F mice, although NLRP3 expression was elevated at the mRNA (qPCR) and protein (immunohistochemistry) levels, genetic ablation of NLRP3 in gp130F/F:Nlrp3-/- mice did not alleviate the development of gastric tumors. Similarly, cellular processes associated with tumorigenesis in the gastric mucosa, namely, proliferation, apoptosis, and inflammation, were comparable between gp130F/F and gp130F/F:Nlrp3-/- mice. Furthermore, inflammasome activation levels, determined by immunoblotting and immunohistochemistry for cleaved Caspase-1, which along with ASC is another integral component of inflammasome complexes, were unchanged in gp130F/F and gp130F/F:Nlrp3-/- gastric tumors. We also observed variable NLRP3 expression levels (mRNA and protein) among independent GC patient cohorts, and NLRP3 was not prognostic for survival outcomes. Taken together, these data suggest that NLRP3 does not play a major role in promoting inflammasome-driven gastric tumorigenesis, and thus pave the way for further investigations to uncover the key inflammasome-associated PRR implicated in GC.
Collapse
Affiliation(s)
- Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore.,Genome Institute of Singapore, Singapore, Singapore.,Cancer Sciences Institute of Singapore, National University of Singapore, Institute of Singapore, Singapore, Singapore
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Du L, Hao YM, Yang YH, Zheng Y, Wu ZJ, Zhou MQ, Wang BZ, Wang YM, Wu H, Su GH. DHA-Enriched Phospholipids and EPA-Enriched Phospholipids Alleviate Lipopolysaccharide-Induced Intestinal Barrier Injury in Mice via a Sirtuin 1-Dependent Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2911-2922. [PMID: 35174699 DOI: 10.1021/acs.jafc.1c07761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Intestinal barrier dysfunction has emerged as a potential contributor to the development of several severe diseases. Herein, the effect and underlying mechanism of DHA-enriched phospholipids (DHA-PL) and EPA-enriched phospholipids (EPA-PL) on protecting against lipopolysaccharide (LPS)-induced intestinal barrier injury were elucidated. C57BL/6J male mice were fed an AIN-93G diet containing 1% DHA-PL or EPA-PL for 4 weeks and then were intraperitoneally injected with LPS (10 mg/kg) to cause intestinal barrier injury. The results manifested that DHA-PL and EPA-PL pretreatment balanced apoptosis and autophagy in intestinal epithelial cells and maintained intestinal tight junction integrity. Our findings also demonstrated that cotreatment with EX-527, a sirtuin 1 specific inhibitor, hindered the role of DHA-PL and EPA-PL against LPS-evoked intestinal barrier injury through reversing the inhibitory action of them on NF-κB and MAPKs activation as well as their potentiating actions on Nrf2 nuclear translocation. Overall, DHA-PL and EPA-PL alleviated LPS-mediated intestinal barrier injury via inactivation of the NF-κB and MAPKs pathways as well as activating the Nrf2 antioxidant pathway via up-regulating sirtuin 1.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Jinan, Shandong 250353, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Zi-Jian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
17
|
Wu J, Yin Y, Qin M, Li K, Liu F, Zhou X, Song X, Li B. Vagus Nerve Stimulation Protects Enterocyte Glycocalyx After Hemorrhagic Shock Via the Cholinergic Anti-Inflammatory Pathway. Shock 2021; 56:832-839. [PMID: 33927140 PMCID: PMC8519159 DOI: 10.1097/shk.0000000000001791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Electrical vagal nerve stimulation is known to decrease gut permeability and alleviate gut injury caused by traumatic hemorrhagic shock. However, the specific mechanism of action remains unclear. Glycocalyx, located on the surface of the intestinal epithelium, is associated with the buildup of the intestinal barrier. Therefore, the goal of our study was to explore whether vagal nerve stimulation affects enterocyte glycocalyx, gut permeability, gut injury, and remote lung injury. MATERIALS AND METHODS Male Sprague Dawley rats were anesthetized and their cervical nerves were exposed. The rats underwent traumatic hemorrhagic shock (with maintenance of mean arterial pressure of 30-35 mmHg for 60 min) with fluid resuscitation. Vagal nerve stimulation was added to two cohorts of animals before fluid resuscitation, and one of them was injected with methyllycaconitine to block the cholinergic anti-inflammatory pathway. Intestinal epithelial glycocalyx was detected using immunofluorescence. Intestinal permeability, the degree of gut and lung injury, and inflammation factors were also assessed. RESULTS Vagal nerve stimulation alleviated the damage to the intestinal epithelial glycocalyx and decreased intestinal permeability by 43% compared with the shock/resuscitation phase (P < 0.05). Methyllycaconitine partly eliminated the effects of vagal nerve stimulation on the intestinal epithelial glycocalyx (P < 0.05). Vagal nerve stimulation protected against traumatic hemorrhagic shock/fluid resuscitation-induced gut and lung injury, and some inflammatory factor levels in the gut and lung tissue were downregulated after vagal nerve stimulation (P < 0.05). CONCLUSIONS Vagal nerve stimulation could relieve traumatic hemorrhagic shock/fluid resuscitation-induced intestinal epithelial glycocalyx damage via the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Juan Wu
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yushuang Yin
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mingzhe Qin
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Kun Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Fang Liu
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Xiang Zhou
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Xiaoyang Song
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wellington MO, Agyekum AK, Van Kessel AG. Microbial sensing in the neonatal pig gut: effect of diet-independent and diet-dependent factors 1. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable agreement that the gastrointestinal microbiota contributes to the performance and health of the neonate, and this relationship includes an ability of the host animal to “sense” changes in the microbial community. Identifying the mechanisms used by the host to sense microbiota is one approach to developing methods to manipulate the microbiota to improve pig health and performance. Diet-independent microbial products are molecules unique to the microbial community and sensed by host pattern recognition receptors stimulating inflammation. Common among all members of the microbial community, their presence is unaffected by diet, but the nature of the response does depends on factors affecting the microenvironment in which the molecule is detected. Diet-dependent microbial products arise as products of fermentation of dietary components and include short-chain fatty acids, ammonia, phenols, hydrogen sulfide, amines, and many other compounds. A plethora of sensing mechanisms exists that include enzymatic metabolism as well as membrane receptors that have evolved to respond to microbial products (e.g., short-chain fatty acid receptors), or simply cross-react with microbial products. This review focuses on host mechanisms used to sense the intestinal microbiota and attempts to establish practical considerations for neonatal gut health based on current understanding.
Collapse
Affiliation(s)
- Michael O. Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Atta K. Agyekum
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
19
|
Wellington MO, Hamonic K, Krone JEC, Htoo JK, Van Kessel AG, Columbus DA. Effect of dietary fiber and threonine content on intestinal barrier function in pigs challenged with either systemic E. coli lipopolysaccharide or enteric Salmonella Typhimurium. J Anim Sci Biotechnol 2020; 11:38. [PMID: 32318266 PMCID: PMC7158091 DOI: 10.1186/s40104-020-00444-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background The independent and interactive effects of dietary fiber (DF) and threonine (Thr) were investigated in growing pigs challenged with either systemic E. coli lipopolysaccharide (LPS) or enteric Salmonella Typhimurium (ST) to characterise their effect on intestinal barrier function. Results In experiment 1, intestinal barrier function was assessed via oral lactulose and mannitol (L:M) gavage and fecal mucin analysis in pigs challenged with E. coli LPS and fed low fiber (LF) or high fiber (HF) diets with graded dietary Thr. Urinary lactulose recovery and L:M ratio increased (P < 0.05) during the LPS inoculation period in LF fed pigs but not in HF fed pigs. Fecal mucin output was increased (P < 0.05) in pigs fed HF compared to LF fed pigs. In experiment 2, RT-qPCR, ileal morphology, digesta volatile fatty acid (VFA) content, and fecal mucin output were measured in Salmonella Typhimurium challenged pigs, fed LF or HF diets with standard or supplemented dietary Thr. Salmonella inoculation increased (P < 0.05) fecal mucin output compared to the unchallenged period. Supplemental Thr increased fecal mucin output in the HF-fed pigs (Fib × Thr; P < 0.05). Feeding HF increased (P < 0.05) VFA concentration in cecum and colon. No effect of either Thr or fiber on expression of gene markers was observed except a tendency (P = 0.06) for increased MUC2 expression with the HF diet. Feeding HF increased goblet cell numbers (P < 0.05). Conclusion Dietary fiber appears to improve barrier function through increased mucin production capacity (i.e., goblet cell numbers, MUC2 gene expression) and secretion (i.e., fecal mucin output). The lack of effect of dietary Thr in Salmonella-challenged pigs provides further evidence that mucin secretion in the gut is conserved and, therefore, Thr may be limiting for growth under conditions of increased mucin production.
Collapse
Affiliation(s)
- Michael O Wellington
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kimberley Hamonic
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Jack E C Krone
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Daniel A Columbus
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
20
|
Kloc M, Uosef A, Elshawwaf M, Abdelshafy AAA, Elsaid KMK, Kubiak JZ, Ghobrial RM. The Macrophages and Intestinal Symbiosis. Results Probl Cell Differ 2020; 69:605-616. [PMID: 33263889 DOI: 10.1007/978-3-030-51849-3_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The human intestinal tract is inhabited by trillions of microorganisms and houses the largest pool of macrophages in the human body. Being a part of the innate immune system, the macrophages, the professional phagocytes, vigorously respond to the microbial and dietary antigens present in the intestine. Because such a robust immune response poses the danger to the survival of the non-harmful and beneficial gut microbiota, the macrophages developed mechanisms of recognition and hyposensitivity toward the non-harmful/beneficial inhabitants of the gut. We will discuss the evolution and identity of some of these mechanisms in the following chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA. .,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Mahmoud Elshawwaf
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ahmed Adel Abbas Abdelshafy
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Kamal Mamdoh Kamal Elsaid
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warszawa, Poland.,Faculty of Medicine, Cell Cycle Group, Institute of Genetics and Development of Rennes, (IGDR) UnivRennes, CNRS, UMR 6290, Rennes, France
| | - Rafik Mark Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
21
|
Benis N, Wells JM, Smits MA, Kar SK, van der Hee B, Dos Santos VAPM, Suarez-Diez M, Schokker D. High-level integration of murine intestinal transcriptomics data highlights the importance of the complement system in mucosal homeostasis. BMC Genomics 2019; 20:1028. [PMID: 31888466 PMCID: PMC6937694 DOI: 10.1186/s12864-019-6390-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background The mammalian intestine is a complex biological system that exhibits functional plasticity in its response to diverse stimuli to maintain homeostasis. To improve our understanding of this plasticity, we performed a high-level data integration of 14 whole-genome transcriptomics datasets from samples of intestinal mouse mucosa. We used the tool Centrality based Pathway Analysis (CePa), along with information from the Reactome database. Results The results show an integrated response of the mouse intestinal mucosa to challenges with agents introduced orally that were expected to perturb homeostasis. We observed that a common set of pathways respond to different stimuli, of which the most reactive was the Regulation of Complement Cascade pathway. Altered expression of the Regulation of Complement Cascade pathway was verified in mouse organoids challenged with different stimuli in vitro. Conclusions Results of the integrated transcriptomics analysis and data driven experiment suggest an important role of epithelial production of complement and host complement defence factors in the maintenance of homeostasis.
Collapse
Affiliation(s)
- Nirupama Benis
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands. .,Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mari A Smits
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University, Wageningen, The Netherlands
| | - Soumya Kanti Kar
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Bart van der Hee
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Castro-Bravo N, Margolles A, Wells JM, Ruas-Madiedo P. Exopolysaccharides synthesized by Bifidobacterium animalis subsp. lactis interact with TLR4 in intestinal epithelial cells. Anaerobe 2019; 56:98-101. [PMID: 30794874 DOI: 10.1016/j.anaerobe.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
The toll-like receptors involved in recognition of the exopolysaccharide produced by two isogenic, ropy and non-ropy, Bifidobacterium animalis subsp. lactis strains were investigated. Both strains interact with human embryonic kidney (HEK)-293 cells via TLR2, whereas purified EPSs specifically stimulate TLR4 regardless their molar mass.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, the Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, the Netherlands
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| |
Collapse
|
23
|
Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf 2018; 18:221-242. [DOI: 10.1111/1541-4337.12401] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
- College of Animal Science and Technology; Shihezi Univ.; Xinjiang 832003 China
- Dept. of Internal Medicine; Dept. of Biochemistry; Univ. of Texas Southwestern Medical Center; Dallas TX 75390 USA
| |
Collapse
|
24
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Han X, Lee A, Huang S, Gao J, Spence JR, Owyang C. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes 2018; 10:59-76. [PMID: 30040527 PMCID: PMC6363076 DOI: 10.1080/19490976.2018.1479625] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Disruption of intestinal barrier homeostasis is an important pathogenic factor in conditions such as irritable bowel syndrome (IBS). Lactobacillus rhamnosus GG (LGG) improves IBS symptoms through unclear mechanisms. Previous studies utilizing colorectal adenocarcinoma cell lines showed that LGG metabolites prevented interferon gamma (IFN-gamma) induced barrier damage but the model employed limited these findings. We aimed to interrogate the protective effects of LGG on epithelial barrier function using human intestinal epithelial cultures (enteroids and colonoids) as a more physiologic model. To investigate how LGG affects epithelial barrier function, we measured FITC-Dextran (FD4) flux across the epithelium as well as tight junction zonula occludens 1 (ZO-1) and occludin (OCLN) expression. Colonoids were incubated with fecal supernatants from IBS patients (IBS-FSN) and healthy controls in the presence or absence of LGG to examine changes in gut permeability. Enteroids incubated with IFN-gamma demonstrated a downregulation of OCLN and ZO-1 expression by 67% and 50%, respectively (p<0.05). This was accompanied by increased paracellular permeability as shown by leakage of FD4. Pretreatment of enteroids with LGG prevented these changes and normalized OCLN and ZO-1 to control levels. These actions were independent of its action against apoptosis. However, these protective effects were not seen with LGG cell wall extracts, LGG DNA, or denatured (boiled) LGG. Intriguingly, IBS-FSN injected into colonoids increased paracellular permeability, which was prevented by LGG. LGG, likely due to secreted proteins, protects against epithelial barrier dysfunction. Bacterial-derived factors to modulate gut barrier function may be a treatment option in disorders such as IBS.
Collapse
Affiliation(s)
- Xu Han
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Allen Lee
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Sha Huang
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Jun Gao
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Jason R. Spence
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Chung Owyang
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA.,CONTACT Chung Owyang 3912 Taubman Center, 1500 E. Medical Center Dr., SPC 5362, Ann Arbor, MI 48109-5362
| |
Collapse
|
26
|
Kordjazy N, Haj-Mirzaian A, Haj-Mirzaian A, Rohani MM, Gelfand EW, Rezaei N, Abdolghaffari AH. Role of toll-like receptors in inflammatory bowel disease. Pharmacol Res 2018; 129:204-215. [PMID: 29155256 DOI: 10.1016/j.phrs.2017.11.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is the chronic inflammation of the gastrointestinal tract. Recently, studies of the interplay between the adaptive and innate immune responses have provided a better understanding of the immunopathogenesis of inflammatory disorders such as IBD, as well as identification of novel targets for more potent interventions. Toll-like receptors (TLRs) are a class of proteins that play a significant role in the innate immune system and are involved in inflammatory processes. Activation of TLR signal transduction pathways lead to the induction of numerous genes that function in host defense, including those for inflammatory cytokines, chemokines, and antigen presenting molecules. It was proposed that TLR mutations and dysregulation are major contributing factors to the predisposition and susceptibility to IBD. Thus, modulating TLRs represent an innovative immunotherapeutic approach in IBD therapy. This article outlines the role of TLRs in IBD, focusing on both animal and human studies; the role of TLR-targeted agonists or antagonists as potential therapeutic agents in the different stages of the disease is discussed.
Collapse
Affiliation(s)
- Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shahid Beheshti Universtity of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mojtaba Rohani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
27
|
Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018; 9:5. [PMID: 29416535 PMCID: PMC5787545 DOI: 10.3389/fimmu.2018.00005] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The intestine is the shared site of nutrient digestion, microbiota colonization and immune cell location and this geographic proximity contributes to a large extent to their interaction. The onset and development of a great many diseases, such as inflammatory bowel disease and metabolic syndrome, will be caused due to the imbalance of body immune. As competent assistants, the intestinal bacteria are also critical in disease prevention and control. Moreover, the gut commensal bacteria are essential for development and normal operation of immune system and the pathogens are also closely bound up with physiological disorders and diseases mediated by immune imbalance. Understanding how our diet and nutrient affect bacterial composition and dynamic function, and the innate and adaptive status of our immune system, represents not only a research need but also an opportunity or challenge to improve health. Herein, this review focuses on the recent discoveries about intestinal bacteria–immune crosstalk and nutritional regulation on their interplay, with an aim to provide novel insights that can aid in understanding their interactions.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
28
|
Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine. Nutrients 2017; 9:nu9121349. [PMID: 29231875 PMCID: PMC5748799 DOI: 10.3390/nu9121349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.
Collapse
|
29
|
Maier E, Anderson RC, Altermann E, Roy NC. Live Faecalibacterium prausnitzii induces greater TLR2 and TLR2/6 activation than the dead bacterium in an apical anaerobic co-culture system. Cell Microbiol 2017; 20. [PMID: 29112296 DOI: 10.1111/cmi.12805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Inappropriate activation of intestinal innate immune receptors, such as toll-like receptors (TLRs), by pathogenic bacteria is linked to chronic inflammation. In contrast, a "tonic" level of TLR activation by commensal bacteria is required for intestinal homeostasis. A technical challenge when studying this activation in vitro is the co-culturing of oxygen-requiring mammalian cells with obligate anaerobic commensal bacteria. To overcome this, we used a novel apical anaerobic co-culture system to successfully adapt a TLR activation assay to be conducted in conditions optimised for both cell types. Live Faecalibacterium prausnitzii, an abundant obligate anaerobe of the colonic microbiota, induced higher TLR2 and TLR2/6 activation than the dead bacterium. This enhanced TLR induction by live F. prausnitzii, which until now has not previously been described, may contribute to maintenance of gastrointestinal homeostasis. This highlights the importance of using physiologically relevant co-culture systems to decipher the mechanisms of action of live obligate anaerobes.
Collapse
Affiliation(s)
- Eva Maier
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Rumen Microbiology Team, Animal Science Group, AgResearch Grasslands, Palmerston North, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
30
|
Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 2017; 89:3-11. [PMID: 29164733 DOI: 10.1111/asj.12937] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
31
|
Salinas I, Magadán S. Omics in fish mucosal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:99-108. [PMID: 28235585 DOI: 10.1016/j.dci.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/22/2023]
Abstract
The mucosal immune system of fish is a complex network of immune cells and molecules that are constantly surveilling the environment and protecting the host from infection. A number of "omics" tools are now available and utilized to understand the complexity of mucosal immune systems in non-traditional animal models. This review summarizes recent advances in the implementation of "omics" tools pertaining to the four mucosa-associated lymphoid tissues in teleosts. Genomics, transcriptomics, proteomics, and "omics" in microbiome research require interdisciplinary collaboration and careful experimental design. The data-rich datasets generated are proving really useful at discovering new innate immune players in fish mucosal secretions, identifying novel markers of specific mucosal immune responses, unraveling the diversity of the B and T cell repertoires and characterizing the diversity of the microbial communities present in teleost mucosal surfaces. Bioinformatics, data analysis and storage platforms should be developed to facilitate rapid processing of large datasets, especially when mammalian tools such as bioinformatics analysis software are not available in fishes.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Susana Magadán
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA; Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra 36310, Spain.
| |
Collapse
|
32
|
Fernando WMADB, Flint SH, Ranaweera KKDS, Bamunuarachchi A, Johnson SK, Brennan CS. The potential synergistic behaviour of inter- and intra-genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation. Int J Food Sci Nutr 2017; 69:144-154. [DOI: 10.1080/09637486.2017.1340932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Steve H. Flint
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | - K. K. D. S. Ranaweera
- Department of Food Science and Technology, Sri Jayewardenepura University, Nugegoda, Colombo, Sri Lanka
| | - Arthur Bamunuarachchi
- Department of Food Science and Technology, Sri Jayewardenepura University, Nugegoda, Colombo, Sri Lanka
| | - Stuart K. Johnson
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences, Centre for Food Research and Innovation Lincoln University, Lincoln, New Zealand
| |
Collapse
|
33
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
34
|
Chen S, He Y, Hu Z, Lu S, Yin X, Ma X, Lv C, Jin G. Heparanase Mediates Intestinal Inflammation and Injury in a Mouse Model of Sepsis. J Histochem Cytochem 2017; 65:241-249. [PMID: 28170292 DOI: 10.1369/0022155417692536] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heparanase, a heparan sulfate (HS)-specific endoglycosidase, plays an important role in inflammation and mediates acute pulmonary and renal injuries during sepsis. To explore its role in septic intestinal injury, a non-anticoagulant heparanase inhibitor, N-desulfated/re- N-acetylated heparin (NAH), was administrated to a mouse sepsis model induced by cecal ligation and puncture (CLP). Immunohistochemical staining revealed massive shedding of HS from the intestinal mucosal surfaces after CLP, and effective inhibition of heparanase by NAH was confirmed by markedly reduced HS shedding. Following CLP, intestinal expression of heparanase was increased, whereas pretreatment with NAH reduced the sepsis-induced upregulation of heparanase expression. Meanwhile, CLP led to shedding of syndecan-1 and upregulated expression of proteases such as matrix metalloprotease-9 and urokinase-type plasminogen activator in the intestine, whereas NAH markedly suppressed syndecan-1 shedding and protease upregulation following CLP. In addition, pretreatment with NAH attenuated intestinal injury, inhibited neutrophil infiltration and suppressed the production of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) in the intestine during sepsis, and it also significantly reduced the elevation of inflammatory cytokines in the serum 24 hr after CLP. Our findings demonstrate that the activation of intestinal heparanase contributes to intestinal injury during early sepsis by facilitating the destruction of mucosal epithelial glycocalyx and promoting inflammatory responses.
Collapse
Affiliation(s)
- Song Chen
- Department of Emergency Medicine (SC, CL), The First Affiliated Hospital of Hainan Medical College, Haikou, People's Republic of China
| | - Ying He
- Department of Geratology (YH), The First Affiliated Hospital of Hainan Medical College, Haikou, People's Republic of China
| | - Ziwei Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China (ZH, XY, XM)
| | - Siyu Lu
- Department of Critical Care Medicine, Peking University Cancer Hospital, Beijing, People's Republic of China (SL)
| | - Xiaohan Yin
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China (ZH, XY, XM)
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China (ZH, XY, XM)
| | - Chuanzhu Lv
- Department of Emergency Medicine (SC, CL), The First Affiliated Hospital of Hainan Medical College, Haikou, People's Republic of China
| | - Guiyun Jin
- Department of Intervention Therapy (GJ), The First Affiliated Hospital of Hainan Medical College, Haikou, People's Republic of China
| |
Collapse
|
35
|
Graves CL, Li J, LaPato M, Shapiro MR, Glover SC, Wallet MA, Wallet SM. Intestinal Epithelial Cell Regulation of Adaptive Immune Dysfunction in Human Type 1 Diabetes. Front Immunol 2017; 7:679. [PMID: 28119693 PMCID: PMC5222791 DOI: 10.3389/fimmu.2016.00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023] Open
Abstract
Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs' innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs' soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/- Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate a proinflammatory microenvironment of the T1D-duodenum, whereby IECs have the potential to contribute to the expansion and polarization of innate and adaptive immune cells. Although these data do not discern whether these observations are not simply a consequence of T1D, the data indicate that the T1D-GI tract has the capacity to foster a permissive environment under which autoreactive T-cells could be expanded and polarized.
Collapse
Affiliation(s)
- Christina L. Graves
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Jian Li
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melissa LaPato
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melanie R. Shapiro
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Sarah C. Glover
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| |
Collapse
|
36
|
Tolentino YFM, Elia PP, Fogaça HS, Carneiro AJV, Zaltman C, Moura-Neto R, Luiz RR, Carvalho MDGC, de Souza HS. Common NOD2/CARD15 and TLR4 Polymorphisms Are Associated with Crohn's Disease Phenotypes in Southeastern Brazilians. Dig Dis Sci 2016; 61:2636-2647. [PMID: 27107867 DOI: 10.1007/s10620-016-4172-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
AIM To investigate whether variants in NOD2/CARD15 and TLR4 are associated with CD and ulcerative colitis (UC) in a genetically admixed population of Rio de Janeiro, where IBD has continued to rise. METHODS We recruited 67 consecutive patients with CD, 61 patients with UC, and 86 healthy and ethnically matched individuals as controls. DNA was extracted from buccal brush samples and genotyped by PCR with restriction enzymes for G908R and L1007finsC NOD2/CARD15 single-nucleotide polymorphisms (SNPs) and for T399I and D299G TLR4 SNPs. Clinical data were registered for subsequent analysis with multivariate models. RESULTS NOD2/CARD15 G908R and L1007finsC SNPs were found in one and three patients, respectively, with CD. NOD2/CARD15 G908R and L1007finsC SNPs were not found in any patients with UC, but were found in three and three controls, respectively. With regard to the TLR4 gene, no significant difference was detected among the groups. Overall, none of the SNPs investigated determined a differential risk for a specific diagnosis. Genotype-phenotype associations were found in only CD, where L1007finsC was associated with colonic localization; however, TLR4 T399I SNP was associated with male gender, and D299G SNP was associated with colonic involvement, chronic corticosteroid use, and the need for anti-TNF-alpha therapy. CONCLUSION Variants of NOD2/CARD15 and TLR4 do not confer susceptibility to IBD, but appear to determine CD phenotypes in this southeastern Brazilian population.
Collapse
Affiliation(s)
- Yolanda F M Tolentino
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Paula Peruzzi Elia
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Homero Soares Fogaça
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Antonio José V Carneiro
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Cyrla Zaltman
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Rodrigo Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, Rio de Janeiro, 25250-020, Brazil
| | - Ronir Raggio Luiz
- Instituto de Estudos de Saúde Coletiva (IESC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21944-970, Brazil
| | - Maria da Gloria C Carvalho
- Laboratório de Patologia Molecular, Departamento de Patologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Heitor S de Souza
- Serviço de Gastroenterologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil.
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil.
| |
Collapse
|
37
|
Tu S, Zhong D, Xie W, Huang W, Jiang Y, Li Y. Role of Toll-Like Receptor Signaling in the Pathogenesis of Graft-versus-Host Diseases. Int J Mol Sci 2016; 17:E1288. [PMID: 27529218 PMCID: PMC5000685 DOI: 10.3390/ijms17081288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) and infection are major complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the leading causes of morbidity and mortality in HSCT patients. Recent work has demonstrated that the two complications are interdependent. GVHD occurs when allo-reactive donor T lymphocytes are activated by major histocompatibility antigens or minor histocompatibility antigens on host antigen-presenting cells (APCs), with the eventual attack of recipient tissues or organs. Activation of APCs is important for the priming of GVHD and is mediated by innate immune signaling pathways. Current evidence indicates that intestinal microbes and innate pattern-recognition receptors (PRRs) on host APCs, including both Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), are involved in the pathogenesis of GVHD. Patients undergoing chemotherapy and/or total body irradiation before allo-HSCT are susceptible to aggravated gastrointestinal epithelial cell damage and the subsequent translocation of bacterial components, followed by the release of endogenous dangerous molecules, termed pathogen-associated molecular patterns (PAMPs), which then activate the PRRs on host APCs to trigger local or systemic inflammatory responses that modulate T cell allo-reactivity against host tissues, which is equivalent to GVHD. In other words, infection can, to some extent, accelerate the progression of GVHD. Therefore, the intestinal flora's PAMPs can interact with TLRs to activate and mature APCs, subsequently activate donor T cells with the release of pro-inflammatory cytokines, and eventually, induce GVHD. In the present article, we summarize the current perspectives on the understanding of different TLR signaling pathways and their involvement in the occurrence of GVHD.
Collapse
Affiliation(s)
- Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Danli Zhong
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Weixin Xie
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Wenfa Huang
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yangyang Jiang
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
38
|
Jensen H, Drømtorp SM, Axelsson L, Grimmer S. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria. Probiotics Antimicrob Proteins 2016; 7:14-23. [PMID: 25331988 DOI: 10.1007/s12602-014-9174-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study.
Collapse
Affiliation(s)
- Hanne Jensen
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O. Box 210, 1431, Ås, Norway,
| | | | | | | |
Collapse
|
39
|
Bernardazzi C, Pêgo B, de Souza HSP. Neuroimmunomodulation in the Gut: Focus on Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:1363818. [PMID: 27471349 PMCID: PMC4947661 DOI: 10.1155/2016/1363818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
Intestinal immunity is finely regulated by several concomitant and overlapping mechanisms, in order to efficiently sense external stimuli and mount an adequate response of either tolerance or defense. In this context, a complex interplay between immune and nonimmune cells is responsible for the maintenance of normal homeostasis. However, in certain conditions, the disruption of such an intricate network may result in intestinal inflammation, including inflammatory bowel disease (IBD). IBD is believed to result from a combination of genetic and environmental factors acting in concert with an inappropriate immune response, which in turn interacts with nonimmune cells, including nervous system components. Currently, evidence shows that the interaction between the immune and the nervous system is bidirectional and plays a critical role in the regulation of intestinal inflammation. Recently, the maintenance of intestinal homeostasis has been shown to be under the reciprocal control of the microbiota by immune mechanisms, whereas intestinal microorganisms can modulate mucosal immunity. Therefore, in addition to presenting the mechanisms underlying the interaction between immune and nervous systems in the gut, here we discuss the role of the microbiota also in the regulation of neuroimmune crosstalk involved in intestinal homeostasis and inflammation, with potential implications to IBD pathogenesis.
Collapse
Affiliation(s)
- Claudio Bernardazzi
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Beatriz Pêgo
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Heitor Siffert P. de Souza
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), 22281-100 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
Ward MA, Pierre JF, Leal RF, Huang Y, Shogan B, Dalal SR, Weber CR, Leone VA, Musch MW, An GC, Rao MC, Rubin DT, Raffals LE, Antonopoulos DA, Sogin ML, Hyman NH, Alverdy JC, Chang EB. Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility. Am J Physiol Gastrointest Liver Physiol 2016; 310:G973-88. [PMID: 27079612 PMCID: PMC4935476 DOI: 10.1152/ajpgi.00017.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 01/31/2023]
Abstract
Gut dysbiosis, host genetics, and environmental triggers are implicated as causative factors in inflammatory bowel disease (IBD), yet mechanistic insights are lacking. Longitudinal analysis of ulcerative colitis (UC) patients following total colectomy with ileal anal anastomosis (IPAA) where >50% develop pouchitis offers a unique setting to examine cause vs. effect. To recapitulate human IPAA, we employed a mouse model of surgically created blind self-filling (SFL) and self-emptying (SEL) ileal loops using wild-type (WT), IL-10 knockout (KO) (IL-10), TLR4 KO (T4), and IL-10/T4 double KO mice. After 5 wk, loop histology, host gene/protein expression, and bacterial 16s rRNA profiles were examined. SFL exhibit fecal stasis due to directional motility oriented toward the loop end, whereas SEL remain empty. In WT mice, SFL, but not SEL, develop pouchlike microbial communities without accompanying active inflammation. However, in genetically susceptible IL-10-deficient mice, SFL, but not SEL, exhibit severe inflammation and mucosal transcriptomes resembling human pouchitis. The inflammation associated with IL-10 required TLR4, as animals lacking both pathways displayed little disease. Furthermore, germ-free IL-10 mice conventionalized with SFL, but not SEL, microbiota populations develop severe colitis. These data support essential roles of stasis-induced, colon-like microbiota, TLR4-mediated colonic metaplasia, and genetic susceptibility in the development of pouchitis and possibly UC. However, these factors by themselves are not sufficient. Similarities between this model and human UC/pouchitis provide opportunities for gaining insights into the mechanistic basis of IBD and for identification of targets for novel preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Marc A. Ward
- 1Department of Surgery, University of Chicago, Chicago, Illinois;
| | - Joseph F. Pierre
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | - Raquel F. Leal
- 3Colorectal Surgery Unit, Department of Surgery, University of Campinas, Campinas, Sao Paulo, Brazil;
| | - Yong Huang
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | - Benjamin Shogan
- 1Department of Surgery, University of Chicago, Chicago, Illinois;
| | - Sushila R. Dalal
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | | | - Vanessa A. Leone
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | - Mark W. Musch
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | - Gary C. An
- 1Department of Surgery, University of Chicago, Chicago, Illinois;
| | - Mrinalini C. Rao
- 5Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois;
| | - David T. Rubin
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| | | | - Dionysios A. Antonopoulos
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; ,8Biosciences Division, Argonne National Laboratory, Argonne, Illinois; and ,9Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois
| | - Mitch L. Sogin
- 6Josephine Bay Paul Center, Biosciences Division, Marine Biological Laboratory at Woods Hole, Woods Hole, Massachusetts;
| | - Neil H. Hyman
- 1Department of Surgery, University of Chicago, Chicago, Illinois;
| | - John C. Alverdy
- 1Department of Surgery, University of Chicago, Chicago, Illinois;
| | - Eugene B. Chang
- 2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois;
| |
Collapse
|
41
|
Sukhotnik I, Haj B, Pollak Y, Dorfman T, Bejar J, Matter I. Effect of bowel resection on TLR signaling during intestinal adaptation in a rat model. Surg Endosc 2016; 30:4416-24. [PMID: 26895894 DOI: 10.1007/s00464-016-4760-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/11/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Bacterial overgrowth is common complication of short bowel syndrome (SBS) and is a result of an impaired gut barrier function. Toll-like receptor 4 (TLR4) is crucial in maintaining intestinal epithelial homeostasis, participates in a vigorous signaling process and heightens inflammatory cytokine output. The objective of this study was to determine the effects of bowel resection on TLR4 signaling in intestinal mucosa in a rat model. METHODS Male Sprague-Dawley rats were randomly assigned to one of the two experimental groups of eight rats each: Sham rats underwent bowel transection and re-anastomosis and SBS rats underwent 75 % small bowel resection. Rats were killed on day 14. Bacterial translocation (BT) to mesenteric lymph nodes, liver, portal blood and peripheral blood was determined at the kill. The expression of TLR4, MyD88 and TRAF6 in the intestinal mucosa was determined using real-time PCR, Western blot and immunohistochemistry. RESULTS SBS rats demonstrated a 100 % BT to lymph nodes and to liver (Level I), 80 % translocation to portal blood (Level II) and 60 % translocation to peripheral blood (Level III) at day 7 as well as a 100 % BT to lymph nodes and liver, and 40 % translocation to peripheral blood at day 14. Microarray expression profiling demonstrated that most of the TLR signaling-related genes were up-regulated in resected rats compared to control animals. SBS rats showed a significant increase in TLR4 and TRAF6 mRNA in jejunum and ileum, TLR4 and MyD88 protein expression in jejunum and ileum, and a significant increase in the number of TLR4 and TRAF6 positive cells (immunohistochemistry) compared to sham animals. CONCLUSIONS In a rat model of SBS, elevated intestinal BT is associated with a stimulated TLR4 signaling.
Collapse
Affiliation(s)
- Igor Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Department of Pediatric Surgery B, Bnai Zion Medical Center, 47 Golomb St., P.O.B. 4940, 31048, Haifa, Israel.
| | - Bassel Haj
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Yulia Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tatiana Dorfman
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jacob Bejar
- Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - Ibrahim Matter
- Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
42
|
Ren M, Zhang SH, Zeng XF, Liu H, Qiao SY. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1742-50. [PMID: 26580442 PMCID: PMC4647083 DOI: 10.5713/ajas.14.0131] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.
Collapse
Affiliation(s)
- M Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China ; Animal Science College, Anhui Science and Technology University, Anhui 233100, China
| | - S H Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - X F Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - H Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - S Y Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Aguirre M, Venema K. The art of targeting gut microbiota for tackling human obesity. GENES AND NUTRITION 2015; 10:472. [PMID: 25991499 DOI: 10.1007/s12263-015-0472-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Recently, a great deal of interest has been expressed regarding strategies to tackle worldwide obesity because of its accelerated wide spread accompanied with numerous negative effects on health and high costs. Obesity has been traditionally associated with an imbalance in energy consumed when compared to energy expenditure. However, growing evidence suggests a less simplistic event in which gut microbiota plays a key role. Obesity, in terms of microbiota, is a complicated disequilibrium that presents many unclear complications. Despite this, there is special interest in characterizing compositionally and functionally the obese gut microbiota with the help of in vitro, animal and human studies. Considering the gut microbiota as a factor contributing to human obesity represents a tool of great therapeutic potential. This paper reviews the use of antimicrobials, probiotics, fecal microbial therapy, prebiotics and diet to manipulate obesity through the human gut microbiota and reveals inconsistencies and implications for future study.
Collapse
Affiliation(s)
- Marisol Aguirre
- Top Institute of Food and Nutrition, PO Box 557, 6700 AA, Wageningen, The Netherlands
| | | |
Collapse
|
44
|
Seo JH, Kim HY, Jung YH, Lee E, Yang SI, Yu HS, Kim YJ, Kang MJ, Kim HJ, Park KS, Kwon JW, Kim BJ, Kim HB, Kim EJ, Lee JS, Lee SY, Hong SJ. Interactions between innate immunity genes and early-life risk factors in allergic rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:241-8. [PMID: 25840711 PMCID: PMC4397364 DOI: 10.4168/aair.2015.7.3.241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/25/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE Allergic rhinitis (AR) is a common chronic disease. Many factors could affect the development of AR. We investigated early-life factors, such as delivery mode, feeding method, and use of antibiotics during infancy, which could affect the development of AR. In addition, how interactions between these factors and innate gene polymorphisms influence the development of AR was investigated. METHODS A cross-sectional study of 1,828 children aged 9-12 years was conducted. Three early-life factors and AR were assessed by a questionnaire. Skin prick tests were done. Polymorphisms of TLR4 (rs1927911) and CD14 (rs2569190) were genotyped. RESULTS Use of antibiotics during infancy increased the risk of AR (aOR [95% CI] 1.511 [1.222-2.037]) and atopic AR (aOR [95% CI], 1.565 [1.078-2.272]). There were synergistic interactions between caesarean delivery, formula feeding, and use of antibiotics in the rate of atopic AR (aOR [95% CI], 3.038 [1.256-7.347]). Additional analyses revealed that the risk for the development of AR or atopic AR subjects with the TLR4 CC genotype were highest when all the 3 early-life factors were present (aOR [95% CI], 5.127 [1.265-20.780] for AR; 6.078 [1.499-24.649] for atopic AR). In addition, the risk for the development of AR or atopic AR in subjects with the CD14 TT genotype were highest when all the 3 early-life factors were present (aOR [95% CI], 5.960 [1.421-15.002] for AR; 6.714 [1.440-31.312] for atopic AR). CONCLUSIONS Delivery mode, feeding method, and use of antibiotics during infancy appeared to have synergistic interactions in the development of AR. Gene-environment interactions between polymorphism of innate genes and early- life risk factors might affect the development of AR.
Collapse
Affiliation(s)
- Ju Hee Seo
- Department of Pediatrics, Korean Cancer Center Hospital, Seoul, Korea
| | - Hyung Young Kim
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Young Ho Jung
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea
| | - Eun Lee
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Research Center for Standardization of Allergic Diseases, University of Ulsan College of Medicine, Seoul, Korea
| | - Song I Yang
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Research Center for Standardization of Allergic Diseases, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Sung Yu
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Young Joon Kim
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Mi Jin Kang
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ha Jung Kim
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Kang Seo Park
- Department of Pediatrics, Presbyterian Medical Center, Jeonju, Korea
| | - Ji Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Ju Kim
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Hyo Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Eun Jin Kim
- Allergy TF, Department of Immunology and Pathology, Korea National Institute of Health, Osong, Korea
| | - Joo Shil Lee
- Allergy TF, Department of Immunology and Pathology, Korea National Institute of Health, Osong, Korea
| | - So Yeon Lee
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.
| | - Soo Jong Hong
- Childhood Asthma Atopy Center, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Research Center for Standardization of Allergic Diseases, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Elia PP, Tolentino YFM, Bernardazzi C, de Souza HSP. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2015; 2015:936193. [PMID: 25821356 PMCID: PMC4364059 DOI: 10.1155/2015/936193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs). In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades, genetic polymorphisms have been associated with several diseases including inflammatory bowel disease. Special emphasis has been given to the susceptibility to Crohn's disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome. Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in inflammatory bowel disease remain to be clarified.
Collapse
Affiliation(s)
- Paula Peruzzi Elia
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Yolanda Faia M. Tolentino
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Maier E, Anderson RC, Roy NC. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients 2014; 7:45-73. [PMID: 25545102 PMCID: PMC4303826 DOI: 10.3390/nu7010045] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.
Collapse
Affiliation(s)
- Eva Maier
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| |
Collapse
|
47
|
Chen J, He X, Huang J. Diet effects in gut microbiome and obesity. J Food Sci 2014; 79:R442-51. [PMID: 24621052 DOI: 10.1111/1750-3841.12397] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
The 100 trillion microbes in human gut coevolve with the host and exert significant influences on human health. The gut microbial composition presents dynamic changes correlated with various factors including host genotypes, age, and external environment. Effective manipulation of the gut microbiota through diets (both long-term and short-term diet patterns), probiotics and/or prebiotics, and antibiotics has been proved being potential to prevent from metabolic disorders such as obesity in many studies. The dietary regulation exerts influences on microbial metabolism and host immune functions through several pathways, of which may include selectively bacterial fermentation of nutrients, lower intestinal barrier function, overexpression of genes associated with disorders, and disruptions to both innate and adaptive immunity. Discoveries in the interrelationship between diet, intestinal microbiome, and body immune system provide us novel perceptions to the specific action mechanisms and will promote the development of therapeutic approaches for obesity.
Collapse
Affiliation(s)
- Jia Chen
- School of Chemical Engineering & Technology, Tianjin Univ, Tianjin, 300072, China
| | | | | |
Collapse
|
48
|
|
49
|
Neiva KG, Calderon NL, Alonso TR, Panagakos F, Wallet SM. Type 1 diabetes-associated TLR responsiveness of oral epithelial cells. J Dent Res 2013; 93:169-74. [PMID: 24334435 DOI: 10.1177/0022034513516345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In type 1 diabetes (T1D), a Toll-like receptor (TLR)-hyper-inflammatory monocytic phenotype has been implicated as a mechanism of exacerbated tissue destruction. Other cells of the periodontium, including oral epithelial cells (OECs), express innate immune receptors, including TLRs. To delineate the TLR responses of OECs derived from T1D participants and to determine effects of the anti-inflammatory agent triclosan on the TLR-hyper-inflammatory phenotype, primary human OECs from individuals with T1D and diabetes-free individuals were stimulated with TLR ligands in the presence and/or absence of triclosan. The expression of pro-inflammatory cytokines and micro-RNAs (miRNAs) was evaluated. While the repertoire of TLRs expressed by OECs is similar to that expressed by macrophages (M), the relative amounts and ratios are significantly different. OECs demonstrate a TLR-response profile similar to that of M, yet attenuated. OECs have a unique response to P. gingivalis LPS, where miR146a and miR155 play a regulatory role in responsiveness. OECs from T1D participants are TLR-hyper-responsive, due to dysregulated induction of miR146a and miR155, which is abrogated by pre-treatment with triclosan. The aberrant TLR-activation of OECs in T1D has the potential to contribute to excessive soft- and hard-tissue destruction. Importantly, triclosan's anti-inflammatory property is effective in abrogating TLR-induced OEC hyperactivity.
Collapse
Affiliation(s)
- K G Neiva
- Department of Endodontics, College of Dentistry, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
50
|
Brown EM, Arrieta MC, Finlay BB. A fresh look at the hygiene hypothesis: how intestinal microbial exposure drives immune effector responses in atopic disease. Semin Immunol 2013; 25:378-87. [PMID: 24209708 DOI: 10.1016/j.smim.2013.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There currently is no consensus on which immunological mechanisms can best explain the rise in atopic disease post industrialization. The hygiene hypothesis lays groundwork for our understanding of how altered microbial exposures can drive atopy; yet since its introduction increasing evidence suggests the exposure of our immune system to the intestinal microbiota plays a key role in development of atopic disease. As societal change shifts our microbial exposure, concordant shifts in the tolerant and effector functions of our immune systems give rise to more hypersensitive responses to external antigens. This is contrasted with the greater immune tolerant capabilities of individuals still living in regions with lifestyles more representative of our evolutionary history. Recent findings, buoyed by technological advances in the field, suggest a direct role for the intestinal microbiota-immune system interplay in the development of atopic disease mechanisms. Overall, harnessing current mechanistic studies for translational research into microbiota composition and function in relation to atopy have potential for the design of therapeutics that could moderate these diseases.
Collapse
Affiliation(s)
- Eric M Brown
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|