1
|
Pyne N, Bhattacharya I, Paul S. Garcinia cowa bark extract induces oxidative stress mediated cellular apoptosis in Leishmania donovani parasite modulated by its active phytosterol constituent. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:747-769. [PMID: 39565802 DOI: 10.1080/10286020.2024.2429145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Visceral leishmaniasis still remains a leading cause of parasitic deaths, with modern pentavalent antimonials showing limited efficacy and health risks. The methanolic bark extract of the Northeastern Indian plant, Garcinia cowa, demonstrated potent leishmanicidal effects against the parasite Leishmania donovani, demonstrating IC50 values of 20-36 µg/ml, with selective toxicity for parasites over healthy cells. It induced parasite death through elevated oxidative and nitrosative stress elements, reduced arginase activity, nuclear fragmentation, cell cycle arrest, and apoptosis. A GC-MS study and molecular docking identified stigmasterol as a primary component, an antileishmanial compound that inhibits Leishmania donovani parasite efficiently.
Collapse
Affiliation(s)
- Nibedita Pyne
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, India
| | - Ishita Bhattacharya
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, India
| | - Santanu Paul
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Goyzueta-Mamani LD, Pagliara Lage D, Barazorda-Ccahuana HL, Paco-Chipana M, Candia-Puma MA, Davila-Del-Carpio G, Galdino AS, Machado-de-Avila RA, Cordeiro Giunchetti R, D’Antonio EL, Ferraz Coelho EA, Chávez-Fumagalli MA. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025; 30:173. [PMID: 39795229 PMCID: PMC11722285 DOI: 10.3390/molecules30010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin's IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin's 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin's modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin's potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador 40110-160, Brazil
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA;
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| |
Collapse
|
3
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Qin L, Madden R, Burks H, Gao P, Wu JQ, Sheikh SW, Joice AC, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. Nat Commun 2024; 15:9409. [PMID: 39482311 PMCID: PMC11528044 DOI: 10.1038/s41467-024-53790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Visceral leishmaniasis is a life-threatening parasitic disease, but current antileishmanial drugs have severe drawbacks. Antifungal azoles inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. CYP5122A1 overexpression results in growth delay, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1 possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Arline M Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, 66047, USA
| | - Judy Qiju Wu
- Department of Pharmacy Practice, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Salma Waheed Sheikh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
4
|
Barrie U, Floyd K, Datta A, Wetzel DM. MAPK/ERK activation in macrophages promotes Leishmania internalization and pathogenesis. Microbes Infect 2024; 26:105353. [PMID: 38763478 DOI: 10.1016/j.micinf.2024.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
The obligate intracellular parasite Leishmania binds several receptors to trigger uptake by phagocytic cells, ultimately resulting in visceral or cutaneous leishmaniasis. A series of signaling pathways in host cells, which are critical for establishment and persistence of infection, are activated during Leishmania internalization. Thus, preventing Leishmania uptake by phagocytes could be a novel therapeutic strategy for leishmaniasis. However, the host cellular machinery mediating promastigote and amastigote uptake is not well understood. Here, using small molecule inhibitors of Mitogen-activated protein/Extracellular signal regulated kinases (MAPK/ERK), we demonstrate that ERK1/2 mediates Leishmania amazonensis uptake and (to a lesser extent) phagocytosis of beads by macrophages. We find that inhibiting host MEK1/2 or ERK1/2 leads to inefficient amastigote uptake. Moreover, using inhibitors and primary macrophages lacking spleen tyrosine kinase (SYK) or Abl family kinases, we show that SYK and Abl family kinases mediate Raf, MEK, and ERK1/2 activity and are necessary for uptake. Finally, we demonstrate that trametinib, a MEK1/2 inhibitor used to treat cancer, reduces disease severity and parasite burden in Leishmania-infected mice, even if it is started after lesions develop. Our results show that maximal Leishmania infection requires MAPK/ERK and highlight potential for MAPK/ERK-mediated signaling pathways to be novel therapeutic targets for leishmaniasis.
Collapse
Affiliation(s)
- Umaru Barrie
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Katherine Floyd
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Arani Datta
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Dawn M Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States.
| |
Collapse
|
5
|
Suckow MA, Bolton ID, McDowell MA. Overview and Approaches for Handling of Animal Models of Leishmaniasis. Comp Med 2024; 74:148-155. [PMID: 39107941 PMCID: PMC11267445 DOI: 10.30802/aalas-cm-24-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Iris D Bolton
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
6
|
Cigler P, Moré G, Bize P, Meier CM, Frey CF, Basso W, Keller S. Trypanosomiasis: An emerging disease in Alpine swift ( Tachymarptis melba) nestlings in Switzerland? Int J Parasitol Parasites Wildl 2024; 23:100895. [PMID: 38187443 PMCID: PMC10767487 DOI: 10.1016/j.ijppaw.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Alpine swifts (Tachymarptis melba) are sub-Saharan migratory birds, which, in Switzerland, nest in colonies that have been continuously monitored for over 40 years. In the summer of 2022, despite favourable environmental conditions, an unexpectedly high number of sudden mortalities (30-80%) occurred in 20 to 45-day-old nestlings from several nesting sites, of which 3 were monitored in detail. Nestlings submitted for post-mortem analysis (n = 5) were in good body condition but exhibited extensive subcutaneous haematomas (n = 5), myocardial petechiae (n = 2) and stunted growth of primary feathers (n = 1). In all birds, 4-5 μm large, amastigote-like protozoans were identified in skeletal and cardiac muscle sections. These tissues tested positive in a PCR targeting the 18S-rRNA gene of Trypanosoma spp. Amplified sequences showed 99.63% identity with sequences of Trypanosoma corvi (JN006854 and AY461665) and Trypanosoma sp. (AJ620557, JN006841). 72 blood smears of 45-day-old nestlings from two colonies were assessed, of which 20 contained trypomastigote forms, some with high parasitaemia (highest average of 56.4 in 10 high power fields, 400x magnification). Trypomastigote morphometrics (n = 36; mean total length = 30.0 μm; length of free flagellum = 5.8 μm) were consistent with those of T. bouffardi. These findings suggest that an avian trypanosomiasis causing mass nestling mortality could be an emerging disease in Swiss Alpine swift populations.
Collapse
Affiliation(s)
- P Cigler
- Institute for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - G Moré
- Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - P Bize
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - C M Meier
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - C F Frey
- Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - W Basso
- Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - S Keller
- Institute for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
8
|
Holanda VN, Brito TGS, de Oliveira JRS, da Cunha RX, da Silva APS, da Silva WV, Araújo TFS, Tavares JF, dos Santos SG, Figueiredo RCBQ, Lima VLM. Potential Effects of Essential Oil from Plinia cauliflora (Mart.) Kausel on Leishmania: In Vivo, In Vitro, and In Silico Approaches. Microorganisms 2024; 12:207. [PMID: 38276192 PMCID: PMC10819817 DOI: 10.3390/microorganisms12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
In the search for new chemotherapeutic alternatives for cutaneous leishmaniasis (CL), essential oils are promising due to their diverse biological potential. In this study, we aimed to investigate the chemical composition and leishmanicidal and anti-inflammatory potential of the essential oil isolated from the leaves of Plinia cauliflora (PCEO). The chemical composition of PCEO showed β-cis-Caryophyllene (24.4%), epi-γ-Eudesmol (8%), 2-Naphthalenemethanol[decahydro-alpha] (8%), and trans-Calamenene (6.6%) as its major constituents. Our results showed that the PCEO has moderate cytotoxicity (CC50) of 137.4 and 143.7 μg/mL on mice peritoneal exudate cells (mPEC) and Vero cells, respectively. The PCEO was able to significantly decrease mPEC infection by Leishmania amazonensis and Leishmania braziliensis. The value of the inhibitory concentration (IC50) on amastigote forms was about 7.3 µg/mL (L. amazonensis) and 7.2 µg/mL (L. braziliensis). We showed that PCEO induced drastic ultrastructural changes in both species of Leishmania and had a high selectivity index (SI) > 18. The in silico ADMET analysis pointed out that PCEO can be used for the development of oral and/or topical formulation in the treatment of CL. In addition, we also demonstrated the in vivo anti-inflammatory effect, with a 95% reduction in paw edema and a decrease by at least 21.4% in migration immune cells in animals treated with 50 mg/kg of PCEO. Taken together, our results demonstrate that PCEO is a promising topical therapeutic agent against CL.
Collapse
Affiliation(s)
- Vanderlan N. Holanda
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Thaíse G. S. Brito
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - João R. S. de Oliveira
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Rebeca X. da Cunha
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Ana P. S. da Silva
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Welson V. da Silva
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Tiago F. S. Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil;
| | - Josean F. Tavares
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Rua Tabelião Stanislau Eloy, 41, Castelo Branco III, João Pessoa 58033-455, PB, Brazil;
| | - Sócrates G. dos Santos
- Laboratório de Tecnologia Farmacêutica, Instituto de Pesquisa em Drogas e Medicamentos, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, João Pessoa 58033-455, PB, Brazil;
| | - Regina C. B. Q. Figueiredo
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Vera L. M. Lima
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| |
Collapse
|
9
|
Guetchueng ST, Djouonzo PT, Lame Y, Kopa Kowa T, Dotse E, Tchokouaha LRY, Kamdem Wabo H, Appiah-Opong R, Agbor GA. Antileishmanial anthraquinones from the rhyzomes of Rumex abyssinicus Jacq (Polygonaceae). Nat Prod Res 2023; 37:2935-2939. [PMID: 36282890 DOI: 10.1080/14786419.2022.2137797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
Abstract
Phytochemical investigation of the rhyzomes of Rumex abyssinicus (Polygonaceae) afforded six anthraquinones viz chrysophanol (1), physcion (2), emodin (3), mixture of physcion-8-O-β,D-glucopyranoside (4) and chrypsophanol-8-O-β,D-glucopyranoside (5), and emodin-8-O-β,D-glucopyranoside (6). All the compounds were characterised and identified by comparison of their MS and NMR data with available literature data. The isolated compounds were evaluated for their antileishmanial activity. Emodin (3) was the most active compounds with IC50 13.82 and 0.26 µg/mL against Leishmania donovani amastigotes and promastigotes, respectively. Emodin-8-O-β,D-glucopyranoside (6) also showed a moderate activity with IC50 27.53 and 37.08 µg/mL. This is the first report of antileishmanial compounds from R. abyssinicus and the antileishmanial activities of compounds 2, 4, 5 and 6 are here reported for the first time.
Collapse
Affiliation(s)
- Stephanie Tamdem Guetchueng
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Paul Toukam Djouonzo
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Younoussa Lame
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Théodora Kopa Kowa
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | - Eunice Dotse
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Lauve R Y Tchokouaha
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Hippolyte Kamdem Wabo
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Gabriel Agbor Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| |
Collapse
|
10
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Madden R, Burks H, Gao P, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. RESEARCH SQUARE 2023:rs.3.rs-3185204. [PMID: 37546914 PMCID: PMC10402201 DOI: 10.21203/rs.3.rs-3185204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Arline M. Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS 66047, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
11
|
Linquest LA, Hickham LC, Richardson BJ, Hickham PR. Successful Treatment of Cutaneous Leishmaniasis With Cryotherapy. Cureus 2023; 15:e41871. [PMID: 37457607 PMCID: PMC10348073 DOI: 10.7759/cureus.41871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Abstract
Leishmaniasis, a protozoal infection, is a growing health concern with 1.5 million new cases reported annually resulting in a wide spectrum of disease and clinical presentations. The disease is endemic in 98 countries with increasing prevalence in non-endemic areas. There are various treatment approaches that are often individualized based on host and parasite factors. Current treatment guidelines and data are variable and provide limited direction for specific treatment plans. Additionally, current recommended therapies are not benign, and are expensive and unavailable to most patients, especially in low-resource areas where leishmaniasis is most prevalent. Here, we report the diagnosis and successful treatment of cutaneous leishmaniasis in a 65-year-old male, who recently traveled to Mexico. Initial treatment with topical antifungals and oral antibiotics was ineffective. After successive treatment with local liquid nitrogen, the lesions completely resolved with no adverse effects or recurrence. Given there is limited evidence-based data supporting cryotherapy treatment as a first-line treatment, this report supports the efficacy of cryotherapy as a safe, cost-effective, and accessible treatment for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Lauren A Linquest
- Dermatology, Louisiana State University Health Shreveport - School of Medicine, Shreveport, USA
| | - Leigh C Hickham
- Dermatology, Louisiana State University Health Sciences Center New Orleans - School of Medicine, New Orleans, USA
| | - Bayley J Richardson
- Dermatology, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, Lubbock, USA
| | | |
Collapse
|
12
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
14
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
15
|
Jayaraman A, Srinivasan S, Kar A, Harish B, Charan Raja MR, Uppuluri KB, Kar Mahapatra S. Oceanimonas sp. BPMS22-derived protein protease inhibitor induces anti-leishmanial immune responses through macrophage M2 to M1 repolarization. Int Immunopharmacol 2022; 112:109281. [DOI: 10.1016/j.intimp.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
16
|
Moreira MDL, Borges-Fernandes LO, Pascoal-Xavier MA, Ribeiro ÁL, Pereira VHS, Pediongco T, Araújo MSDS, Teixeira-Carvalho A, de Carvalho AL, Mourão MVA, Campos FA, Borges M, Carneiro M, Chen Z, Saunders E, McConville M, Tsuji M, McCluskey J, Martins-Filho OA, Eckle SBG, Coelho-dos-Reis JGA, Peruhype-Magalhães V. The role of mucosal-associated invariant T cells in visceral leishmaniasis. Front Immunol 2022; 13:926446. [PMID: 36189274 PMCID: PMC9521739 DOI: 10.3389/fimmu.2022.926446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are restricted by MR1 and are known to protect against bacterial and viral infections. Our understanding of the role of MAIT cells in parasitic infections, such as visceral leishmaniasis (VL) caused by protozoan parasites of Leishmania donovani, is limited. This study showed that in response to L. infantum, human peripheral blood MAIT cells from children with leishmaniasis produced TNF and IFN-γ in an MR1-dependent manner. The overall frequency of MAIT cells was inversely correlated with alanine aminotransferase levels, a specific marker of liver damage strongly associated with severe hepatic involvement in VL. In addition, there was a positive correlation between total protein levels and the frequency of IL-17A+ CD8+ MAIT cells, whereby reduced total protein levels are a marker of liver and kidney damage. Furthermore, the frequencies of IFN-γ+ and IL-10+ MAIT cells were inversely correlated with hemoglobin levels, a marker of severe anemia. In asymptomatic individuals and VL patients after treatment, MAIT cells also produced IL-17A, a cytokine signature associated with resistance to visceral leishmaniasis, suggesting that MAIT cells play important role in protecting against VL. In summary, these results broaden our understanding of MAIT-cell immunity to include protection against parasitic infections, with implications for MAIT-cell-based therapeutics and vaccines. At last, this study paves the way for the investigation of putative MAIT cell antigens that could exist in the context of Leishmania infection.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Marcelo Antônio Pascoal-Xavier
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ágata Lopes Ribeiro
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Troi Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Andréa Teixeira-Carvalho
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Lucchesi de Carvalho
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flávia Alves Campos
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marineide Borges
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariângela Carneiro
- Parasitology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eleanor Saunders
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sidonia Barbara Guiomar Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jordana Grazziela Alves Coelho-dos-Reis
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- *Correspondence: Vanessa Peruhype-Magalhães, ; ; Jordana Grazziela Alves Coelho-dos-Reis, ;
| | - Vanessa Peruhype-Magalhães
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- *Correspondence: Vanessa Peruhype-Magalhães, ; ; Jordana Grazziela Alves Coelho-dos-Reis, ;
| |
Collapse
|
17
|
Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals (Basel) 2022; 15:ph15080967. [PMID: 36015115 PMCID: PMC9415812 DOI: 10.3390/ph15080967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the chemical composition as well as the antibacterial, antiparasitic, and cytotoxic potentialities of the Brazilian Chrysopogon zizanioides root essential oil (CZ-EO) In addition, CZ-EO cytotoxicity to LLCMK2 adherent epithelial cells was assessed. The major compounds identified in CZ-EO were khusimol (30.0 ± 0.3%), β-eudesmol (10.8 ± 0.3%), α-muurolene (6.0 ± 0.1%), and patchouli alcohol (5.6 ± 0.2%). CZ-EO displayed optimal antibacterial activity against Prevotella nigrescens, Fusobacterium nucleatum, Prevotella melaninogenica, and Aggregatibacter actinomycetemcomitans, with Minimum Inhibitory Concentration (MIC) values between 22 and 62.5 µg/mL and Minimum Bactericidal Concentration (MBC) values between 22 and 400 µg/mL. CZ-EO was highly active against the L. amazonensis promastigote and amastigote forms (IC50 = 7.20 and 16.21 µg/mL, respectively) and the T. cruzi trypomastigote form (IC50 = 11.2 µg/mL). Moreover, CZ-EO showed moderate cytotoxicity to LLCMK2 cells, with CC50 = 565.4 µg/mL. These results revealed an interesting in vitro selectivity of CZ-EO toward the L. amazonensis promastigote and amastigote forms (Selectivity Index, SI = 78.5 and 34.8, respectively) and the T. cruzi trypomastigote form (SI = 50.5) compared to LLCMK2 cells. These results showed the promising potential of CZ-EO for developing new antimicrobial, antileishmanial, and antitrypanosomal drugs.
Collapse
|
18
|
Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S, Kahlon AK, Maurya MK, Marothia M, Joshi P, Ranganathan A, Singh S. Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Leishmania donovani Survival. Front Cell Infect Microbiol 2022; 12:878136. [PMID: 35734580 PMCID: PMC9207379 DOI: 10.3389/fcimb.2022.878136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is one of the post-translational modifications that have recently been described as a key regulator of various cellular, nuclear, metabolic, and immunological processes. The process of SUMOylation involves the modification of one or more lysine residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as SUMO for their degradation, stability, transcriptional regulation, cellular localization, and transport. Herein, for the first time, we report the involvement of the host SUMOylation pathway in the process of infection of Leishmania donovani, a causative agent of visceral leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages leads to upregulation of SUMOylation pathway genes and downregulation of a deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation on the growth of Leishmania, the genes associated with the SUMOylation pathway were silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in the disease progression and parasite survival. Owing to the effect of the SUMOylation pathway in autophagy, we further investigated the status of host autophagy to gain mechanistic insights into how SUMOylation mediates the regulation of growth of L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction of the expression levels of host autophagy markers while promoting autophagosome–lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy initiation and autophagy maturation during parasite survival. The levels of reactive oxygen species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines were also elevated upon the knockdown of genes of the host SUMOylation pathway during L. donovani infection. This indicates the involvement of the SUMOylation pathway in the modulation of protective immune responses and thus favoring parasite survival. Taken together, the results of this study indicate the hijacking of the host SUMOylation pathway by L. donovani toward the suppression of host immune responses and facilitation of host autophagy to potentially facilitate its survival. Targeting of SUMOylation pathway can provide a starting point for the design and development of novel therapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Jhalak Singhal
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | | | | | | | | | | | | | | | | | | | - Anand Ranganathan
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | - Shailja Singh
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| |
Collapse
|
19
|
Giri J, Basu M, Roy S, Mishra T, Jana K, Chande A, Ukil A. Translationally Controlled Tumor Protein-Mediated Stabilization of Host Antiapoptotic Protein MCL-1 Is Critical for Establishment of Infection by Intramacrophage Parasite Leishmania donovani. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2540-2548. [PMID: 35562118 DOI: 10.4049/jimmunol.2100748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
In the early phase of infection, the intramacrophage pathogen Leishmania donovani protects its niche with the help of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Whether Leishmania could exploit MCL-1, an extremely labile protein, at the late phase is still unclear. A steady translational level of MCL-1 observed up to 48 h postinfection and increased caspase-3 activity in MCL-1-silenced infected macrophages documented its importance in the late hours of infection. The transcript level of MCL-1 showed a sharp decline at 6 h postinfection, and persistent MCL-1 expression in cyclohexamide-treated cells negates the possibility of de novo protein synthesis, thereby suggesting infection-induced stability. Increased ubiquitination, a prerequisite for proteasomal degradation of MCL-1, was also found to be absent in the late hours of infection. Lack of interaction with its specific E3 ubiquitin ligase MULE (MCL-1 ubiquitin ligase E3) and specific deubiquitinase USP9X prompted us to search for blockade of the ubiquitin-binding site in MCL-1. To this end, TCTP (translationally controlled tumor protein), a well-known binding partner of MCL-1 and antiapoptotic regulator, was found to be strongly associated with MCL-1 during infection. Phosphorylation of TCTP, a requirement for MCL-1 binding, was also increased in infected macrophages. Knockdown of TCTP decreased MCL-1 expression and short hairpin RNA-mediated silencing of TCTP in an infected mouse model of visceral leishmaniasis showed decreased parasite burden and induction of liver cell apoptosis. Collectively, our investigation revealed a key mechanism of how L. donovani exploits TCTP to establish infection within the host.
Collapse
Affiliation(s)
- Jayeeta Giri
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Moumita Basu
- Biosciences and Bioengineering Department, Indian Institute of Technology, Mumbai, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM, Kolkata, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India;
| |
Collapse
|
20
|
Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med Sci (Basel) 2022; 10:24. [PMID: 35645240 PMCID: PMC9149861 DOI: 10.3390/medsci10020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA; (N.S.C.); (Y.K.); (S.S.N.); (S.E.); (S.R.); (L.S.); (M.Y.A.); (K.K.B.); (F.F.); (A.A.); (R.P.)
| |
Collapse
|
21
|
Zhang K, Liu Y, Zhang G, Wang X, Li Z, Shang Y, Ning C, Ji C, Cai X, Xia X, Qiao J, Meng Q. Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:117-126. [PMID: 35500893 PMCID: PMC9058280 DOI: 10.3347/kjp.2022.60.2.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yucheng Liu
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046,
China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang, 832003,
China
- Corresponding author ()
| |
Collapse
|
22
|
Singh R, Anand A, Rawat AK, Saini S, Mahapatra B, Singh NK, Mishra AK, Singh S, Singh N, Kishore D, Kumar V, Das P, Singh RK. CD300a Receptor Blocking Enhances Early Clearance of Leishmania donovani From Its Mammalian Host Through Modulation of Effector Functions of Phagocytic and Antigen Experienced T Cells. Front Immunol 2022; 12:793611. [PMID: 35116028 PMCID: PMC8803664 DOI: 10.3389/fimmu.2021.793611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The parasites of the genus Leishmania survive and proliferate in the host phagocytic cells by taking control over their microbicidal functions. The parasite also promotes differentiation of antigen-specific anti-inflammatory cytokines producing effector T cells, which eventually results in disease pathogenesis. The mechanisms that parasites employ to dominate host adaptive immunity are largely unknown. For the first time, we report that L. donovani, which causes visceral leishmaniasis in the Indian subcontinent, upregulates the expression of an immune inhibitory receptor i.e., CD300a on antigen presenting and phagocytic cells to dampen their effector functions. The blocking of CD300a signals in leishmania antigens activated macrophages and dendritic cells enhanced the production of nitric oxide, pro-inflammatory cytokines along with MHCI/II genes expression, and reduced parasitic uptake. Further, the abrogation of CD300a signals in Leishmania infected mice benefited antigen-experienced, i.e., CD4+CD44+ and CD8+CD44+ T cells to acquire more pro-inflammatory cytokines producing phenotypes and helped in the early clearance of parasites from their visceral organs. The CD300a receptor blocking also enhanced the conversion of CD4+ T effectors cells to their memory phenotypes i.e., CCR7high CD62Lhigh up to 1.6 and 1.9 fold after 14 and 21 days post-infection, respectively. These findings implicate that CD300a is an important determinant of host phagocytic cells functions and T cells differentiation against Leishmania antigens.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anshul Anand
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Rawat
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Saini
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alok K. Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Nisha Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kishore
- Department of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Rakesh K. Singh,
| |
Collapse
|
23
|
Tadele M, Abay SM, Asaga P, Makonnen E, Hailu A. In vitro growth inhibitory activity of Medicines for Malaria Venture pathogen box compounds against Leishmania aethiopica. BMC Pharmacol Toxicol 2021; 22:71. [PMID: 34784983 PMCID: PMC8594108 DOI: 10.1186/s40360-021-00538-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Leishmania aethiopica (L. aethiopica) is responsible for different forms of cutaneous leishmaniasis (CL) in Ethiopia. Treatment heavily depends on limited drugs, together with drawbacks like toxicity and microbial resistance. The current research aimed to investigate in vitro growth inhibitory activity of Medicines for Malaria Ventures - Pathogen Box (MMV - PB) compounds against L. aethiopica clinical isolate. Methodology Four hundred MMV – PB compounds were screened against L. aethiopica using resazurin based colourimetric assay. Compounds with > 70% inhibition were further tested using macrophage based intracellular amastigote assay. Cytotoxic and hemolytic activity of candidate hits were assessed on THP1- cells and sheep red blood cells (RBCs), respectively. In vitro drug interaction study was also conducted for the most potent hit using the combination index method. Results At the test concentration of 1 μM, twenty-three compounds showed > 50% inhibition of promastigotes parasite growth, of which 11 compounds showed > 70% inhibition. The 50% growth inhibition (IC50) of the 11 compounds was ranged from 0.024 to 0.483 μM in anti-promastigote assay and from 0.064 to 0.899 μM in intracellular amastigote assay. Candidate compounds demonstrated good safety on sheep RBCs and THP-1 cell lines. MMV688415 demonstrated a slight hemolytic activity on sheep RBC (5.3% at 25 μM) and THP-1 cell line (CC20 = 25 μM) while MMV690102 inhibited half of THP-1 cells at 36.5 μM (selectivity index = 478). No synergistic activity was observed from the combinations of MMV690102 and amphotericin B (CI > 1), and MMV690102 and Pentamidine (CI > 1) at lower and higher combination points. Conclusion The present study identified a panel of compounds that can be used as a novel starting point for lead optimization. MMV690102 appears to be the most potent inhibitor against L. aethiopica promastigotes and amastigotes. Future works should investigate the antileishmanial mechanism of action and in vivo antileishmanial activities of identified hits. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-021-00538-2.
Collapse
Affiliation(s)
- Markos Tadele
- Animal Health Research Program, Ethiopian Institute of Agricultural Research, Holetta, Ethiopia.
| | - Solomon M Abay
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Peter Asaga
- Institute of Human Virology, University Freiburg Medical Centre, Freiburg, Germany
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Volpedo G, Huston RH, Holcomb EA, Pacheco-Fernandez T, Gannavaram S, Bhattacharya P, Nakhasi HL, Satoskar AR. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines 2021; 20:1431-1446. [PMID: 34511000 DOI: 10.1080/14760584.2021.1969231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Leishmaniasis is a major public health problem and the second most lethal parasitic disease in the world due to the lack of effective treatments and vaccines. Even when not lethal, leishmaniasis significantly affects individuals and communities through life-long disabilities, psycho-sociological trauma, poverty, and gender disparity in treatment. AREAS COVERED This review discusses the most relevant and recent research available on Pubmed and GoogleScholar highlighting leishmaniasis' global impact, pathogenesis, treatment options, and lack of effective control strategies. An effective vaccine is necessary to prevent morbidity and mortality, lower health care costs, and reduce the economic burden of leishmaniasis for endemic low- and middle-income countries. Since there are several forms of leishmaniasis, a pan-Leishmania vaccine without geographical restrictions is needed. This review also focuses on recent advances and common challenges in developing prophylactic strategies against leishmaniasis. EXPERT OPINION Despite advances in pre-clinical vaccine research, approval of a human leishmaniasis vaccine still faces major challenges - including manufacturing of candidate vaccines under Good Manufacturing Practices, developing well-designed clinical trials suitable in endemic countries, and defined correlates of protection. In addition, there is a need to explore Challenge Human Infection Model to avoid large trials because of fluctuating incidence and prevalence of leishmanasis.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ryan H Huston
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Erin A Holcomb
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
26
|
Mathur T, Kumar M, Barman TK, Raj VS, Upadhyay DJ, Verma AK. Novel azoles with potent antileishmanial activity. Future Microbiol 2021; 16:871-877. [PMID: 34318681 DOI: 10.2217/fmb-2020-0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the antileishmanial activity of novel azole compounds against Leishmania donovani, which causes deadly visceral leishmaniasis disease. Materials & methods: A focused azole-based library was screened against both promastigotes and amastigotes forms of L. donovani strains in flat-bottomed 96-well tissue culture plates and J774A.1 macrophage cell-line infected with L. donovani. The comprehensive screening of azole-based library against L. donovani strains provided novel hits, which can serve as a good starting point to initiate hit to lead optimization campaign. Results: Hits identified from azole-based library exhibited potent in vitro activity against promastigotes and amastigotes of L. donovani. Conclusion: These potent novel azole hits could be a good starting point to carry out for further medicinal chemistry exploration for antileishmania program.
Collapse
Affiliation(s)
- Tarun Mathur
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| | - Manoj Kumar
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| | - Tarani K Barman
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| | - V Samuel Raj
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| | - Dilip J Upadhyay
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| | - Ashwani K Verma
- Department of Medicinal Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, plot no. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, Haryana, 122 015, India
| |
Collapse
|
27
|
McNolty A, Anderson H, Stryker GA, Dondji B. Investigations on the effects of anti-Leishmania major serum on the progression of Leishmania infantum infection in vivo and in vitro - implications of heterologous exposure to Leishmania spp. Parasitol Res 2021; 120:1771-1780. [PMID: 33792813 DOI: 10.1007/s00436-021-07130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by protozoa of the genus Leishmania. Twenty different species are known to cause disease in humans with varying degrees of pathology. These diseases are transmitted throughout the geographic range of phlebotomine sandflies, found between the latitudes 50°N and 40°S. This study explores antibody dependent enhancement (ADE) as the cause of disease exacerbation in heterologous exposure of L. major primed mice to L. infantum challenge. BALB/c mice received serum from L. major infected or naive mice. All mice were challenged with L. infantum and tissue parasite burdens were recorded. Animals that received anti-L. major serum exhibited significantly higher parasite burdens. Surprisingly, these parasite burdens were higher than those of mice infected with L. major and challenged with L. infantum. In vitro phagocytosis assays were carried out to measure parasite uptake in the presence of naive vs. anti-L. major serum. J774A.1 murine monocytes were cultured with either L. major or L. infantum in the presence of anti-L. major serum, naive serum, or no serum. Significantly higher rates of L. major uptake by J774A.1 cells occurred in the presence of anti-L. major serum, but no measurable increase of L. infantum phagocytosis was seen. Our results suggest that increased disease severity observed in vivo in mice previously exposed to L. major and challenged with L infantum is not a result of extrinsic ADE. We speculate that intrinsic ADE, due to biased memory T cell responses caused by Fcγ signaling, could account for disease exacerbation seen in the animal model.
Collapse
Affiliation(s)
- Alan McNolty
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Heidi Anderson
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Gabrielle A Stryker
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| | - Blaise Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| |
Collapse
|
28
|
Tomiotto-Pellissier F, Alves DR, Morais SMD, Bortoleti BTDS, Gonçalves MD, Silva TF, Tavares ER, Yamauchi LM, Costa IN, Marinho ES, Marinho MM, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Caryocar coriaceum Wittm. fruit extracts as Leishmania inhibitors: in-vitro and in-silico approaches. J Biomol Struct Dyn 2021; 40:8040-8055. [PMID: 33769210 DOI: 10.1080/07391102.2021.1905557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is a group of neglected diseases caused by parasites of the Leishmania genus. The treatment of Leishmaniasis represents a great challenge, because the available drugs present high toxicity and none of them is fully effective. Caryocar is a botanical genus rich in phenolic compounds, which leaves extracts have already been described by its antileishmanial action. Thus, we investigated the effect of pulp and peel extracts of the Caryocar coriaceum fruit on promastigote and amastigote forms of Leishmania amazonensis. Both extracts had antipromastigote effect after 24, 48, and 72 h, and this effect was by apoptosis-like process induction, with reactive oxygen species (ROS) production, damage to the mitochondria and plasma membrane, and phosphatidylserine exposure. Knowing that the fruit extracts did not alter the viability of macrophages, we observed that the treatment reduced the infection of these cells. Thereafter, in the in vitro infection context, the extracts showed antioxidant proprieties, by reducing NO, ROS, and MDA levels. Besides, both peel and pulp extracts up-regulated Nrf2/HO-1/Ferritin expression and increase the total iron-bound in infected macrophages, which culminates in a depletion of available iron for L. amazonensis replication. In silico, the molecular modeling experiments showed that the three flavonoids presented in the C. coriaceum extracts can act as synergistic inhibitors of Leishmania proteins, and compete for the active site. Also, there is a preference for rutin at the active site due to its greater interaction binding strength.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Ribeiro Alves
- Department of Natural Sciences, Ceará State University, Fortaleza, Ceará, Brazil.,Theoretical and Electrochemical Chemistry Group, Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | | | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Department of Chemistry, Center of Exact Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliandro Reis Tavares
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Emmanuel Silva Marinho
- Theoretical and Electrochemical Chemistry Group, Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Marcia Machado Marinho
- Iguatu Faculty of Education, Science and Letters, State University of Ceará, Iguatu, Ceará, Brazil
| | - Ivete Conchon-Costa
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
29
|
Khatoon S, Aroosh A, Islam A, Kalsoom S, Ahmad F, Hameed S, Abbasi SW, Yasinzai M, Naseer MM. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg Chem 2021; 110:104816. [PMID: 33799180 DOI: 10.1016/j.bioorg.2021.104816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 μmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Saira Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aiman Aroosh
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Arshad Islam
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan; Department of Pathology, Government Lady Reading Hospital Medical Teaching Institution, Peshawar, KPK, Pakistan
| | - Saima Kalsoom
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Masoom Yasinzai
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
30
|
Kar A, Jayaraman A, Charan Raja MR, Srinivasan S, Debnath J, Mahapatra SK. Synergic effect of eugenol oleate with amphotericin B augments anti-leishmanial immune response in experimental visceral leishmaniasis in vitro and in vivo. Int Immunopharmacol 2021; 91:107291. [PMID: 33360084 DOI: 10.1016/j.intimp.2020.107291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Present treatment regimen on visceral leishmaniasis has multiple limitations including severe side effects, toxicity, and resistance of Leishmania strains. Amphotericin B is a well-established pharmacologically approved drug; however, mainly toxicity is a foremost issue with that drug. Recently, our group identified eugenol oleate as an anti-leishmanial immunomodulatory compound. The important objectives of this present study was to evaluate the possible synergistic effect of eugenol oleate with amphotericin B to reduce the toxicity of this approved drug. Results obtained from this study signified that combination of eugenol oleate and amphotericin B showed indifferent combinatorial effect against promastigotes with xΣFIC 1.015, while, moderate synergistic activity with xΣFIC 0.456 against amastigotes. It was also notable that eugenol oleate (2.5 μM) with low concentrations of amphotericin B (0.3125 μM) showed 96.45% parasite reduction within L. donovani-infected murine macrophages. Furthermore, eugenol oleate and amphotericin B significantly (p < 0.01) enhanced the nitrite generation, and pro-inflammatory cytokines (IL-12, IFN-γ and TNF-α) in infected macrophages in vitro and in BALB/c mice in vivo. Eugenol oleate (10 mg/Kg b. wt.) with amphotericin B (1 mg/Kg b.wt.) significantly (p < 0.01) controlled the parasite burden in liver by 96.2% and in spleen by 93.12%. Hence, this study strongly suggested the synergic potential of eugenol oleate with low concentration of amphotericin B in experimental visceral leishmaniasis through anti-leishmanial immune response.
Collapse
MESH Headings
- Amphotericin B/pharmacology
- Animals
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Female
- Host-Parasite Interactions
- Inflammation Mediators/metabolism
- Leishmania donovani/drug effects
- Leishmania donovani/immunology
- Leishmania donovani/pathogenicity
- Leishmaniasis, Visceral/drug therapy
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/metabolism
- Leishmaniasis, Visceral/parasitology
- Liver/drug effects
- Liver/immunology
- Liver/metabolism
- Liver/parasitology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/parasitology
- Mice, Inbred BALB C
- Nitrites/metabolism
- Parasite Load
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/parasitology
- Th1-Th2 Balance
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Th2 Cells/parasitology
- Trypanocidal Agents/pharmacology
- Mice
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Adithyan Jayaraman
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Joy Debnath
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| | - Santanu Kar Mahapatra
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
31
|
Variable bites and dynamic populations; new insights in Leishmania transmission. PLoS Negl Trop Dis 2021; 15:e0009033. [PMID: 33493192 PMCID: PMC7861551 DOI: 10.1371/journal.pntd.0009033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease which kills an estimated 50,000 people each year, with its deadly impact confined mainly to lower to middle income countries. Leishmania parasites are transmitted to human hosts by sand fly vectors during blood feeding. Recent experimental work shows that transmission is modulated by the patchy landscape of infection in the host's skin, and the parasite population dynamics within the vector. Here we assimilate these new findings into a simple probabilistic model for disease transmission which replicates recent experimental results, and assesses their relative importance. The results of subsequent simulations, describing random parasite uptake and dynamics across multiple blood meals, show that skin heterogeneity is important for transmission by short-lived flies, but that for longer-lived flies with multiple bites the population dynamics within the vector dominate transmission probability. Our results indicate that efforts to reduce fly lifespan beneath a threshold of around two weeks may be especially helpful in reducing disease transmission.
Collapse
|
32
|
Nandan D, Rath CT, Reiner NE. Leishmania regulates host macrophage miRNAs expression by engaging transcription factor c-Myc. J Leukoc Biol 2020; 109:999-1007. [PMID: 33211335 DOI: 10.1002/jlb.4ru0920-614r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Parasites of Leishmania genus have developed sophisticated strategies allowing them to deactivate their host macrophage to promote their survival. It has become clear that miRNAs play important roles in shaping innate and adaptive immune responses toward pathogens. It is not surprising that several pathogens including Leishmania have evolved the ability to regulate host macrophage miRNA expression in order to manipulate host cell phenotypes to their advantage. However, very little is known about the mechanisms used by intracellular pathogens to drive changes in host cell miRNA abundance. In this review, Leishmania exploitation of macrophage transcription factor c-Myc as a critical proxy virulence factor to regulate abundance of macrophage miRNAs influencing macrophage physiology to promote its survival will be discussed.
Collapse
Affiliation(s)
- Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Torturella Rath
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil E Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
34
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
35
|
The macrophage microtubule network acts as a key cellular controller of the intracellular fate of Leishmania infantum. PLoS Negl Trop Dis 2020; 14:e0008396. [PMID: 32722702 PMCID: PMC7386624 DOI: 10.1371/journal.pntd.0008396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 11/19/2022] Open
Abstract
The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite. Kinetoplastid parasites of the genus Leishmania are responsible for a diverse spectrum of mammalian infectious diseases, the leishmaniases, including cutaneous, mucocutaneous, and mucosal pathologies. Infectious metacyclic promastigotes of infected female Phlebotomus sandflies are injected into the host at the site of the bite during the sandfly blood meal, after which they are internalized by host professional phagocytic neutrophils and macrophages. Leishmania infantum is an etiological agent of potentially fatal visceral pathology. This study molecularly dissects the maturation of L. infantum-containing phagosomes/parasitophorous vacuoles (PVs) in host macrophages. We reveal the requirement of vacuolar movement along macrophage microtubule tracks for the phagosome trafficking toward the endolysosomal pathway necessary for the development of the mature tight-fitting PV crucial for L. infantum survival and proliferation.
Collapse
|
36
|
Ribeiro H, Rocha MI, Castro H, Macedo MF. Chemical inhibition of β-glucocerebrosidase does not affect phagocytosis and early containment of Leishmania by murine macrophages. Exp Parasitol 2020; 216:107939. [PMID: 32535115 DOI: 10.1016/j.exppara.2020.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Gaucher disease is a lysosomal storage disease in which a genetic deficiency in β-glucocerebrosidase leads to the accumulation of glycosphingolipids in lysosomes. Macrophages are amongst the cells most severely affected in Gaucher disease patients. One phenotype associated with Gaucher macrophages is the impaired capacity to fight bacterial infections. Here, we investigate whether inhibition of β-glucocerebrosidase activity affects the capacity of macrophages to phagocytose and act on the early containment of human pathogens of the genus Leishmania. Towards our aim, we performed in vitro infection assays on macrophages derived from the bone marrow of C57BL/6 mice. To mimic Gaucher disease, macrophages were incubated with the β-glucocerebrosidase inhibitor, conduritol B epoxide (CBE), prior to contact with Leishmania. This treatment guaranteed that β-glucocerebrosidase was fully inhibited during the contact of macrophages with Leishmania, its enzymatic activity being progressively recovered along the 48 h that followed removal of the inhibitor. Infections were performed with L. amazonensis, L. infantum, or L. major, so as to explore potential species-specific responses in the context of β-glucocerebrosidase inactivation. Parameters of infection, recorded immediately after phagocytosis, as well as 24 and 48 h later, revealed no noticeable differences in the infection parameters of CBE-treated macrophages relative to non-treated controls. We conclude that blocking β-glucocerebrosidase activity during contact with Leishmania does not interfere with the phagocytic capacity of macrophages and the early onset of leishmanicidal responses.
Collapse
Affiliation(s)
- H Ribeiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - M I Rocha
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Molecular Parasitology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - H Castro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Molecular Parasitology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - M F Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
37
|
Cojean S, Nicolas V, Lievin-Le Moal V. Key role of the macrophage microtubule network in the intracellular lifestyle of Leishmania amazonensis. Cell Microbiol 2020; 22:e13218. [PMID: 32406568 DOI: 10.1111/cmi.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis-containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage-like RAW 264.7 cells or silencing of the dynein gene, encoding the MT-associated molecular motor that powers MT-dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite-containing phagosome-like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite-containing phagosome-like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite-containing phagosome-like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host-cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote-to-amastigote differentiation and died, regardless of the type of insulation.
Collapse
Affiliation(s)
- Sandrine Cojean
- CNRS, UMR 8076 BioCis, University Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS -US31 -UMS3679, Microscopy facility (MIPSIT), University Paris-Saclay, Châtenay-Malabry, France
| | - Vanessa Lievin-Le Moal
- Inserm, UMR-S 996 Inflammation, Microbiome and Immunosurveillance, University Paris-Saclay, Clamart, France
| |
Collapse
|
38
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Cabral FV, Pelegrino MT, Sauter IP, Seabra AB, Cortez M, Ribeiro MS. Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform. Nitric Oxide 2019; 93:25-33. [DOI: 10.1016/j.niox.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
40
|
Srivastava A, Garg S, Jain R, Ayana R, Kaushik H, Garg L, Pati S, Singh S. Identification and functional characterization of a bacterial homologue of Zeta toxin in Leishmania donovani. FEBS Lett 2019; 593:1223-1235. [PMID: 31074836 DOI: 10.1002/1873-3468.13429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/04/2023]
Abstract
Zeta-toxin is a cognate toxin of epsilon antitoxin of prokaryotic Type II toxin-antitoxin system (TA) and play an important role in cell death. An orthologue of bacterial-zeta-toxin (BzT) was identified in Leishmania donovani with similar structural and functional features. Leishmania zeta-toxin (named Ld_ζ1) harboring similar UNAG and ATP-binding pockets showed UNAG kinase and ATP-binding activity. An active Ld_ζ1 was found to express in infective extracellular promastigotes stage of L. donovani and episomal overexpression of an active Ld_ζ1domain-triggered cell death. This study demonstrates the presence of prokaryotic-like-zeta-toxin in eukaryotic parasite Leishmania and its association with cell death. Conceivably, phosphorylated UNAG or analogues, the biochemical mimics of zeta-toxin function mediating cell death can act as a novel anti-leishmanial chemotherapeutics.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Ravi Jain
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Rajagopal Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Lalit Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol 2019; 30:103-111. [PMID: 29294040 PMCID: PMC5892169 DOI: 10.1093/intimm/dxx075] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Infection by protozoan parasites of the genus Leishmania results in the development of leishmaniasis, an increasingly prevalent group of diseases affecting over 12 million people worldwide. Leishmaniasis can have very different outcomes ranging from cutaneous lesions, mucosal lesions to visceralization depending on the species of the infecting parasite and on the immune response developed by the host. As an obligate intracellular parasite, residing within macrophages, Leishmania evolved in strict contact with the host immune system, developing different mechanisms to evade or modulate the immune response. Various types of immune responses are observed during different Leishmania spp. infections, resulting in parasite clearance but also contributing to the pathogenesis, thus increasing the complexity of the course of the disease. Interestingly, depending on the type of leishmaniasis developed, opposite treatment strategies, which either boost or inhibit the inflammatory response, have shown efficacy. In this review, we summarize the contribution of different immune cell types to the development of the anti-leishmanial immune response and the parasite strategies to evade and modulate host immunity. Further, we discuss the involvement of co-infecting pathogens in the determination of the outcome of leishmaniasis and on the effectiveness of treatment and the implication of the immune response for treatment and vaccine development.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| |
Collapse
|
42
|
Synthesis and evaluation of the antileishmanial activity of silver compounds containing imidazolidine-2-thione. J Biol Inorg Chem 2019; 24:419-432. [DOI: 10.1007/s00775-019-01657-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
|
43
|
Cuddihy G, Wasan EK, Di Y, Wasan KM. The Development of Oral Amphotericin B to Treat Systemic Fungal and Parasitic Infections: Has the Myth Been Finally Realized? Pharmaceutics 2019; 11:E99. [PMID: 30813569 PMCID: PMC6470859 DOI: 10.3390/pharmaceutics11030099] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
Parenteral amphotericin B has been considered as first-line therapy in the treatment of systemic fungal and parasitic infections, however its use has been associated with a number of limitations including affordability, accessibility, and an array of systemic toxicities. Until very recently, it has been very challenging to develop a bioavailable formulation of amphotericin B due to its physical chemical properties, limited water and lipid solubility, and poor absorption. This perspective reviews several novel oral Amphotericin B formulations under development that are attempting to overcome these limitations.
Collapse
Affiliation(s)
- Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Yunyun Di
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
44
|
Chauhan P, Saha B. Metabolic regulation of infection and inflammation. Cytokine 2018; 112:1-11. [PMID: 30472107 DOI: 10.1016/j.cyto.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Immunometabolic framework provides a way to understand the immune regulation via cell intrinsic metabolic fluxes and metabolites during infections, tumors, and inflammatory disorders. During these diseases, the immune cells are activated requiring more energy and moderating their metabolic functions. The two categories of metabolic alterations are therefore causally associated with energy derivation and cellular functions. Pathogens, tumors and inflammation target energy metabolism, primarily glucose uptake, glucose catabolism, gluconeogenesis for continuing lipid metabolism through mainstream pathways such as glycolysis, tricarboxylic acid cycle, mitochondrial respiration and pentose phosphate pathway. Many biosynthetic pathways such as those of cholesterol, ceramide, sphingolipids, and fatty acids are altered explaining the metabolic interface in molecular pathogenesis in various infectious and non-infectious inflammatory diseases. The emerging immune-metabolic framework also identifies the key regulatory elements such as metabolites, signalling intermediates and transcription factors. These regulatory elements play key roles in deciding the fate of an infection, tumor or autoimmune diseases. The original research articles and the review articles in this Special issue of Cytokine on "Infection, Inflammation and Immunometabolomes" highlight these aspects of metabolic reprogramming and the role of some 'metabolomic regulators' in controlling the outcome of infectious and non-infectious diseases. In this Editorial, we introduce the readers to these articles discussing the elements in immune-metabolic framework.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- Trident Academy of Creative Technology, Bhubaneswar 750019, India
| |
Collapse
|
45
|
Rugani JN, Quaresma PF, Gontijo CF, Soares RP, Monte-Neto RL. Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomed Pharmacother 2018; 108:1170-1180. [PMID: 30372818 DOI: 10.1016/j.biopha.2018.09.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Leishmania (Viannia) braziliensis is the most common etiological agent of cutaneous and mucocutaneous leishmaniasis (MCL) in Latin America. An interesting aspect of the disease outcome caused by this species is the appearance of non-ulcerated atypical cutaneous leishmaniasis. Atypical (AT) lesions are often associated with therapeutic failure when treated with antimony(Sb)-based drugs. Refractory cases are not necessarily due to intrinsic parasite drug resistance. The status of in vitro drug susceptibility from L. braziliensis field isolates is less assessed than patient treatment outcome. In this work, L. braziliensis isolated from typical CL (6), MCL (1) and AT (3) lesions and vector (1) were tested for their susceptibility to amphotericin B (AmB), miltefosine (MIL), glucantime (GLU) and non-comercial meglumine antimoniate (MA). Overall, intracellular amastigotes of all isolates were sensitive to the tested antileishmanial drugs except AT lesions-derived strains 316, 330 and 340 that presented in vitro resistance against SbV-based drugs. Although susceptible to miltefosine - based on phenotypic screening - intramacrophagic quiescent amastigotes could restore infection. L. braziliensis promastigotes isolated from AT lesions also displayed 29% reduced capacity to infect human monocyte-derived macrophages when compared with parasites obtained from patients with typical lesions, MCL or from sand-fly. These data indicate differences in drug susceptibility and infectiveness among L. braziliensis isolated from patients exhibiting different types of lesions and highlight the importance of its characterization for drug response prediction outcome in clinical practice.
Collapse
Affiliation(s)
- Jeronimo N Rugani
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, 30190-009, Belo Horizonte, MG, Brazil.
| | - Patrícia F Quaresma
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, 30190-009, Belo Horizonte, MG, Brazil.
| | - Célia F Gontijo
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, 30190-009, Belo Horizonte, MG, Brazil.
| | - Rodrigo P Soares
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, 30190-009, Belo Horizonte, MG, Brazil.
| | - Rubens L Monte-Neto
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, 30190-009, Belo Horizonte, MG, Brazil.
| |
Collapse
|
46
|
Ontoria E, Hernández-Santana YE, González-García AC, López MC, Valladares B, Carmelo E. Transcriptional Profiling of Immune-Related Genes in Leishmania infantum-Infected Mice: Identification of Potential Biomarkers of Infection and Progression of Disease. Front Cell Infect Microbiol 2018; 8:197. [PMID: 30013952 PMCID: PMC6036295 DOI: 10.3389/fcimb.2018.00197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Leishmania spp. is a protozoan parasite that affects millions of people around the world. At present, there is no effective vaccine to prevent leishmaniases in humans. A major limitation in vaccine development is the lack of precise understanding of the particular immunological mechanisms that allow parasite survival in the host. The parasite-host cell interaction induces dramatic changes in transcriptome patterns in both organisms, therefore, a detailed analysis of gene expression in infected tissues will contribute to the evaluation of drug and vaccine candidates, the identification of potential biomarkers, and the understanding of the immunological pathways that lead to protection or progression of disease. In this large-scale analysis, differential expression of 112 immune-related genes has been analyzed using high-throughput qPCR in spleens of infected and naïve Balb/c mice at four different time points. This analysis revealed that early response against Leishmania infection is characterized by the upregulation of Th1 markers and M1-macrophage activation molecules such as Ifng, Stat1, Cxcl9, Cxcl10, Ccr5, Cxcr3, Xcl1, and Ccl3. This activation doesn't protect spleen from infection, since parasitic burden rises along time. This marked difference in gene expression between infected and control mice disappears during intermediate stages of infection, probably related to the strong anti-inflammatory and immunosuppresory signals that are activated early upon infection (Ctla4) or remain activated throughout the experiment (Il18bp). The overexpression of these Th1/M1 markers is restored later in the chronic phase (8 wpi), suggesting the generation of a classical "protective response" against leishmaniasis. Nonetheless, the parasitic burden rockets at this timepoint. This apparent contradiction can be explained by the generation of a regulatory immune response characterized by overexpression of Ifng, Tnfa, Il10, and downregulation Il4 that counteracts the Th1/M1 response. This large pool of data was also used to identify potential biomarkers of infection and parasitic burden in spleen, on the bases of two different regression models. Given the results, gene expression signature analysis appears as a useful tool to identify mechanisms involved in disease outcome and to establish a rational approach for the identification of potential biomarkers useful for monitoring disease progression, new therapies or vaccine development.
Collapse
Affiliation(s)
- Eduardo Ontoria
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Yasmina E. Hernández-Santana
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Ana C. González-García
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Manuel C. López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
47
|
Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE. Human leishmaniasis in Brazil: A general review. ACTA ACUST UNITED AC 2018; 64:281-289. [PMID: 29641786 DOI: 10.1590/1806-9282.64.03.281] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a disease with ample clinical spectrum and epidemiological diversity and is considered a major public health problem. This article presents an overview of the transmission cycles, host-parasite interactions, clinical, histological and immunological aspects, diagnosis and treatment of various forms of the human disease.
Collapse
Affiliation(s)
- Laís Anversa
- Biomedical Sciences Core - Instituto Adolfo Lutz, Centro de Laboratório Regional de Bauru, Bauru, SP, Brazil
| | | | | | - Luis Eduardo Ramirez
- Department of Immunology, Microbiology and Parasitology, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
48
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
49
|
von Stebut E, Tenzer S. Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol 2017; 308:206-214. [PMID: 29129568 DOI: 10.1016/j.ijmm.2017.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is transmitted by sand flies leading to parasite inoculation into skin. In the mammalian host, the parasite primarily resides in skin macrophages (MΦ) and dendritic cells (DC). MΦ are silently invaded by the parasite eliciting a stress response, whereas DC become activated, release IL-12, and prime antigen-specific T cells. Here we review the basics of the immune response against this human pathogen and elucidate the role and function DC and MΦ for establishment of protective immunity against leishmaniasis. We focus on cell type-specific differences in parasite uptake, phagocyte activation and processing of parasite antigens to facilitate an understanding how their respective function may be modulated e.g. under therapeutic considerations.
Collapse
Affiliation(s)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
50
|
Semini G, Paape D, Paterou A, Schroeder J, Barrios‐Llerena M, Aebischer T. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection. Microbiologyopen 2017; 6:e00469. [PMID: 28349644 PMCID: PMC5552908 DOI: 10.1002/mbo3.469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
| | - Daniel Paape
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Athina Paterou
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| | - Juliane Schroeder
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Martin Barrios‐Llerena
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Centre for Cardiovascular SciencesQueen's Medical Research Institute University of EdinburghEdinburghUK
| | - Toni Aebischer
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|