1
|
Shaikh R, Ghosh K, Gorakshakar A. Plasmodium vivax Infections in Duffy-Negative Individuals: A Paradigm Shift in Indian Malaria Epidemiology. Mediterr J Hematol Infect Dis 2025; 17:e2025044. [PMID: 40375909 PMCID: PMC12081053 DOI: 10.4084/mjhid.2025.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/26/2025] [Indexed: 05/18/2025] Open
Abstract
Background To investigate the occurrence of Plasmodium vivax infections in Duffy-negative individuals, challenging the long-held belief that P. vivax requires the Duffy antigen receptor for chemokines to infect human erythrocytes. Materials and Methods In the present study, 365 samples were screened using serological techniques, PCR-RFLP analysis, and DNA sequencing of the ACKR1 gene promoter region mutation to identify Duffy-negative individuals. P. vivax infection was detected using PCR targeting the 18S rRNA gene and microscopic examination of Giemsa-stained blood smears. Results Five individuals (1.36%) were confirmed Duffy-negative (Fy(a-b-)). Surprisingly, 3 out of these 5 Duffy-negative subjects (60%) were infected with P. vivax, as confirmed by both microscopy and PCR. Various parasite stages were observed in infected Duffy-negative samples, with parasitaemia ranging from 0.01% to 0.5%. Discussion Our findings provide compelling evidence that P. vivax can infect Duffy-negative individuals, suggesting the existence of alternative invasion pathways or adaptations. This has profound implications for P. vivax biology, evolution, and global distribution. The burden of vivax malaria may be underestimated, particularly in regions with a high prevalence of Duffy negativity. This study highlights the need to reevaluate P. vivax epidemiology, diagnostic approaches, and control strategies, especially in areas previously considered at low risk. Further research is needed to elucidate the mechanisms enabling P. vivax invasion of Duffy-negative erythrocytes and to assess the clinical and epidemiological consequences of these infections.
Collapse
Affiliation(s)
| | - Kanjaksha Ghosh
- Former Director - ICMR - National Institute of Immunohaematology
| | | |
Collapse
|
2
|
Ali Albsheer MM, Hubbard A, Dieng CC, Gebremeskel EI, Ahmed S, Rougeron V, Ibrahim ME, Lo E, Abdel Hamid MM. Extensive genetic diversity in Plasmodium vivax from Sudan and its genetic relationships with other geographical isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105643. [PMID: 39053565 DOI: 10.1016/j.meegid.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Plasmodium vivax, traditionally overlooked has experienced a notable increase in cases in East Africa. This study investigated the geographical origin and genetic diversity of P. vivax in Sudan using 14 microsatellite markers. A total of 113 clinical P. vivax samples were collected from two different ecogeographical zones, New Halfa and Khartoum, in Sudan. Additionally, 841 geographical samples from the database were incorporated for a global genetic analysis to discern genetic relationships among P. vivax isolates on regional and worldwide scales. On the regional scale, our findings revealed 91 unique and 8 shared haplotypes among the Sudan samples, showcasing a remarkable genetic diversity compared to other geographical isolates and supporting the hypothesis that P. vivax originated from Africa. On a global scale, distinct genetic clustering of P. vivax isolates from Africa, South America, and Asia (including Papua New Guinea and Solomon Island) was observed, with limited admixture among the three clusters. Principal component analysis emphasized the substantial contribution of African isolates to the observed global genetic variation. The Sudanese populations displayed extensive genetic diversity, marked by significant multi-locus linkage disequilibrium, suggesting an ancestral source of P. vivax variation globally and frequent recombination among the isolates. Notably, the East African P. vivax exhibited similarity with some Asian isolates, indicating potential recent introductions. Overall, our results underscore the effectiveness of utilizing microsatellite markers for implementing robust control measures, given their ability to capture extensive genetic diversity and linkage disequilibrium patterns.
Collapse
Affiliation(s)
- Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan; Faculty of Medical Laboratory Sciences, Sinnar University, Sudan
| | - Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA
| | | | - Safaa Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, 34394 Montpellier, France
| | - Muntaser E Ibrahim
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA.
| | - Muzamil M Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
3
|
Sharp PM, Plenderleith LJ, Culleton RL, Hahn BH. Origin of the human malaria parasite Plasmodium vivax. Trends Parasitol 2024; 40:562-572. [PMID: 38806300 PMCID: PMC11588016 DOI: 10.1016/j.pt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
The geographic origin of Plasmodium vivax, a leading cause of human malaria, has been the subject of much speculation. Here we review the evolutionary history of P. vivax and P. vivax-like parasites in humans and non-human primates on three continents, providing overwhelming evidence for an African origin. This conclusion is consistent with recent reports showing that Duffy-negative humans in Africa are, in fact, susceptible to P. vivax, with parasites invading Duffy-antigen-expressing erythroid precursors. Thus, the African origin of P. vivax not only explains the distribution of the Duffy-negative genotype but also provides new insight into the history and status of P. vivax malaria in Africa and efforts geared toward its eradication.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | | | - Richard L Culleton
- Division of Parasitology, Proteo-Science Centre, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
5
|
Trájer AJ. The changing risk patterns of Plasmodium vivax malaria in Greece due to climate change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:665-690. [PMID: 32683891 DOI: 10.1080/09603123.2020.1793918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
It has great importance to study the potential effects of climate change on Plasmodium vivax malaria in Greece because the country can be the origin of the spread of vivax malaria to the northern areas. The potential lengths of the transmission seasons of Plasmodium vivax malaria were forecasted for 2041-2060 and 2061-2080 and were combined. The potential ranges were predicted by Climate Envelope Modelling Method. The models show moderate areal increase and altitudinal shift in the malaria-endemic areas in Greece in the future. The length of the transmission season is predicted to increase by 1 to 2 months, mainly in the mid-elevation regions and the Aegean Archipelago. The combined factors also predict the decrease of vivax malaria-free area in Greece. It can be concluded that rather the elongation of the transmission season will lead to an increase of the malaria risk in Greece than the increase in the suitability values.
Collapse
Affiliation(s)
- Attila J Trájer
- Institute of Environmental Engineering, University of Pannonia, Veszprém, Hungary
- Department of Limnology, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
6
|
Mourier T, de Alvarenga DAM, Kaushik A, de Pina-Costa A, Douvropoulou O, Guan Q, Guzmán-Vega FJ, Forrester S, de Abreu FVS, Júnior CB, de Souza Junior JC, Moreira SB, Hirano ZMB, Pissinatti A, Ferreira-da-Cruz MDF, de Oliveira RL, Arold ST, Jeffares DC, Brasil P, de Brito CFA, Culleton R, Daniel-Ribeiro CT, Pain A. The genome of the zoonotic malaria parasite Plasmodium simium reveals adaptations to host switching. BMC Biol 2021; 19:219. [PMID: 34592986 PMCID: PMC8485552 DOI: 10.1186/s12915-021-01139-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Plasmodium simium, a malaria parasite of non-human primates (NHP), was recently shown to cause zoonotic infections in humans in Brazil. We sequenced the P. simium genome to investigate its evolutionary history and to identify any genetic adaptions that may underlie the ability of this parasite to switch between host species. RESULTS Phylogenetic analyses based on whole genome sequences of P. simium from humans and NHPs reveals that P. simium is monophyletic within the broader diversity of South American Plasmodium vivax, suggesting P. simium first infected NHPs as a result of a host switch of P. vivax from humans. The P. simium isolates show the closest relationship to Mexican P. vivax isolates. Analysis of erythrocyte invasion genes reveals differences between P. vivax and P. simium, including large deletions in the Duffy-binding protein 1 (DBP1) and reticulocyte-binding protein 2a genes of P. simium. Analysis of P. simium isolated from NHPs and humans revealed a deletion of 38 amino acids in DBP1 present in all human-derived isolates, whereas NHP isolates were multi-allelic. CONCLUSIONS Analysis of the P. simium genome confirmed a close phylogenetic relationship between P. simium and P. vivax, and suggests a very recent American origin for P. simium. The presence of the DBP1 deletion in all human-derived isolates tested suggests that this deletion, in combination with other genetic changes in P. simium, may facilitate the invasion of human red blood cells and may explain, at least in part, the basis of the recent zoonotic infections.
Collapse
Affiliation(s)
- Tobias Mourier
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denise Anete Madureira de Alvarenga
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, MG, 30190-009, Brazil
| | - Abhinav Kaushik
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, 25964-004, Brazil
| | - Olga Douvropoulou
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingtian Guan
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisco J Guzmán-Vega
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarah Forrester
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Filipe Vieira Santos de Abreu
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Cesare Bianco Júnior
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Julio Cesar de Souza Junior
- Universidade Regional de Blumenau (FURB), Centro de Pesquisas Biológicas de Indaial (CEPESBI)/ Projeto bugio, Blumenau, Indaial, SC, Brazil
| | | | - Zelinda Maria Braga Hirano
- Universidade Regional de Blumenau (FURB), Centro de Pesquisas Biológicas de Indaial (CEPESBI)/ Projeto bugio, Blumenau, Indaial, SC, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ/Inea), Guapimirim, RJ, 25940-000, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Ricardo Lourenço de Oliveira
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Stefan T Arold
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Daniel C Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Cristiana Ferreira Alves de Brito
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, MG, 30190-009, Brazil
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.
- Laboratório de Pesquisa em Malária, IOC, Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, Japan.
| |
Collapse
|
7
|
Djigo OKM, Ould Ahmedou Salem MS, Diallo SM, Bollahi MA, Boushab BM, Garre A, Papa Mze N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A. Molecular Epidemiology of G6PD Genotypes in Different Ethnic Groups Residing in Saharan and Sahelian Zones of Mauritania. Pathogens 2021; 10:pathogens10080931. [PMID: 34451395 PMCID: PMC8398068 DOI: 10.3390/pathogens10080931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax malaria is endemic in Mauritania. Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop acute hemolytic anemia when exposed to 8-aminoquinoline antimalarial drugs, which are indispensable for a complete cure. The prevalence of G6PD allelic variants was assessed in different ethno-linguistic groups present in Mauritania. A total of 996 blood samples (447 males and 549 females; 499 white Moors and 497 individuals of black African ancestry) were collected from febrile patients in 6 different study sites: Aleg, Atar, Kiffa, Kobeni, Nouakchott, and Rosso. The presence of the African-type G6PD A- (G202A, A376G, A542T, G680T, and T968C mutations) and the Mediterranean-type G6PD B- (C563T) variants was assessed by PCR followed by restriction fragment length polymorphism and/or DNA sequencing. The prevalence of African-type G6PD A- genotype was 3.6% (36/996), with 6.3% (28/447) of hemizygote (A-) males and 1.5% (8/549) of homozygous (A-A-) females. Forty of 549 (7.3%) women were heterozygous (AA-). The following genotypes were observed among hemizygous men and/or homozygous women: A376G/G202A (22/996; 2.2%), A376G/T968C Betica-Selma (12/996; 1.2%), and A376G/A542T Santamaria (2/996; 0.2%). The Mediterranean-type G6PD B- genotype was not observed. The prevalence rates of G6PD A- genotype in male (10/243; 4.1%) and heterozygous female (6/256; 2.3%) white Moors were lower (p < 0.05) than those of males (18/204; 8.8%) and heterozygous females (34/293; 11.6%) of black African ancestry. There were only a few homozygous women among both white Moors (3/256; 1.2%) and those of black African ancestry (5/293; 1.7%). The prevalence of G6PD deficiency in Mauritania was comparable to that of neighboring countries in the Maghreb. Because of the purportedly close ethnic ties between the Mauritanian white Moors and the peoples in the Maghreb, further investigations on the possible existence of the Mediterranean-type allele are required. Moreover, a surveillance system of G6PD phenotype and/or genotype screening is warranted to establish and monitor a population-based prevalence of G6PD deficiency.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | - Sileye Mamadou Diallo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
| | | | - Boushab Mohamed Boushab
- Department of Internal Medicine and Infectious Diseases, Kiffa Regional Hospital, Assaba, Mauritania;
| | - Aymeric Garre
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Nasserdine Papa Mze
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Leonardo Basco
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France; (A.G.); (N.P.M.); (L.B.); (S.B.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), 13005 Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania; (O.K.M.D.); (M.S.O.A.S.); (S.M.D.)
- Correspondence:
| |
Collapse
|
8
|
de Oliveira TC, Rodrigues PT, Early AM, Duarte AMRC, Buery JC, Bueno MG, Catão-Dias JL, Cerutti C, Rona LDP, Neafsey DE, Ferreira MU. Plasmodium simium: population genomics reveals the origin of a reverse zoonosis. J Infect Dis 2021; 224:1950-1961. [PMID: 33870436 DOI: 10.1093/infdis/jiab214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P. vivax populations from various sources, including the lineages that founded the species P. simium, are thought to have arrived in the Americas in separate migratory waves. However, here we find a minimal genome-level differentiation between P. simium and present-day New World P. vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P. simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P. simium adaptation to new hosts include the deletion of >40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection.
Collapse
Affiliation(s)
- Thaís C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil.,Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Julyana C Buery
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marina G Bueno
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José L Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Crispim Cerutti
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Luísa D P Rona
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Council for Scientific and Technological Development, National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Abstract
BACKGROUND Plasmodium vivax (P vivax) is a focus of malaria elimination. It is important because P vivax and Plasmodium falciparum infection are co-endemic in some areas. There are asymptomatic carriers of P vivax, and the treatment for P vivax and Plasmodium ovale malaria differs from that used in other types of malaria. Rapid diagnostic tests (RDTs) will help distinguish P vivax from other malaria species to help treatment and elimination. There are RDTs available that detect P vivax parasitaemia through the detection of P vivax-specific lactate dehydrogenase (LDH) antigens. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P vivax malaria infection in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria; and to identify which types and brands of commercial tests best detect P vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 30 July 2019: Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Science Citation Index Expanded (SCI-EXPANDED) and Conference Proceedings Citation Index-Science (CPCI-S), both in the Web of Science. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction (PCR)) in blood samples from patients attending ambulatory health facilities with symptoms suggestive of malaria in P vivax-endemic areas. DATA COLLECTION AND ANALYSIS For each included study, two review authors independently extracted data using a pre-piloted data extraction form. The methodological quality of the studies were assessed using a tailored Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. We grouped studies according to commercial brand of the RDT and performed meta-analysis when appropriate. The results given by the index tests were based on the antibody affinity (referred to as the strength of the bond between an antibody and an antigen) and avidity (referred to as the strength of the overall bond between a multivalent antibody and multiple antigens). All analyses were stratified by the type of reference standard. The bivariate model was used to estimate the pooled sensitivity and specificity with 95% confidence intervals (CIs), this model was simplified when studies were few. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 10 studies that assessed the accuracy of six different RDT brands (CareStart Malaria Pf/Pv Combo test, Falcivax Device Rapid test, Immuno-Rapid Malaria Pf/Pv test, SD Bioline Malaria Ag Pf/Pv test, OnSite Pf/Pv test and Test Malaria Pf/Pv rapid test) for detecting P vivax malaria. One study directly compared the accuracy of two RDT brands. Of the 10 studies, six used microscopy, one used PCR, two used both microscopy and PCR separately and one used microscopy corrected by PCR as the reference standard. Four of the studies were conducted in Ethiopia, two in India, and one each in Bangladesh, Brazil, Colombia and Sudan. The studies often did not report how patients were selected. In the patient selection domain, we judged the risk of bias as unclear for nine studies. We judged all studies to be of unclear applicability concern. In the index test domain, we judged most studies to be at low risk of bias, but we judged nine studies to be of unclear applicability concern. There was poor reporting on lot testing, how the RDTs were stored, and background parasitaemia density (a key variable determining diagnostic accuracy of RDTs). Only half of the included studies were judged to be at low risk of bias in the reference standard domain, Studies often did not report whether the results of the reference standard could classify the target condition or whether investigators knew the results of the RDT when interpreting the results of the reference standard. All 10 studies were judged to be at low risk of bias in the flow and timing domain. Only two brands were evaluated by more than one study. Four studies evaluated the CareStart Malaria Pf/Pv Combo test against microscopy and two studies evaluated the Falcivax Device Rapid test against microscopy. The pooled sensitivity and specificity were 99% (95% CI 94% to 100%; 251 patients, moderate-certainty evidence) and 99% (95% CI 99% to 100%; 2147 patients, moderate-certainty evidence) for CareStart Malaria Pf/Pv Combo test. For a prevalence of 20%, about 206 people will have a positive CareStart Malaria Pf/Pv Combo test result and the remaining 794 people will have a negative result. Of the 206 people with positive results, eight will be incorrect (false positives), and of the 794 people with a negative result, two would be incorrect (false negative). For the Falcivax Device Rapid test, the pooled sensitivity was 77% (95% CI: 53% to 91%, 89 patients, low-certainty evidence) and the pooled specificity was 99% (95% CI: 98% to 100%, 621 patients, moderate-certainty evidence), respectively. For a prevalence of 20%, about 162 people will have a positive Falcivax Device Rapid test result and the remaining 838 people will have a negative result. Of the 162 people with positive results, eight will be incorrect (false positives), and of the 838 people with a negative result, 46 would be incorrect (false negative). AUTHORS' CONCLUSIONS The CareStart Malaria Pf/Pv Combo test was found to be highly sensitive and specific in comparison to microscopy for detecting P vivax in ambulatory healthcare in endemic settings, with moderate-certainty evidence. The number of studies included in this review was limited to 10 studies and we were able to estimate the accuracy of 2 out of 6 RDT brands included, the CareStart Malaria Pf/Pv Combo test and the Falcivax Device Rapid test. Thus, the differences in sensitivity and specificity between all the RDT brands could not be assessed. More high-quality studies in endemic field settings are needed to assess and compare the accuracy of RDTs designed to detect P vivax.
Collapse
Affiliation(s)
- Ridhi Agarwal
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Leslie Choi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Johnson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J 2020; 19:299. [PMID: 32831093 PMCID: PMC7443611 DOI: 10.1186/s12936-020-03372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite’s ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
11
|
Oboh MA, Singh US, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Presence of additional Plasmodium vivax malaria in Duffy negative individuals from Southwestern Nigeria. Malar J 2020; 19:229. [PMID: 32590997 PMCID: PMC7318376 DOI: 10.1186/s12936-020-03301-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Malaria in sub-Saharan Africa (sSA) is thought to be mostly caused by Plasmodium falciparum. Recently, growing reports of cases due to Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax have been increasingly observed to play a role in malaria epidemiology in sSA. This in fact is due to the usage of very sensitive diagnostic tools (e.g. PCR), which have highlighted the underestimation of non-falciparum malaria in this sub-region. Plasmodium vivax was historically thought to be absent in sSA due to the high prevalence of the Duffy negativity in individuals residing in this sub-continent. Recent studies reporting detection of vivax malaria in Duffy-negative individuals from Mali, Mauritania, Cameroon challenge this notion. Methods Following previous report of P. vivax in Duffy-negative individuals in Nigeria, samples were further collected and assessed RDT and/or microscopy. Thereafter, malaria positive samples were subjected to conventional PCR method and DNA sequencing to confirm both single/mixed infections as well as the Duffy status of the individuals. Results Amplification of Plasmodium gDNA was successful in 59.9% (145/242) of the evaluated isolates and as expected P. falciparum was the most predominant (91.7%) species identified. Interestingly, four P. vivax isolates were identified either as single (3) or mixed (one P. falciparum/P. vivax) infection. Sequencing results confirmed all vivax isolates as truly vivax malaria and the patient were of Duffy-negative genotype. Conclusion Identification of additional vivax isolates among Duffy-negative individuals from Nigeria, substantiate the expanding body of evidence on the ability of P. vivax to infect RBCs that do not express the DARC gene. Hence, such genetic-epidemiological study should be conducted at the country level in order to evaluate the true burden of P. vivax in Nigeria.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Medical Research Council Unit The Gambia at LSHTM, Fajara, P.O. Box 273, Banjul, Gambia.
| | - Upasana Shyamsunder Singh
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Praveen Kumar Bharti
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Aparup Das
- Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
12
|
Woldearegai TG, Lalremruata A, Nguyen TT, Gmeiner M, Veletzky L, Tazemda-Kuitsouc GB, Matsiegui PB, Mordmüller B, Held J. Characterization of Plasmodium infections among inhabitants of rural areas in Gabon. Sci Rep 2019; 9:9784. [PMID: 31278305 PMCID: PMC6611864 DOI: 10.1038/s41598-019-46194-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium infections in endemic areas are often asymptomatic, can be caused by different species and contribute significantly to transmission. We performed a cross-sectional study in February/March 2016 including 840 individuals ≥ 1 year living in rural Gabon (Ngounié and Moyen-Ogooué). Plasmodium parasitemia was measured by high-sensitive, real-time quantitative PCR. In a randomly chosen subset of P. falciparum infections, gametocyte carriage and prevalence of chloroquine-resistant genotypes were analysed. 618/834 (74%) individuals were positive for Plasmodium 18S-rRNA gene amplification, of these 553 (66.3%) carried P. falciparum, 193 (23%) P. malariae, 74 (8.9%) P. ovale curtisi and 38 (4.6%) P.ovale wallikeri. Non-falciparum infections mostly presented as mixed infections. P. malariae monoinfected individuals were significantly older (median age: 60 years) than coinfected (20 years) or P. falciparum monoinfected individuals (23 years). P. falciparum gametocyte carriage was confirmed in 109/223 (48.9%) individuals, prevalence of chloroquine-resistant genotypes was high (298/336, 89%), including four infections with a new SVMNK genotype. In rural Gabon, Plasmodium infections with all endemic species are frequent, emphasizing that malaria control efforts shall cover asymptomatic infections also including non-falciparum infections when aiming for eradication.
Collapse
Affiliation(s)
- Tamirat Gebru Woldearegai
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Albert Lalremruata
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - The Trong Nguyen
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Vietnamese - German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Markus Gmeiner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Pierre Blaise Matsiegui
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Centre de Recherches Médicales de la Ngounié, Fougamou, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany. .,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
13
|
Choi L, Johnson S, Cunningham J, Takwoingi Y. Rapid diagnostic tests for Plasmodium vivax
malaria in endemic countries. Hippokratia 2019. [DOI: 10.1002/14651858.cd013218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leslie Choi
- Liverpool School of Tropical Medicine; Department of Clinical Sciences; Pembroke Place Liverpool UK L3 5QA
| | - Samuel Johnson
- Liverpool School of Tropical Medicine; Department of Clinical Sciences; Pembroke Place Liverpool UK L3 5QA
| | - Jane Cunningham
- World Health Organization; Global Malaria Programme; Geneva Switzerland
| | - Yemisi Takwoingi
- University of Birmingham; Institute of Applied Health Research; Edgbaston Birmingham UK B15 2TT
| |
Collapse
|
14
|
Oboh MA, Badiane AS, Ntadom G, Ndiaye YD, Diongue K, Diallo MA, Ndiaye D. Molecular identification of Plasmodium species responsible for malaria reveals Plasmodium vivax isolates in Duffy negative individuals from southwestern Nigeria. Malar J 2018; 17:439. [PMID: 30486887 PMCID: PMC6263541 DOI: 10.1186/s12936-018-2588-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Malaria in Nigeria is principally due to Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. Plasmodium vivax is thought to be absent in Nigeria in particular and sub-Saharan Africa in general, due to the near fixation of the Duffy negative gene in this population. Nevertheless, there are frequent reports of P. vivax infection in Duffy negative individuals in the sub-region, including reports from two countries sharing border with Nigeria to the west (Republic of Benin) and east (Cameroon). Additionally, there were two cases of microscopic vivax-like malaria from Nigerian indigenous population. Hence molecular surveillance of the circulating Plasmodium species in two states (Lagos and Edo) of southwestern Nigeria was carried out. METHODS A cross-sectional survey between September 2016 and March 2017 was conducted. 436 febrile patients were included for the present work. Venous blood of these patients was subjected to RDT as well as microscopy. Further, parasite DNA was isolated from positive samples and PCR diagnostic was employed followed by direct sequencing of the 18S rRNA of Plasmodium species as well as sequencing of a portion of the promoter region of the Duffy antigen receptor for chemokines. Samples positive for P. vivax were re-amplified several times and finally using the High Fidelity Taq to rule out any bias introduced. RESULTS Of the 256 (58.7%) amplifiable malaria parasite DNA, P. falciparum was, as expected, the major cause of infection, either alone 85.5% (219/256; 97 from Edo and 122 from Lagos), or mixed with P. malariae 6.3% (16/256) or with P. vivax 1.6% (4/256). Only one of the five P. vivax isolates was found to be a single infection. DNA sequencing and subsequent alignment of the 18S rRNA of P. vivax with the reference strains displayed very high similarities (100%). Remarkably, the T-33C was identified in all P. vivax samples, thus confirming that all vivax-infected patients in the current study are Duffy negative. CONCLUSION The present study gave the first molecular evidence of P. vivax in Nigeria in Duffy negative individuals. Though restricted to two states; Edo in South-South and Lagos in South-west Nigeria, the real burden of this species in Nigeria and sub-Saharan Africa might have been underestimated, hence there is need to put in place a country-wide, as well as a sub-Saharan Africa-wide surveillance and appropriate control measures.
Collapse
MESH Headings
- Child, Preschool
- Cross-Sectional Studies
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Duffy Blood-Group System/genetics
- Female
- Humans
- Infant
- Infant, Newborn
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Male
- Nigeria/epidemiology
- Plasmodium vivax/classification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- RNA, Ribosomal, 18S/genetics
- Receptors, Cell Surface/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal.
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Godwin Ntadom
- National Malaria Elimination Programme/Epidemiology Division, Department of Public Health, Federal Ministry of Health, Abuja, Nigeria
| | - Yaye Die Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Khadim Diongue
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
15
|
Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol 2018; 77:857-933. [PMID: 29691632 DOI: 10.1007/s00285-018-1229-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease's geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the "million-murdering Death" of malaria.
Collapse
Affiliation(s)
- Steffen E Eikenberry
- Global Security Initiative, Arizona State University, Tempe, AZ, USA.
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.
| | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JMP, Duarte AMRC, Cerutti-Junior C, Buery JC, Brito CFA, de Souza JC, Hirano ZMB, Bueno MG, Catão-Dias JL, Malafronte RS, Ladeia-Andrade S, Mita T, Santamaria AM, Calzada JE, Tantular IS, Kawamoto F, Raijmakers LRJ, Mueller I, Pacheco MA, Escalante AA, Felger I, Ferreira MU. Human migration and the spread of malaria parasites to the New World. Sci Rep 2018; 8:1993. [PMID: 29386521 PMCID: PMC5792595 DOI: 10.1038/s41598-018-19554-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023] Open
Abstract
We examined the mitogenomes of a large global collection of human malaria parasites to explore how and when Plasmodium falciparum and P. vivax entered the Americas. We found evidence of a significant contribution of African and South Asian lineages to present-day New World malaria parasites with additional P. vivax lineages appearing to originate from Melanesia that were putatively carried by the Australasian peoples who contributed genes to Native Americans. Importantly, mitochondrial lineages of the P. vivax-like species P. simium are shared by platyrrhine monkeys and humans in the Atlantic Forest ecosystem, but not across the Amazon, which most likely resulted from one or a few recent human-to-monkey transfers. While enslaved Africans were likely the main carriers of P. falciparum mitochondrial lineages into the Americas after the conquest, additional parasites carried by Australasian peoples in pre-Columbian times may have contributed to the extensive diversity of extant local populations of P. vivax.
Collapse
Affiliation(s)
- Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil.
| | - Hugo O Valdivia
- Laboratory of Immunology and Parasite Genomics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- U.S. Naval Medical Research Unit No. 6, Bellavista, Callao, Peru
| | - Thais C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil
| | | | - Julyana C Buery
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Brazil
| | - Cristiana F A Brito
- Laboratory of Malaria, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Júlio César de Souza
- Regional University of Blumenau, Blumenau, Blumenau, Brazil
- Center of Biological Research of Indaial, Indaial, Brazil
| | - Zelinda M B Hirano
- Regional University of Blumenau, Blumenau, Blumenau, Brazil
- Center of Biological Research of Indaial, Indaial, Brazil
| | - Marina G Bueno
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Luiz Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosely S Malafronte
- Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ana Maria Santamaria
- Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama
| | - José E Calzada
- Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama
| | - Indah S Tantular
- Department of Parasitology, Faculty of Medicine, and Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Fumihiko Kawamoto
- Department of Social and Environmental Medicine, Institute of Scientific Research, Oita University, Oita, Japan
| | - Leonie R J Raijmakers
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - M Andreina Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
17
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
18
|
de Oliveira TC, Rodrigues PT, Menezes MJ, Gonçalves-Lopes RM, Bastos MS, Lima NF, Barbosa S, Gerber AL, Loss de Morais G, Berná L, Phelan J, Robello C, de Vasconcelos ATR, Alves JMP, Ferreira MU. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 2017; 11:e0005824. [PMID: 28759591 PMCID: PMC5552344 DOI: 10.1371/journal.pntd.0005824] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. Plasmodium vivax is the most common human malaria parasite in the Americas, but how and when this species arrived in the New World remains unclear. Here we describe high-quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that accounts for 37% of the malaria burden in this continent, and compare these data with additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico. P. vivax populations from the New World were found to be as diverse as their counterparts from areas with substantially higher malaria transmission, such as Southeast Asia, and to carry several non-synonymous substitutions in candidate drug-resistance genes. Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic sites are consistent with very frequent outcrossing in these populations. Interestingly, local P. vivax is more polymorphic, with less between-population differentiation, than sympatric populations of P. falciparum, possibly as a result of different demographic histories of these two species in the Americas. We hypothesize that local P. vivax lineages originated from successive migratory waves and subsequent admixture between parasites from geographically diverse sites.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria José Menezes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S. Bastos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susana Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandra L. Gerber
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Luisa Berná
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Robello
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Ana Tereza R. de Vasconcelos
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Bansal GP, Vengesai A, Cao Y, Mduluza T, Kumar N. Antibodies elicited during natural infection in a predominantly Plasmodium falciparum transmission area cross-react with sexual stage-specific antigen in P. vivax. Acta Trop 2017; 170:105-111. [PMID: 28257812 DOI: 10.1016/j.actatropica.2017.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Infections caused by Plasmodium falciparum and P. vivax account for more than 90% of global malaria burden. Exposure to malaria parasite elicits immune responses during natural infection and it is generally believed that the immunity is not only stage specific but also species specific. However, partial genomic similarity for various antigens in different Plasmodium spp. raises the possibility of immunological cross-reactivity at the level of specific antigens. Serum samples collected from children who were permanent residents of a P. falciparum transmission area in Zimbabwe were screened for antibody reactivity against Pfs48/45, a P. falciparum gametocyte antigen and Pvs48/45, a P. vivax homolog of Pfs48/45 using ELISA. Western blotting was used to further confirm identity of the specific antibody reactivity to the Pfs48/45 and Pvs48/45 proteins. Pan Plasmodium PCR and nested PCR were used to confirm infection with the Plasmodium species. Twenty-seven percent (49/181) of the participants were found to be sero-positive for Pfs48/45 and 73% (n=36) of these Pfs48/45 positive sera also showed reactivity with Pvs48/45. Immune cross-reactivity revealed by ELISA was also confirmed by Western blot analysis using a panel of randomly selected 23 Pfs48/45 and Pvs48/45 ELISA positive samples. Nested PCR analysis of 27 blood samples randomly selected from the 36 that showed positive ELISA reactivity to both Pfs48/45 and Pvs48/45 antigens confirmed infection with P. falciparum and generalized absence of P. vivax except for a single sample which revealed PCR positivity for both P. vivax and P. falciparum. Our studies with sera samples from a predominantly P. falciparum transmission area in Zimbabwe suggest immunological cross-reactivity with Pvs48/45, thus raising the possibility of partial species cross-reactive immunity and possible cross-boosting of immunity during co-infection with P. falciparum and P. vivax.
Collapse
|
20
|
Russo G, Faggioni G, Paganotti GM, Djeunang Dongho GB, Pomponi A, De Santis R, Tebano G, Mbida M, Sanou Sobze M, Vullo V, Rezza G, Lista FR. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, West Cameroon. Malar J 2017; 16:74. [PMID: 28196496 PMCID: PMC5309988 DOI: 10.1186/s12936-017-1722-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Background Plasmodium vivax infection is known to be rare in West/Central Africa, the most accepted explanation being the lack of expression of erythroid Duffy antigen in the local human populations. Duffy negativity prevents the parasite to exploit the entry mechanism on the red blood cell surface. However, there are a growing number of reported vivax infections in Duffy-negative individuals. Data on P. vivax circulation in Cameroon are limited. The aim of the study was to evaluate the P. vivax presence, and its association with the Duffy genotype in West Cameroon. Results Overall, 484 blood samples were collected consecutively from febrile outpatients attending the Dschang’s Hospital (West Cameroon) during a 3-months period. Plasmodium vivax infection was detected by PCR in 5.6% (n = 27/484) of the cases, representing 38.6% (n = 27/70) of all Plasmodium infections detected. All P. vivax infected individuals showed a Duffy-negative genotype, and the frequency of Duffy-positive individuals in the whole tested population was 1.7%. Conclusions The results of this study confirm the circulation of P. vivax in Cameroon, as well as that the lack of expression of Duffy-antigen does not confer full protection against vivax malaria acquisition.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 00185, Rome, Italy.
| | - Giovanni Faggioni
- Department of Molecular Biology, Immunology and Experimental Medicine, Army Medical and Veterinary Research Centre, Via di Santo Stefano Rotondo, 00184, Rome, Italy
| | - Giacomo Maria Paganotti
- BUP Core Laboratory, Botswana-University of Pennsylvania Partnership (BUP), P O Box AC 157 ACH, Gaborone, Botswana
| | | | - Alice Pomponi
- Department of Molecular Biology, Immunology and Experimental Medicine, Army Medical and Veterinary Research Centre, Via di Santo Stefano Rotondo, 00184, Rome, Italy
| | - Riccardo De Santis
- Department of Molecular Biology, Immunology and Experimental Medicine, Army Medical and Veterinary Research Centre, Via di Santo Stefano Rotondo, 00184, Rome, Italy
| | - Gianpiero Tebano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 00185, Rome, Italy
| | - Mpoame Mbida
- Department of Biomedical Sciences, University of Dschang, BP 96, Dschang, Cameroon
| | - Martin Sanou Sobze
- Department of Biomedical Sciences, University of Dschang, BP 96, Dschang, Cameroon
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 00185, Rome, Italy
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Florigio Romano Lista
- Department of Molecular Biology, Immunology and Experimental Medicine, Army Medical and Veterinary Research Centre, Via di Santo Stefano Rotondo, 00184, Rome, Italy
| |
Collapse
|
21
|
Sutherland CJ. Persistent Parasitism: The Adaptive Biology of Malariae and Ovale Malaria. Trends Parasitol 2016; 32:808-819. [PMID: 27480365 DOI: 10.1016/j.pt.2016.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Plasmodium malariae causes malaria in humans throughout the tropics and subtropics. Plasmodium ovale curtisi and Plasmodium ovale wallikeri are sympatric sibling species common in sub-Saharan Africa and also found in Oceania and Asia. Although rarely identified as the cause of malaria cases in endemic countries, PCR detection has confirmed all three parasite species to be more prevalent, and persistent, than previously thought. Chronic, low-density, multispecies asymptomatic infection is a successful biological adaptation by these Plasmodium spp., a pattern also observed among malaria parasites of wild primates. Current whole-genome analyses are illuminating the species barrier separating the ovale parasite species and reveal substantial expansion of subtelomeric gene families. The evidence for and against a quiescent pre-erythrocytic form of P. malariae is reviewed.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Immunology and Infection and Public Health England Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Clinical Parasitology, Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, Mortimer Market Centre, Capper Street, London WC1E 6JB, UK.
| |
Collapse
|
22
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
African origin of the malaria parasite Plasmodium vivax. Nat Commun 2015; 5:3346. [PMID: 24557500 PMCID: PMC4089193 DOI: 10.1038/ncomms4346] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/29/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
Collapse
|
24
|
King CL, Davies DH, Felgner P, Baum E, Jain A, Randall A, Tetteh K, Drakeley CJ, Greenhouse B. Biosignatures of Exposure/Transmission and Immunity. Am J Trop Med Hyg 2015; 93:16-27. [PMID: 26259938 PMCID: PMC4574271 DOI: 10.4269/ajtmh.15-0037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 12/26/2022] Open
Abstract
A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission.
Collapse
Affiliation(s)
- Christopher L. King
- * Address correspondence to Christopher L. King, Case Western Reserve University School of Medicine, Biomedical Research Building Room 421, Cleveland, OH 44106, E-mail: or D. Huw Davies, Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, CA, 92697. E-mail:
| | - D. Huw Davies
- * Address correspondence to Christopher L. King, Case Western Reserve University School of Medicine, Biomedical Research Building Room 421, Cleveland, OH 44106, E-mail: or D. Huw Davies, Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, CA, 92697. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The Plasmodium vivax in China: decreased in local cases but increased imported cases from Southeast Asia and Africa. Sci Rep 2015; 5:8847. [PMID: 25739365 PMCID: PMC4350086 DOI: 10.1038/srep08847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/06/2015] [Indexed: 01/27/2023] Open
Abstract
Currently the local P. vivax was sharply decreased while the imported vivax malaria increased in China. Despite Southeast Asia was still the main import source of vivax malaria, the trend of Africa become serious, especially for west and central Africa. Herein we have clarified the trend of P. vivax in China from 2004–2012, and made some analysis for the differences of imported vivax back from different regions. There are significantly different of P. vivax between Southeast Asia and Africa, also the difference was observed for different regions in Africa. Additionally, we have explored the possibility for the difference of the P. vivax between migrant workers back from west and central Africa and the prevalence of local population. This reminds us that surveillance and training should be strengthened by medical staffs on the imported P. vivax cases reported especially from west and central Africa, in order to reduce the risk of malaria reintroduction and, specific tools should be developed, as well as the epidemiological study to avoid the misdiagnosis such as P. ovale and P. vivax.
Collapse
|
26
|
Affiliation(s)
- Quique Bassat
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Carrer Rosselló 132, 5° 2, 08036 Barcelona, Spain Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929 Mozambique
| |
Collapse
|
27
|
Culleton RL, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int 2014; 64:244-53. [PMID: 25073068 DOI: 10.1016/j.parint.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Genetics has informed almost every aspect of the study of malaria parasites, and remains a key component of much of the research that aims to reduce the burden of the disease they cause. We describe the history of genetic studies of malaria parasites and give an overview of the utility of the discipline to malariology.
Collapse
Affiliation(s)
- Richard L Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
28
|
Abkallo HM, Liu W, Hokama S, Ferreira PE, Nakazawa S, Maeno Y, Quang NT, Kobayashi N, Kaneko O, Huffman MA, Kawai S, Marchand RP, Carter R, Hahn BH, Culleton R. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int J Parasitol 2014; 44:467-73. [PMID: 24704779 DOI: 10.1016/j.ijpara.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be "sub-microscopic" blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.
Collapse
Affiliation(s)
- Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarina Hokama
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Pedro E Ferreira
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shusuke Nakazawa
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Nguyen T Quang
- Khanh Phu Malaria Research Unit, Medical Committee Netherlands-Vietnam, Khanh Hoa, Viet Nam
| | - Nobuyuki Kobayashi
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Michael A Huffman
- Department of Ecology and Social Behaviour, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Ron P Marchand
- Khanh Phu Malaria Research Unit, Medical Committee Netherlands-Vietnam, Khanh Hoa, Viet Nam
| | - Richard Carter
- Institute of Evolutionary Biology and Center for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
29
|
|
30
|
Bernabeu M, Gomez-Perez GP, Sissoko S, Niambélé MB, Haibala AA, Sanz A, Théra MA, Fernandez-Becerra C, Traoré K, Alonso PL, Bassat Q, Del Portillo HA, Doumbo O. Plasmodium vivax malaria in Mali: a study from three different regions. Malar J 2012; 11:405. [PMID: 23217064 PMCID: PMC3547733 DOI: 10.1186/1475-2875-11-405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
Background Plasmodium vivax has traditionally been considered virtually absent from Western and Central Africa, due to the absence of the Duffy blood group in most of the population living in these areas. Recent reports, however, suggest the circulation of P. vivax in sub-Saharan Africa. Methods Giemsa/Field-stained smears from febrile patients recruited in five different cities (Goundam, Tombouctou, Gao, Bourem and Kidal) pertaining to three regions from Northern Mali were examined. Nested-PCR and DNA sequence analyses of selected samples were performed to fully confirm the presence of P. vivax infections. Results Results demonstrated the presence of P. vivax infections in close to 30% of the cases as detected by Giemsa/Field-stained smears and nested-PCR and DNA-sequence analyses of selected samples unequivocally confirmed the presence of P. vivax. Conclusions The diagnostics of this human malaria parasite should be taken into account in the context of malaria control and elimination efforts, not only in Mali, but also in sub-Saharan Africa.
Collapse
Affiliation(s)
- Maria Bernabeu
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Preiser P, Renia L, Cooke BM. Editorial--Singapore Malaria Network Meeting (SingMalNet) 2012. Int J Parasitol 2012; 42:1047. [PMID: 23164544 DOI: 10.1016/j.ijpara.2012.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|