1
|
Forden CA. Phagolysosomal resistance hypothesized to be a danger signal. Scand J Immunol 2024; 100:e13400. [PMID: 39138895 DOI: 10.1111/sji.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Antigen presenting cells sometimes require T cell "help" to kill and decompose microbes they capture, especially when those microbes resist effector molecules including nitric oxide and reactive oxygen species. Pathogens are more likely to resist those effectors, shared by the innate and adaptive immune systems, than are commensals. Does such resistance alert the immune system to the danger posed by those pathogens? Several lines of evidence suggest this occurs. Mouse studies showed a surprising exacerbation, not alleviation of experimental autoimmune encephalomyelitis, by suppression of nitric oxide production, but only when the suppression was applied to animals undergoing vaccination with myelin. In contrast, animals receiving T cells activated by vaccination without suppression of nitric oxide benefitted from reduced autoimmune cytotoxicity when nitric oxide production was suppressed after adoptive transfer. Vaccinia and adenovirus suppress nitric oxide production and have been successful vaccine platforms, also consistent with the above phagolysosomal resistance hypothesis. The hypothesis solves a long-standing quandary-how can nitric oxide protect against both infection and autoimmunity, especially autoimmune diseases for which it seems a major effector? The importance of physical linkage between epitopes, first proposed in Bretscher's Two-Step, Two-Signal theory dependent on B cells, is extended to include phagolysosomal resistance in general, plus a corollary proposition that the immune system detects resistance to dissociation of high-affinity pathogenic ligands from host binding sites to make neutralizing antibodies.
Collapse
|
2
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
3
|
Walters HA, Welter BH, Knight EW, Villano MA, Keramati CA, Morris MT, Temesvari LA. Hypothetical proteins play a role in stage conversion, virulence, and the stress response in the Entamoeba species. Exp Parasitol 2022; 243:108410. [PMID: 36309065 DOI: 10.1016/j.exppara.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and amoebic liver abscess in humans, affecting millions of people worldwide. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. As cysts can be ingested from contaminated food and water, this parasite is prevalent in underdeveloped countries and poses a significant health burden. Until recently there was no reliable method for inducing stage conversion in E. histolytica in vitro. As such, the reptilian pathogen, Entamoeba invadens, has long-served as a surrogate. Much remains unclear about stage conversion in these parasites and current treatments for amoebiasis are lacking, as they cause severe side effects. Therefore, new therapeutic strategies are needed. The genomes of these parasites remain enigmatic as approximately 54% of E. histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins. In this study, we characterized two hypothetical proteins in the Entamoeba species, EIN_059080, in E. invadens, and its homolog, EHI_056700, in the human pathogen, E. histolytica. EHI_056700 has no homolog in the human host. We used an RNAi-based silencing system to reduce expression of these genes in E. invadens and E. histolytica trophozoites. Loss of EIN_059080 resulted in a decreased rate of encystation and an increased rate of erythrophagocytosis, an important virulence function. Additionally, mutant parasites were more susceptible to oxidative stress. Similarly, loss of EHI_056700 in E. histolytica trophozoites resulted in increased susceptibility to oxidative stress and glucose deprivation, but not to nitrosative stress. Unlike the E. invadens mutants, E. histolytica parasites with decreased reduced expression of EHI_056700 exhibited a decreased rate of erythrophagocytosis of and adhesion to host cells. Taken together, these data suggest that these hypothetical proteins play a role in stage conversion, virulence, and the response to stress in the Entamoebae. Since parasites with reduced expression of EHI_056700 show decreased virulence functions and increased susceptibility to physiologically relevant stressors, EHI_056700 may represent a possible therapeutic target for the treatment of amoebiasis.
Collapse
Affiliation(s)
- Heather A Walters
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Emily W Knight
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Martha A Villano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Cameron A Keramati
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
4
|
The Antioxidant Effect of Natural Antimicrobials in Shrimp Primary Intestinal Cells Infected with Nematopsis messor. Antioxidants (Basel) 2022; 11:antiox11050974. [PMID: 35624838 PMCID: PMC9137680 DOI: 10.3390/antiox11050974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp’s intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.
Collapse
|
5
|
Sarid L, Zanditenas E, Ye J, Trebicz-Geffen M, Ankri S. Insights into the Mechanisms of Lactobacillus acidophilus Activity against Entamoeba histolytica by Using Thiol Redox Proteomics. Antioxidants (Basel) 2022; 11:814. [PMID: 35624678 PMCID: PMC9137826 DOI: 10.3390/antiox11050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Amebiasis is an intestinal disease transmitted by the protist parasite, Entamoeba histolytica. Lactobacillus acidophilus is a common inhabitant of healthy human gut and a probiotic that has antimicrobial properties against a number of pathogenic bacteria, fungi, and parasites. The aim of this study was to investigate the amebicide activity of L. acidophilus and its mechanisms. For this purpose, E. histolytica and L. acidophilus were co-incubated and the parasite's viability was determined by eosin dye exclusion. The level of ozidized proteins (OXs) in the parasite was determined by resin-assisted capture RAC (OX-RAC). Incubation with L. acidophilus for two hours reduced the viability of E. histolytica trophozoites by 50%. As a result of the interaction with catalase, an enzyme that degrades hydrogen peroxide (H2O2) to water and oxygen, this amebicide activity is lost, indicating that it is mediated by H2O2 produced by L. acidophilus. Redox proteomics shows that L. acidophilus triggers the oxidation of many essential amebic enzymes such as pyruvate: ferredoxin oxidoreductase, the lectin Gal/GalNAc, and cysteine proteases (CPs). Further, trophozoites of E. histolytica incubated with L. acidophilus show reduced binding to mammalian cells. These results support L. acidophilus as a prophylactic candidate against amebiasis.
Collapse
Affiliation(s)
| | | | | | | | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (L.S.); (E.Z.); (J.Y.); (M.T.-G.)
| |
Collapse
|
6
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
7
|
Desure S, Mallika A, Roy M, Jyoti A, Kaushik S, Srivastava VK. The flip side of reactive oxygen species in the tropical disease-Amoebiasis. Chem Biol Drug Des 2021; 98:930-942. [PMID: 34519164 DOI: 10.1111/cbdd.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is the conductive agent of amoebiasis. Upon the parasite's infection, macrophages and neutrophils are activated by interferon γ, IL-13 and tumour necrosis factor. These immune cells then carry out the amoebicidal activity by releasing nitric oxide synthase and reactive oxygen species (ROS). This review talks about the protective and destructive role of ROS in Eh. E. histolytica has defence strategies against oxidative stress which is a result of excess ROS production. They possess antioxidants for their defence such as L-Cysteine, flavodiiron proteins, peroxiredoxin and trichostatin A, which contribute to the parasite's virulence. The ROS are harmful to the host cells as excess ROS production stimulates cell death by mechanisms like apoptosis and necroptosis. NADPH oxidase (NOX) is a key source of ROS in mammalian cells and causes apoptosis of host cells via the protein kinase transduction pathway. This review provides insights into why NOX inhibitors that could be a potent antiparasitic drug, is not effective for in vivo purposes. This paper also gives an insight into a solution that could be a potent source in generating new treatment and vaccines for amoebiasis by targeting parasite development.
Collapse
Affiliation(s)
- Sakshi Desure
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Arya Mallika
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Anupam Jyoti
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | | |
Collapse
|
8
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
9
|
Ankri S. Entamoeba histolytica-Gut Microbiota Interaction: More Than Meets the Eye. Microorganisms 2021; 9:microorganisms9030581. [PMID: 33809056 PMCID: PMC7998739 DOI: 10.3390/microorganisms9030581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence.
Collapse
Affiliation(s)
- Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
10
|
Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. mBio 2021; 12:mBio.03549-20. [PMID: 33688012 PMCID: PMC8092309 DOI: 10.1128/mbio.03549-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in
tRNAGUCAsp. Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in
tRNAGUCAsp, parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.
Collapse
|
11
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
A Real-Time PCR Assay for Simultaneous Detection and Differentiation of Four Common Entamoeba Species That Infect Humans. J Clin Microbiol 2020; 59:JCM.01986-20. [PMID: 33115843 DOI: 10.1128/jcm.01986-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
There are over 40 species within the genus Entamoeba, eight of which infect humans. Of these, four species (Entamoeba histolytica, E. dispar, E. moshkovskii, and E. bangladeshi) are morphologically indistinguishable from each other, and yet differentiation is important for appropriate treatment decisions. Here, we developed a hydrolysis probe-based tetraplex real-time PCR assay that can simultaneously detect and differentiate these four species in clinical samples. In this assay, multicopy small-subunit (SSU) ribosomal DNA (rDNA) sequences were used as targets. We determined that the tetraplex real-time PCR can detect amebic DNA corresponding to as little as a 0.1 trophozoite equivalent of any of these species. We also determined that this assay can detect E. histolytica DNA in the presence of 10-fold more DNA from another Entamoeba species in mixed-infection scenarios. With a panel of more than 100 well-characterized clinical samples diagnosed and confirmed using a previously published duplex real-time PCR (capable of detecting E. histolytica and E. dispar), our tetraplex real-time PCR assay demonstrated levels of sensitivity and specificity comparable with those demonstrated by the duplex real-time PCR assay. The advantage of our assay over the duplex assay is that it can specifically detect two additional Entamoeba species and can be used in conventional PCR format. This newly developed assay will allow further characterization of the epidemiology and pathogenicity of the four morphologically identical Entamoeba species, especially in low-resource settings.
Collapse
|
13
|
Differential Pathogenic Gene Expression of E. histolytica in Patients with Different Clinical Forms of Amoebiasis. Microorganisms 2020; 8:microorganisms8101556. [PMID: 33050280 PMCID: PMC7650713 DOI: 10.3390/microorganisms8101556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
The etiological agent of human amoebiasis is the protozoan parasite E. histolytica; the disease is still an endemic infection in some countries and the outcome of infection in the host infection can range from asymptomatic intestinal infection to intestinal or liver invasive forms of the disease. The invasive character of this parasite is multifactorial and mainly due to the differential expression of multiple pathogenic genes. The aim of the present work was to measure the differential expression of some genes in different specimens of patients with amoebic liver abscess (ALA) and specimens of genital amoebiasis (AG) by RT-qPCR. Results show that the expression of genes is different in both types of samples. Almost all studied genes were over expressed in both sets of patients; however, superoxide dismutase (Ehsod), serine threonine isoleucine rich protein (Ehstirp), peroxiredoxin (Ehprd) and heat shock protein 70 and 90 (Ehhsp-70, EHhsp-90) were higher in AG biopsies tissue. Furthermore, cysteine proteinases 5 and 2 (Ehcp5, Ehcp2), lectin (Ehgal/galnaclectin) and calreticulin (Ehcrt) genes directly associate with pathogenic mechanisms of E. histolytica had similar over expression in both AG and ALA samples. In summary the results obtained show that trophozoites can regulate the expression of their genes depending on stimuli or environmental conditions, in order to regulate their pathogenicity and ensure their survival in the host.
Collapse
|
14
|
Marcos‐López M, Rodger HD. Amoebic gill disease and host response in Atlantic salmon (
Salmo salar
L.): A review. Parasite Immunol 2020; 42:e12766. [DOI: 10.1111/pim.12766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
15
|
Guan Y, Wang LY, Wang B, Ding MH, Bao YL, Tan SW. Recent Advances of D-α-tocopherol Polyethylene Glycol 1000 Succinate Based Stimuli-responsive Nanomedicine for Cancer Treatment. Curr Med Sci 2020; 40:218-231. [PMID: 32337683 DOI: 10.1007/s11596-020-2185-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/07/2020] [Indexed: 01/13/2023]
Abstract
D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA. It's widely applied as a multifunctional drug carrier for nanomedicine. The advantages of TPGS include P-glycoprotein (P-gp) inhibition, penetration promotion, apoptosis induction via mitochondrial-associated apoptotic pathways, multidrug resistant (MDR) reversion, metastasis inhibition and so on. TPGS-based drug delivery systems which are responding to external stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect, through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior. In this review, TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed, including pH-responsive, redoxresponsive and multi-responsive systems in various formulations. The achievements, mechanisms and different characteristics of TPGS-based stimuli-responsive drug-delivery systems in tumor therapy were also outlined.
Collapse
Affiliation(s)
- Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin-Yan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bo Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mei-Hong Ding
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu-Ling Bao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Song-Wei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Structural and functional characterisation of phosphoserine phosphatase, that plays critical role in the oxidative stress response in the parasite Entamoeba histolytica. J Struct Biol 2019; 206:254-266. [DOI: 10.1016/j.jsb.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/02/2023]
|
17
|
Ngobeni R, Samie A, Moonah S, Watanabe K, Petri WA, Gilchrist C. Entamoeba Species in South Africa: Correlations With the Host Microbiome, Parasite Burdens, and First Description of Entamoeba bangladeshi Outside of Asia. J Infect Dis 2019; 216:1592-1600. [PMID: 29236996 DOI: 10.1093/infdis/jix535] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Background Diarrhea is frequent in communities without clean water, which include low-income South African populations in Giyani and Pretoria. In these populations, the amount of diarrhea caused by Entamoeba histolytica, inclusive of all ages, sexes, and human immunodeficiency virus status, is uncertain. Infection with E. histolytica can modulate the host microbiota, and a key species indicative of this is the Prevotella copri pathobiont. Methods A cross-sectional study of patients attending gastroenterology clinics was conducted to determine the frequency and burden of 4 Entamoeba species and P. copri. Results Entamoeba species were present in 27% of patients (129/484), with E. histolytica detected in 8.5% (41), E. dispar in 8% (38), E. bangladeshi in 4.75% (23), and E. moshkovskii in 0%. This is the first description of E. bangladeshi outside Bangladesh. In E. histolytica-positive samples, the levels of both the parasite and P. copri were lower in nondiarrheal samples, validating the results of a study in Bangladesh (P = .0034). By contrast, in E. histolytica-negative samples positive for either of the nonpathogenic species E. dispar or E. bangladeshi, neither P. copri nor Entamoeba levels were linked to gastrointestinal status. Conclusions Nonmorphologic identification of this parasite is essential. In South Africa, 3 morphologically identical Entamoeba were common, but only E. histolytica was linked to both disease and changes in the microbiota.
Collapse
Affiliation(s)
- Renay Ngobeni
- University of Venda, Thohoyandou, South Africa.,Department of Medicine/Division of Infectious Diseases, University of Virginia, Charlottesville
| | | | - Shannon Moonah
- Department of Medicine/Division of Infectious Diseases, University of Virginia, Charlottesville
| | - Koji Watanabe
- Department of Medicine/Division of Infectious Diseases, University of Virginia, Charlottesville.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - William A Petri
- Department of Medicine/Division of Infectious Diseases, University of Virginia, Charlottesville
| | - Carol Gilchrist
- Department of Medicine/Division of Infectious Diseases, University of Virginia, Charlottesville
| |
Collapse
|
18
|
Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in Entamoeba histolytica. Genes (Basel) 2018; 9:genes9100499. [PMID: 30332795 PMCID: PMC6209943 DOI: 10.3390/genes9100499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is an invasive, pathogenic parasite causing amoebiasis. Given that proteins involved in transmembrane (TM) transport are crucial for the adherence, invasion, and nutrition of the parasite, we conducted a genome-wide bioinformatics analysis of encoding proteins to functionally classify and characterize all the TM proteins in E. histolytica. In the present study, 692 TM proteins have been identified, of which 546 are TM transporters. For the first time, we report a set of 141 uncharacterized proteins predicted as TM transporters. The percentage of TM proteins was found to be lower in comparison to the free-living eukaryotes, due to the extracellular nature and functional diversification of the TM proteins. The number of multi-pass proteins is larger than the single-pass proteins; though both have their own significance in parasitism, multi-pass proteins are more extensively required as these are involved in acquiring nutrition and for ion transport, while single-pass proteins are only required at the time of inciting infection. Overall, this intestinal parasite implements multiple mechanisms for establishing infection, obtaining nutrition, and adapting itself to the new host environment. A classification of the repertoire of TM transporters in the present study augments several hints on potential methods of targeting the parasite for therapeutic benefits.
Collapse
|
19
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
20
|
Singh SS, Naiyer S, Bharadwaj R, Kumar A, Singh YP, Ray AK, Subbarao N, Bhattacharya A, Bhattacharya S. Stress-induced nuclear depletion of Entamoeba histolytica 3'-5' exoribonuclease EhRrp6 and its role in growth and erythrophagocytosis. J Biol Chem 2018; 293:16242-16260. [PMID: 30171071 DOI: 10.1074/jbc.ra118.004632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
The 3'-5' exoribonuclease Rrp6 is a key enzyme in RNA homeostasis involved in processing and degradation of many stable RNA precursors, aberrant transcripts, and noncoding RNAs. We previously have shown that in the protozoan parasite Entamoeba histolytica, the 5'-external transcribed spacer fragment of pre-rRNA accumulates under serum starvation-induced growth stress. This fragment is a known target of degradation by Rrp6. Here, we computationally and biochemically characterized EhRrp6 and found that it contains the catalytically important EXO and HRDC domains and exhibits exoribonuclease activity with both unstructured and structured RNA substrates, which required the conserved DEDD-Y catalytic-site residues. It lacked the N-terminal PMC2NT domain for binding of the cofactor Rrp47, but could functionally complement the growth defect of a yeast rrp6 mutant. Of note, no Rrp47 homologue was detected in E. histolytica Immunolocalization studies revealed that EhRrp6 is present both in the nucleus and cytosol of normal E. histolytica cells. However, growth stress induced its complete loss from the nuclei, reversed by proteasome inhibitors. EhRrp6-depleted E. histolytica cells were severely growth restricted, and EhRrp6 overexpression protected the cells against stress, suggesting that EhRrp6 functions as a stress sensor. Importantly EhRrp6 depletion reduced erythrophagocytosis, an important virulence determinant of E. histolytica This reduction was due to a specific decrease in transcript levels of some phagocytosis-related genes (Ehcabp3 and Ehrho1), whereas expression of other genes (Ehcabp1, Ehcabp6, Ehc2pk, and Eharp2/3) was unaffected. This is the first report of the role of Rrp6 in cell growth and stress responses in a protozoan parasite.
Collapse
Affiliation(s)
| | | | - Ravi Bharadwaj
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Amarjeet Kumar
- the School of Computational and Integrative Sciences, and
| | | | | | - Naidu Subbarao
- the School of Computational and Integrative Sciences, and
| | - Alok Bhattacharya
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
21
|
Varet H, Shaulov Y, Sismeiro O, Trebicz-Geffen M, Legendre R, Coppée JY, Ankri S, Guillen N. Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Sci Rep 2018; 8:9042. [PMID: 29899530 PMCID: PMC5998147 DOI: 10.1038/s41598-018-27086-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is one of the strongest toxic factors in nature: it can harm or even kill cells. Cellular means of subverting the toxicity of oxidative stress are important for the success of infectious diseases. Many types of bacterium inhabit the intestine, where they can encounter pathogens. During oxidative stress, we analyzed the interplay between an intestinal parasite (the pathogenic amoeba Entamoeba histolytica - the agent of amoebiasis) and enteric bacteria (microbiome residents, pathogens and probiotics). We found that live enteric bacteria protected E. histolytica against oxidative stress. By high-throughput RNA sequencing, two amoebic regulatory modes were observed with enteric bacteria but not with probiotics. The first controls essential elements of homeostasis, and the second the levels of factors required for amoeba survival. Characteristic genes of both modes have been acquired by the amoebic genome through lateral transfer from the bacterial kingdom (e.g. glycolytic enzymes and leucine-rich proteins). Members of the leucine-rich are homologous to proteins from anti-bacterial innate immune such as Toll-like receptors. The factors identified here suggest that despite its old age in evolutionary terms, the protozoan E. histolytica displays key characteristics of higher eukaryotes' innate immune systems indicating that components of innate immunity existed in the common ancestor of plants and animals.
Collapse
Affiliation(s)
- Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS), Paris, France
| | - Yana Shaulov
- Technion Institute, Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France
| | - Meirav Trebicz-Geffen
- Technion Institute, Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS), Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France
| | - Serge Ankri
- Technion Institute, Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
| | - Nancy Guillen
- Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France.
- Institut Pasteur, Paris, France.
| |
Collapse
|
22
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
23
|
Functional characterization of the Ca2+-ATPase SMA1 from Schistosoma mansoni. Biochem J 2018; 475:289-303. [DOI: 10.1042/bcj20170355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022]
Abstract
Schistosoma mansoni is a parasite that causes bilharzia, a neglected tropical disease affecting hundreds of millions of people each year worldwide. In 2012, S. mansoni had been identified as the only invertebrate possessing two SERCA-type Ca2+-ATPases, SMA1 and SMA2. However, our analysis of recent genomic data shows that the presence of two SERCA pumps is rather frequent in parasitic flatworms. To understand the reasons of this redundancy in S. mansoni, we compared SMA1 and SMA2 at different levels. In terms of sequence and organization, the genes SMA1 and SMA2 are similar, suggesting that they might be the result of a duplication event. At the protein level, SMA1 and SMA2 only slightly differ in length and in the sequence of the nucleotide-binding domain. To get functional information on SMA1, we produced it in an active form in Saccharomyces cerevisiae, as previously done for SMA2. Using phosphorylation assays from ATP, we demonstrated that like SMA2, SMA1 bound calcium in a cooperative mode with an apparent affinity in the micromolar range. We also showed that SMA1 and SMA2 had close sensitivities to cyclopiazonic acid but different sensitivities to thapsigargin, two specific inhibitors of SERCA pumps. On the basis of transcriptomic data available in GeneDB, we hypothesize that SMA1 is a housekeeping Ca2+-ATPase, whereas SMA2 might be required in particular striated-like muscles like those present the tail of the cercariae, the infecting form of the parasite.
Collapse
|
24
|
Pineda E, Perdomo D. Entamoeba histolytica under Oxidative Stress: What Countermeasure Mechanisms Are in Place? Cells 2017; 6:cells6040044. [PMID: 29160807 PMCID: PMC5755502 DOI: 10.3390/cells6040044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is the causative agent of human amoebiasis; it affects 50 million people worldwide and causes approximately 100,000 deaths per year. Entamoeba histolytica is an anaerobic parasite that is primarily found in the colon; however, for unknown reasons, it can become invasive, breaching the gut barrier and migrating toward the liver causing amoebic liver abscesses. During the invasive process, it must maintain intracellular hypoxia within the oxygenated human tissues and cellular homeostasis during the host immune defense attack when it is confronted with nitric oxide and reactive oxygen species. But how? This review will address the described and potential mechanisms available to counter the oxidative stress generated during invasion and the possible role that E. histolytica’s continuous endoplasmic reticulum (Eh-ER) plays during these events.
Collapse
Affiliation(s)
- Erika Pineda
- Laboratory of Fundamental Microbiology and Pathogenicity (MFP), University of Bordeaux, CNRS UMR-5234, 33000 Bordeaux, France.
| | - Doranda Perdomo
- Laboratory of Fundamental Microbiology and Pathogenicity (MFP), University of Bordeaux, CNRS UMR-5234, 33000 Bordeaux, France.
| |
Collapse
|
25
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
27
|
Bharadwaj R, Arya R, Shahid mansuri M, Bhattacharya S, Bhattacharya A. EhRho1 regulates plasma membrane blebbing through PI3 kinase inEntamoeba histolytica. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ravi Bharadwaj
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | - Ranjana Arya
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | | | - Sudha Bhattacharya
- School of environmental Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
28
|
Hendrick HM, Welter BH, Hapstack MA, Sykes SE, Sullivan WJ, Temesvari LA. Phosphorylation of Eukaryotic Initiation Factor-2α during Stress and Encystation in Entamoeba Species. PLoS Pathog 2016; 12:e1006085. [PMID: 27930733 PMCID: PMC5179133 DOI: 10.1371/journal.ppat.1006085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/22/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Entamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during encystation in E. invadens, a model encystation system. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba species. Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess and is prevalent in underdeveloped countries that lack proper sanitation. Infection is acquired by ingestion of the cyst form in contaminated food or water. During infection, the parasite experiences stress including demanding growth conditions and host immune pressure. Conversion to the infective cyst may be induced by such stress. In other organisms, stress causes a decrease in protein biosynthesis by inducing phosphorylation of eIF2α, which participates in translation initiation. We exposed E. histolytica to six different stress conditions and observed that some of these conditions (long-term serum starvation, long-term heat shock, and oxidative stress) induced an increase in the level of phospho-eIF2α. Long-term serum starvation was also accompanied by a decrease in mRNA translation. A cell line expressing a mutant version of eIF2α that behaves as a phosphomimetic exhibited decreased translation and increased survival during long-term serum starvation. Finally, phospho-eIF2α accumulated in cysts of E. invadens, a reptilian pathogen that readily encysts in vitro. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba and may regulate encystation.
Collapse
Affiliation(s)
- Holland M. Hendrick
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Matthew A. Hapstack
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Steven E. Sykes
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianaplois, IN United States of America
- Department of Microbiology and Immunology Indiana University School of Medicine Indianapolis, IN United States of America
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nakada-Tsukui K, Nozaki T. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica. Front Immunol 2016; 7:175. [PMID: 27242782 PMCID: PMC4863898 DOI: 10.3389/fimmu.2016.00175] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases , Tokyo , Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1718] [Impact Index Per Article: 190.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Proteomic Identification of Oxidized Proteins in Entamoeba histolytica by Resin-Assisted Capture: Insights into the Role of Arginase in Resistance to Oxidative Stress. PLoS Negl Trop Dis 2016; 10:e0004340. [PMID: 26735309 PMCID: PMC4703340 DOI: 10.1371/journal.pntd.0004340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an infectious disease which targets the intestine and/or liver, is the second most common cause of human death due to a protozoan after malaria. Although amebiasis is usually asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the parasite is exposed to reactive oxygen species that are produced and released by cells of the innate immune system at the site of infection. The ability of the parasite to survive oxidative stress (OS) is essential for a successful invasion of the host. Although the effects of OS on the regulation of gene expression in E. histolytica and the characterization of some proteins whose function in the parasite's defense against OS have been previously studied, our knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the oxidized proteins in oxidatively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these proteins were associated with antioxidant activity, maintaining the parasite's cytoskeleton, translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs its function and contributes to the inhibition of E. histolytica adherence to host cells. We also provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and urea, is involved in the protection of the parasite against OS. Collectively, these results emphasize the importance of OS as a critical regulator of E. histolytica's functions and indicate a new role for arginase in E. histolytica's resistance to OS. Reactive oxygen species are the most studied of environmental stresses generated by the host immune defense against pathogens. Although most of the studies that have investigated the effect of oxidative stress on an organism have focused on changes which occur at the protein level, only a few studies have investigated the oxidation status of these proteins. Infection with Entamoeba histolytica is known as amebiasis. This condition occurs worldwide, but is most associated with crowded living conditions and poor sanitation. The parasite is exposed inside the host to oxidative stress generated by cells of the host immune system. The nature of oxidized proteins in oxidatively stressed E. histolytica has never been studied. In this report, the authors present their quantitative results of a proteome-wide analysis of oxidized proteins in the oxidatively stressed parasite. They identified crucial redox-regulated proteins that are linked to the virulence of the parasite, such as the Gal/GalNAc lectin. They also discovered that arginase, a protein involved in ornithine synthesis, is also involved in the parasite's resistance to oxidative stress.
Collapse
|
32
|
Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol 2015; 45:925-38. [DOI: 10.1016/j.ijpara.2015.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
|
33
|
Lee SH, Boire TC, Lee JB, Gupta MK, Zachman AL, Rath R, Sung HJ. ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. J Mater Chem B 2014; 2:7109-7113. [PMID: 25343029 PMCID: PMC4203664 DOI: 10.1039/c4tb01094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable oligoproline peptide, KP7K. The ROS-mediated degradability triggers favorable host responses of the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique advantages for tissue engineering applications.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Angela L. Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Rutwik Rath
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| |
Collapse
|
34
|
Abstract
Entamoeba histolytica is the third-leading cause of parasitic mortality globally. E. histolytica infection generally does not cause symptoms, but the parasite has potent pathogenic potential. The origins, benefits, and triggers of amoebic virulence are complex. Amoebic pathogenesis entails depletion of the host mucosal barrier, adherence to the colonic lumen, cytotoxicity, and invasion of the colonic epithelium. Parasite damage results in colitis and, in some cases, disseminated disease. Both host and parasite genotypes influence the development of disease, as do the regulatory responses they govern at the host-pathogen interface. Host environmental factors determine parasite transmission and shape the colonic microenvironment E. histolytica infects. Here we highlight research that illuminates novel links between host, parasite, and environmental factors in the regulation of E. histolytica virulence.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908; ,
| | | |
Collapse
|
35
|
Morf L, Pearson RJ, Wang AS, Singh U. Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 2013; 41:9424-37. [PMID: 23935116 PMCID: PMC3814356 DOI: 10.1093/nar/gkt717] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA interference uses small RNAs (sRNA), which target genes for sequence-specific silencing. The parasite Entamoeba histolytica contains an abundant repertoire of 27 nt antisense (AS) sRNA with 5′-polyphosphate termini, but their roles in regulating gene expression have not been well established. We demonstrate that a gene-coding region to which large numbers of AS sRNAs map can serve as a ‘trigger’ and silence the gene fused to it. Silencing is mediated by generation of AS sRNAs with 5′-polyphosphate termini that have sequence specificity to the fused gene. The mechanism of silencing is independent of the placement of the trigger relative to the silenced gene but is dependent on the sRNA concentration to the trigger. Silencing requires transcription of the trigger-gene fusion and is maintained despite loss of the trigger plasmid. We used this approach to silence multiple amebic genes, including an E. histolytica Myb gene, which is upregulated during oxidative stress response. Silencing of the EhMyb gene decreased parasite viability under oxidative stress conditions. Thus, we have developed a new tool for genetic manipulation in E. histolytica with many advantages over currently available technologies. Additionally, these data shed mechanistic insights into a eukaryotic RNA interference pathway with many novel aspects.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
36
|
Hernandes-Alejandro M, Calixto-Gálvez M, López-Reyes I, Salas-Casas A, Cázares-Ápatiga J, Orozco E, Rodríguez MA. The small GTPase EhRabB of Entamoeba histolytica is differentially expressed during phagocytosis. Parasitol Res 2013; 112:1631-40. [DOI: 10.1007/s00436-013-3318-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/23/2013] [Indexed: 01/30/2023]
|
37
|
Lee SH, Gupta MK, Bang JB, Bae H, Sung H. Current progress in Reactive Oxygen Species (ROS)-Responsive materials for biomedical applications. Adv Healthc Mater 2013; 2:908-15. [PMID: 25136729 DOI: 10.1002/adhm.201200423] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, significant progress has been made in developing “stimuli-sensitive” biomaterials as a new therapeutic approach to interact with dynamic physiological conditions. Reactive oxygen species (ROS) production has been implicated in important pathophysiological events, such as atherosclerosis,aging, and cancer. ROS are often overproduced locally in diseased cells and tissues, and they individually and synchronously contribute to many of the abnormalities associated with local pathogenesis. Therefore, the advantages of developing ROS-responsive materials extend beyond site-specific targeting of therapeutic delivery, and potentially include navigating,sensing, and repairing the cellular damages via programmed changes in material properties. Here we review the mechanism and development of biomaterials with ROS-induced solubility switch or degradation, as well as their performance and potential for future biomedical applications.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, Seoul, 130‐701, Republic of Korea
| | - Hojae Bae
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, 130‐701, Republic of Korea
| | - Hak‐Joon Sung
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, 130‐701, Republic of Korea
| |
Collapse
|
38
|
Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 2012; 288:4462-74. [PMID: 23250742 DOI: 10.1074/jbc.m112.423467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.
Collapse
Affiliation(s)
- Richard J Pearson
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|