1
|
Abuzeid AMI, Hefni MM, El-Gayar AK, Huang Y, Li G. Prevalence and identification of cyathocotylid trematodes infecting African catfish in Egypt. Parasitol Res 2024; 123:360. [PMID: 39448458 DOI: 10.1007/s00436-024-08375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The trematode family Cyathocotylidae infects various hosts worldwide, including birds, mammals, reptiles, and fish. However, the lack of molecular data from adult worms hinders phylogenetic, epidemiological, and host association studies. This study aims to identify the common cyathocotylid trematodes infecting African catfish in Egypt using morphological and molecular evidence. Out of 142 Clarias gariepinus, 123 fish (86.6%) harbored cyathocotylid metacercariae, with a mean metacercarial intensity of 201 ± 38.5/g. Cyathocotylid metacercariae prevalence gradually rose as host size increased. Although there was no significant difference between groups, larger fish had a higher mean metacercarial intensity. The prevalence and intensity were unrelated to the fish gender. Histopathological examination of metacercariae-infected catfish revealed varying degrees of degenerative changes, including intermuscular edema leading to muscle fiber dispersion and atrophy, involving 11% to over 81% of muscle sections. We identified three cyathocotylid metacercariae and eight cyathocotylid adult species from experimental infection using morphometric and molecular data, including internal transcribed spacer (ITS) and/or mitochondrial cytochrome c oxidase subunit 1 (cox1) sequences. We determined the phylogenetic position of these cyathocotylid samples. The ITS sequence analysis linked the isolated Cyathocotylidae sp. 1 and 2 metacercariae to Prohemistomum vivax adults. Mesostephanus appendiculatoides and Paracoenogonimus ovatus were reported for the first time in Egypt. These findings may provide valuable genetic data for future molecular epidemiological and phylogenetic studies of cyathocotylid trematodes.
Collapse
Affiliation(s)
- Asmaa M I Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud M Hefni
- Institute of Biotechnology for Postgraduates and Research, Suez Canal University, Ismailia, 41522, Egypt
| | - Amal K El-Gayar
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yue Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
2
|
Tkach VV, Gasperetti R, Fernandes TF, Carrión-Bonilla CA, Cook JA, Achatz TJ. Uncovering further diversity of Ochoterenatrema Caballero, 1943 (Digenea: Lecithodendriidae) in South American bats. Syst Parasitol 2024; 101:43. [PMID: 38805139 PMCID: PMC11133110 DOI: 10.1007/s11230-024-10165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Ochoterenatrema Caballero, 1943 is a genus of lecithodendriid digeneans that prior to this study included 8 species parasitic in bats in the Western Hemisphere. Species of Ochoterenatrema possess a unique morphological feature in form of the pseudogonotyl on the sinistral side of the ventral sucker. In this study, we describe 2 new species of Ochoterenatrema from bats in Ecuador. The new species are readily differentiated from their congeners by a combination of morphological characters, including the distribution of vitelline follicles, length of oesophagus, sucker ratio and the body shape, among other features. We have generated partial nuclear 28S rDNA and mitochondrial cox1 gene DNA sequences from both new species. The newly obtained sequences were used to differentiate among species and study the phylogenetic interrelationships among Ochoterenatrema spp. The internal topology of the clade was weakly supported, although the cox1 tree was much better resolved than the 28S tree. Comparison of sequences revealed 0-1.2% interspecific divergence in 28S and 3.3-20.5% interspecific divergence in cox1 among Ochoterenatrema spp. The new findings demonstrate that bats in South America likely harbor multiple additional undescribed species of Ochoterenatrema. More extensive sampling from broader geographic and host ranges, especially in North America, should allow for a better understanding of the evolution of host associations and morphological traits of this lineage of lecithodendriid digeneans.
Collapse
Affiliation(s)
- Vasyl V Tkach
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND, 58202, USA.
| | - Roxanne Gasperetti
- Department of Biology and Museum of Natural History, University of Wisconsin-Stevens Point, Stevens Point, WI, 54481, USA
| | | | - Carlos A Carrión-Bonilla
- Museo de Zoología QCAZ, Facultad de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Joseph A Cook
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tyler J Achatz
- Department of Natural Sciences, Middle Georgia State University, Macon, GA, 31206, USA
| |
Collapse
|
3
|
Faltýnková A, Jouet D, Nielsen ÓK, Skírnisson K. First species record of Strigea falconis Szidat, 1928 (Trematoda, Strigeidae) from gyrfalcon Falco rusticolus in Iceland-pros and cons of a complex life cycle. Parasitol Res 2024; 123:147. [PMID: 38433153 PMCID: PMC10909778 DOI: 10.1007/s00436-024-08161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Strigea falconis is a common parasite of birds of prey and owls widely distributed in the Holarctic. We aimed to characterise S. falconis from Iceland via integrative taxonomic approach and to contribute to the understanding of its circulation in the Holarctic. We recovered adult S. falconis from two gyrfalcons (Falco rusticolus) collected in 2011 and 2012 in Iceland (Reykjanes Peninsula, Westfjords) and characterised them by morphological and molecular genetic (D2 of rDNA, cox1, ND1 of the mDNA) methods. We provide the first species record of S. falconis in Iceland which to the best of our knowledge is its northernmost distributional range. The presence of S. falconis in Iceland is surprising, as there are no suitable intermediate hosts allowing completion of its life cycle. Gyrfalcons are fully sedentary in Iceland; thus, the only plausible explanation is that they acquired their infection by preying upon migratory birds arriving from Europe. Our data indicate that the most likely candidates are Anseriformes and Charadriiformes. Also, we corroborate the wide geographical distribution of S. falconis, as we found a high degree of similarity between our haplotypes and sequences of mesocercariae from frogs in France and of a metacercaria from Turdus naumanni in Japan, and adults from Buteo buteo and Circus aeruginosus from the Czech Republic. The case of Strigea falconis shows the advantages of a complex life cycle and also depicts its pitfalls when a parasite is introduced to a new area with no suitable intermediate hosts. In Iceland, gyrfalcons are apparently dead-end hosts for S. falconis.
Collapse
Affiliation(s)
- Anna Faltýnková
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno, 613 00, Czech Republic.
| | - Damien Jouet
- ESCAPE UR7510, USC ANSES PETARD, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51096, Reims Cedex, France
| | | | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112, Reykjavík, Iceland
| |
Collapse
|
4
|
Abuzeid AMI, Hefni MM, Huang Y, Zhuang T, Li G. Phylogenetic relationship of Prohemistomum vivax to other trematodes based on the internal transcribed spacer region and mitochondrial genes. Parasitol Res 2024; 123:113. [PMID: 38273031 DOI: 10.1007/s00436-024-08126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Prohemistomum vivax is a zoonotic small cyathocotylid trematode that inhabits the intestines of fish-eating birds and mammals. Here, we amplified the internal transcribed spacer (ITS) sequence and six mitochondrial protein-coding genes (PCGs) from P. vivax. The ITS region was 1389 base pairs long and had a partial 18S ribosomal RNA gene, a full ITS1, 5.8S rRNA, and ITS2 sequence, and a partial 28S rRNA gene. The ITS region of P. vivax showed a minimum pairwise distance (0.3-0.6%) from the ITS sequences of Cyathocotylidae sp. 1 and 2 metacercariae from Clarias gariepinus. This result suggests that these metacercariae belong to P. vivax metacercariae. We first amplified mitochondrial genes from P. vivax, including cytochrome c oxidase subunit III (cox3) partial sequence; tRNA-His, cytochrome b (cytb), and NADH dehydrogenase subunit 4L (nad4L) complete sequences; and NADH dehydrogenase subunit 4 (nad4), cytochrome c oxidase I (cox1), and NADH dehydrogenase subunit 5 (nad5) partial sequences. P. vivax was most closely related to Cyathocotyle prussica (NC_039780) and Holostephanus sp. (OP082179), with cox1, cox3, and cytb genes conserved among the three trematodes. The ML phylogenetic tree of ITS sequences supports the order Diplostomida, divided into two main clades (the superfamily Diplostomoidea and Schistosomatoidea). The phylogeny of concatenated amino acid sequences of P. vivax six PCGs revealed that diplostomoids and Clinostomum sp. evolved in a clade with Plagiorchiida members, away from Schistosoma species. These results may yield ribosomal and mitochondrial genetic markers for molecular epidemiological investigations of cyathocotylid intestinal flukes.
Collapse
Affiliation(s)
- Asmaa M I Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud M Hefni
- Institute of Biotechnology for Postgraduates and Research, Suez Canal University, 41522, Ismailia, Egypt
| | - Yue Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tingting Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
5
|
Kostadinova A, Pérez-Del-Olmo A. The Systematics of the Trematoda. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:47-72. [PMID: 39008263 DOI: 10.1007/978-3-031-60121-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The platyhelminth class Trematoda comprises two subclasses with largely disparate species diversity, with the small Aspidogastrea with c.80 species and the speciose Digenea with c.18,000 species, which has attracted much effort towards our understanding of evolutionary relationships among suprageneric taxa. This chapter focuses on insights into the classification of the Digenea, that have become apparent from our advanced understanding of both morphological and molecular data. The field of molecular systematics of the Digenea has experienced significant advances over the past 15 years. Phylogenetic analyses of sequence data predominantly from the 18S and 28S rRNA genes have incorporated a considerable diversity of taxa, thus increasing the accuracy of phylogenetic inferences at higher taxonomic levels. As a result, the status of long-standing supraspecific taxa has been revised, new higher-level taxa have been defined, and inferences made in association with morphological and life-cycle evidence. A substantial effort has been made towards a classification reflecting a natural system of the Digenea by considering morphological evidence in conjunction with phylogenies inferred from molecular data; this has resulted in considerable congruence. However, limited taxon sampling in the phylogeny of the Digenea still remains relevant, especially in relation to some higher-level taxa, and an outline of these omissions is presented. A framework that has led to robust estimates of phylogeny is outlined, and the application of advanced morphological and molecular approaches in digenean taxonomy and systematics is illustrated using the most comprehensively studied digenean superfamilies.
Collapse
Affiliation(s)
- Aneta Kostadinova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ana Pérez-Del-Olmo
- Unitat de Zoologia Marina, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Científic, Universitat de València, Valencia, Spain
| |
Collapse
|
6
|
Barton DP, Kopf RK, Zhu X, Shamsi S. The Presence of a Parasite in the Head Tissues of a Threatened Fish ( Bidyanus bidyanus, Terapontidae) from South-Eastern Australia. Pathogens 2023; 12:1296. [PMID: 38003761 PMCID: PMC10674335 DOI: 10.3390/pathogens12111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The silver perch, Bidyanus bidyanus (Mitchell) (Terapontidae) is a freshwater fish, endemic to the Murray-Darling river system in south-eastern Australia. Population declines have led to the fish being listed as critically endangered by the Australian Government. Knowledge about parasites and diseases of wild populations of freshwater fish are limited in Australia. During an examination of wild-caught silver perch, digenean mesocercaria were observed in the head tissues. A total of five of the 11 silver perch collected from the Wakool River, New South Wales, were infected with mesocercaria. All mesocercaria were found in the head tissues; no mesocercaria were found encysted in the eye lens. The mesocercaria were found to belong to the family Strigeidae based on the sequences of their internal transcribed spacer (ITS) region. The lack of comparable sequences of strigeid digeneans from Australian hosts precludes being able to determine if the mesocercaria found in this study are a new species or representatives of an already described species. However, genetic results confirm that this is a different species to other digeneans previously described from silver perch, thus increasing the number of digeneans reported from B. bidyanus to three species. The presence of digenean mesocercaria in the head tissues of a wild population of silver perch, as found in the present study, is of potential conservation significance. Given the critically endangered conservation status of B. bidyanus, and previous evidence of strigeid infection altering fish behaviour, ecology, and predation mortality, further research on the potential impacts of infection on wild populations is warranted.
Collapse
Affiliation(s)
- Diane P. Barton
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia;
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - R. Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0801, Australia;
| | - Xiaocheng Zhu
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia;
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
7
|
Jiang F, Zhang W, Pan Y, Yu X, Cao J, Du N, Zhu M, Gu S, Zhan X. Identification and prevalence investigation of cyathocotylid trematode (Trematoda: Digenea: Cyathocotylidae) in Carassius auratus in Wuhu, China. Vet Res Commun 2023; 47:1185-1193. [PMID: 36646865 DOI: 10.1007/s11259-022-10049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The family Cyathocotylidae trematode is a world-widely distributed parasite whose adults are mainly found in fish, reptiles, birds, and mammals in both freshwater and marine environments. However, little is known of the prevalence of these trematode in China. For the first time, we found Cyathocotylidae trematode in the Wuhu area. Therefore, we investigated the prevalence of metacercariae in Carassius auratus from Zhang Lake, Kui Lake, Qingyi River, and Yangtze River (Wuhu Section) in Wuhu area. A total of 392 one-year-old C. auratus were tested in January, April, July, and October 2019, respectively. After the fish were euthanized, the back, chest, and tail muscles were used for preliminary screening for the presence of metacercariae by direct compression method. Metacercariae were isolated by the artificial digestion method and then morphologically and molecularly identified by cox1 (642 bp) and ITS2 (418 bp) sequences amplification by PCR. Based on morphological features and sequence analysis, they were identified as cyathocotylid metacercariae. The four water sources have different degrees of prevalence throughout the year, the prevalence ranges from 28.45% (29/102) in Yangtze River to 50.55% (46/91) in Zhang Lake, with an average prevalence of 40.56% (159/392). There were also differences in the prevalence in different months: The highest occurred in July, which was 81.63% (80/98), while the lowest occurred in January, which was 8.89% (8/90). This study can provide basic data for the prevention and control of cyathocotylid trematode in this area.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Biological Macro-molecules, 241002, Wuhu, Anhui, China
| | - Wanyu Zhang
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yang Pan
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Xudong Yu
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Jiacheng Cao
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Ningning Du
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Mengyi Zhu
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Shengli Gu
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Xiaodong Zhan
- Department of Medical Parasitology, Wannan Medical College, 241002, Wuhu, Anhui, China.
- Anhui Provincial Key Laboratory of Biological Macro-molecules, 241002, Wuhu, Anhui, China.
| |
Collapse
|
8
|
Atopkin DM, Semenchenko AA, Solodovnik DA, Ivashko YI. A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences. J Helminthol 2023; 97:e69. [PMID: 37655787 DOI: 10.1017/s0022149x23000500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
New data on the complete mitochondrial genome of Azygia robusta (Azygiidae) were obtained by the next-generation sequencing (NGS) approach. The mitochondrial DNA (mtDNA) of A. robusta had a length of 13 857 bp and included 12 protein-coding genes, two ribosomal genes, 22 transfer RNA genes, and two non-coding regions. The nucleotide sequences of the complete mitochondrial genomes of two A. robusta specimens differed from each other by 0.12 ± 0.03%. Six of 12 protein-coding genes demonstrated intraspecific variation. The difference between the nucleotide sequences of the complete mitochondrial genomes of A. robusta and Azygia hwangtsiyui was 26.95 ± 0.35%; the interspecific variation of protein-coding genes between A. robusta and A. hwangtsiyui ranged from 20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5). The observed gene arrangement in the mtDNA sequence of A. robusta was identical to that of A. hwangtsiyui. Codon usage and amino acid frequencies were highly similar between A. robusta and A. hwangtsiyui. The results of phylogenetic analyses based on mtDNA protein-coding regions showed that A. robusta is closely related to A. hwangtsiyui (belonging to the same suborder, Azygiida) that formed a distinct early-diverging branch relative to all other Digenea. A preliminary morphological analysis of paratypes of the two azygiid specimens studied showed visible morphological differences between them. The specimen extracted from Sakhalin taimen (Parahucho perryi) was most similar to A. robusta. Thus, we here provide the first record of a new definitive host, P. perryi, for A. robusta and also molecular characteristics of the trematode specimens.
Collapse
Affiliation(s)
- D M Atopkin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Cell Biology and Genetics, Far Eastern Federal University, Vladivostok, Russia
| | - A A Semenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - D A Solodovnik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Y I Ivashko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
9
|
de Buron I, Hill-Spanik KM, Baker T, Fignar G, Broach J. Infection of Atlantic tripletail Lobotes surinamensis (Teleostei: Lobotidae) by brain metacercariae Cardiocephaloides medioconiger (Digenea: Strigeidae). PeerJ 2023; 11:e15365. [PMID: 37214094 PMCID: PMC10194066 DOI: 10.7717/peerj.15365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
Three juvenile Atlantic tripletail Lobotes surinamensis caught opportunistically in Charleston Harbor (South Carolina, USA) and maintained in captivity for over three months displayed an altered swimming behavior. While no direct causation can be demonstrated herein, fish were infected in their brain by strigeid trematode larvae (metacercariae) of Cardiocephaloides medioconiger, which were identified via ITS2 and 28S ribosomal RNA gene sequencing. Histology showed nonencysted metacercariae within the brain ventricle between the optic tectum and tegmentum, causing distortion of tegmental parenchyma. Aggregates of mononuclear inflammatory cells were in the ventricle adjacent to metacercariae. Metacercarial infection by Cardiocephaloides medioconiger has been reported from the brain and eyes of only two other fish species from the northern US Atlantic coast: the grey mullet Mugil cephalus and silverside Menidia menidia, but this identification is problematic and needs molecular verification. Atlantic tripletail is a new report as a second intermediate host for C. medioconiger and South Carolina is a new locality. Cardiocephaloides species in general have a low host specificity and infection by C. medioconiger could propagate to other fishes and affect neighboring natural ecosystems.
Collapse
Affiliation(s)
- Isaure de Buron
- Department of Biology, College of Charleston, Charleston, SC, United States of America
| | | | - Tiffany Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Gabrielle Fignar
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC, United States of America
| | - Jason Broach
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC, United States of America
| |
Collapse
|
10
|
Achatz TJ, Burkman CA, Fecchio A, Pulis EE, Tkach VV. Description and Phylogenetic Relationships of Anhingatrema n. gen. (Digenea: Diplostomidae) with Two New Species from New World Anhingas (Aves: Anhingidae). Acta Parasitol 2023; 68:159-171. [PMID: 36456776 DOI: 10.1007/s11686-022-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE The Diplostomidae is a globally distributed family of digeneans that parasitize a wide variety of tetrapod definitive hosts. Recent molecular phylogenetic studies have revealed unknown diplostomid diversity in avian hosts throughout the New World. Herein, we provide descriptions of a novel genus of diplostomids with two new species. METHODS Two species of diplostomids belonging to the new genus were collected from anhinga birds in Mississippi (USA) and Brazil. Partial nuclear 28S ribosomal and mitochondrial cox1 genes were sequenced. Ribosomal data were used for phylogenetic inference. RESULTS Both species of Anhingatrema n. gen. were positioned in a 100% supported, monophyletic clade in the phylogenetic tree. The molecular phylogenetic position and a combination of morphological features (e.g., presence of pseudosuckers, testes shape and orientation) supported erection of the new genus. Anhingatrema overstreeti n. sp. and Anhingatrema cararai n. sp. are morphologically similar, but differ in size of and ratios associated with pseudosuckers. The two species differ by 2% of 28S sequences and 13.8% of cox1 sequences. Comparison of DNA sequences revealed that Diplostomidae gen. sp. in GenBank (MZ314151) is conspecific with An. overstreeti n. sp. CONCLUSION Anhingatrema n. gen. is the sixth genus of diplostomids known from anhingas worldwide. Anhingatrema cararai n. sp. is the first diplostomid to be reported from anhingas in South America. Combined with previous studies, the molecular phylogenies revealed at least two host switches to anhingas from other birds during the evolutionary history of the Diplostomidae.
Collapse
Affiliation(s)
- Tyler J Achatz
- Department of Natural Sciences, Middle Georgia State University, Macon, GA, 31206, USA
| | - Clara A Burkman
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET-Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Eric E Pulis
- Department of Science and Mathematics, Northern State University, Aberdeen, SD, 57401, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
11
|
Gacad JLJ, Tanabe-Hosoi S, Yurlova NI, Urabe M. The complete mitogenome of Echinoparyphium aconiatum (Digenea: Echinostomatidae) and a comparison with other digenean species. Parasitol Int 2023; 92:102682. [DOI: 10.1016/j.parint.2022.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
12
|
Monnens M, Halajian A, Littlewood DTJ, Briscoe AG, Artois T, Vanhove MP. Can avian flyways reflect dispersal barriers of clinostomid parasites? First evidence from the mitogenome of Clinostomum complanatum. Gene X 2023; 851:146952. [DOI: 10.1016/j.gene.2022.146952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022] Open
|
13
|
Sokolov SG, Yang P, Lebedeva DI. New record of Tylodelphys metacercariae (Diplostomidae) from Perccottus glenii (Odontobutidae) and their phylogenetic assessment. Acta Vet Hung 2022; 70:274-281. [PMID: 36227717 DOI: 10.1556/004.2022.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
Metacercariae of Tylodelphys sp. were found in the abdominal cavity of the Chinese sleeper (Perccottus glenii) collected in Liaoning Province and Inner Mongolia Autonomous Region of China. The sequences of the mitochondrial cox1 gene and ribosomal ITS1-5.8S rDNA-ITS2 region were obtained and used for molecular identification and phylogenetic assessment of this parasite species. Results of phylogenetic analyses based on ITS and cox1 markers showed that the metacercariae of Tylodelphys sp. ex P. glenii from China were conspecific with specimens of Tylodelphys sp. collected by Sokolov et al. (2013) from the same fish-host species captured earlier in West Siberia, Russia. The examined Tylodelphys sp. ex. P. glenii is the only member of the genus whose metacercariae parasitise the abdominal cavity of fish in northern Eurasia. Tylodelphys sp. ex P. glenii clustered with T. darbyi, T. immer, T. podicipina, and Tylodelphys sp. of Soldánová et al., 2017 based on mitochondrial DNA markers, and with T. darbyi, T. immer, T. kuerepus, and T. schreuringi using nuclear DNA markers.
Collapse
Affiliation(s)
- Sergey G Sokolov
- 1A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Peimin Yang
- 2Liaoning Institute of Freshwater Fisheries, Liaoyang, China
| | - Daria I Lebedeva
- 3Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
14
|
An Q, Qiu YY, Lou Y, Jiang Y, Qiu HY, Zhang ZH, Li B, Zhang AH, Wei W, Chen YY, Gao JF, Wang CR. Characterization of the complete mitochondrial genomes of Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae): Comparison with the members of the superfamily Paramphistomoidea and phylogenetic implication. Int J Parasitol Parasites Wildl 2022; 19:9-17. [PMID: 35991946 PMCID: PMC9385452 DOI: 10.1016/j.ijppaw.2022.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae) are two important parasites in wood frogs, which have large infection rates and essential importance of ecology, economy and society. In this study, the complete mitochondrial (mt) genomes of D. japonicus and D. mehari were sequenced, then compared with other related trematodes in the superfamily Paramphistomoidea. The complete circular mt sequence of D. japonicus and D. mehari were 14,210 bp and 14,179 bp in length, respectively. Both mt genomes comprised 36 functional subunits, consisting of 12 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and one non-coding region. The mt genes of D. japonicus and D. mehari were transcribed in the same direction, and the gene arrangements were identical to those of Paramphistomoidea trematodes. In the 12 PCGs, GTG was the most common initiation codon, whereas TAG was the most common termination codon. All tRNAs had a typical cloverleaf structure except tRNA Ser1. A comparison with related Paramphistomoidea trematode mt genomes suggested that the cox1 gene of D. mehari was the longest in these trematodes. Phylogenetic analyses revealed that Paramphistomoidea trematodes formed a monophyletic branch, Paramphistomidae and Gastrothylacidae were more closely related than Diplodiscidae. And the further analysis with Pronocephalata branch found that the flukes parasitic in amphibians (frogs) formed one group, and the flukes from ruminants (cattle, sheep, ect) formed another group. Our study demonstrated the importance of sequencing mt genomes of D. japonicus and D. mehari, which will provide significant molecular resources for further studies of Paramphistomoidea taxonomy, population genetics and systematics. The complete mt genomes of Diplodiscus japonicus and D. mehari were determined first time. There is only one NCR in Diplodiscus japonicus and D. mehari complete mt genomes. Phylogenetic analyses revealed two monophyletic groups for the flukes parasitic in amphibians and ruminants.
Collapse
|
15
|
Díaz Pernett SC, Brant SV, Locke SA. First integrative study of the diversity and specificity of metacercariae of Posthodiplostomum Dubois, 1936 from native and introduced fishes in the Caribbean. Parasitology 2022; 149:1894-1909. [PMID: 36000173 PMCID: PMC11010570 DOI: 10.1017/s0031182022001214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Metacercariae of the genus Posthodiplostomum are often recorded in freshwater fish hosts. While the diversity and taxonomy of this genus are receiving increasing attention in molecular phylogenetic studies, available data remain geographically biased. Most molecular studies of Posthodiplostomum and morphologically similar (neascus) worms originate in North America and Europe and Asia (more than 60% of DNA sequences are from USA and Canada), with few data currently available from the Neotropics, where high host diversity suggests high and under-sampled parasite diversity. In this study, we report molecular and morphological data from metacercariae of Posthodiplostomum in fish in Puerto Rico, where only a single species has been previously reported. Partial sequences of cytochrome c oxidase subunit 1 from metacercariae from Dajaus monticola (native to Puerto Rico) and the introduced fishes Poecilia reticulata, Parachromis managuensis, Lepomis macrochirus and Micropterus salmoides revealed 7 genetically distinct species-level lineages, of which 4 were novel. We report novel molecular life-cycle linkages in Posthodiplostomum macrocotyle (metacercariae in muscle of the cichlid Pa. managuensis), a species previously known only from adults in birds from South America; and in Posthodiplostomum sp. 23 (metacercariae in poeciliids), which has recently been found in Ardea herodias in Georgia, USA. We also report the first molecular data from Posthodiplostomum sp. 8 in M. salmoides in the Caribbean. Metacercariae of most species were morphologically distinguished and all displayed narrow specificity for fish hosts, with no indication of parasite sharing among introduced and native fishes.
Collapse
Affiliation(s)
- Sandra C. Díaz Pernett
- Department of Biology, University of Puerto Rico at Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681, USA
| | - Sara V. Brant
- Museum of Southwestern Biology Division of Parasites MSC03 2020, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Sean A. Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681, USA
| |
Collapse
|
16
|
Achatz TJ, Martens JR, Kudlai O, Junker K, Boe NW, Tkach VV. A New Genus of Diplostomids (Digenea: Diplostomoidea) from the Nile Crocodile in South Africa with a Key to Diplostomid Genera. J Parasitol 2022; 108:453-466. [DOI: 10.1645/22-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tyler J. Achatz
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Jakson R. Martens
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Olena Kudlai
- Institute of Ecology, Nature Research Centre, Akademijos, 2, 08412 Vilnius, Lithuania
| | - Kerstin Junker
- Epidemiology, Parasites and Vectors, ARC-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Nicholas W. Boe
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Vasyl V. Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| |
Collapse
|
17
|
Abuzeid AMI, Hefni MM, Huang Y, He L, Zhuang T, Li G. Immune pathogenesis in pigeons during experimental Prohemistomum vivax infection. Front Vet Sci 2022; 9:974698. [PMID: 36187827 PMCID: PMC9516004 DOI: 10.3389/fvets.2022.974698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prohemistomum vivax is a small trematode belonging to the family Cyathocotylidae, infecting fish-eating birds and mammals, including humans. However, no data on molecular identification and immune pathogenesis are available, challenging effective diagnostic and therapeutic interventions. Here, we identified P. vivax based on combined morphological and molecular data and examined histopathological lesions and the differential cytokines expression in experimentally infected pigeons. Pigeons were orally infected with 500 prohemistomid metacercariae. Intestinal and spleen tissues were harvested 2, 4, 7, 14, 21, and 28 days post-infection (dpi). Gene expression levels of eleven cytokines (IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-15, IL-18, IFN-γ, and TGF-β3) were assessed using quantitative reverse-transcription PCR (RT-qPCR). We identified the recovered flukes as Prohemistomum vivax based on morphological features and the sequence and phylogenetic analysis of the internal transcribed spacer 1 (ITS1), 5.8 ribosomal RNA, and ITS2 region. Histopathological lesions were induced as early as 2 dpi, with the intensity of villi atrophy and inflammatory cell infiltration increasing as the infection progressed. An early immunosuppressive state (2 and 4 dpi), with TGF-β3 overexpression, developed to allow parasite colonization. A mixed Th1/Th2 immune response (overexpressed IFN-γ, IL-12, IL-2, IL-4, and IL-5) was activated as the infection progressed from 7 to 28 dpi. Inflammatory cytokines (IL-1, IL-6, IL-18, and IL-15) were generally overexpressed at 7–28 dpi, peaking at 7 or 14 dpi. The upregulated Treg IL-10 expression peaking between 21 and 28 dpi might promote the Th1/Th2 balance and immune homeostasis to protect the host from excessive tissue pathology and inflammation. The intestine and spleen expressed a significantly different relative quantity of cytokines throughout the infection. To conclude, our results presented distinct cytokine alteration throughout P. vivax infection in pigeons, which may aid in understanding the immune pathogenesis and host defense mechanism against this infection.
Collapse
Affiliation(s)
- Asmaa M. I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M. Hefni
- Institute of Biotechnology for Postgraduates Studies and Researches, Suez Canal University, Ismailia, Egypt
- Mahmoud M. Hefni
| | - Yue Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Long He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tingting Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqing Li
| |
Collapse
|
18
|
Achatz TJ, Chermak TP, Martens JR, Woodyard ET, Rosser TG, Pulis EE, Weinstein SB, Mcallister CT, Kinsella JM, Tkach VV. Molecular phylogeny supports invalidation of Didelphodiplostomum and Pharyngostomoides (Digenea: Diplostomidae) and reveals a Tylodelphys from mammals. Zool J Linn Soc 2022; 196:124-136. [PMID: 36051981 PMCID: PMC9416008 DOI: 10.1093/zoolinnean/zlab114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of well-fixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.
Collapse
Affiliation(s)
- Tyler J Achatz
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, North Dakota, USA
- Department of Natural Sciences, Middle Georgia State University, Macon, GA 31206, Georgia, USA
| | - Taylor P Chermak
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, North Dakota, USA
| | - Jakson R Martens
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, North Dakota, USA
| | - Ethan T Woodyard
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, Mississippi, USA
| | - Thomas G Rosser
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, Mississippi, USA
| | - Eric E Pulis
- Department of Science and Mathematics, Northern State University, Aberdeen, SD 57401, South Dakota, USA
| | - Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, Utah, USA
| | - Chris T Mcallister
- Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745, Oklahoma, USA
| | - John M Kinsella
- Helm West Laboratory, 2108 Hilda Avenue, Missoula, MT 59801, Montana, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, North Dakota, USA
| |
Collapse
|
19
|
No strict host specificity: Brain metacercariae Diplostomum petromyzifluviatilis Müller (Diesing, 1850) are conspecific with Diplostomum sp. Lineage 4 of Blasco-Costa et al. (2014). Parasitol Int 2022; 91:102654. [PMID: 36038057 DOI: 10.1016/j.parint.2022.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Metacercariae of Diplostomum petromyzifluviatilis (Digenea, Diplostomidae) from the brain of European river lamprey Lampetra fluviatilis from the Baltic Sea basin and Arctic lamprey Lethenteron camtschaticum from the White Sea basin were studied with the use of genetic and morphological methods. Phylogenetic analysis based on cox1 marker showed that the parasites of both lamprey species were conspecific with Diplostomum sp. Lineage 4 of Blasco-Costa et al. (2014). The name Diplostomum petromyzifluviatilis Müller (Diesing, 1850) has historical precedence as a species described from the brain of lampreys and should be used in genus nomenclature. There were no morphological qualitative differences between the metacercariae from the two lamprey species but those from L. fluviatilis were larger than those from L. camtschaticum. We expanded the data on the second intermediate hosts and the localization of D. petromyzifluviatilis, showing that its metacercariae occur not only in the brain of lampreys but also in the brain and the retina of three-spined stickleback Gasterosteus aculeatus and the vitreous humour of the perch Perca fluviatilis across the European part of the Palearctic.
Collapse
|
20
|
Metacercariae in the brain of Erythrinus cf. erythrinus (Characiformes: Erythrinidae) from Iguazú National Park (Argentina): do they belong to Dolichorchis lacombeensis (Digenea, Diplostomidae)? J Helminthol 2022; 96:e61. [PMID: 35979699 DOI: 10.1017/s0022149x22000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Argentina, the family Diplostomidae is composed of eight genera: Austrodiplostomum Szidat & Nani; Diplostomum von Nordmann; Dolichorchis Dubois; Hysteromorpha Lutz; Neodiplostomum Railliet; Posthodiplostomum Dubois; Sphincterodiplostomum Dubois; and Tylodelphys Diesing. During a parasitological survey of fishes from the Iguazú National Park we detected diplostomid metacercariae in the brain of Erythrinus cf. erythrinus. Fish were caught using crab traps, transported alive to the field laboratory, cold-anaesthetized and euthanized by cervical dissection. Some metacercariae were heat-killed in water and fixed in 10% formalin and others were preserved in alcohol 96% for DNA extraction. They were sequenced for the partial segment of the 28S rDNA, internal transcribed spacer (ITS) rDNA and cytochrome c oxidase subunit I (COI) mtDNA genes. Phylogenetic reconstruction was carried out using Bayesian inference and the proportion (p) of absolute nucleotide sites (p-distance) was obtained. In the 28S rDNA tree, the metacercaria sequenced grouped as Dolichorchis sp. The COI mtDNA p-distance between the metacercariae with Dolichorchis lacombeensis was 0.01. There is a small number of ITS sequences for the Diplostomidae family deposited in the GenBank. The oral sucker, ventral sucker, holdfast organ and the distance between oral and ventral suckers are larger in the adult compared with the metacercariae. Additionally, hind-body length and width are larger in the adult due to the development of the genital complex. Further studies using an integrative approach will help confirm the affiliation of other species to the genus Dolichorchis.
Collapse
|
21
|
Pyrka E, Kanarek G, Gabrysiak J, Jeżewski W, Cichy A, Stanicka A, Żbikowska E, Zaleśny G, Hildebrand J. Life history strategies of Cotylurus spp. Szidat, 1928 (Trematoda, Strigeidae) in the molecular era – Evolutionary consequences and implications for taxonomy. Int J Parasitol Parasites Wildl 2022; 18:201-211. [PMID: 35733618 PMCID: PMC9207058 DOI: 10.1016/j.ijppaw.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Species of Cotylurus Szidat, 1928 (Diplostomoidea: Strigeidae) are highly specialized digeneans that parasitize the gastrointestinal tract and bursa of Fabricius of water and wading birds. They have a three-host life cycle; the role of first intermediate host is played by pulmonate snails, while a wide range of water snails (both pulmonate and prosobranch) and leeches are reported as second intermediate hosts. Unfortunately, species richness, molecular diversity and phylogeny of metacercariae of Cotylurus spp. (tetracotyle) occurring in snails remain poorly understood. Thus, we have performed the parasitological and taxonomical examination of tetracotyles form freshwater snails from Poland, supplemented with adult Strigeidae specimens sampled from water birds. In this study we report our use of recently obtained sequences of two molecular markers (28S nuclear large ribosomal subunit gene (28S rDNA) and the cytochrome c oxidase subunit 1 (CO1) fragment), supplemented by results of a method of species delimitation (GMYC) and haplotype analysis to analyse some aspects of the ecology, taxonomy, and phylogeny of members of the genus Cotylurus. The provided phylogenetic reconstructions discovered unexpectedly high molecular diversity within Cotylurus occurring in snails, with clearly expressed evidence of cryptic diversity and the existence of several novel-species lineages. The obtained results revealed the polyphyletic character of C. syrius Dubois, 1934 (with three separate molecular species-level lineages) and C. cornutus (Rudolphi, 1809) Szidat, 1928 (with four separate molecular species-level lineages). Moreover, we demonstrated the existence of two divergent phylogenetical and ecological lineages within Cotylurus (one using leeches and other snails as second intermediate hosts), differing significantly in their life history strategies. Within Cotylurus existed two divergent phylogenetical and ecological lineages. The lineages within Cotylurus sp. differing significantly in their routes of transmission. Molecular analysis revealed high genetic diversity with evidence of cryptic species.
Collapse
|
22
|
The complete mitochondrial genome of Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae), their features and phylogenetic relationships in the superfamily Microphalloidea. Acta Trop 2022; 232:106469. [PMID: 35430263 DOI: 10.1016/j.actatropica.2022.106469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae) are common flukes of poultry and other birds which can cause severe impacts on animal health and losses to the poultry industry. However, there are limited studies on the molecular epidemiology, population genetics, and systematics of Prosthogonimus species. In the present study, the complete mitochondrial (mt) genomes of P. cuneatus and P. pellucidus were determined to be 14,829 bp and 15,013 bp in length, respectively. Both mt genomes contain 12 protein-coding genes (PCGs) (cox1-3, nad1-6, nad4L, cytb, and atp6), 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. Our comparative analysis shows that the atp6 genes of P. cuneatus and P. pellucidus are longer than any previously published atp6 genes of other trematodes. The lengths of the atp6 genes of P. cuneatus and P. pellucidus in this study seem unusual, and should therefore be studied further. The mt genes of P. cuneatus and P. pellucidus are transcribed in the same direction, and the gene arrangements are identical to those of Plagiorchis maculosus, Tamerlania zarudnyi, and Tanaisia sp., but different from those of Eurytrema pancreaticum, Dicrocoelium chinensis, and Brachycladium goliath. The mt genome A + T contents of P. cuneatus and P. pellucidus are 64.47% and 65.34%, respectively. In the 12 PCGs, ATG is the most common initiation codon, whereas TAG is the most common termination codon. The sequence identity of the same 12 PCGs among the eight trematodes (P. cuneatus, P. pellucidus, Pl. maculosus, D. chinensis, E. pancreaticum, B. goliath, T. zarudnyi, Tanaisia sp.) of Xiphidiata are 55.5%-81.7% at the nucleotide level and 43.9%-82.5% at the amino acid level. The nucleotide similarities among the complete mt genomes of the eight trematodes range from 54.1%-81.5%. Phylogenetic analysis based on the aligned concatenated amino acid sequences of the 12 PCGs shows that P. cuneatus and P. pellucidus cluster together and are sister to T. zarudnyi and Tanaisia sp., and this clade is more closely related to E. pancreaticum, Dicrocoelium spp. and Lyperosomum longicauda in the family Dicrocoeliidae, than it is to species in the families Plagiorchiidae and Brachycladiidae. These are the first reported complete mt genomes of Prosthogonimidae, and these data will provide additional molecular resources for further studies of Prosthogonimidae taxonomy, population genetics, and systematics.
Collapse
|
23
|
Characterization of complete mitochondrial genome and ribosomal operon for Carassotrema koreanum Park, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data. J Helminthol 2022; 96:e54. [PMID: 35894440 DOI: 10.1017/s0022149x22000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We obtained new data on the complete mitochondrial DNA (mtDNA) and the ribosomal operon of the trematode Carassotrema koreanum (Digenea: Haploporata: Haploporidae), an intestinal parasite of Carassius auratus, using next-generation sequencing. The mtDNA of C. koreanum contained 13,965 bp, including 12 protein-coding genes, two ribosomal genes, 22 transport RNA (tRNA) genes and a non-coding region. The ribosomal operon of C. koreanum was 10,644 bp in length, including ETS1 (1449 bp), 18S ribosomal RNA (rRNA) gene (1988 bp), ITS1 ribosomal DNA (rDNA) (558 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (274 bp), 28S rRNA gene (4152 bp) and ETS2 (2066 bp). Phylogenetic analysis based on mtDNA protein-coding regions showed that C. koreanum was closely related to Parasaccocoelium mugili, a species from the same suborder Haploporata. Bayesian phylogenetic tree topology was the most reliable and confirmed the validity of the Haploporata. The results of sequence cluster analysis based on codon usage bias demonstrated some agreement with the results of the phylogenetic analysis. In particular, Schistosoma spp. were differentiated from the other members of Digenea and the members of Pronocephalata were localized within the same cluster. Carassotrema koreanum and P. mugili fell within different clusters. The grouping of C. koreanum and P. mugili within the same cluster was obtained on the basis of frequencies of 13 specified codons, of which three codon pairs were degenerate. A similarity was found between two haploporid species and two Dicrocoelium spp. in the presence of TTG start codon of the mitochondrial nad5 gene. Our results confirmed the taxonomical status of the Haploporata identified in the previous studies and revealed some characteristic features of the codon usage in its representatives.
Collapse
|
24
|
Ebbs ET, Loker ES, Bu L, Locke SA, Tkach VV, Devkota R, Flores VR, Pinto HA, Brant SV. Phylogenomics and Diversification of the Schistosomatidae Based on Targeted Sequence Capture of Ultra-Conserved Elements. Pathogens 2022; 11:769. [PMID: 35890014 PMCID: PMC9321907 DOI: 10.3390/pathogens11070769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomatidae Stiles and Hassall 1898 is a medically significant family of digenetic trematodes (Trematoda: Digenea), members of which infect mammals or birds as definitive hosts and aquatic or amphibious gastropods as intermediate hosts. Currently, there are 17 named genera, for many of which evolutionary interrelationships remain unresolved. The lack of a resolved phylogeny has encumbered our understanding of schistosomatid evolution, specifically patterns of host-use and the role of host-switching in diversification. Here, we used targeted sequence capture of ultra-conserved elements (UCEs) from representatives of 13 of the 17 named genera and 11 undescribed lineages that are presumed to represent either novel genera or species to generate a phylogenomic dataset for the estimation of schistosomatid interrelationships. This study represents the largest phylogenetic effort within the Schistosomatidae in both the number of loci and breadth of taxon sampling. We present a near-comprehensive family-level phylogeny providing resolution to several clades of long-standing uncertainty within Schistosomatidae, including resolution for the placement of the North American mammalian schistosomes, implying a second separate capture of mammalian hosts. Additionally, we present evidence for the placement of Macrobilharzia at the base of the Schistosoma + Bivitellobilharzia radiation. Patterns of definitive and intermediate host use and a strong role for intermediate host-switching are discussed relative to schistosomatid diversification.
Collapse
Affiliation(s)
- Erika T. Ebbs
- Department of Biology, Purchase College, The State University of New York, Purchase, NY 10577, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Sean A. Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez 00681-9000, Puerto Rico;
| | - Vasyl V. Tkach
- Grand Forks Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Ramesh Devkota
- Vance Granville Community College, Henderson, NC 27536, USA;
| | - Veronica R. Flores
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, San Carlos de Bariloche 8400, Argentina;
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| |
Collapse
|
25
|
Achatz TJ, Pulis EE, Woodyard ET, Rosser TG, Martens JR, Weinstein SB, Fecchio A, McAllister CT, Carrión Bonilla C, Tkach VV. Molecular phylogenetic analysis of Neodiplostomum and Fibricola (Digenea, Diplostomidae) does not support host-based systematics. Parasitology 2022; 149:542-554. [PMID: 35042575 PMCID: PMC8976946 DOI: 10.1017/s003118202100216x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/07/2022]
Abstract
Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola. We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum. DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum. Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum. Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum. Further study is necessary to resolve the situation regarding the morphology of N. cratera. Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami. Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum; however, the directionality of these host-switching events remains unclear.
Collapse
Affiliation(s)
- Tyler J. Achatz
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota58202, USA
- Department of Natural Sciences, Middle Georgia State University, Macon, Georgia31206, USA
| | - Eric E. Pulis
- Department of Science and Mathematics, Northern State University, Aberdeen, South Dakota57401, USA
| | - Ethan T. Woodyard
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, USA
| | - Thomas G. Rosser
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, USA
| | - Jakson R. Martens
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota58202, USA
| | - Sara B. Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, Utah84112, USA
| | - Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso78060900, Brazil
| | - Chris T. McAllister
- Science and Mathematics Division, Eastern Oklahoma State College, Idabel, Oklahoma74745, USA
| | | | - Vasyl V. Tkach
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota58202, USA
| |
Collapse
|
26
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
27
|
Chan AHE, Saralamba N, Saralamba S, Ruangsittichai J, Thaenkham U. The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BMC Genomics 2022; 23:104. [PMID: 35130837 PMCID: PMC8822746 DOI: 10.1186/s12864-022-08302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic markers like the nuclear ribosomal RNA (rRNA) genes, internal transcribed spacer regions, mitochondrial protein-coding genes, and genomes have been utilized for molecular identification of parasitic trematodes. However, challenges such as the design of broadly applicable primers for the vast number of species within Digenea and the genetic markers’ ability to provide sufficient species-level resolution limited their utility. This study presented novel and broadly applicable primers using the mitochondrial 12S and 16S rRNA genes for Digenea and aimed to show their suitability as alternative genetic markers for molecular identification of orders Plagiorchiida, Echinostomida, and Strigeida. Results Our results revealed that the mitochondrial 12S and 16S rRNA genes are suitable for trematode molecular identification, with sufficient resolution to discriminate closely related species and achieve accurate species identification through phylogenetic placements. Moreover, the robustness of our newly designed primers to amplify medically important parasitic trematodes encompassing three orders was demonstrated through successful amplification. The convenience and applicability of the newly designed primers and adequate genetic variation of the mitochondrial rRNA genes can be useful as complementary markers for trematode molecular-based studies. Conclusions We demonstrated that the mitochondrial rRNA genes could be alternative genetic markers robust for trematode molecular identification and potentially helpful for DNA barcoding where our primers can be widely applied across the major Digenea orders. Furthermore, the potential of the mitochondrial rRNA genes for molecular systematics can be explored, enhancing their appeal for trematode molecular-based studies. The novelty of utilizing the mitochondrial rRNA genes and the designed primers in this study can potentially open avenues for species identification, discovery, and systematics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08302-4.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Molecular phylogeny of Diplostomum, Tylodelphys, Austrodiplostomum and Paralaria (Digenea: Diplostomidae) necessitates systematic changes and reveals a history of evolutionary host switching events. Int J Parasitol 2022; 52:47-63. [PMID: 34371018 PMCID: PMC8742756 DOI: 10.1016/j.ijpara.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023]
Abstract
The Diplostomidae Poirier, 1886 is a large, globally distributed family of digeneans parasitic in intestines of their definitive hosts. Diplostomum and Tylodelphys spp. are broadly distributed, commonly reported, and the most often sequenced diplostomid genera. The majority of published DNA sequences from these genera originated from larval stages only, which typically cannot be identified to the species level based on morphology alone. We generated partial large ribosomal subunit (28S) rRNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences from 14 species/species-level lineages of Diplostomum, six species/species-level lineages of Tylodelphys, two species/species-level lineages of Austrodiplostomum, one species previously assigned to Paralaria, two species/species-level lineages of Dolichorchis and one unknown diplostomid. Our DNA sequences of 11 species/species-level lineages of Diplostomum (all identified to species), four species/species-level lineages of Tylodelphys (all identified to species), Austrodiplostomum compactum, Paralaria alarioides and Dolichorchis lacombeensis originated from adult specimens. 28S sequences were used for phylogenetic inference to demonstrate the position of Paralaria alarioides and Dolichorchis spp. within the Diplostomoidea and study the interrelationships of Diplostomum, Tylodelphys and Austrodiplostomum. Our results demonstrate that two diplostomids from the North American river otter (P. alarioides and a likely undescribed taxon) belong within Diplostomum. Further, our results demonstrate the non-monophyly of Tylodelphys due to the position of Austrodiplostomum spp., based on our phylogenetic analyses and morphology. Furthermore, the results of phylogenetic analysis of 28S confirmed the status of Dolichorchis as a separate genus. The phylogenies suggest multiple definitive host-switching events (birds to otters and among major avian groups) and a New World origin of Diplostomum and Tylodelphys spp. Our DNA sequences from adult digeneans revealed identities of 10 previously published lineages of Diplostomum and Tylodelphys, which were previously identified to genus only. The novel DNA data from this work provide opportunities for future comparisons of larval diplostomines collected in ecological studies.
Collapse
|
29
|
Chaudhary A, Singh K, Sharma B, Singh HS. Description of the Metacercaria of Cardiocephaloides sp. (Digenea, Diplostomoidea), Newly Recorded from the Brain of Gangetic Leaffish (Nandus nandus) and Its Genetic Characterization in India. Acta Parasitol 2021; 66:1597-1604. [PMID: 34118023 DOI: 10.1007/s11686-021-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Cardiocephaloides comprises strigeid trematodes that represent a small genus. In this study, metacercaria identified as Cardiocephaloides sp. was collected from the Gangetic leaffish Nandus nandus from the Ganga River at Bairaj, Bijnor (29º01'N, 77º45'E) in the state of Uttar Pradesh (U.P.), India. Partial DNA sequences of the internal transcribed spacers (ITS1-5.8S-ITS2) and 28S gene of nuclear ribosomal DNA were generated and compared with available sequences of Cardiocephaloides species from Genbank database. METHODS Encysted metacercariae of Cardiocephaloides sp. were collected from Nandus nandus were processed, identified and documented using morphological methods. The ITS1-5.8S-ITS2 cluster and 28S gene of ribosomal DNA of metacercariae were also sequenced and used for phylogenetic analysis. RESULTS The infections of brain parasites are poorly understood in India and if studies are available, they are not properly described. During this study, the species collected were found belongs to the genus Cardiocephaloides. Metacercariae of Cardiocephaloides sp. is distinguished morphologically from others that also harbor brain by the presence of having an egg shape cyst and body elongate oval in shape with well-developed anterior part. The metacercariae are identified by matching of molecular sequence data and is compared to other species of Strigeidae. CONCLUSION This is the first record of metacercaria of Cardiocephaloides sp. from India. This molecular data from the present study will provide future comparative insights into species of Cardiocephaloides and its close affiliation to other congeners from different geographical areas.
Collapse
Affiliation(s)
- Anshu Chaudhary
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, UP, India.
| | - Komal Singh
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, UP, India
| | - Bindu Sharma
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, UP, India
| | - Hridaya S Singh
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, UP, India
| |
Collapse
|
30
|
Ruehle BP, Presswell B, Bennett J. DISTRIBUTION AND DIVERSITY OF DIPLOSTOMIDS IN NEW ZEALAND. J Parasitol 2021; 107:933-942. [PMID: 34910201 DOI: 10.1645/21-75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Parasitism is one of the most common consumer strategies and contributes a large portion to biological diversity. Trematodes in the family Diplostomidae are common in freshwater ecosystems worldwide, often residing in the eyes or brain of fish and then infecting fish-eating birds as adults. As a result, some species have broad geographic distributions due to the bird host's motility. In contrast to the cosmopolitan nature of diplostomids, only a single species, Tylodelphys darbyi, has been identified in New Zealand to date, and only from the South Island. Tylodelphys darbyi has a 3-host life cycle consisting of an unidentified snail, a freshwater fish (Gobiomorphus cotidianus), and the Australasian crested grebe (Podiceps cristatus australis). To date, T. darbyi has been found in 2 locations, Lake Hayes, in the eyes of G. cotidianus, and Lake Wanaka, adults recovered from grebes. Considering the near ubiquity of the fish host in New Zealand, it is likely the bird, listed as nationally vulnerable, is the limiting factor in the range of T. darbyi. Up to 10 G. cotidianus were sampled from 10 mountain lakes known to have populations of grebe in the Otago and Canterbury regions of New Zealand's South Island. The eyes of all fish were examined and any metacercariae present were set aside for genetic analysis. In addition to expanding the known range of T. darbyi to at least 4 water bodies across the South Island, 2 new taxa of diplostomid were identified. A lens-infecting metacercariae clustered with Diplostomum spathaceum, while the metacercariae from the humor clustered with Diplostomum baeri.
Collapse
Affiliation(s)
- Brandon P Ruehle
- University of Otago, 362 Leith Street, North Dunedin, Dunedin 9016, New Zealand.,Northland Regional Council, 36 Water Street, Whangarei 0110, New Zealand
| | - Bronwen Presswell
- University of Otago, 362 Leith Street, North Dunedin, Dunedin 9016, New Zealand
| | - Jerusha Bennett
- University of Otago, 362 Leith Street, North Dunedin, Dunedin 9016, New Zealand
| |
Collapse
|
31
|
Achatz TJ, Chermak TP, Martens JR, Pulis EE, Fecchio A, Bell JA, Greiman SE, Cromwell KJ, Brant SV, Kent ML, Tkach VV. Unravelling the diversity of the Crassiphialinae (Digenea: Diplostomidae) with molecular phylogeny and descriptions of five new species. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100051. [PMID: 35284861 PMCID: PMC8906103 DOI: 10.1016/j.crpvbd.2021.100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/05/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022]
Abstract
Crassiphialinae Sudarikov, 1960 is a large subfamily of the Diplostomidae Poirier, 1886 with a complex taxonomic history. It includes a diversity of species parasitic in the intestines of avian and mammalian definitive hosts worldwide. Posthodiplostomum Dubois, 1936 is a large and broadly distributed crassiphialine genus notorious for its association with diseases in their fish second intermediate hosts. In this study, we generated partial 28S rDNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences of digeneans belonging to seven crassiphialine genera. The 28S sequences were used to study the interrelationships among crassiphialines and their placement among other major diplostomoidean lineages. Our molecular phylogenetic analysis and review of morphology does not support subfamilies currently recognized in the Diplostomidae; therefore, we abandon the current subfamily system of the Diplostomidae. Molecular phylogenetic analyses suggest the synonymy of Posthodiplostomum, Ornithodiplostomum Dubois, 1936 and Mesoophorodiplostomum Dubois, 1936; morphological study of our well-fixed adult specimens and review of literature revealed lack of consistent differences among the three genera. Thus, we synonymize Ornithodiplostomum and Mesoophorodiplostomum with Posthodiplostomum. Our phylogenetic analyses suggest an Old World origin of Posthodiplostomum followed by multiple dispersal events among biogeographic realms. Furthermore, our analyses indicate that the ancestors of these digeneans likely parasitized ardeid definitive hosts. Four new species of Posthodiplostomum collected from birds in the New World as well as one new species of Posthodiplostomoides Williams, 1969 from Uganda are described.
Collapse
Affiliation(s)
- Tyler J. Achatz
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, ND 58202, USA
- Department of Natural Sciences, Middle Georgia State University, Macon, GA 31206, USA
| | - Taylor P. Chermak
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, ND 58202, USA
| | - Jakson R. Martens
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, ND 58202, USA
| | - Eric E. Pulis
- Department of Science and Mathematics, Northern State University, Aberdeen, SD 57401, USA
| | - Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá 78060900, Mato Grosso, Brazil
| | - Jeffrey A. Bell
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, ND 58202, USA
| | - Stephen E. Greiman
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Kara J. Cromwell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Confluence Ecology, Missoula, MT 59802, USA
| | - Sara V. Brant
- Museum of Southwestern Biology, Division of Parasites, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331, USA
| | - Vasyl V. Tkach
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, ND 58202, USA
| |
Collapse
|
32
|
Bouchard É, Schurer JM, Kolapo T, Wagner B, Massé A, Locke SA, Leighton P, Jenkins EJ. Host and geographic differences in prevalence and diversity of gastrointestinal helminths of foxes ( Vulpes vulpes), coyotes ( Canis latrans) and wolves ( Canis lupus) in Québec, Canada. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:126-137. [PMID: 34552844 PMCID: PMC8441108 DOI: 10.1016/j.ijppaw.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/01/2022]
Abstract
Wild canids are hosts to a wide range of parasites and can play a role in transmission of zoonoses. As many parasites are transmitted through food webs, and wild canids are at high trophic levels, parasite prevalence and diversity in wild canids can serve as excellent indicators of ecosystem health. Our main objectives were to update knowledge on the composition of gastrointestinal helminths in wild canids from Québec, Canada, and to describe differences in parasite prevalence and diversity among canid species and regions. Hunters and trappers provided whole carcasses of red foxes (Vulpes vulpes) (N = 176), and intestinal tracts of coyotes (Canis latrans) (N = 77) and gray wolves (Canis lupus) (N = 23) harvested for non-research purposes over the winter of 2016-2017. A modified Stoll's centrifugation sucrose flotation on feces of 250 wild canids was used, and eggs of one family and eight genera of parasitic helminths were recovered: diphyllobothriids, Taenia/Echinococcus spp., Capillaria spp., Toxascaris sp., Toxocara sp., Trichuris sp., Uncinaria sp., and Metorchis sp. Adult Taenia spp. cestodes were recovered from 61 of 276 (22%) canids. Six different species (T. hydatigena, T. twitchelli, T. crassiceps, T. polyacantha, T. krabbei, and T. pisiformis-"like") were differentiated based on DNA sequenced from 65 individual adult cestodes using primers for the nicotinamide adenosine dinucleotide dehydrogenase subunit 1 (ND1) and cytochrome c oxidase subunit 1 (CO1) mitochondrial DNA loci. Alaria sp. trematodes infected 89 of 276 canids (32%). A subset were identified as A. americana at the CO1 locus. The marine trematode Cryptocotyle lingua was reported for the first time in foxes in the province of Québec. These results help us understand more fully the predator-prey relationships within this group of canids. This baseline data in regional parasite prevalence and intensity is critical in order to detect future changes following ecological disturbances due to climate and landscape alterations.
Collapse
Affiliation(s)
- Émilie Bouchard
- University of Saskatchewan, Department of Veterinary Microbiology, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.,Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Janna M Schurer
- University of Global Health Equity, Center for One Health, Kigali, Rwanda
| | - Temitope Kolapo
- University of Saskatchewan, Department of Veterinary Microbiology, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Brent Wagner
- University of Saskatchewan, Department of Veterinary Microbiology, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Ariane Massé
- Ministère des Forêts, de La Faune et des Parcs, 880 Chemin Sainte-Foy, Québec, QC, G1S 4X4, Canada.,Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Sean A Locke
- University of Puerto Rico at Mayagüez, Department of Biology, Box 9000, Mayagüez 00681, 9000, Puerto Rico
| | - Patrick Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Emily J Jenkins
- University of Saskatchewan, Department of Veterinary Microbiology, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
33
|
López-Jiménez A, Hernández-Mena DI, Solórzano-García B, García-Varela M. Exploring the genetic structure of Parastrigea diovadena Dubois and Macko, 1972 (Digenea: Strigeidae), an endoparasite of the white ibis, Eudocimus albus, from the Neotropical region of Mexico. Parasitol Res 2021; 120:2065-2075. [PMID: 34031714 DOI: 10.1007/s00436-021-07185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
Parastrigea diovadena Dubois and Macko, 1972, is an allogenic trematode species that infects the intestine of white ibis. This widely distributed Neotropical species has been studied poorly, and nothing is known about its population genetic structure. In the current study, we attempt to fill this gap for the first time and to explore the genetic diversity in P. diovadena populations from three biogeographic provinces (Sierra Madre Oriental, Sierra Madre Occidental, and Sierra Madre del Sur) in the Neotropical region of Mexico. Newly generated sequences of the internal transcribed spacers (ITS) from ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) from mitochondrial DNA were compared with sequences available from the GenBank data set. Phylogenetic analyses performed with the ITS and cox 1 data sets using maximum likelihood and Bayesian inference unequivocally showed that new sequences of P. diovadena recovered from the white ibis formed a clade with other sequences of specimens previously identified as P. diovadena. The intraspecific genetic divergence among the isolates was very low, ranging from 0 to 0.38% for ITS and from 0 to 1.5% for cox 1, and in combination with the phylogenetic trees confirmed that the isolates belonged to the same species. The cox 1 haplotype network (star-shaped) inferred with 62 sequences revealed 36 haplotypes. The most frequent haplotype (H3, n = 18) corresponded to specimens from all the populations (except Tecolutla, Veracruz). In addition to the common haplotype, we identified four other shared haplotypes (H2, H9, H12, and H14) and 31 unique haplotypes (singlets). In addition, high haplotype diversity (Hd = 0.913), low nucleotide diversity (Pi = 0.0057), and null genetic differentiation or population structure (Fst = 0.0167) were found among the populations from the three biogeographic provinces. The results suggest that the biology of the definitive host has played a key role in the population genetic structure of Parastrigea diovadena in the Neotropical region of Mexico.
Collapse
Affiliation(s)
- Alejandra López-Jiménez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México
| | - David Iván Hernández-Mena
- Centro de Investigación Y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Mérida, Antigua Carretera Progreso Km. 6, Cordemex, 97310, Mérida, Yucatán, México
| | - Brenda Solórzano-García
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México (ENES-Mérida), Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán, México
| | - Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Ciudad Universitaria, CP. 04510, México City, México.
| |
Collapse
|
34
|
Lebedeva DI, Chrisanfova GG, Ieshko EP, Guliaev AS, Yakovleva GA, Mendsaikhan B, Semyenova SK. Morphological and molecular differentiation of Diplostomum spp. metacercariae from brain of minnows (Phoxinus phoxinus L.) in four populations of northern Europe and East Asia. INFECTION GENETICS AND EVOLUTION 2021; 92:104911. [PMID: 33991672 DOI: 10.1016/j.meegid.2021.104911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Metacercariae of trematodes from the genus Diplostomum are major helminth pathogens of freshwater fish, infecting the eye or the brain. The taxonomy of the genus Diplostomum is complicated, and has recently been based mainly on the molecular markers. In this study, we report the results of the morphological and molecular genetic analysis of diplostomid metacercaria from the brain of the minnow Phoxinus phoxinus from three populations in Fennoscandia (Northern Europe) and one population in Mongolia (East Asia). We obtained the data on the polymorphism of the partial mitochondrial cox1 gene and ribosomal ITS1-5.8S-ITS2 region of these parasites. РСА-based morphological analysis revealed that the parasites in the Asian and the European groups of Diplostomum sp. were distinctly different. Metacercariae from the brain of Mongolian minnows were much larger than those from the brain of Fennoscandian minnows but had much fewer excretory granules. Considering that the two study regions were separated by a distance of about 4500 km, we also tested the genetic homogeneity of their host, the minnow, using the mitochondrial cytb gene. It was shown that Diplostomum-infected minnows from Mongolia and Fennoscandia represented two previously unknown separate phylogenetic lineages of the genus Phoxinus. Both molecular and morphological analysis demonstrated that the parasites from Fennoscandia belonged the species Diplostomum phoxini, while the parasites from Mongolia belonged to a separate species, Diplostomum sp. MТ.Each of the two studied Diplostomum spp. was associated with a specific, and previously unknown, genealogical lineage of its second intermediate host, P. phoxinus.
Collapse
Affiliation(s)
- Daria I Lebedeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia.
| | - Galina G Chrisanfova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str., 34/5, 119334 Moscow, Russia
| | - Evgeny P Ieshko
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia
| | - Andrei S Guliaev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str., 34/5, 119334 Moscow, Russia
| | - Galina A Yakovleva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia
| | - Bud Mendsaikhan
- Institute of Geography and Geoecology, Mongolian Academy of Sciences,РО Box 361, 214192 Ulaanbaatar, Mongolia
| | - Seraphima K Semyenova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str., 34/5, 119334 Moscow, Russia
| |
Collapse
|
35
|
First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971. Parasitol Res 2021; 120:2037-2046. [PMID: 33893550 DOI: 10.1007/s00436-021-07159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The first data on a whole mitochondrial genome of Haploporidae, Parasaccocoelium mugili (Digenea: Haploporata: Haploporidae) was generated using the next-generation sequencing (NGS) approach. We sequenced the complete mitochondrial DNA (mtDNA) and ribosomal operon of Parasaccocoelium mugili, intestine parasite of mullet fish. The mtDNA of P. mugili contained 14,021 bp, including 12 protein-coding genes, two ribosomal genes, 22 tRNA genes, and non-coding region. The ribosomal operon of P. mugili was 8308 bp in length, including 18S rRNA gene (1981 bp), ITS1 rDNA (955 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (268 bp), 28S rRNA gene (4180 bp), and ETS (767 bp). We used the mtDNA protein-coding regions to make phylogenetic reconstructions of Haploporidae. Additionally, we performed the sequence cluster analysis based on codon usage bias of most of currently available mitochondrial genome data for trematodes. The observed gene arrangement in mtDNA sequence of P. mugili is identical to those of Plagiorchis maculosus (Rudolphi, 1802). Results of maximum likelihood (ML) phylogenetic analysis showed that P. mugili was closely related to Paragonimus species from the suborder Xiphidiata. The results of sequence cluster analysis based on codon usage bias showed that P. mugili has the highest similarity with Plagiorchis maculosus (Xiphidiata). Our results do not contradict to proposing a new suborder for Haploporoidea-Haploporata. On the basis of obtained results, the relationship between mitochondrial protein-coding gene rearrangements and synonymous nucleotide substitutions in mitochondrial genomes has been suggested.
Collapse
|
36
|
Vermaak A, Smit NJ, Kudlai O. Molecular and morphological characterisation of the metacercariae of two species of Cardiocephaloides (Digenea: Strigeidae) infecting endemic South African klipfish (Perciformes: Clinidae). Folia Parasitol (Praha) 2021; 68. [PMID: 33847601 DOI: 10.14411/fp.2021.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022]
Abstract
South African clinids are a major component of the temperate intertidal regions that are also known to participate in life cycles and transmission of several groups of parasites. However, the knowledge of trematode diversity of these fishes is incomplete. In this study, two species of Clinus Cuvier, the super klipfish Clinus superciliosus (Linnaeus) and the bluntnose klipfish Clinus cottoides Valenciennes, were collected from six localities along the South African coast and examined for the presence of trematodes. Metacercariae of Cardiocephaloides Sudarikov, 1959 were found in the eye vitreous humour and brain of C. superciliosus and in the eye vitreous humour of C. cottoides. Detailed analyses integrating morphological and molecular sequence data (28S rDNA, ITS2 rDNA-region, and COI mtDNA) revealed that these belong to two species, Cardiocephaloides physalis (Lutz, 1926) and an unknown species of Cardiocephaloides. This study provides the first report of clinid fishes serving as intermediate hosts for trematodes, reveals that the diversity of Cardiocephaloides in South Africa is higher than previously recorded, and highlights the need for further research to elucidate the life cycles of these trematode species. The broad geographical distribution of Cardiocephaloides spp. was confirmed in the present study based on molecular sequence data. The host-parasite interactions between clinid fishes and metacercariae of Cardiocephaloides are yet to be explored.
Collapse
Affiliation(s)
- Anja Vermaak
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Olena Kudlai
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.,Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
37
|
Nakao M, Sasaki M. Trematode diversity in freshwater snails from a stopover point for migratory waterfowls in Hokkaido, Japan: An assessment by molecular phylogenetic and population genetic analyses. Parasitol Int 2021; 83:102329. [PMID: 33753234 DOI: 10.1016/j.parint.2021.102329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
The cryptic diversity of trematodes was evaluated in the Nagayama-Shinkawa River, an artificial canal of the Ishikari River System of Hokkaido, Japan. Numerous migratory waterfowls use the canal as a stopover point in every spring season. The lymnaeid snail, Radix auricularia, and the semisulcospirid snail, Semisulcospira libertina, colonize the static and flowing water areas, respectively. The trematode fauna of the two snails was assessed by molecular phylogenetic and population genetic analyses. Each of distinctive clades in mitochondrial DNA trees was arbitrarily set as a species. In total, 14 species of the families Diplostomidae, Echinostomatidae, Notocotylidae, Plagiorchiidae, and Strigeidae occurred in R. auricularia, wherease S. libertina harbored 10 species of the families Echinochasmidae, Heterophyidae, Notocotylidae, and Lecithodendridae and Cercaria creta, an unclassified species whose adult stage is still unknown. The species diversity of the larval trematodes could be recognized as a "hot spot", suggesting that the seasonal visit of waterfowls is very important to spread trematodes and to keep their diversity. A high intraspecific genetic diversity was observed in the echinostomatid, notocotylid, echinochasmid, and heterophyid species, whose definitive hosts include birds. It seems likely that each of the parasite populations is always disturbed by repeated visits of waterfowls.
Collapse
Affiliation(s)
- Minoru Nakao
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.
| | - Mizuki Sasaki
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
38
|
Locke SA, Drago FB, López-Hernández D, Chibwana FD, Núñez V, Van Dam A, Achinelly MF, Johnson PTJ, de Assis JCA, de Melo AL, Pinto HA. Intercontinental distributions, phylogenetic position and life cycles of species of Apharyngostrigea (Digenea, Diplostomoidea) illuminated with morphological, experimental, molecular and genomic data. Int J Parasitol 2021; 51:667-683. [PMID: 33716019 DOI: 10.1016/j.ijpara.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
When subjected to molecular study, species of digeneans believed to be cosmopolitan are usually found to consist of complexes of species with narrower distributions. We present molecular and morphological evidence of transcontinental distributions in two species of Apharyngostrigea Ciurea, 1924, based on samples from Africa and the Americas. Sequences of cytochrome c oxidase I and, in some samples, internal transcribed spacer, revealed Apharyngostrigea pipientis (Faust, 1918) in Tanzania (first known African record), Argentina, Brazil, USA and Canada. Sequences from A. pipientis also match previously published sequences identified as Apharyngostrigea cornu (Zeder, 1800) originating in Mexico. Hosts of A. pipientis surveyed include definitive hosts from the Afrotropic, Neotropic and Nearctic, as well as first and second intermediate hosts from the Americas, including the type host and type region. In addition, metacercariae of A. pipientis were obtained from experimentally infected Poecilia reticulata, the first known record of this parasite in a non-amphibian second intermediate host. Variation in cytochrome c oxidase I haplotypes in A. pipientis is consistent with a long established, wide-ranging species with moderate genetic structure among Nearctic, Neotropic and Afrotropic regions. We attribute this to natural dispersal by birds and find no evidence of anthropogenic introductions of exotic host species. Sequences of CO1 and ITS from adult Apharyngostrigea simplex (Johnston, 1904) from Egretta thula in Argentina matched published data from cercariae from Biomphalaria straminea from Brazil and metacercariae from Cnesterodon decemmaculatus in Argentina, consistent with previous morphological and life-cycle studies reporting this parasite-originally described in Australia-in South America. Analyses of the mitochondrial genome and rDNA operon from A. pipientis support prior phylogenies based on shorter markers showing the Strigeidae Railliet, 1919 to be polyphyletic.
Collapse
Affiliation(s)
- Sean A Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez, Puerto Rico 00681-9000, USA.
| | - Fabiana B Drago
- Museo de La Plata, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Buenos Aires, Argentina
| | - Danimar López-Hernández
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fred D Chibwana
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
| | - Verónica Núñez
- Museo de La Plata, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Buenos Aires, Argentina
| | - Alex Van Dam
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez, Puerto Rico 00681-9000, USA
| | | | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122 CB334, Boulder, CO 80309, USA
| | - Jordana Costa Alves de Assis
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Lane de Melo
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hudson Alves Pinto
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
39
|
Wiroonpan P, Chontananarth T, Purivirojkul W. Cercarial trematodes in freshwater snails from Bangkok, Thailand: prevalence, morphological and molecular studies and human parasite perspective. Parasitology 2021; 148:366-383. [PMID: 33100233 PMCID: PMC11010064 DOI: 10.1017/s0031182020002073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 11/07/2022]
Abstract
We investigated the prevalence, morphological characters and molecular classifications of trematode cercariae in freshwater snails randomly collected from 59 sampling localities in Bangkok from May 2018 to March 2019. We used a crushing technique to observe the cercarial stage inside each snail body and amplified the internal transcribed spacer 2 regions of cercarial DNA using polymerase chain reaction methodology. The associated phylogenetic tree was reconstructed using Bayesian inference analyses. A total of 517 of 15 621 examined snails were infected with trematode cercariae, and the infected snails were classified into 11 species of seven families with a 3.31% overall prevalence of the infection. The Bithynia siamensis siamensis snail displayed the highest prevalence of infection (16.16%), whereas the Physella acuta snail exhibited the lowest prevalence (0.08%) of infection. Eight morphological types of cercariae were observed. The highest prevalence of infection was observed in mutabile cercaria (1.86%). Based on molecular investigations, the phylogram revealed eight cercaria types assigned to at least nine digenean trematode families, of which five belong to groups of human intestinal flukes. Although, with the exception of schistosome cercaria, trematode cercariae are not known to directly damage humans, understanding the general biology of trematode cercariae (including diversity, distribution, infection rates and host range) is important and necessary for the prevention and control of parasitic transmission that impacts aquatic cultivations, livestock farming and human health.
Collapse
Affiliation(s)
- Pichit Wiroonpan
- Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bang Khen Campus, Bangkok, 10900, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasitic Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Watchariya Purivirojkul
- Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bang Khen Campus, Bangkok, 10900, Thailand
| |
Collapse
|
40
|
Phylogenetic position of Sphincterodiplostomum Dubois, 1936 (Digenea: Diplostomoidea) with description of a second species from Pantanal, Brazil. J Helminthol 2021; 95:e6. [PMID: 33568246 DOI: 10.1017/s0022149x21000018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sphincterodiplostomum is a monotypic genus of diplostomid digeneans that parasitize fish-eating birds in the neotropics. The type species Sphincterodiplostomum musculosum has a unique, dorsal, tubular invagination in the opisthosoma with a muscular sphincter. Whereas larvae of S. musculosum are relatively commonly reported in Neotropical fish helminth surveys, adult specimens from birds are rarely collected. Prior to our study, no DNA sequence data for S. musculosum were available. Our molecular and morphological study of mature and immature adult Sphincterodiplostomum specimens from three species of birds and one species of crocodilian revealed the presence of at least two species of Sphincterodiplostomum in the neotropics. We provide the first molecular phylogeny of the Diplostomoidea that includes Sphincterodiplostomum. In addition, this is the first record of S. musculosum from caimans, along with the first record of fully mature adult S. musculosum from green kingfisher Chloroceryle americana. The new species of Sphincterodiplostomum (Sphincterodiplostomum joaopinhoi n. sp.) can be morphologically distinguished from S. musculosum based on the anterior extent of vitelline follicles, narrower prosoma, substantially smaller holdfast organ and structure of tegumental spines. Our data revealed 0.7% interspecific divergence in 28S and 10.6-11.7% divergence in cox1 sequences between the two Sphincterodiplostomum species.
Collapse
|
41
|
Suleman, Muhammad N, Khan MS, Tkach VV, Ullah H, Ehsan M, Ma J, Zhu XQ. Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasit Vectors 2021; 14:48. [PMID: 33446249 PMCID: PMC7807500 DOI: 10.1186/s13071-020-04547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Eucotylidae Cohn, 1904 (Superfamily: Microphalloidea), is a family of digeneans parasitic in kidneys of birds as adults. The group is characterized by the high level of morphological similarities among genera and unclear systematic value of morphological characters traditionally used for their differentiation. In the present study, we sequenced the complete or nearly complete mitogenomes (mt genome) of two eucotylids representing the genera Tamerlania (T. zarudnyi) and Tanaisia (Tanaisia sp.). They represent the first sequenced mt genomes of any member of the superfamily Microphalloidea. Methods A comparative mitogenomic analysis of the two newly sequenced eucotylids was conducted for the investigation of mitochondrial gene arrangement, contents and genetic distance. Phylogenetic position of the family Eucotylidae within the order Plagiorchiida was examined using nucleotide sequences of mitochondrial protein-coding genes (PCGs) plus RNAs using maximum likelihood (ML) and Bayesian inference (BI) methods. BI phylogeny based on concatenated amino acids sequences of PCGs was also conducted to determine possible effects of silent mutations. Results The complete mt genome of T. zarudnyi was 16,188 bp and the nearly complete mt genome of Tanaisia sp. was 13,953 bp in length. A long string of additional amino acids (about 123 aa) at the 5′ end of the cox1 gene in both studied eucotylid mt genomes has resulted in the cox1 gene of eucotylids being longer than in all previously sequenced digeneans. The rrnL gene was also longer than previously reported in any digenean mitogenome sequenced so far. The TΨC and DHU loops of the tRNAs varied greatly between the two eucotylids while the anticodon loop was highly conserved. Phylogenetic analyses based on mtDNA nucleotide and amino acids sequences (as a separate set) positioned eucotylids as a sister group to all remaining members of the order Plagiorchiida. Both ML and BI phylogenies revealed the paraphyletic nature of the superfamily Gorgoderoidea and the suborder Xiphidiata. Conclusions The average sequence identity, combined nucleotide diversity and Kimura-2 parameter distances between the two eucotylid mitogenomes demonstrated that atp6, nad5, nad4L and nad6 genes are better markers than the traditionally used cox1 or nad1 for the species differentiation and population-level studies of eucotylids because of their higher variability. The position of the Dicrocoeliidae and Eucotylidae outside the clade uniting other xiphidiatan trematodes strengthened the argument for the need for re-evaluation of the taxonomic content of the Xiphidiata.![]()
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Shanghai, 20041, People's Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
42
|
Pyrka E, Kanarek G, Zaleśny G, Hildebrand J. Leeches as the intermediate host for strigeid trematodes: genetic diversity and taxonomy of the genera Australapatemon Sudarikov, 1959 and Cotylurus Szidat, 1928. Parasit Vectors 2021; 14:44. [PMID: 33436032 PMCID: PMC7805170 DOI: 10.1186/s13071-020-04538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background Leeches (Hirudinida) play a significant role as intermediate hosts in the circulation of trematodes in the aquatic environment. However, species richness and the molecular diversity and phylogeny of larval stages of strigeid trematodes (tetracotyle) occurring in this group of aquatic invertebrates remain poorly understood. Here, we report our use of recently obtained sequences of several molecular markers to analyse some aspects of the ecology, taxonomy and phylogeny of the genera Australapatemon and Cotylurus, which utilise leeches as intermediate hosts. Methods From April 2017 to September 2018, 153 leeches were collected from several sampling stations in small rivers with slow-flowing waters and related drainage canals located in three regions of Poland. The distinctive forms of tetracotyle metacercariae collected from leeches supplemented with adult Strigeidae specimens sampled from a wide range of water birds were analysed using the 28S rDNA partial gene, the second internal transcribed spacer region (ITS2) region and the cytochrome c oxidase (COI) fragment. Results Among investigated leeches, metacercariae of the tetracotyle type were detected in the parenchyma and musculature of 62 specimens (prevalence 40.5%) with a mean intensity reaching 19.9 individuals. The taxonomic generic affiliation of metacercariae derived from the leeches revealed the occurrence of two strigeid genera: Australapatemon Sudarikov, 1959 and Cotylurus Szidat, 1928. Phylogenetic reconstructions based on the partial 28S rRNA gene, ITS2 region and partial COI gene confirmed the separation of the Australapatemon and Cotylurus clades. Taking currently available molecular data and our results into consideration, recently sequenced tetracotyle of Australapatemon represents most probably Au. minor; however, unclear phylogenetic relationships between Au. burti and Au. minor reduce the reliability of this conclusion. On the other hand, on the basis of the obtained sequences, supplemented with previously published data, the metacercariae of Cotylurus detected in leeches were identified as two species: C. strigeoides Dubois, 1958 and C. syrius Dubois, 1934. This is the first record of C. syrius from the intermediate host. Conclusions The results of this study suggest the separation of ecological niches and life cycles between C. cornutus (Rudolphi, 1808) and C. strigeoides/C. syrius, with potential serious evolutionary consequences for a wide range of host–parasite relationships. Moreover, phylogenetic analyses corroborated the polyphyletic character of C. syrius, the unclear status of C. cornutus and the separate position of Cotylurus raabei Bezubik, 1958 within Cotylurus. The data demonstrate the inconsistent taxonomic status of the sequenced tetracotyle of Australapatemon, resulting, in our opinion, from the limited availability of fully reliable, comparative sequences of related taxa in GenBank.![]()
Collapse
Affiliation(s)
- Ewa Pyrka
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Gerard Kanarek
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680, Gdańsk, Poland.
| | - Grzegorz Zaleśny
- Department of Systematic and Ecology of Invertebrates, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland
| | - Joanna Hildebrand
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| |
Collapse
|
43
|
Jiang X, Edwards SV, Liu L. The Multispecies Coalescent Model Outperforms Concatenation Across Diverse Phylogenomic Data Sets. Syst Biol 2021; 69:795-812. [PMID: 32011711 PMCID: PMC7302055 DOI: 10.1093/sysbio/syaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022] Open
Abstract
A statistical framework of model comparison and model validation is essential to resolving the debates over concatenation and coalescent models in phylogenomic data analysis. A set of statistical tests are here applied and developed to evaluate and compare the adequacy of substitution, concatenation, and multispecies coalescent (MSC) models across 47 phylogenomic data sets collected across tree of life. Tests for substitution models and the concatenation assumption of topologically congruent gene trees suggest that a poor fit of substitution models, rejected by 44% of loci, and concatenation models, rejected by 38% of loci, is widespread. Logistic regression shows that the proportions of GC content and informative sites are both negatively correlated with the fit of substitution models across loci. Moreover, a substantial violation of the concatenation assumption of congruent gene trees is consistently observed across six major groups (birds, mammals, fish, insects, reptiles, and others, including other invertebrates). In contrast, among those loci adequately described by a given substitution model, the proportion of loci rejecting the MSC model is 11%, significantly lower than those rejecting the substitution and concatenation models. Although conducted on reduced data sets due to computational constraints, Bayesian model validation and comparison both strongly favor the MSC over concatenation across all data sets; the concatenation assumption of congruent gene trees rarely holds for phylogenomic data sets with more than 10 loci. Thus, for large phylogenomic data sets, model comparisons are expected to consistently and more strongly favor the coalescent model over the concatenation model. We also found that loci rejecting the MSC have little effect on species tree estimation. Our study reveals the value of model validation and comparison in phylogenomic data analysis, as well as the need for further improvements of multilocus models and computational tools for phylogenetic inference. [Bayes factor; Bayesian model validation; coalescent prior; congruent gene trees; independent prior; Metazoa; posterior predictive simulation.]
Collapse
Affiliation(s)
- Xiaodong Jiang
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA.,Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| |
Collapse
|
44
|
Stumbo A, Poulin R, Ruehle B. Altered neuronal activity in the visual processing region of eye-fluke-infected fish. Parasitology 2021; 148:115-121. [PMID: 33059785 PMCID: PMC11010201 DOI: 10.1017/s0031182020001948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 11/06/2022]
Abstract
Fish, like most vertebrates, are dependent on vision to varying degrees for a variety of behaviours such as predator avoidance and foraging. Disruption of this key sensory system therefore should have some impact on the ability of fish to execute these tasks. Eye-flukes, such as Tylodelphys darbyi, often infect fish where they are known to inflict varying degrees of visual impairment. In New Zealand, T. darbyi infects the eyes of Gobiomorphus cotidianus, a freshwater fish, where it resides in the vitreous chamber between the lens and retina. Here, we investigate whether the presence of the parasite in the eye has an impact on neuronal information transfer using the c-Fos gene as a proxy for neuron activation. We hypothesized that the parasite would reduce visual information entering the eye and therefore result in lower c-Fos expression. Interestingly, however, c-Fos expression increased with T. darbyi intensity when fish were exposed to flashes of light. Our results suggest a mechanism for parasite-induced visual disruption when no obvious pathology is caused by infection. The more T. darbyi present the more visual stimuli the fish is presented with, and as such may experience difficulties in distinguishing various features of its external environment.
Collapse
Affiliation(s)
- Anthony Stumbo
- Otago Museum, 419 Great King St., Dunedin9016, New Zealand
- Department of Zoology, University of Otago, 340 Great King St., Dunedin9016, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King St., Dunedin9016, New Zealand
| | - Brandon Ruehle
- Department of Zoology, University of Otago, 340 Great King St., Dunedin9016, New Zealand
| |
Collapse
|
45
|
Landeryou T, Kett SM, Ropiquet A, Wildeboer D, Lawton SP. Characterization of the complete mitochondrial genome of Diplostomum baeri. Parasitol Int 2020; 79:102166. [DOI: 10.1016/j.parint.2020.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
|
46
|
Tkach VV, Achatz TJ, Pulis EE, Junker K, Snyder SD, Bell JA, Halajian A, de Vasconcelos Melo FT. Phylogeny and systematics of the Proterodiplostomidae Dubois, 1936 (Digenea: Diplostomoidea) reflect the complex evolutionary history of the ancient digenean group. Syst Parasitol 2020; 97:409-439. [PMID: 32813221 PMCID: PMC7434846 DOI: 10.1007/s11230-020-09928-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/12/2020] [Indexed: 11/25/2022]
Abstract
The Proterodiplostomidae Dubois, 1936 is a relatively small family of diplostomoidean digeneans parasitising the intestines of reptilian hosts associated with freshwater environments in tropical and subtropical regions. The greatest diversity of proterodiplostomids is found in crocodilians, although some parasitise snakes and turtles. According to the most recent revision, the Proterodiplostomidae included 17 genera within 5 subfamilies. Despite the complex taxonomic structure of the family, availability of testable morphology-based phylogenetic hypotheses and ancient hosts, molecular phylogenetic analyses of the group were practically lacking. Herein, we use novel DNA sequence data of the nuclear lsrRNA gene and mitochondrial cox1 gene from a broad range of proterodiplostomid taxa obtained from crocodilian, fish, and snake hosts on four continents to test the monophyly of the family and evaluate the present morphology-based classification system of the Proterodiplostomidae in comparison with the molecular phylogeny. This first detailed phylogeny for the Proterodiplostomidae challenges the current systematic framework. Combination of molecular phylogenetic data with examination of freshly collected quality specimens and re-evaluation of morphological criteria resulted in a number of systematic and nomenclatural changes along with a new phylogeny-based classification of the Proterodiplostomidae. As the result of our molecular and morphological analyses: (i) the current subfamily structure of the Proterodiplostomidae is abolished; (ii) three new genera, Paraproterodiplostomum n. g., Neocrocodilicola n. g. and Proteroduboisia n. g., are described and Pseudoneodiplostomoides Yamaguti, 1954 is restored and elevated from subgenus to genus level; (iii) two new species, Paraproterodiplostomum currani n. g., n. sp. and Archaeodiplostomum overstreeti n. sp., are described from the American alligator in Mississippi, USA. Comparison of the structure of terminal ducts of the reproductive system in all proterodiplostomid genera did not support the use of these structures for differentiation among subfamilies (or major clades) within the family, although they proved to be useful for distinguishing among genera and species. Our study includes the first report of proterodiplostomids from Australia and the first evidence of a snake acting as a paratenic host for a proterodiplostomid. A key to proterodiplostomid genera is provided. Questions of proterodiplostomid-host associations parasitic in crocodilians are discussed in connection with their historical biogeography. Our molecular phylogeny of the Proterodiplostomidae closely matches the current molecular phylogeny of crocodilians. Directions for future studies of the Proterodiplostomidae are outlined.
Collapse
Affiliation(s)
- Vasyl V Tkach
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, North Dakota, 58202, USA.
| | - Tyler J Achatz
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, North Dakota, 58202, USA
| | - Eric E Pulis
- Department of Science and Mathematics, Northern State University, Aberdeen, South Dakota, 57401, USA
| | - Kerstin Junker
- Epidemiology, Parasites and Vectors, ARC-Onderstepoort Veterinary Institute, Onderstepoort, 0110, South Africa
| | - Scott D Snyder
- College of Science and Engineering, Idaho State University, Pocatello, Idaho, USA
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, North Dakota, 58202, USA
| | - Ali Halajian
- DSI-NRF SARChI Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Francisco Tiago de Vasconcelos Melo
- Laboratory of Cell Biology and Helminthology "Prof. Dr. Reinalda Marisa Lanfredi", Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
47
|
Van Dam MH, Henderson JB, Esposito L, Trautwein M. Genomic Characterization and Curation of UCEs Improves Species Tree Reconstruction. Syst Biol 2020; 70:307-321. [PMID: 32750133 PMCID: PMC7875437 DOI: 10.1093/sysbio/syaa063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - James B Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| |
Collapse
|
48
|
Phylogenetic Relationships of Cardiocephaloides spp. (Digenea, Diplostomoidea) and the Genetic Characterization of Cardiocephaloides physalis from Magellanic Penguin, Spheniscus magellanicus, in Chile. Acta Parasitol 2020; 65:525-534. [PMID: 31919798 DOI: 10.2478/s11686-019-00162-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE Cardiocephaloides is a small genus of strigeid digeneans with an essentially cosmopolitan distribution. Most members of Cardiocephaloides are found in larid birds, however, Cardiocephaloides physalis is an exception and parasitizes penguins in some coastal regions of South America and South Africa. No prior molecular phylogenetic studies have included DNA sequence data of C. physalis. Herein, we provide molecular phylogenetic analyses of Cardiocephaloides using DNA sequences from five species of these strigeids. METHODS Adult Cardiocephaloides spp. were obtained from larid birds and penguins collected from 3 biogeographical realms (Palearctic, Nearctic and Neotropics). We have generated sequences of the complete ITS region and partial 28S gene of the nuclear ribosomal DNA, along with partial sequences of the mitochondrial CO1 gene for C. physalis, C. medioconiger and the type species of the genus, C. longicollis and used them for phylogenetic inference. RESULTS Cardiocephaloides spp. appeared as a 100% supported clade in the phylogenetic tree based on 28S sequences. The position of C. physalis varied between the phylogenetic trees based on the relatively conservative 28S gene on one hand, and variable ITS1 and COI sequences on the other. Cardiocephaloides physalis was nested within the clade of Cardiocephaloides spp. in the 28S tree and appeared as the sister group to the remaining members of the genus in the ITS1 region and COI trees. We detected 0.4-1.6% interspecific divergence in 28S, 1.9-6.9% in the ITS region and 8.7-11.8% in CO1 sequences of Cardiocephaloides spp. Our 28S sequence of C. physalis from South America and a shorter sequence from Africa available in the GenBank were identical. CONCLUSION Cardiocephaloides as represented in the currently available dataset is monophyletic with C. physalis parasitism in penguins likely resulting from a secondary host-switching event. Identical 28S sequences of C. physalis from South America and Africa cautiously confirm the broad distribution of this species, although comparison of faster mutating genes (e. g., CO1) is recommended for a better substantiated conclusion.
Collapse
|
49
|
Achatz TJ, Curran SS, Patitucci KF, Fecchio A, Tkach VV. Phylogenetic Affinities of Uvulifer Spp. (Digenea: Diplostomidae) in the Americas with Description of Two New Species from Peruvian Amazon. J Parasitol 2020. [PMID: 31580785 DOI: 10.1645/19-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Uvulifer Yamaguti, 1934, is a genus of diplostomoidean digeneans that parasitizes kingfishers worldwide. Species have a Neascus-type metacercaria that encysts in or on fish intermediate hosts, often causing black spot disease. Only 3 prior studies published DNA sequence data for Uvulifer species with only 1 including a single named species (Uvulifer spinatus López-Jiménez, Pérez-Ponce de León, & García-Varela, 2018). Herein we describe 2 new species of Uvulifer from the green-and-rufous kingfisher, Chloroceryle inda (Linnaeus), collected in Peru ( Uvulifer batesi n. sp. and Uvulifer pequenae n. sp.). Both new species are readily differentiated from their New World congeners by a combination of morphological characters including distribution of vitelline follicles and prosoma:opisthosoma length ratios. In addition, we used newly generated nuclear 28S rRNA and mitochondrial COI gene sequence data to differentiate among species and examine phylogenetic affinities of Uvulifer. This includes the 2 new species and Uvulifer ambloplitis (Hughes, 1927), as well as Uvulifer elongatus Dubois, 1988 , Uvulifer prosocotyle (Lutz, 1928), and Uvulifer weberi Dubois, 1985 , none of which have been part of prior molecular phylogenetic studies. Our data on Uvulifer revealed 0.1-2.2% interspecific divergence in 28S sequences and 9.3-15.3% in COI sequences. Our 28S phylogeny revealed at least 6 well-supported clades within the genus. In contrast, the branch topology in the COI phylogenetic tree was overall less supported, indicating that although COI sequences are a great tool for species differentiation, they should be used with caution for phylogenetic inference at higher taxonomic levels. Our 28S phylogeny did not reveal any clear patterns of host association between Uvulifer and particular species of kingfishers; however, it identified 2 well-supported clades uniting Uvulifer species from distant geographical locations and more than 1 biogeographic realm, indicating at least 2 independent dispersal events in the evolutionary history of the New World Uvulifer. Our results clearly demonstrate that the diversity of Uvulifer in the New World has been underestimated.
Collapse
Affiliation(s)
- Tyler J Achatz
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota 58202
| | - Stephen S Curran
- Division of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564
| | - Kaylyn F Patitucci
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota 58202
| | - Alan Fecchio
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060900, Brazil
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota 58202
| |
Collapse
|
50
|
Suleman, Khan MS, Tkach VV, Muhammad N, Zhang D, Zhu XQ, Ma J. Molecular phylogenetics and mitogenomics of three avian dicrocoeliids (Digenea: Dicrocoeliidae) and comparison with mammalian dicrocoeliids. Parasit Vectors 2020; 13:74. [PMID: 32054541 PMCID: PMC7020495 DOI: 10.1186/s13071-020-3940-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background The Dicrocoeliidae are digenetic trematodes mostly parasitic in the bile ducts and gall bladder of various avian and mammalian hosts. Until recently their systematics was based on morphological data only. Due to the high morphological uniformity across multiple dicrocoeliid taxa and insufficient knowledge of relative systematic value of traditionally used morphological characters, their taxonomy has always been unstable. Therefore, DNA sequence data provide a critical independent source of characters for phylogenetic inference and improvement of the system. Methods We examined the phylogenetic affinities of three avian dicrocoeliids representing the genera Brachylecithum, Brachydistomum and Lyperosomum, using partial sequences of the nuclear large ribosomal subunit (28S) RNA gene. We also sequenced the complete or nearly complete mitogenomes of these three isolates and conducted a comparative mitogenomic analysis with the previously available mitogenomes from three mammalian dicrocoeliids (from 2 different genera) and examined the phylogenetic position of the family Dicrocoeliidae within the order Plagiorchiida based on concatenated nucleotide sequences of all mitochondrial genes (except trnG and trnE). Results Combined nucleotide diversity, Kimura-2-parameter distance, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently demonstrated that cox1, cytb, nad1 and two rRNAs were the most conserved and atp6, nad5, nad3 and nad2 were the most variable genes across dicrocoeliid mitogenomes. Phylogenetic analyses based on mtDNA sequences did not support the close relatedness of the Paragonimidae and Dicrocoeliidae and suggested non-monophyly of the Gorgoderoidea as currently recognized. Conclusions Our results show that fast-evolving mitochondrial genes atp6, nad5 and nad3 would be better markers than slow-evolving genes cox1 and nad1 for species discrimination and population level studies in the Dicrocoeliidae. Furthermore, the Dicrocoeliidae being outside of the clade containing other xiphidiatan trematodes suggests a need for the re-evaluation of the taxonomic content of the Xiphidiata.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|