1
|
Pinto-Fraga J, García-Chico C, Lista S, Lacal PM, Carpenzano G, Salvati M, Santos-Lozano A, Graziani G, Ceci C. Protein kinase inhibitors as targeted therapy for glioblastoma: a meta-analysis of randomized controlled clinical trials. Pharmacol Res 2025; 212:107528. [PMID: 39637954 DOI: 10.1016/j.phrs.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor. The standard treatment for newly diagnosed GBM includes surgical resection, when feasible, followed by radiotherapy and temozolomide-based chemotherapy. Upon disease progression, the anti-vascular endothelial growth factor-A (VEGF-A) monoclonal antibody bevacizumab, can be considered. Given the limited efficacy of pharmacological treatments, particularly for the recurrent disease, several molecularly targeted interventions have been explored, such as small-molecule protein kinase inhibitors (PKIs), inhibiting tyrosine kinase growth factor receptors and downstream signaling pathways involved in GBM angiogenesis and infiltrative behavior. This meta-analysis, based on searches in PubMed and Web Of Science, evaluated 12 randomized controlled trials (RCTs) examining PKIs in patients with newly diagnosed or recurrent GBM. Pooled analysis of shared clinical outcomes - progression-free survival (PFS) and overall survival (OS) - revealed a lack of significant improvements with the use of PKIs. In newly diagnosed GBM, no significant differences were observed in median [-1.02 months, 95 % confidence interval (CI), -2.37-0.32, p = 0.14] and pooled [hazard ratio (HR) = 1.13, 95 % CI, 0.95-1.35, p = 0.17) OS, or in median (0.34 months, 95 % CI, -0.9-1.58, p = 0.60) and pooled (HR = 0.98, 95 % CI, 0.76-1.27, p = 0.89) PFS, when comparing PKI addition to standard chemo-radiotherapy versus chemo-radiotherapy alone. In recurrent GBM, three different analyses were conducted: PKI versus other treatments, PKI combined with other treatments versus those treatments alone, PKI versus PKI combined with other treatments. Also, across these analyses, no significant clinical benefits were found. For instance, when comparing PKI treatment with other treatments, median OS and PFS showed no significant difference (-0.78 months, 95 % CI, -2.12-0.55, p = 0.25; -0.23 months, 95 % CI, -0.79-0.34, p = 0.43, respectively), and similar non-significant results were observed in the pooled analyses (OS: HR = 0.89, 95 % CI, 0.59-1.32, p = 0.55; PFS: HR = 0.83, 95 % CI, 0.63-1.11, p = 0.21). Despite these overall negative findings, some data indicate improved clinical outcomes in a subset of GBM patients treated with certain PKIs (i.e., regorafenib) and encourage further research to identify PKIs with better blood-brain barrier penetration and lower risk for resistance development.
Collapse
Affiliation(s)
- José Pinto-Fraga
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Celia García-Chico
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | | | - Giuseppe Carpenzano
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain; Research Institute of the Hospital 12 de Octubre ('Imas12' [PaHerg Group]), Madrid 28041, Spain
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
2
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Behrmann CA, Ennis KN, Sarma P, Wetzel C, Clark NA, Von Handorf KM, Vallabhapurapu S, Andreani C, Reigle J, Scaglioni PP, Meller J, Czyzyk-Krzeska MF, Kendler A, Qi X, Sarkaria JN, Medvedovic M, Sengupta S, Dasgupta B, Plas DR. Coordinated Targeting of S6K1/2 and AXL Disrupts Pyrimidine Biosynthesis in PTEN-Deficient Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2215-2227. [PMID: 39087397 PMCID: PMC11342319 DOI: 10.1158/2767-9764.crc-23-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis. Genetic inactivation studies to map the signaling network indicated that both S6K1 and S6K2 transmit growth signals in PTEN-deficient GBM. Kinome-wide ATP binding analysis in inhibitor-treated cells revealed that LY-2584702 directly inhibited S6K1, and substrate phosphorylation studies showed that BMS-777607 inactivation of upstream AXL collaborated to reduce S6K2-mediated signal transduction. Thus, combination targeting of S6K1 and AXL provides a kinase-directed therapeutic approach that circumvents signal transduction redundancy to interrupt metabolic function and reduce growth of PTEN-deficient GBM. SIGNIFICANCE Therapy for glioblastoma would be advanced by incorporating molecularly targeted kinase-directed agents, similar to standard of care strategies in other tumor types. Here, we identify a kinase targeting approach to inhibit the metabolism and growth of glioblastoma.
Collapse
Affiliation(s)
- Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kelli N. Ennis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Nicholas A. Clark
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kate M. Von Handorf
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Subrahmanya Vallabhapurapu
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Cristina Andreani
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - James Reigle
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pier Paolo Scaglioni
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jarek Meller
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio.
- Department of Pharmacology and Systems Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Xiaoyang Qi
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Soma Sengupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Departments of Neurology and Neurosurgery, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Biplab Dasgupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio.
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
4
|
Rachamala HK, Madamsetty VS, Angom RS, Nakka NM, Dutta SK, Wang E, Mukhopadhyay D, Pal K. Targeting mTOR and survivin concurrently potentiates radiation therapy in renal cell carcinoma by suppressing DNA damage repair and amplifying mitotic catastrophe. J Exp Clin Cancer Res 2024; 43:159. [PMID: 38840237 PMCID: PMC11155143 DOI: 10.1186/s13046-024-03079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.
Collapse
Affiliation(s)
- Hari K Rachamala
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Vijay S Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
- PolyARNA Therapeutics, One Kendal Square, Cambridge, MA, 01329, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Naga M Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
6
|
Breen WG, Aryal MP, Cao Y, Kim MM. Integrating multi-modal imaging in radiation treatments for glioblastoma. Neuro Oncol 2024; 26:S17-S25. [PMID: 38437666 PMCID: PMC10911793 DOI: 10.1093/neuonc/noad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advances in diagnostic and treatment technology along with rapid developments in translational research may now allow the realization of precision radiotherapy. Integration of biologically informed multimodality imaging to address the spatial and temporal heterogeneity underlying treatment resistance in glioblastoma is now possible for patient care, with evidence of safety and potential benefit. Beyond their diagnostic utility, several candidate imaging biomarkers have emerged in recent early-phase clinical trials of biologically based radiotherapy, and their definitive assessment in multicenter prospective trials is already in development. In this review, the rationale for clinical implementation of candidate advanced magnetic resonance imaging and positron emission tomography imaging biomarkers to guide personalized radiotherapy, the current landscape, and future directions for integrating imaging biomarkers into radiotherapy for glioblastoma are summarized. Moving forward, response-adaptive radiotherapy using biologically informed imaging biomarkers to address emerging treatment resistance in rational combination with novel systemic therapies may ultimately permit improvements in glioblastoma outcomes and true individualization of patient care.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhava P Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Jhanwar-Uniyal M, Zeller SL, Spirollari E, Das M, Hanft SJ, Gandhi CD. Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets. Cells 2024; 13:409. [PMID: 38474373 PMCID: PMC10930964 DOI: 10.3390/cells13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
8
|
Rachamala HK, Madamsetty VS, Angom RS, Nakka NM, Kumar Dutta S, Wang E, Mukhopadhyay D, Pal K. Targeting mTOR and Survivin Concurrently Potentiates Radiation Therapy in Renal Cell Carcinoma by Suppressing DNA Damage Repair and Amplifying Mitotic Catastrophe. RESEARCH SQUARE 2023:rs.3.rs-3770403. [PMID: 38196607 PMCID: PMC10775360 DOI: 10.21203/rs.3.rs-3770403/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. Experimental Design We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. Results EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. Conclusion Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.
Collapse
|
9
|
Seaberg MH, Kazda T, Youland RS, Laack NN, Pafundi DH, Anderson SK, Sarkaria JN, Galanis E, Brown PD, Brinkmann DH. Dosimetric patterns of failure in the era of novel chemoradiotherapy in newly-diagnosed glioblastoma patients. Radiother Oncol 2023; 188:109768. [PMID: 37385378 DOI: 10.1016/j.radonc.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Patterns of failure (POF) may provide an alternative quantitative endpoint to overall survival for evaluation of novel chemoradiotherapy regimens with glioblastoma. MATERIALS AND METHODS POF of 109 newly-diagnosed glioblastoma patients per 2016 WHO classification who received conformal radiotherapy with concomitant and adjuvant temozolomide were reviewed. Seventy-five of those patients also received an investigational chemotherapy agent (everolimus, erlotinib, or vorinostat). Recurrence volumes were defined with MRI contrast enhancement. POF at protocol (POFp), initial (POFi), and RANO (POFRANO) progression timepoints were characterized by the percentage of recurrence volume within the 95% dose region. POFp, POFi, and POFRANO of each patient were categorized (central, non-central, or both). RESULTS POF of the temozolomide-only control cohort were unchanged (79% central, 12% non-central, and 9% both) across protocol, initial, and RANO progression timepoints. Unlike the temozolomide-only cohort, POF of the collective novel chemotherapy cohort appeared increasingly non-central when comparing POFi with POFp, with a non-central component increasing from 16% to 29% (p = 0.078). POF did not correlate with overall survival or time to progression. CONCLUSION POF of patients receiving a novel chemotherapy appeared to be influenced by the timepoint of analysis and were increasingly non-central at protocol progression as compared with initial recurrence, suggesting that recurrence originates from the central region. Addition of everolimus and vorinostat appeared to influence POF, despite similar survival outcomes with the temozolomide-only control group. In studies dealing with novel therapeutic agents, robust and properly-timed dosimetric POF analysis may be helpful to evaluate biologic aspects of novel agents.
Collapse
Affiliation(s)
- Maasa H Seaberg
- University of California San Francisco Medical Center, Department of Radiation Oncology, San Francisco, CA, USA
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - Nadia N Laack
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | - Deanna H Pafundi
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, USA
| | | | - Jann N Sarkaria
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | | | - Paul D Brown
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN, USA
| | | |
Collapse
|
10
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
11
|
Jhanwar-Uniyal M, Dominguez JF, Mohan AL, Tobias ME, Gandhi CD. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Adv Biol Regul 2021; 83:100854. [PMID: 34996736 DOI: 10.1016/j.jbior.2021.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Aberrant signaling of mechanistic target of rapamycin (mTOR' aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). Glioblastoma mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. There complexes are named mTORC1 and mTORC2 and downstream activated substrate execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and it's analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor "Rapalink-1" may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA.
| | - Jose F Dominguez
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
12
|
Amin AG, Jeong SW, Gillick JL, Sursal T, Murali R, Gandhi CD, Jhanwar-Uniyal M. Targeting the mTOR pathway using novel ATP‑competitive inhibitors, Torin1, Torin2 and XL388, in the treatment of glioblastoma. Int J Oncol 2021; 59:83. [PMID: 34523696 PMCID: PMC8448541 DOI: 10.3892/ijo.2021.5263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR), which functions via two multiprotein complexes termed mTORC1 and mTORC2, is positioned in the canonical phosphoinositide 3-kinase-related kinase (PI3K)/AKT (PI3K/AKT) pathways. These complexes exert their actions by regulating other important kinases, such as 40S ribosomal S6 kinases (S6K), eukaryotic translation initiation factor 4E (elF4E)-binding protein 1 (4E-BP1) and AKT, to control cell growth, proliferation, migration and survival in response to nutrients and growth factors. Glioblastoma (GB) is a devastating form of brain cancer, where the mTOR pathway is deregulated due to frequent upregulation of the Receptor Tyrosine Kinase/PI3K pathways and loss of the tumor suppressor phosphatase and tensin homologue (PTEN). Rapamycin and its analogs were less successful in clinical trials for patients with GB due to their incomplete inhibition of mTORC1 and the activation of mitogenic pathways via negative feedback loops. Here, the effects of selective ATP-competitive dual inhibitors of mTORC1 and mTORC2, Torin1, Torin2 and XL388, are reported. Torin2 exhibited concentration-dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell migration, proliferation and S-phase entry. Torin1 demonstrated similar effects, but only at higher doses. XL388 suppressed cell proliferation at a higher dose, but failed to inhibit cell migration. Treatment with Torin1 suppressed phosphorylation of proline rich AKT substrate of 40 kDa (PRAS40) at Threonine 246 (PRAS40Thr246) whereas Torin2 completely abolished it. XL388 treatment suppressed the phosphorylation of PRAS40Thr246 only at higher doses. Drug resistance analysis revealed that treatment of GB cells with XL388 rendered partial drug resistance, which was also seen to a lesser extent with rapamycin and Torin1 treatments. However, treatment with Torin2 completely eradicated the tumor cell population. These results strongly suggest that Torin2, compared to Torin1 or XL388, is more effective in suppressing mTORC1 and mTORC2, and therefore in the inhibition of the GB cell proliferation, dissemination and in overcoming resistance to therapy. These findings underscore the significance of Torin2 in the treatment of GB.
Collapse
Affiliation(s)
- Anubhav G Amin
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - Seung Won Jeong
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - John L Gillick
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - Tolga Sursal
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - Raj Murali
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| | - Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA
| |
Collapse
|
13
|
Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors enhance radiosensitivity in cancer cell lines. Mol Biol Rep 2021; 48:1-14. [PMID: 34357550 DOI: 10.1007/s11033-021-06607-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Radiotherapy is one of the most common types of cancer treatment modalities. Radiation can affect both cancer and normal tissues, which limits the whole delivered dose. It is well documented that radiation activates phosphatidylinositol 3-kinase (PI3K) and AKT signaling pathway; hence, the inhibition of this pathway enhances the radiosensitivity of tumor cells. The mammalian target of rapamycin (mTOR) is a regulator that is involved in autophagy, cell growth, proliferation, and survival. CONCLUSION The inhibition of mTOR as a downstream mediator of the PI3K/AKT signaling pathway represents a vital option for more effective cancer treatments. The combination of PI3K/AKT/mTOR inhibitors with radiation can increase the radiosensitivity of malignant cells to radiation by autophagy activation. Therefore, this review aims to discuss the impact of such inhibitors on the cell response to radiation.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Novel mTORC1 Inhibitors Kill Glioblastoma Stem Cells. Pharmaceuticals (Basel) 2020; 13:ph13120419. [PMID: 33255358 PMCID: PMC7761300 DOI: 10.3390/ph13120419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the brain, with an average post-diagnosis survival of 15 months. GBM stem cells (GBMSC) resist the standard-of-care therapy, temozolomide, and are considered a major contributor to tumor resistance. Mammalian target of rapamycin Complex 1 (mTORC1) regulates cell proliferation and has been shown by others to have reduced activity in GBMSC. We recently identified a novel chemical series of human-safe piperazine-based brain-penetrant mTORC1-specific inhibitors. We assayed the piperazine-mTOR binding strength by two biophysical measurements, biolayer interferometry and field-effect biosensing, and these confirmed each other and demonstrated a structure-activity relationship. As mTORC1 is altered in human GBMSC, and as mTORC1 inhibitors have been tested in previous GBM clinical trials, we tested the killing potency of the tightest-binding piperazines and observed that these were potent GBMSC killers. GBMSCs are resistant to the standard-of-care temozolomide therapy, but temozolomide supplemented with tight-binding piperazine meclizine and flunarizine greatly enhanced GBMSC death over temozolomide alone. Lastly, we investigated IDH1-mutated GBMSC mutations that are known to affect mitochondrial and mTORC1 metabolism, and the tight-binding meclizine provoked 'synthetic lethality' in IDH1-mutant GBMSCs. In other words, IDH1-mutated GBMSC showed greater sensitivity to the coadministration of temozolomide and meclizine. These data tend to support a novel clinical strategy for GBM, i.e., the co-administration of meclizine or flunarizine as adjuvant therapy in the treatment of GBM and IDH1-mutant GBM.
Collapse
|
15
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Shi L, Zou Z, Ding Q, Liu Q, Zhou H, Hong X, Peng G. Successful treatment of a BRAF V600E-mutant extracranial metastatic anaplastic oligoastrocytoma with vemurafenib and everolimus. Cancer Biol Ther 2020; 20:431-434. [PMID: 30462564 DOI: 10.1080/15384047.2018.1529115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Extracranial metastasis is a rare phenomenon of anaplastic oligoastrocytoma. When patients progress after comprehensive treatment, there is often no effective treatment. Rapid development of gene detection technology makes precision treatment of glioma possible. PATIENT AND METHODS A 22-year-old girl was firstly diagnosed with anaplastic oligoastrocytoma WHO grade III-IV in 2014, and progressed rapidly after chemoradiotherapy in multiple extraneural lesions in 2016. She was expected to have a short life and Next-Generation Sequencing (NGS) was applied. RESULTS Mutation of BRAF (V600E) was reported by 1st NGS and oral vemurafenib stabilized her disease for 6 months. PIK3CA was reported by 2nd NGS after her progression of vemurafenib. The oral administration of everolimus together with vemurafenib stabilized her disease for another 6 months. However, the patient died due to the rapid progression of the disease on 24 February 2018. CONCLUSION We successfully treated a BRAF V600E-mutated anaplastic oligoastrocytoma with multiple extraneural metastases with vemurafenib and everolimus. For late-staged patients who have no clear and effective treatment plan, NGS may serve as an effective option.
Collapse
Affiliation(s)
- Liangliang Shi
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| | - Zhenwei Zou
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| | - Qian Ding
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| | - Qing Liu
- b Department of oncology, Union hospital , Fujian medical university , Fuzhou , China
| | - Hongxia Zhou
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| | - Xiaohua Hong
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| | - Gang Peng
- a Cancer center, Union hospital, Tongji medical college , Huazhong university of science and technology , Wuhan , China
| |
Collapse
|
17
|
Geng Y, Xu C, Wang Y, Zhang L. Quiescin Sulfhydryl Oxidase 1 Regulates the Proliferation, Migration and Invasion of Human Glioblastoma Cells via PI3K/Akt Pathway. Onco Targets Ther 2020; 13:5721-5729. [PMID: 32606784 PMCID: PMC7306469 DOI: 10.2147/ott.s255941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Quiescin sulfhydryl oxidase 1 (QSOX1) involves in the formation of disulfide bonds and participates in the protein folding process. In recent years, accumulating evidences have shown that QSOX1 is a biomarker for tumor development and prognosis. However, the biological function of QSOX1 in glioblastoma (GBM) remains unclear. Materials and Methods QSOX1 expression in glioma and overall survival of glioma patients were analyzed through The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. shRNAs were used to decrease the expression of QSOX1 in U87 and U251 cells. Celltiter-Glo and colony formation assays were used to assess cell proliferation. Transwell and scratch assays were utilized to determine cell migration and invasion, the xenograft mouse models were established to evaluate the effect of QSOX1 knockdown in vivo. Western blot assays were used to detect the changes of E-cadherin/N-cadherin/vimentin and PI3K/Akt pathway. Results We found that QSOX1 was upregulated in glioma, especially in GBM. Upregulation of QSOX1 was correlated with poor prognosis in glioma patients. We discovered for the first time that suppression of QSOX1 expression inhibited proliferation, migration and invasion, as well as epithelial-mesenchymal transition (EMT) in GBM cell lines. In addition, phosphorylated PI3K and Akt were downregulated in the QSOX1-knockdown groups. Moreover, QSOX1 knockdown-impaired cell growth was partially rescued by Akt activator. Conclusion Our findings revealed that QSOX1 was a novel biomarker for GBM patients and QSOX1 promoted cell proliferation, migration and invasion through regulating PI3K/Akt pathway in GBM.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Disease, Beijing, People's Republic of China
| |
Collapse
|
18
|
Yan G, Wang Y, Chen J, Zheng W, Liu C, Chen S, Wang L, Luo J, Li Z. Advances in drug development for targeted therapies for glioblastoma. Med Res Rev 2020; 40:1950-1972. [DOI: 10.1002/med.21676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ge Yan
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Jincao Chen
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Wenzhong Zheng
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Changzhen Liu
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Shi Chen
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Lianrong Wang
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Jie Luo
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Zhiqiang Li
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| |
Collapse
|
19
|
Wanigasooriya K, Tyler R, Barros-Silva JD, Sinha Y, Ismail T, Beggs AD. Radiosensitising Cancer Using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or Mammalian Target of Rapamycin (mTOR) Inhibitors. Cancers (Basel) 2020; 12:E1278. [PMID: 32443649 PMCID: PMC7281073 DOI: 10.3390/cancers12051278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is routinely used as a neoadjuvant, adjuvant or palliative treatment in various cancers. There is significant variation in clinical response to radiotherapy with or without traditional chemotherapy. Patients with a good response to radiotherapy demonstrate better clinical outcomes universally across different cancers. The PI3K/AKT/mTOR pathway upregulation has been linked to radiotherapy resistance. We reviewed the current literature exploring the role of inhibiting targets along this pathway, in enhancing radiotherapy response. We identified several studies using in vitro cancer cell lines, in vivo tumour xenografts and a few Phase I/II clinical trials. Most of the current evidence in this area comes from glioblastoma multiforme, non-small cell lung cancer, head and neck cancer, colorectal cancer, and prostate cancer. The biological basis for radiosensitivity following pathway inhibition was through inhibited DNA double strand break repair, inhibited cell proliferation, enhanced apoptosis and autophagy as well as tumour microenvironment changes. Dual PI3K/mTOR inhibition consistently demonstrated radiosensitisation of all types of cancer cells. Single pathway component inhibitors and other inhibitor combinations yielded variable outcomes especially within early clinical trials. There is ample evidence from preclinical studies to suggest that direct pharmacological inhibition of the PI3K/AKT/mTOR pathway components can radiosensitise different types of cancer cells. We recommend that future in vitro and in vivo research in this field should focus on dual PI3K/mTOR inhibitors. Early clinical trials are needed to assess the feasibility and efficacy of these dual inhibitors in combination with radiotherapy in brain, lung, head and neck, breast, prostate and rectal cancer patients.
Collapse
Affiliation(s)
- Kasun Wanigasooriya
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Robert Tyler
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Joao D. Barros-Silva
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
| | - Yashashwi Sinha
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Tariq Ismail
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Andrew D. Beggs
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| |
Collapse
|
20
|
Arena C, Troiano G, Zhurakivska K, Nocini R, Lo Muzio L. Stomatitis And Everolimus: A Review Of Current Literature On 8,201 Patients. Onco Targets Ther 2019; 12:9669-9683. [PMID: 31814732 PMCID: PMC6862450 DOI: 10.2147/ott.s195121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background Oral toxicities, such as mucositis and stomatitis, are some of the most significant and unavoidable side effects associated with anticancer therapies. In past decades, research has focused on newer targeted agents with the aim of decreasing the rates of side effects on healthy cells. Unfortunately, even targeted anticancer therapies show significant rates of toxicity on healthy tissue. mTOR inhibitors display some adverse events, such as hyperglycemia, hyperlipidemia, hypophosphatemia, hematologic toxicities, and mucocutaneous eruption, but the most important are still stomatitis and skin rash, which are often dose-limiting side effects. Aim This review was performed to answer the question “What is the incidence of stomatitis in patients treated with everolimus?” Methods We conducted a systematic search on the PubMed and Medline online databases using a combination of MESH terms and free text: “everolimus” (MESH) AND “side effects” OR “toxicities” OR “adverse events”. Only studies fulfilling the following inclusion criteria were considered eligible for inclusion in this study: performed on human subjects, reporting on the use of everolimus (even if in combination with other drugs or ionizing radiation), written in the English language, and reporting the incidence of side effects. Results The analysis of literature revealed that the overall incidence of stomatitis after treatment with everolimus was 42.6% (3,493) and that of stomatitis grade G1/2 84.02% (2,935), while G3/4 was 15.97% (558). Conclusion Results of the analysis showed that the incidence of stomatitis of grade 1 or 2 is higher than grade 3 or 4. However, it must be taken into account that it is not possible to say if side effects are entirely due to everolimus therapy or combinations with other drugs.
Collapse
Affiliation(s)
- Claudia Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Riccardo Nocini
- Section of Otolaryngology, Department of Surgical Sciences, Dentistry, Gynecology, and Pediatrics, University of Verona, Verona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti, Italy
| |
Collapse
|
21
|
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD, Schmidt MH. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul 2019; 72:51-62. [PMID: 31010692 DOI: 10.1016/j.jbior.2019.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Activation of Mechanistic target of rapamycin (mTOR) signaling plays a crucial role in tumorigenesis of numerous malignancies including glioblastoma (GB). The Canonical PI3K/Akt/mTOR signaling cascade is commonly upregulated due to loss of the tumor suppressorm PTEN, a phosphatase that acts antagonistically to the kinase (PI3K) in conversion of PIP2 to PIP3. mTOR forms two multiprotein complexes, mTORC1 and mTORC2 which are composed of discrete protein binding partners to regulate cell growth, motility, and metabolism. These complexes are sensitive to distinct stimuli, as mTORC1 is sensitive to nutrients while mTORC2 is regulated via PI3K and growth factor signaling. The main function of mTORC1 is to regulate protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. On the other hand, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK and it also plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. mTORC1 and mTORC2 regulate each other, as shown by the fact that Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Allosteric inhibitors of mTOR, rapamycin and rapalogs, remained ineffective in clinical trials of Glioblastoma (GB) patients, in part due to their incomplete inhibition of mTORC1 as well as unexpected activation of mTOR via the loss of negative feedback loops. In recent years, novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore by these novel combined mTORC1/mTORC2 inhibitors reduced the proliferation and self-renewal of GB cancer stem cells. However, a search of more effective way to target mTOR has generated a third generation inhibitor of mTOR, "Rapalink", that bivalently combines rapamycin with an ATP-binding inhibitor, which effectively abolishes the mTORC1 activity. All in all, the effectiveness of inhibitors of mTOR complexes can be judged by their ability to suppress both mTORC1/mTORC2 and their ability to impede both cell proliferation and migration along with aberrant metabolic pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA.
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Raj Murali
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Meic H Schmidt
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
22
|
Arcangeli S, Jereczek-Fossa BA, Alongi F, Aristei C, Becherini C, Belgioia L, Buglione M, Caravatta L, D'Angelillo RM, Filippi AR, Fiore M, Genovesi D, Greco C, Livi L, Magrini SM, Marvaso G, Mazzola R, Meattini I, Merlotti A, Palumbo I, Pergolizzi S, Ramella S, Ricardi U, Russi E, Trovò M, Sindoni A, Valentini V, Corvò R. Combination of novel systemic agents and radiotherapy for solid tumors - Part II: An AIRO (Italian association of radiotherapy and clinical oncology) overview focused on treatment toxicity. Crit Rev Oncol Hematol 2019; 134:104-119. [PMID: 30658887 DOI: 10.1016/j.critrevonc.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Clinical development and use of novel systemic agents in combination with radiotherapy (RT) is at nowadays most advanced in the field of treatment of solid tumors. Although for many of these substances preclinical studies provide sufficient evidences on their principal capability to enhance radiation effects, the majority of them have not been investigated in even phase I clinical trials for safety in the context of RT. In clinical practice, unexpected acute and late side effects may emerge especially in combination with RT. As a matter of fact, despite combined modality treatment holds potential for enhancing the therapeutic ratio, some concerns are raised from the lack of high-quality clinical data to guide the care of patients who are treated with novel compounds in conjunction with RT. The aim of this review is to provide, from a radio-oncological point of view, an overview of the most advanced combined treatment concepts for solid tumors focusing on treatment toxicity.
Collapse
Affiliation(s)
- Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan "Bicocca", Milan, Italy.
| | | | - Filippo Alongi
- Department of Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, University of Brescia, Brescia, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, Department of Surgical and Biomedical Science, University of Perugia, Perugia General Hospital, Perugia, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Liliana Belgioia
- Department of Radiation Oncology, Ospedale Policlinico San Martino and University of Genoa, Genoa, Italy
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Luciana Caravatta
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University of Chieti, Chieti, Italy
| | | | | | - Michele Fiore
- Radiotherapy Unit, Campus Bio-Medico University, Rome, Italy
| | - Domenico Genovesi
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University of Chieti, Chieti, Italy
| | - Carlo Greco
- Radiotherapy Unit, Campus Bio-Medico University, Rome, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giulia Marvaso
- Deparment of Radiation Oncology of IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Rosario Mazzola
- Department of Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, University of Brescia, Brescia, Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Anna Merlotti
- Department of Radiation Oncology, S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Isabella Palumbo
- Radiation Oncology Section, Department of Surgical and Biomedical Science, University of Perugia, Perugia General Hospital, Perugia, Italy
| | - Stefano Pergolizzi
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Sara Ramella
- Radiotherapy Unit, Campus Bio-Medico University, Rome, Italy
| | | | - Elvio Russi
- Department of Radiation Oncology, S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Marco Trovò
- Department of Radiation Oncology, Azienda Sanitaria Universitaria Integrata of Udine, Udine, Italy
| | - Alessandro Sindoni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Valentini
- Gemelli Advanced Radiation Therapy Center, Fondazione Policlinico Universitario "A. Gemelli", Catholic University of Sacred Heart, Rome, Italy
| | - Renzo Corvò
- Department of Radiation Oncology, Ospedale Policlinico San Martino and University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Chinnaiyan P, Won M, Wen PY, Rojiani AM, Werner-Wasik M, Shih HA, Ashby LS, Michael Yu HH, Stieber VW, Malone SC, Fiveash JB, Mohile NA, Ahluwalia MS, Wendland MM, Stella PJ, Kee AY, Mehta MP. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol 2019; 20:666-673. [PMID: 29126203 DOI: 10.1093/neuonc/nox209] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background This phase II study was designed to determine the efficacy of the mammalian target of rapamycin (mTOR) inhibitor everolimus administered daily with conventional radiation therapy and chemotherapy in patients with newly diagnosed glioblastoma. Methods Patients were randomized to radiation therapy with concurrent and adjuvant temozolomide with or without daily everolimus (10 mg). The primary endpoint was progression-free survival (PFS) and the secondary endpoints were overall survival (OS) and treatment-related toxicities. Results A total of 171 patients were randomized and deemed eligible for this study. Patients randomized to receive everolimus experienced a significant increase in both grade 4 toxicities, including lymphopenia and thrombocytopenia, and treatment-related deaths. There was no significant difference in PFS between patients randomized to everolimus compared with control (median PFS time: 8.2 vs 10.2 mo, respectively; P = 0.79). OS for patients randomized to receive everolimus was inferior to that for control patients (median survival time: 16.5 vs 21.2 mo, respectively; P = 0.008). A similar trend was observed in both O6-methylguanine-DNA-methyltransferase promoter hypermethylated and unmethylated tumors. Conclusion Combining everolimus with conventional chemoradiation leads to increased treatment-related toxicities and does not improve PFS in patients with newly diagnosed glioblastoma. Although the median survival time in patients receiving everolimus was comparable to contemporary studies, it was inferior to the control in this randomized study.
Collapse
Affiliation(s)
| | - Minhee Won
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
| | - Patrick Y Wen
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Amyn M Rojiani
- Augusta University-Medical College of Georgia, Augusta, Georgia, USA
| | | | - Helen A Shih
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lynn S Ashby
- Barrow Neurological Institute accruals under Arizona Oncology Services Foundation, Phoenix, Arizona, USA
| | | | - Volker W Stieber
- Novant Health Forsyth Regional Cancer Center accruals under Southeast Cancer Control Consortium, Inc, CCOP, Goldsboro, North Carolina, USA
| | - Shawn C Malone
- The Ottawa Hospital Regional Cancer Centre, Ottawa, Ontario, Canada
| | - John B Fiveash
- University of Alabama at Birmingham Medical Center, Birmingham, Alabama, USA
| | | | | | | | - Philip J Stella
- Saint Joseph Mercy Hospital accruals under Michigan Cancer Research Consortium CCOP, Ypsilanti, Michigan, USA
| | - Andrew Y Kee
- Legacy Health Systems accruals under Mayo Clinic, Portland, Oregon, USA
| | | |
Collapse
|
24
|
Phosphorylated mTOR and YAP serve as prognostic markers and therapeutic targets in gliomas. J Transl Med 2017; 97:1354-1363. [PMID: 28759011 DOI: 10.1038/labinvest.2017.70] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most prevalent type of tumor in the brain and is comprised of grades I-IV, according to the WHO classification system. Grade IV glioma is also known as glioblastoma multiforme (GBM), the most malignant type of glioma. Glioma is characterized by a complex molecular background, and gene profiling studies have disclosed critical genetic events in human gliomas, which make targeted therapies the most promising therapeutic strategy. However, crosstalk between the targeted signaling pathways may hinder the efficacy of targeted therapies in gliomas. Therefore, it is necessary to identify effective markers to stratify patients for specific therapeutic procedures. Although several mechanisms have been proposed based on the crosstalk between PI3K/AKT/mTORC1 and Hippo/YAP pathways, the clinical significance of the two pathways has not yet been assessed in a combinatorial manner. In this study, we evaluated the two pathways in human glioma specimens and observed the positive correlation between protein levels of p-mTORS2448 and YAP in gliomas. The findings indicated that high expression of p-mTORS2448 and YAP correlated with poor overall survival of glioma patients. As p-mTORS2448 is a specific marker of mTORC1 activation, our results reveal a potential interaction between mTORC1 and YAP, which might functionally participate in the development and progression of gliomas. In support of this hypothesis, a combination of inhibitors targeting mTORC1 and YAP showed a better inhibitory effect on growth of glioma cell lines. Altogether, our work, for the first time, reveals that p-mTORS2448 and YAP can be used as markers of PI3K/AKT/mTORC1 and Hippo/YAP pathway activity to predict prognosis and are target candidates for personalized medicine.
Collapse
|
25
|
Heiss W. Positron emission tomography
imaging in gliomas: applications in clinical diagnosis, for assessment of prognosis and of treatment effects, and for detection of recurrences. Eur J Neurol 2017; 24:1255-e70. [DOI: 10.1111/ene.13385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- W.‐D. Heiss
- Max Planck Institute for Metabolism Research Cologne Germany
| |
Collapse
|
26
|
Fan QW, Nicolaides TP, Weiss WA. Inhibiting 4EBP1 in Glioblastoma. Clin Cancer Res 2017; 24:14-21. [PMID: 28696243 DOI: 10.1158/1078-0432.ccr-17-0042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma is the most common and aggressive adult brain cancer. Tumors show frequent dysregulation of the PI3K-mTOR pathway. Although a number of small molecules target the PI3K-AKT-mTOR axis, their preclinical and clinical efficacy has been limited. Reasons for treatment failure include poor penetration of agents into the brain and observations that blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Clinical trials using allosteric mTOR inhibitors (rapamycin and rapalogs) to treat patients with glioblastoma have also been unsuccessful or uncertain, in part, because rapamycin inefficiently blocks the mTORC1 target 4EBP1 and feeds back to activate PI3K-AKT signaling. Inhibitors of the mTOR kinase (TORKi) such as TAK-228/MLN0128 interact orthosterically with the ATP- and substrate-binding pocket of mTOR kinase, efficiently block 4EBP1 in vitro, and are currently being investigated in the clinical trials. Preclinical studies suggest that TORKi have poor residence times of mTOR kinase, and our data suggest that this poor pharmacology translates into disappointing efficacy in glioblastoma xenografts. RapaLink-1, a TORKi linked to rapamycin, represents a drug with improved pharmacology against 4EBP1. In this review, we clarify the importance of 4EBP1 as a biomarker for the efficacy of PI3K-AKT-mTOR inhibitors in glioblastoma. We also review mechanistic data by which RapaLink-1 blocks p-4EBP1 and discuss future clinical strategies for 4EBP1 inhibition in glioblastoma. Clin Cancer Res; 24(1); 14-21. ©2017 AACR.
Collapse
Affiliation(s)
- Qi Wen Fan
- Department of Neurology, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Theodore P Nicolaides
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, California.,Department of Neurological Surgery, University of California, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, California.,Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
27
|
Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Adv Biol Regul 2017; 64:39-48. [PMID: 28189457 DOI: 10.1016/j.jbior.2016.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK. mTORC2 plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. Both complexes control each other as Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Another significant component of mTORC2 is Sin1, which is crucial for mTORC2 complex formation and function. Allosteric inhibitors of mTOR, rapamycin and rapalogs, have essentially been ineffective in clinical trials of patients with GB due to their incomplete inhibition of mTORC1 or unexpected activation of mTOR via the loss of negative feedback loops. Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore, proliferation and self-renewal of GB cancer stem cells are effectively targetable by these novel mTORC1 and mTORC2 inhibitors. Therefore, the effectiveness of inhibitors of mTOR complexes can be estimated by their ability to suppress both mTORC1 and 2 and their ability to impede both cell proliferation and migration.
Collapse
|
28
|
Royer-Perron L, Idbaih A, Sanson M, Delattre JY, Hoang-Xuan K, Alentorn A. Precision medicine in glioblastoma therapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1241128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 2016; 12:379-92. [PMID: 27340022 DOI: 10.1038/nrneurol.2016.81] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
Collapse
|
30
|
de Melo AC, Grazziotin-Reisner R, Erlich F, Fontes Dias MS, Moralez G, Carneiro M, Ingles Garces ÁH, Guerra Alves FV, Novaes Neto B, Fuchshuber-Moraes M, Morando J, Suarez-Kurtz G, Ferreira CG. A phase I study of mTOR inhibitor everolimus in association with cisplatin and radiotherapy for the treatment of locally advanced cervix cancer: PHOENIX I. Cancer Chemother Pharmacol 2016; 78:101-9. [PMID: 27206639 DOI: 10.1007/s00280-016-3064-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cervix cancer (CC) represents the fourth most common cancer in women. Treatment involving cisplatin and radiotherapy has been the standard for locally advanced disease. Everolimus inhibits the aberrant activity of mTOR that is part of carcinogenesis in CC. Further everolimus inactivates the HPV E7 oncoprotein and inhibits its proliferation. Preclinical models have suggested that everolimus sensitizes tumoral cells and vasculature to cisplatin and radiotherapy. METHODS In a 3 + 3 design, the trial aimed to treat three dose levels of at least three patients with daily doses of everolimus (2.5, 5 and 10 mg/day), cisplatin and radiotherapy delivered in a 9-week interval in CC patients, stage IIB, IIIA or IIIB. Patients received everolimus from day -7 up to the last day of brachytherapy. Primary objective was to evaluate safety, toxicity and the maximum-tolerated dose (MTD) of everolimus in association with cisplatin and radiotherapy. Pharmacokinetic (PK) parameters and response rates were analyzed as secondary objectives. RESULTS Thirteen patients were enrolled, 6 at 2.5 mg, 3 at 5 mg and 4 at 10 mg. Four patients did not complete the planned schedule, 1 at 2.5 mg presented grade 4 acute renal failure interpreted as dose-limiting toxicity (DLT) and 3 at 10 mg: 1 with disease progression, and 2 with DLTs-1 grade 3 rash and 1 grade 4 neutropenia. PK results were characterized by dose-dependent increases in AUC and C max. CONCLUSIONS The MTD of everolimus in combination with cisplatin and radiotherapy has been defined as 5 mg/day. The data regarding safety and response rates support further studies.
Collapse
Affiliation(s)
| | | | - Felipe Erlich
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | - Carlos Gil Ferreira
- Brazilian Clinical Cancer Research Network (RNPCC) - INCA/Decit/MS, D'or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Abstract
INTRODUCTION Despite substantial improvements in standards of care, the most common aggressive pediatric and adult high-grade gliomas (HGG) carry uniformly fatal diagnoses due to unique treatment limitations, high recurrence rates and the absence of effective treatments following recurrence. Recent advancements in our understanding of the pathophysiology, genetics and epigenetics as well as mechanisms of immune surveillance during gliomagenesis have created new knowledge to design more effective and target-directed therapies to improve patient outcomes. AREAS COVERED In this review, the authors discuss the critical genetic, epigenetic and immunologic aberrations found in gliomas that appear rational and promising for therapeutic developments in the presence and future. The current state of the latest therapeutic developments including tumor-specific targeted drug therapies, metabolic targeting, epigenetic modulation and immunotherapy are summarized and suggestions for future directions are offered. Furthermore, they highlight contemporary issues related to the clinical development, such as challenges in clinical trials and toxicities. EXPERT OPINION The commitment to understanding the process of gliomagenesis has created a catalogue of aberrations that depict multiple mechanisms underlying this disease, many of which are suitable to therapeutic inhibition and are currently tested in clinical trials. Thus, future treatment endeavors will employ multiple treatment modalities that target disparate tumor characteristics personalized to the patient's individual tumor.
Collapse
Affiliation(s)
- Verena Staedtke
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Ren-Yuan Bai
- b Department of Neurosurgery , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - John Laterra
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,c Department of Oncology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,d Department of Neuroscience , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
32
|
Kelley K, Knisely J, Symons M, Ruggieri R. Radioresistance of Brain Tumors. Cancers (Basel) 2016; 8:cancers8040042. [PMID: 27043632 PMCID: PMC4846851 DOI: 10.3390/cancers8040042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation.
Collapse
Affiliation(s)
- Kevin Kelley
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Jonathan Knisely
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Marc Symons
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Rosamaria Ruggieri
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| |
Collapse
|
33
|
Kusumawidjaja G, Gan PZH, Ong WS, Teyateeti A, Dankulchai P, Tan DYH, Chua ET, Chua KLM, Tham CK, Wong FY, Chua MLK. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme. Onco Targets Ther 2016; 9:1115-22. [PMID: 27042103 PMCID: PMC4780434 DOI: 10.2147/ott.s96509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE) radiotherapy improved tumor control and survival in GBM patients. Methods We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction) and conventional doses (60 Gy), respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ) were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS) of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6), while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253). Univariate analyses of clinical and dosimetric parameters among the DE cohort demonstrated a trend of longer progression-free survival, but not OS, with incremental radiation doses to the ipsilateral SVZ (hazard ratio [HR] =0.95, 95% CI =0.90–1.00, P=0.052) and proportion of ipsilateral SVZ receiving 50 Gy (HR =0.98, 95% CI =0.97–1.00, P=0.017). Conclusion DE radiotherapy did not improve survival in patients with GBM. Incorporation of ipsilateral SVZ as a radiotherapy target volume for patients with GBM requires prospective validation.
Collapse
Affiliation(s)
| | | | - Whee Sze Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore
| | - Achiraya Teyateeti
- Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Pittaya Dankulchai
- Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | | | - Eu Tiong Chua
- Division of Radiation Oncology, National Cancer Centre, Singapore
| | | | - Chee Kian Tham
- Division of Medical Oncology, National Cancer Centre, Singapore
| | - Fuh Yong Wong
- Division of Radiation Oncology, National Cancer Centre, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre, Singapore; Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
34
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
35
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
36
|
Wernicke AG, Smith AW, Taube S, Mehta MP. Glioblastoma: Radiation treatment margins, how small is large enough? Pract Radiat Oncol 2015; 6:298-305. [PMID: 26952812 DOI: 10.1016/j.prro.2015.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
Standard treatment for glioblastoma consists of surgical resection followed by radiation therapy with concurrent and adjuvant chemotherapy. Conventional radiation clinical treatment volumes include a 2- to 3-cm margin around magnetic resonance imaging or computed tomography enhancing abnormalities in the brain as well as a margin around the T2 or fluid-attenuated inversion recovery abnormality. However, there remains significant variability with respect to whether such extensive margins are necessary. Collectively, we as authors of this manuscript also use different margins, with A.G.W. employing European Organization for Research and Treatment of Cancer recommendations of a 2- to 3-cm margin on T1 enhancement for 60 Gy and M.P.M. using Radiation Therapy Oncology Group recommendations of 2 cm on T2 signal abnormality for the initial 46 Gy and 2.5-cm margin on T1 enhancement for a 14-Gy boost. Our experiences reflect the heterogeneity of margin definition and selection for this disease and underscore an important area of further research to minimize this variability. In this article, we review studies exploring recurrence patterns and outcomes in patients treated using both conventional and more limited margins. We conclude that treating to "smaller" margins does not alter recurrence patterns nor does it result in inferior survival, but whether this is because of the inherently limited benefit of radiation therapy in the first place, or whether it is truly because microscopic tumor control at larger distances is not an issue, remains unestablished.
Collapse
Affiliation(s)
- A Gabriella Wernicke
- Stich Radiation Oncology, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, New York.
| | - Andrew W Smith
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Shoshana Taube
- Stich Radiation Oncology, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, New York
| | - Minesh P Mehta
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Clarke JL. Bevacizumab and other targeted agents in the upfront treatment of glioblastoma. Semin Radiat Oncol 2015; 24:273-8. [PMID: 25219812 DOI: 10.1016/j.semradonc.2014.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard treatment for glioblastoma, the most common primary malignant brain tumor, has been maximal safe surgical resection followed by the combination of radiation and temozolomide. Bevacizumab has shown promise in the treatment of glioblastoma; it and a number of other new, targeted agents have been tested in combination with radiation and temozolomide. Results of recent studies of such agents are discussed. Although many of these agents show promise, none as yet has established a new standard of care for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, CA; Department of Neurological Surgery, University of California, San Francisco, CA.
| |
Collapse
|
38
|
Deutsch E, Le Péchoux C, Faivre L, Rivera S, Tao Y, Pignon JP, Angokai M, Bahleda R, Deandreis D, Angevin E, Hennequin C, Besse B, Levy A, Soria JC. Phase I trial of everolimus in combination with thoracic radiotherapy in non-small-cell lung cancer. Ann Oncol 2015; 26:1223-1229. [PMID: 25701455 DOI: 10.1093/annonc/mdv105] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/12/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND This phase I study evaluated the safety and efficacy of the oral mTOR inhibitor everolimus in combination with thoracic radiotherapy followed by consolidation chemotherapy in locally advanced or oligometastatic untreated non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Everolimus dose was escalated in incremental steps [sequential cohorts of three patients until the occurrence of dose-limiting toxicity (DLT)] and administered orally weekly (weekly group: dose of 10, 20 or 50 mg) or daily (daily group: 2.5, 5 or 10 mg), 1 week before, and during radiotherapy until 3.5 weeks after the end of radiotherapy. Two cycles of chemotherapy (cisplatin-navelbine) were administrated 4.5 weeks after the end of radiotherapy. RESULTS Twenty-six patients were included in two centers, 56% had adenocarcinoma and 84% had stage III disease. In the weekly group (12 assessable patients), everolimus could be administered safely up to the maximum planned weekly dose of 50 mg; however, one patient experienced a DLT of interstitial pneumonitis at the weekly dose level of 20 mg. In the daily group (9 assessable patients): one DLT of interstitial pneumonitis with a fatal outcome was observed at the daily dose level of 2.5 mg; two other DLTs (one grade 3 esophagitis and one bilateral interstitial pneumonitis) were found at the daily dose level of 5 mg. Overall there were five patients with G3-4 interstitial pneumonitis related to treatment. Among 22 assessable patients for response, there were 9 (41%) partial response and 7 (32%) stable disease. At a median follow-up of 29 months, the 2-year overall survival and progression-free survival actuarial rates were 31% and 12%, respectively. CONCLUSION In previously untreated and unselected NSCLC patients, the recommended phase II dose of everolimus in combination with thoracic radiotherapy is 50 mg/week. Pulmonary toxicity is of concern and should be carefully monitored to establish the potential role of mTOR inhibitor with concomitant radiotherapy. EUDRACT N 2007-001698-27.
Collapse
Affiliation(s)
- E Deutsch
- Department of Radiation Oncology; Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif; Paris-Sud University, Kremlin-Bicêtre Medical University, DHU TORINO, SIRIC SOCRATES, LABEX LERMIT; INSERM 1030 Molecular Radiotherapy, Cancer research institute, Villejuif.
| | - C Le Péchoux
- Department of Radiation Oncology; Institut d'Oncologie Thoracique (IOT)
| | | | - S Rivera
- Department of Radiation Oncology; Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif
| | - Y Tao
- Department of Radiation Oncology; Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif
| | | | | | - R Bahleda
- Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif
| | | | - E Angevin
- Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif
| | - C Hennequin
- Department of Radiation Oncology, Saint Louis Hospital, Paris
| | - B Besse
- Institut d'Oncologie Thoracique (IOT); Department of Medicine, Gustave Roussy, Villejuif, France
| | - A Levy
- Department of Radiation Oncology; Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif; INSERM 1030 Molecular Radiotherapy, Cancer research institute, Villejuif; Institut d'Oncologie Thoracique (IOT)
| | - J-C Soria
- Drug Development Department (DITEP), Gustave Roussy, Paris-Sud University, Villejuif; Paris-Sud University, Kremlin-Bicêtre Medical University, DHU TORINO, SIRIC SOCRATES, LABEX LERMIT; Institut d'Oncologie Thoracique (IOT)
| |
Collapse
|
39
|
Wen PY, Omuro A, Ahluwalia MS, Fathallah-Shaykh HM, Mohile N, Lager JJ, Laird AD, Tang J, Jiang J, Egile C, Cloughesy TF. Phase I dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma. Neuro Oncol 2015; 17:1275-83. [PMID: 26019185 DOI: 10.1093/neuonc/nov083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This phase I study aimed to evaluate safety, maximum tolerated dose, pharmacokinetics, pharmacodynamics, and preliminary efficacy of voxtalisib (SAR245409, XL765), a pan-class I phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor, in combination with temozolomide (TMZ), with or without radiation therapy (RT), in patients with high-grade glioma. METHODS Patients received voxtalisib 30-90 mg once daily (q.d.) or 20-50 mg twice daily (b.i.d.), in combination with 200 mg/m(2) TMZ (n = 49), or voxtalisib 20 mg q.d. with 75 mg/m(2) TMZ and RT (n = 5). A standard 3 + 3 dose-escalation design was used to determine the maximum tolerated dose. Patients were evaluated for adverse events (AEs), plasma pharmacokinetics, pharmacodynamic effects in skin biopsies, and tumor response. RESULTS The maximum tolerated doses were 90 mg q.d. and 40 mg b.i.d. for voxtalisib in combination with TMZ. The most frequently reported treatment-related AEs were nausea (48%), fatigue (43%), thrombocytopenia (26%), and diarrhea (24%). The most frequently reported treatment-related grade ≥3 AEs were lymphopenia (13%), thrombocytopenia, and decreased platelet count (9% each). Pharmacokinetic parameters were similar to previous studies with voxtalisib monotherapy. Moderate inhibition of PI3K signaling was observed in skin biopsies. Best response was partial response in 4% of evaluable patients, with stable disease observed in 68%. CONCLUSIONS Voxtalisib in combination with TMZ with or without RT in patients with high-grade gliomas demonstrated a favorable safety profile and a moderate level of PI3K/mTOR pathway inhibition.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Antonio Omuro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Manmeet S Ahluwalia
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Hassan M Fathallah-Shaykh
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Nimish Mohile
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Joanne J Lager
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - A Douglas Laird
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Jiali Tang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Jason Jiang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Coumaran Egile
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| | - Timothy F Cloughesy
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (P.Y.W.); Memorial Sloan Kettering Cancer Center, New York, New York, USA (A.O.); Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); University of Alabama, Birmingham, Alabama, USA (H.M.F.-S.); University of Rochester Medical Center, Rochester, New York, USA (N.M.); Sanofi, Cambridge, Massachusetts, USA (J.J.L); Exelixis Inc., South San Francisco, California, USA (A.D.L.); Quintiles, Durham, North Carolina, USA (J.T.); Sanofi, Bridgewater, New Jersey, USA (J.J.); Sanofi, Vitry-sur-Seine, France (C.E.); University of California-Los Angeles, Los Angeles, California, USA (T.F.C.)
| |
Collapse
|
40
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
41
|
Oh T, Ivan ME, Sun MZ, Safaee M, Fakurnejad S, Clark AJ, Sayegh ET, Bloch O, Parsa AT. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma. Immunotherapy 2015; 6:737-53. [PMID: 25186604 DOI: 10.2217/imt.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.
Collapse
Affiliation(s)
- Taemin Oh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Feinberg School of Medicine, 676 N St Clair Street, Suite 2210, Chicago, IL 60611-2911, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin F, de Gooijer MC, Hanekamp D, Brandsma D, Beijnen JH, van Tellingen O. Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. CNS Oncol 2015; 2:271-88. [PMID: 25054467 DOI: 10.2217/cns.13.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-grade gliomas are the most common type of primary brain tumor and are among the most lethal types of human cancer. Most patients with a high-grade glioma have glioblastoma multiforme (GBM), the most malignant glioma subtype that is associated with a very aggressive disease course and short overall survival. Standard treatment of newly diagnosed GBM involves surgery followed by chemoradiation with temozolomide. However, despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Although different types of GBMs are indistinguishable by histopathology, novel molecular pathological techniques allow discrimination between the four main GBM subtypes. Targeting the aberrations in the molecular pathways underlying these subtypes is a promising strategy to improve therapy. In this article, we will discuss the potential avenues and pitfalls of molecularly targeted therapies for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Lin
- Department of Clinical Chemistry/Preclinical Pharmacology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Plasma and cerebrospinal fluid pharmacokinetics of the Akt inhibitor, perifosine, in a non-human primate model. Cancer Chemother Pharmacol 2015; 75:923-8. [PMID: 25740692 DOI: 10.1007/s00280-015-2711-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/19/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE Central nervous system tumors are histologically and biologically heterogeneous. Standard treatment for malignant tumors includes surgery, radiation and chemotherapy, yet surgical resection is not always an option and chemotherapeutic agents have limited benefit. Recent investigations have focused on molecularly targeted therapies aimed at critical tumorigenic pathways. Several tumor types, including high-grade gliomas and pediatric pontine gliomas, exhibit Akt activation. Perifosine, an orally bioavailable, synthetic alkylphospholipid and potent Akt inhibitor, has demonstrated activity in some preclinical models, but absent activity in a genetically engineered mouse model of pontine glioma. We evaluated the plasma and cerebrospinal fluid pharmacokinetics of orally administered perifosine in a non-human primate model to evaluate CNS penetration. METHODS Perifosine was administered orally to three adult rhesus monkeys as a single dose of 7.0 mg/kg perifosine. Serial paired plasma and CSF samples were collected for up to 64 days. Perifosine was quantified with a validated HPLC/tandem mass spectrometry assay. Pharmacokinetic parameters were estimated using non-compartmental methods. CSF penetration was calculated from the areas under the concentration-time curves. RESULTS Peak plasma concentrations (C max) ranged from 11.7-19.3 µM, and remained >1 µM for >28 days. Time to C max (T max) was 19 h. The median (range) AUCPl was 3148 (2502-4705) µM/h, with a median (range) terminal half-life (t 1/2) of 193 (170-221) h. Plasma clearance was 494 (329-637) mL/h/kg. Peak CSF concentrations were 4.1-10.1 nM (T max 64-235 h). CSF AUCs and t 1/2 were 6358 (2266-7568) nM/h and 277 (146-350) h, respectively. Perifosine concentrations in the CSF remained over nM for >35 days. The mean CSF penetration was 0.16 %. CONCLUSION CNS penetration of perifosine after systemic administration is poor. However, levels were measurable in both plasma and CSF for an extended time (>2 months) after a single oral dose.
Collapse
|
44
|
Combined epidermal growth factor receptor and Beclin1 autophagic protein expression analysis identifies different clinical presentations, responses to chemo- and radiotherapy, and prognosis in glioblastoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:208076. [PMID: 25821789 PMCID: PMC4363549 DOI: 10.1155/2015/208076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/01/2014] [Indexed: 01/07/2023]
Abstract
Dysregulated EGFR in glioblastoma may inactivate the key autophagy protein Beclin1. Each of high EGFR and low Beclin1 protein expression, independently, has been associated with tumor progression and poor prognosis. High (H) compared to low (L) expression of EGFR and Beclin1 is here correlated with main clinical data in 117 patients after chemo- and radiotherapy. H-EGFR correlated with low Karnofsky performance and worse neurological performance status, higher incidence of synchronous multifocality, poor radiological evidence of response, shorter progression disease-free (PDFS), and overall survival (OS). H-Beclin1 cases showed better Karnofsky performance status, higher incidence of objective response, longer PDFS, and OS. A mutual strengthening effect emerges in correlative power of stratified L-EGFR and H-Beclin1 expression with incidence of radiological response after treatment, unifocal disease, and better prognosis, thus identifying an even longer OS group (30 months median OS compared to 18 months in L-EGFR, 15 months in H-Beclin1, and 11 months in all GBs) (P = 0.0001). Combined L-EGFR + H-Beclin1 expression may represent a biomarker in identifying relatively favorable clinical presentations and prognosis, thus envisaging possible EGFR/Beclin1-targeted therapies.
Collapse
|
45
|
Abstract
Despite decades of advancing science and clinical trials, average survival remains dismal for individuals with high-grade gliomas. Our understanding of the genetic and molecular aberrations that contribute to the aggressive nature of these tumors is continually growing, as is our ability to target such specific traits. Herein, we review the major classes of such targeted therapies, as well as the relevant clinical trial outcomes regarding their efficacy.
Collapse
Affiliation(s)
- Justin T Jordan
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, 450 Brookline Avenue, Boston, MA, 02215, USA
| | | |
Collapse
|
46
|
Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, Jaeckle KA, Flynn PJ, Ligon KL, Buckner JC, Sarkaria JN. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol 2014; 17:1261-9. [PMID: 25526733 DOI: 10.1093/neuonc/nou328] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 10/31/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) functions within the phosphatidylinositol-3 kinase (PI3K)/Akt pathway as a critical modulator of cell survival. This clinical trial evaluated the combination of the mTOR inhibitor everolimus with conventional temozolomide (TMZ)-based chemoradiotherapy. METHODS Newly diagnosed patients with glioblastoma multiforme were eligible for this single arm, phase II study. Everolimus (70 mg/wk) was started 1 week prior to radiation and TMZ, followed by adjuvant TMZ, and continued until disease progression. The primary endpoint was overall survival at 12 months, and secondary endpoints were toxicity and time to progression. Eleven patients were imaged with 3'-deoxy-3'-(18)F-fluorothymidine ((18)FLT)-PET/CT before and after the initial 2 doses of everolimus before initiating radiation/TMZ. Imaged patients with sufficient tumor samples also underwent immunohistochemical and focused exon sequencing analysis. RESULTS This study accrued 100 evaluable patients. Fourteen percent of patients had grade 4 hematologic toxicities. Twelve percent had at least one grade 4 nonhematologic toxicity, and there was one treatment-related death. Overall survival at 12 months was 64% and median time to progression was 6.4 months. Of the patients who had (18)FLT-PET data, 4/9 had a partial response after 2 doses of everolimus. Focused exon sequencing demonstrated that (18)FLT-PET responders were less likely to have alterations within the PI3K/Akt/mTOR or tuberous sclerosis complex/neurofibromatosis type 1 pathway compared with nonresponders. CONCLUSION Combining everolimus with conventional chemoradiation had moderate toxicity. (18)FLT-PET studies suggested an initial antiproliferative effect in a genetically distinct subset of tumors, but this did not translate into an appreciable survival benefit compared with historical controls treated with conventional therapy.
Collapse
Affiliation(s)
- Daniel J Ma
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Evanthia Galanis
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - S Keith Anderson
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - David Schiff
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Timothy J Kaufmann
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Patrick J Peller
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Caterina Giannini
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Paul D Brown
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Joon H Uhm
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Steven McGraw
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Kurt A Jaeckle
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Patrick J Flynn
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Keith L Ligon
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Jan C Buckner
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| | - Jann N Sarkaria
- Mayo Clinic, Rochester, Minnesota (D.J.M., E.G., T.J.K., P.J.P., C.G., P.D.B., J.H.U., J.C.B., J.N.S.); Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota (S.K.A.); University of Virginia, Charlottesville, Virginia (D.S.); MD Anderson Cancer Center, Houston, Texas (P.D.B.); Sioux Community Cancer Consortium, Sioux Falls, South Dakota (S.M.); Mayo Clinic, Jacksonville, Florida (K.A.J.); Metro-Minnesota Community Clinical Oncology Program, St. Louis Park, Minnesota (P.J.F.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts (K.L.L.)
| |
Collapse
|
47
|
Burckel H, Josset E, Denis JM, Gueulette J, Slabbert J, Noël G, Bischoff P. Combination of the mTOR inhibitor RAD001 with temozolomide and radiation effectively inhibits the growth of glioblastoma cells in culture. Oncol Rep 2014; 33:471-7. [PMID: 25371289 DOI: 10.3892/or.2014.3590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
Abstract
The present in vitro study aimed to assess the effects of combining the mTOR inhibitor RAD001 and temozolomide (TMZ) together with irradiation by either low-linear energy transfer (LET) radiation (γ-rays) or high-LET radiation (fast neutrons) on the growth and cell survival of the human glioblastoma cell line U-87. We observed a strong decrease in cell proliferation along with a concomitant increase in cell death as a function of the radiation dose. As expected, high-LET radiation was more effective and induced more sustained damage to DNA than low-LET radiation. While RAD001 in association with TMZ induced autophagic cell death, additional combination with either type of radiation did not further increase its occurrence. On the contrary, apoptosis remained at a low level in all experimental groups.
Collapse
Affiliation(s)
- Hélène Burckel
- EA 3430, University of Strasbourg, Centre Paul Strauss, Strasbourg, France
| | - Elodie Josset
- EA 3430, University of Strasbourg, Centre Paul Strauss, Strasbourg, France
| | | | | | | | - Georges Noël
- EA 3430, University of Strasbourg, Centre Paul Strauss, Strasbourg, France
| | - Pierre Bischoff
- EA 3430, University of Strasbourg, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
48
|
Palumbo S, Tini P, Toscano M, Allavena G, Angeletti F, Manai F, Miracco C, Comincini S, Pirtoli L. Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells. J Cell Physiol 2014; 229:1863-73. [PMID: 24691646 DOI: 10.1002/jcp.24640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/28/2014] [Indexed: 01/08/2023]
Abstract
Glioblastoma (GBM) remains the most aggressive and lethal brain tumor due to its molecular heterogeneity and high motility and invasion capabilities of its cells, resulting in high resistance to current standard treatments (surgery, followed by ionizing radiation combined with Temozolomide chemotherapy administration). Locus amplification, gene overexpression, and genetic mutations of epidermal growth factor receptor (EGFR) are hallmarks of GBM that can ectopically activate downstream signaling oncogenic cascades such as PI3K/Akt/mTOR pathway. Importantly, alteration of this pathway, involved also in the regulation of autophagy process, can improve radioresistance in GBM cells, thus promoting the aggressive phenotype of this tumor. In this work, the endogenous EGFR expression profile and autophagy were modulated to increase radiosensitivity behavior of human T98G and U373MG GBM cells. Our results primarily indicated that EGFR interfering induced radiosensitivity according to a decrease of the clonogenic capability of the investigated cells, and an effective reduction of the in vitro migratory features. Moreover, EGFR interfering resulted in an increase of Temozolomide (TMZ) cytotoxicity in T98G TMZ-resistant cells. In order to elucidate the involvement of the autophagy process as pro-death or pro-survival role in cells subjected to EGFR interfering, the key autophagic gene ATG7 was silenced, thereby producing a transient block of the autophagy process. This autophagy inhibition rescued clonogenic capability of irradiated and EGFR-silenced T98G cells, suggesting a pro-death autophagy contribution. To further confirm the functional interplay between EGFR and autophagy pathways, Rapamycin-mediated autophagy induction during EGFR modulation promoted further impairment of irradiated cells, in terms of clonogenic and migration capabilities. Taken together, these results might suggest a novel combined EGFR-autophagy modulation strategy, to overcome intrinsic GBM radioresistance, thus improving the efficacy of standard treatments. J. Cell. Physiol. 229: 1863-1873, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Palumbo
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The survival outcome of patients with malignant gliomas is still poor, despite advances in surgical techniques, radiation therapy and the development of novel chemotherapeutic agents. The heterogeneity of molecular alterations in signaling pathways involved in the pathogenesis of these tumors contributes significantly to their resistance to treatment. Several molecular targets for therapy have been discovered over the last several years. Therapeutic agents targeting these signaling pathways may provide more effective treatments and may improve survival. This review summarizes the important molecular therapeutic targets and the outcome of published clinical trials involving targeted therapeutic agents in glioma patients.
Collapse
|
50
|
Pachow D, Wick W, Gutmann DH, Mawrin C. The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro Oncol 2014; 17:189-99. [PMID: 25165193 DOI: 10.1093/neuonc/nou164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has become an attractive target for human cancer therapy. Hyperactivation of mTOR has been reported in both sporadic and syndromic (hereditary) brain tumors. In contrast to the large number of successful clinical trials employing mTOR inhibitors in different types of epithelial neoplasms, their use to treat intracranial neoplasms is more limited. In this review, we summarize the role of mTOR activation in brain tumor pathogenesis and growth relevant to new human brain tumor trials currently under way using mTOR inhibitors.
Collapse
Affiliation(s)
- Doreen Pachow
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany (D.P., C.M.); Department of Neurology, Washington University School of Medicine, St Louis, Missouri (D.H.G.); Department of Neuro-Oncology, Neurology Clinic & National Center for Tumor Diseases, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (W.W.)
| | - Wolfgang Wick
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany (D.P., C.M.); Department of Neurology, Washington University School of Medicine, St Louis, Missouri (D.H.G.); Department of Neuro-Oncology, Neurology Clinic & National Center for Tumor Diseases, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (W.W.)
| | - David H Gutmann
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany (D.P., C.M.); Department of Neurology, Washington University School of Medicine, St Louis, Missouri (D.H.G.); Department of Neuro-Oncology, Neurology Clinic & National Center for Tumor Diseases, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (W.W.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany (D.P., C.M.); Department of Neurology, Washington University School of Medicine, St Louis, Missouri (D.H.G.); Department of Neuro-Oncology, Neurology Clinic & National Center for Tumor Diseases, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (W.W.)
| |
Collapse
|