1
|
Choi JM, Lim SH, Liu ZP, Lee TK, Rhee JH, Yoon MS, Min JJ, Jung S. Flagellin synergistically enhances anti-tumor effect of EGFRvIII peptide in a glioblastoma-bearing mouse brain tumor model. BMC Cancer 2022; 22:986. [PMID: 36109710 PMCID: PMC9479269 DOI: 10.1186/s12885-022-10023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive type of brain tumor with heterogeneity and strong invasive ability. Treatment of GBM has not improved significantly despite the progress of immunotherapy and classical therapy. Epidermal growth factor receptor variant III (EGFRvIII), one of GBM-associated mutants, is regarded as an ideal therapeutic target in EGFRvIII-expressed GBM patients because it is a tumor-specific receptor expressed only in tumors. Flagellin B (FlaB) originated from Vibrio vulnificus, is known as a strong adjuvant that enhances innate and adaptive immunity in various vaccine models. This study investigated whether FlaB synergistically could enhance the anti-tumor effect of EGFRvIII peptide (PEGFRvIII). Methods EGFRvIII-GL261/Fluc cells were used for glioblastoma-bearing mouse brain model. Cell-bearing mice were inoculated with PBS, FlaB alone, PEGFRvIII alone, and PEGFRvIII plus FlaB. Tumor growth based on MRI and the survival rate was investigated. T cell population was examined by flow cytometry analysis. Both cleaved caspase-3 and CD8 + lymphocytes were shown by immunohistochemistry (IHC) staining. Results The PEGFRvIII plus FlaB group showed delayed tumor growth and increased survival rate when compared to other treatment groups. As evidence of apoptosis, cleaved caspase-3 expression and DNA disruption were more increased in the PEGFRvIII plus FlaB group than in other groups. In addition, the PEGFRvIII plus FlaB group showed more increased CD8 + T cells and decreased Treg cells than other treatment groups in the brain. Conclusions FlaB can enhance the anti-tumor effect of PEGFRvIII by increasing CD8 + T cell response in a mouse brain GBM model. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10023-6.
Collapse
|
2
|
Rezaei A, Shahabi G, Faezi S, Shafiee Ardestani M, Shirzad H, Azadmanesh K, Mirzajani E, Shajiei A, Mahdavi M. Adjuvant Effects of Pseudomonas aeruginosa Flagellin on the Immunological Patterns of the HIV-1 Vaccine Candidate: Vaccine Formulations Versus Different Routes of Immunization. Viral Immunol 2022; 35:150-158. [PMID: 35319970 DOI: 10.1089/vim.2021.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
New strategies to increase the immune response to HIV-1 vaccine using immunological adjuvants such as Toll-like receptor agonists are needed. In this study, HIV-1 p24-Nef and conjugated form of the vaccine candidate to type-A flagellin (FLA) were injected in the BALB/c mice in different routes. Two weeks after the last immunization, lymphocyte proliferation was measured by the BrdU method. The IL-4 and IFN-γ levels, as well as the total IgG antibody and its isotypes titer, were evaluated by the enzyme-linked immunosorbent assay method. The IFN-γ ELISPOT was also performed. Our data showed that the HIV-1 p24-Nef alone and conjugated to type-A flagellin (FLA) significantly increased lymphocyte proliferation responses as well as higher levels of cytokines and IFN-γ producing lymphocytes and the level of humoral immune responses compared with the control groups. The cell-mediated immune responses through the subcutaneous route and humoral immune responses through the intramuscular route were significantly higher in the conjugated form than in the mere vaccine candidate. In conclusion, when the FLA as an adjuvant is constructed in the HIV-1 vaccine candidate, it could effectively improve both humoral and cellular immune responses. Furthermore, modification in the vaccine formulation could change the optimal route of vaccine inoculation.
Collapse
Affiliation(s)
- Arezou Rezaei
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Shahabi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sobhan Faezi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Arezoo Shajiei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS); Tehran University of Medical Sciences, Tehran, Iran.,Recombinant Vaccine Research Center, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Allenspach K, Mochel JP. Current diagnostics for chronic enteropathies in dogs. Vet Clin Pathol 2021; 50 Suppl 1:18-28. [PMID: 34699081 DOI: 10.1111/vcp.13068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Chronic enteropathies (CEs) in dogs describe a group of idiopathic disorders characterized by chronic persistent or recurrent gastrointestinal (GI) signs. Three major subgroups of CE can be identified by their response to treatment: Food-responsive disease (FRD), antibiotic-responsive disease (ARD), and steroid-responsive disease (SRD). The clinical diagnosis of CE is made by exclusion of all other possible causes of chronic diarrhea and includes histologic assessment of intestinal biopsies. The process of diagnosing canine CE can therefore be very time-consuming and expensive, and in most cases, does not help to identify dogs that will respond to a specific treatment. The development of novel diagnostic tests for canine CE has therefore focused on the accuracy of such tests to predict treatment responses. In this article, several novel assays that have the potential to become commercially available will be discussed, such as genetic tests, perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), antibodies against transglutaminase/gliadin, antibodies against E coli OmpC/flagellin, and micro RNAs.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,SMART Translational Medicine, Iowa State University, Ames, IA, USA
| | - Jonathan P Mochel
- SMART Translational Medicine, Iowa State University, Ames, IA, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro. Res Vet Sci 2021; 136:247-258. [PMID: 33721712 DOI: 10.1016/j.rvsc.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.
Collapse
|
5
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Schmitt S, Tahk S, Lohner A, Hänel G, Maiser A, Hauke M, Patel L, Rothe M, Josenhans C, Leonhardt H, Griffioen M, Deiser K, Fenn NC, Hopfner KP, Subklewe M. Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells. Front Immunol 2020; 11:602802. [PMID: 33281829 PMCID: PMC7689061 DOI: 10.3389/fimmu.2020.602802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Conventional dendritic cell (DC) vaccine strategies, in which DCs are loaded with antigens ex vivo, suffer biological issues such as impaired DC migration capacity and laborious GMP production procedures. In a promising alternative, antigens are targeted to DC-associated endocytic receptors in vivo with antibody–antigen conjugates co-administered with toll-like receptor (TLR) agonists as adjuvants. To combine the potential advantages of in vivo targeting of DCs with those of conjugated TLR agonists, we generated a multifunctional antibody construct integrating the DC-specific delivery of viral- or tumor-associated antigens and DC activation by TLR ligation in one molecule. We validated its functionality in vitro and determined if TLR ligation might improve the efficacy of such a molecule. In proof-of-principle studies, an αCD40 antibody containing a CMV pp65-derived peptide as an antigen domain (αCD40CMV) was genetically fused to the TLR5-binding D0/D1 domain of bacterial flagellin (αCD40.FlgCMV). The analysis of surface maturation markers on immature DCs revealed that fusion of flagellin to αCD40CMV highly increased DC maturation (3.4-fold elevation of CD80 expression compared to αCD40CMV alone) by specifically interacting with TLR5. Immature DCs loaded with αCD40.FlgCMV induced significantly higher CMVNLV-specific T cell activation and proliferation compared to αCD40CMV in co-culture experiments with allogeneic and autologous T cells (1.8-fold increase in % IFN-γ/TNF-α+ CD8+ T cells and 3.9-fold increase in % CMVNLV-specific dextramer+ CD8+ T cells). More importantly, we confirmed the beneficial effects of flagellin-dependent DC stimulation using a tumor-specific neoantigen as the antigen domain. Specifically, the acute myeloid leukemia (AML)-specific mutated NPM1 (mNPM1)-derived neoantigen CLAVEEVSL was delivered to DCs in the form of αCD40mNPM1 and αCD40.FlgmNPM1 antibody constructs, making this study the first to investigate mNPM1 in a DC vaccination context. Again, αCD40.FlgmNPM1-loaded DCs more potently activated allogeneic mNPM1CLA-specific T cells compared to αCD40mNPM1. These in vitro results confirmed the functionality of our multifunctional antibody construct and demonstrated that TLR5 ligation improved the efficacy of the molecule. Future mouse studies are required to examine the T cell-activating potential of αCD40.FlgmNPM1 after targeting of dendritic cells in vivo using AML xenograft models.
Collapse
Affiliation(s)
- Saskia Schmitt
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Siret Tahk
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Alina Lohner
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Gene Center Munich, Laboratory for Translational Cancer Immunology, Ludwig Maximilians University Munich, Munich, Germany
| | - Gerulf Hänel
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Gene Center Munich, Laboratory for Translational Cancer Immunology, Ludwig Maximilians University Munich, Munich, Germany
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Munich, Germany
| | - Lubna Patel
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Munich, Germany
| | - Maurine Rothe
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Gene Center Munich, Laboratory for Translational Cancer Immunology, Ludwig Maximilians University Munich, Munich, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Munich, Germany.,German Center of Infection Research, DZIF, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Katrin Deiser
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Gene Center Munich, Laboratory for Translational Cancer Immunology, Ludwig Maximilians University Munich, Munich, Germany
| | - Nadja C Fenn
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Gene Center Munich, Laboratory for Translational Cancer Immunology, Ludwig Maximilians University Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Shanmugasundaram R, Selvaraj RK, Renukaradhya GJ. Oral Deliverable Mucoadhesive Chitosan- Salmonella Subunit Nanovaccine for Layer Chickens. Int J Nanomedicine 2020; 15:761-777. [PMID: 32099364 PMCID: PMC7006855 DOI: 10.2147/ijn.s238445] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Salmonellosis in poultry is a serious economic burden. A major concern is the public health hazard caused by consumption of Salmonella-contaminated poultry products. Currently used Salmonella vaccines are ineffective in combating poultry Salmonellosis warranting the need of a potent vaccine, especially an oral vaccine that can elicit robust local intestinal immunity. MATERIALS AND METHODS A Salmonella subunit chitosan nanoparticles (NPs)-based vaccine was prepared that contained immunogenic outer membrane proteins (OMPs) and -flagellin (F) protein (OMPs-F-CS NPs). OMPs-F-CS NPs were administered as an oral vaccine in layer chickens and the resultant humoral and cell-mediated immune responses and localization of NPs were examined using standard detection methods. RESULTS We demonstrated targeting of surface F-protein coated chitosan NPs to immune cells when delivered orally to layer chickens, the particles were localized in ileal Peyer's patches. The OMPs-F-CS NPs vaccinated layer chickens had significantly higher OMPs-specific mucosal IgA production and lymphocyte proliferation response. The candidate vaccine increased the expression of toll-like receptor (TLR)-2, TLR-4, IFN-γ, TGF-ß and IL-4 mRNA expression in chicken cecal tonsils. CONCLUSION Our study demonstrated that the chitosan-based oral Salmonella nanovaccine targets immune cells of chickens and induced antigen-specific B and T cell responses. This candidate oral Salmonella nanovaccine has the potential to mitigate Salmonellosis in poultry.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Ashley D Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA30602, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
8
|
Rapid Bladder Interleukin-10 Synthesis in Response to Uropathogenic Escherichia coli Is Part of a Defense Strategy Triggered by the Major Bacterial Flagellar Filament FliC and Contingent on TLR5. mSphere 2019; 4:4/6/e00545-19. [PMID: 31776239 PMCID: PMC6881718 DOI: 10.1128/msphere.00545-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin-10 is part of the immune response to urinary tract infection (UTI) due to E. coli, and it is important in the early control of infection in the bladder. Defining the mechanism of engagement of the immune system by the bacteria that enables the protective IL-10 response is critical to exploring how we might exploit this mechanism for new infection control strategies. In this study, we reveal part of the bacterial flagellar apparatus (FliC) is an important component that is sensed by and responsible for induction of IL-10 in the response to UPEC. We show this response occurs in a TLR5-dependent manner. Using infection prevention and control trials in mice infected with E. coli, this study also provides evidence that purified FliC might be of value in novel approaches for the treatment of UTI or in preventing infection by exploiting the FliC-triggered bladder transcriptome. Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) engages interleukin-10 (IL-10) as an early innate immune response to regulate inflammation and promote the control of bladder infection. However, the mechanism of engagement of innate immunity by UPEC that leads to elicitation of IL-10 in the bladder is unknown. Here, we identify the major UPEC flagellar filament, FliC, as a key bacterial component sensed by the bladder innate immune system responsible for the induction of IL-10 synthesis. IL-10 responses of human as well as mouse bladder epithelial cell-monocyte cocultures were triggered by flagella of three major UPEC representative strains, CFT073, UTI89, and EC958. FliC purified to homogeneity induced IL-10 in vitro and in vivo as well as other functionally related cytokines, including IL-6. The genome-wide innate immunological context of FliC-induced IL-10 in the bladder was defined using RNA sequencing that revealed a network of transcriptional and antibacterial defenses comprising 1,400 genes that were induced by FliC. Of the FliC-responsive bladder transcriptome, altered expression of il10 and 808 additional genes were dependent on Toll-like receptor 5 (TLR5), according to analysis of TLR5-deficient mice. Examination of the potential of FliC and associated innate immune signature in the bladder to boost host defense, based on prophylactic or therapeutic administration to mice, revealed significant benefits for the control of UPEC. We conclude that detection of FliC through TLR5 triggers rapid IL-10 synthesis in the bladder, and FliC represents a potential immune modulator that might offer benefit for the treatment or prevention of UPEC UTI. IMPORTANCE Interleukin-10 is part of the immune response to urinary tract infection (UTI) due to E. coli, and it is important in the early control of infection in the bladder. Defining the mechanism of engagement of the immune system by the bacteria that enables the protective IL-10 response is critical to exploring how we might exploit this mechanism for new infection control strategies. In this study, we reveal part of the bacterial flagellar apparatus (FliC) is an important component that is sensed by and responsible for induction of IL-10 in the response to UPEC. We show this response occurs in a TLR5-dependent manner. Using infection prevention and control trials in mice infected with E. coli, this study also provides evidence that purified FliC might be of value in novel approaches for the treatment of UTI or in preventing infection by exploiting the FliC-triggered bladder transcriptome.
Collapse
|
9
|
Xu M, Xie Y, Tan M, Zheng K, Xiao Y, Jiang C, Zhao F, Zeng T, Wu Y. The N-terminal D1 domain of Treponema pallidum flagellin binding to TLR5 is required but not sufficient in activation of TLR5. J Cell Mol Med 2019; 23:7490-7504. [PMID: 31493340 PMCID: PMC6815820 DOI: 10.1111/jcmm.14617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Syphilis is a chronic bacterial infection caused by Treponema pallidum (T pallidum) and the pathogenesis that T pallidum infection induces immunopathological damages in skin and other tissues remains unclear. We have previously reported that recombinant flagellins of T pallidum can elicit IL‐6 and IL‐8 transcriptions via TLR5 pathway. To identify the domains which induced the pro‐inflammatory activity and the importance of the interactions between TLR5 and domains, homology‐based modelling and comparative structural analyses revealed that Tpflagellins can combine with TLR5 directly. Deletion mutations showed that the ND1 domain binding to TLR5 is required but not sufficient in TLR5 activation. Moreover, site‐directed mutagenesis analysis indicated that the arginine residue (Tpflagellins R89) of the ND1 domain and its adjacent residues (Tpflagellins L93 and E113) constitute a hot spot that elicits IL‐6, IL‐8 transcriptions and TLR5 activation, and affects the binding of Tpflagellins to TLR5. Taken together, these results give insight into the pathogenesis of T pallidum and may contribute to the future design of Tpflagellins‐based therapeutics and syphilis vaccine.
Collapse
Affiliation(s)
- Man Xu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yafeng Xie
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Manyi Tan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Kang Zheng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feijun Zhao
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Xu Y, Cheng Y, Baylink DJ, Wasnik S, Goel G, Huang M, Cao H, Qin X, Lau KHW, Chan C, Koch A, Pham LH, Zhang J, Li CH, Wang X, Berumen EC, Smith J, Tang X. In Vivo Generation of Gut-Homing Regulatory T Cells for the Suppression of Colitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:3447-3457. [PMID: 31053627 PMCID: PMC10234421 DOI: 10.4049/jimmunol.1800018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Current therapies for gut inflammation have not reached the desired specificity and are attended by unintended immune suppression. This study aimed to provide evidence for supporting a hypothesis that direct in vivo augmentation of the induction of gut-homing regulatory T (Treg) cells is a strategy of expected specificity for the treatment of chronic intestinal inflammation (e.g., inflammatory bowel disease). We showed that dendritic cells (DCs), engineered to de novo produce high concentrations of both 1,25-dihydroxyvitamin D, the active vitamin D metabolite, and retinoic acid, an active vitamin A metabolite, augmented the induction of T cells that express both the regulatory molecule Foxp3 and the gut-homing receptor CCR9 in vitro and in vivo. In vivo, the newly generated Ag-specific Foxp3+ T cells homed to intestines. Additionally, transfer of such engineered DCs robustly suppressed ongoing experimental colitis. Moreover, CD4+ T cells from spleens of the mice transferred with the engineered DCs suppressed experimental colitis in syngeneic hosts. The data suggest that the engineered DCs enhance regulatory function in CD4+ T cell population in peripheral lymphoid tissues. Finally, we showed that colitis suppression following in vivo transfer of the engineered DCs was significantly reduced when Foxp3+ Treg cells were depleted. The data indicate that maximal colitis suppression mediated by the engineered DCs requires Treg cells. Collectively, our data support that DCs de novo overproducing both 1,25-dihydroxyvitamin D and retinoic acid are a promising novel therapy for chronic intestinal inflammation.
Collapse
Affiliation(s)
- Yi Xu
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Department of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354
| | - Yanmei Cheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Gastroenterology Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Gati Goel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Mei Huang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huynh Cao
- Department of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354
| | - Xuezhong Qin
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357
| | - Kin-Hing William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357
| | - Christian Chan
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Adam Koch
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Linh H Pham
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Jintao Zhang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan 450052, China
| | - Chih-Huang Li
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Department of Emergency Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Xiaohua Wang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Jinan Infectious Disease Hospital, Shandong University, Shandong 250014, China; and
| | - Edmundo Carreon Berumen
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - James Smith
- X Cell Laboratories Inc., Redlands, CA 92373
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354;
| |
Collapse
|
11
|
Badr MT, Häcker G. Gene expression profiling meta-analysis reveals novel gene signatures and pathways shared between tuberculosis and rheumatoid arthritis. PLoS One 2019; 14:e0213470. [PMID: 30845171 PMCID: PMC6405138 DOI: 10.1371/journal.pone.0213470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is among the leading causes of death by infectious diseases. An epidemiological association between Mycobacterium tuberculosis infection and autoimmune diseases like rheumatoid arthritis (RA) has been reported but it remains unclear if there is a causal relationship, and if so, which molecular pathways and regulatory mechanisms contribute to it. Here we used a computational biology approach by global gene expression meta-analysis to identify candidate genes and pathways that may link TB and RA. Data were collected from public expression databases such as NCBI GEO. Studies were selected that analyzed mRNA-expression in whole blood or blood cell populations in human case control studies at comparable conditions. Six TB and RA datasets (41 active TB patients, 33 RA patients, and 67 healthy controls) were included in the downstream analysis. This approach allowed the identification of deregulated genes that had not been identified in the single analysis of TB or RA patients and that were co-regulated in TB and RA patients compared to healthy subjects. The genes encoding TLR5, TNFSF10/TRAIL, PPP1R16B/TIMAP, SIAH1, PIK3IP1, and IL17RA were among the genes that were most significantly deregulated in TB and RA. Pathway enrichment analysis revealed 'T cell receptor signaling pathway', 'Toll-like receptor signaling pathway,' and 'virus defense related pathways' among the pathways most strongly associated with both diseases. The identification of a common gene signature and pathways substantiates the observation of an epidemiological association of TB and RA and provides clues on the mechanistic basis of this association. Newly identified genes may be a basis for future functional and epidemiological studies.
Collapse
Affiliation(s)
- M. T. Badr
- Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - G. Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
CECHIM GIOVANA, CHIES JOSÉA. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. ACTA ACUST UNITED AC 2019. [DOI: 10.1590/0001-3765201920190310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Gourapura SR, Shanmugasundaram R, Senapati S, Narasimhan B, Selvaraj RK, Renukaradhya GJ. Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. Int J Nanomedicine 2018; 13:8195-8215. [PMID: 30555234 PMCID: PMC6280892 DOI: 10.2147/ijn.s185588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Salmonellosis is a severe economic threat in poultry and a public health concern. Currently available vaccines are ineffective, and thus, developing effective oral Salmonella vaccine is warranted. Especially, a potent oral vaccine such as the mucoadhesive polyanhydride nanoparticle (PNP) protects the vaccine cargo and delivers to intestinal immune sites to elicit robust mucosal immunity and mitigate Salmonella colonization and shedding. MATERIALS AND METHODS We designed a Salmonella subunit vaccine using PNP containing immunogenic Salmonella outer membrane proteins (OMPs) and flagellar (F) protein-entrapped and surface F-protein-coated PNPs (OMPs-F-PNPs) using a solvent displacement method. Using high-throughput techniques, we characterized the OMPs-F-PNPs physicochemical properties and analyzed its efficacy in layer birds vaccinated orally. RESULTS The candidate vaccine was resistant in acidic microenvironment and had ideal physicochemical properties for oral delivery in terms of particle size, charge, morphology, biocompatibility, and pH stability. In vitro, in vivo, and ex vivo studies showed that F-protein surface-anchored nanoparticles were better targeted to chicken immune cells in peripheral blood and splenocytes and intestinal Peyer's patch sites. In layer chickens inoculated orally with OMPs-F-PNPs, substantially higher OMPs-specific IgG response and secretion of Th1 cytokine IFN-γ in the serum, enhanced CD8+/CD4+ cell ratio in spleen, and increased OMPs-specific lymphocyte proliferation were observed. OMPs-F-PNPs vaccination also upregulated the expression of toll-like receptor (TLR)-2 and -4, TGF-β, and IL-4 cytokines' genes in chicken cecal tonsils (lymphoid tissues). Importantly, OMPs-F-PNPs vaccine cleared Salmonella cecal colonization in 33% of vaccinated birds. CONCLUSION This pilot in vivo study demonstrated the targeted delivery of OMPs-F-PNPs to ileum mucosal immune sites of chickens and induced specific immune response to mitigate Salmonella colonization in intestines.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Ashley D Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Suren R Gourapura
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA,
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| |
Collapse
|
14
|
Verma SK, Gupta A, Batra L, Tuteja U. Escherichia coli expressed flagellin C (FliC) of Salmonella Typhi improved the protective efficacy of YopE against plague infection. Vaccine 2018; 37:19-24. [PMID: 30497835 DOI: 10.1016/j.vaccine.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
In the current antibiotic resistance scenario, vaccines may provide best defense against lethal bacterial diseases. So far, there is no idealvaccine available against plague. Despite providing complete protection in small animal models, F1/LcrV based vaccine failed to provide ideal protection in non human primates. Here, we cloned, expressed and purified YopE of Yersinia pestis and flagellin C (FliC) of Salmonella Typhi. However the best possible protection needs the significant induction of IFN-γ and TNF-α. To determine the protective potential of the recombinant YopE alone or in formulation with FliC, Balb/C mice were immunized subcutaneously. The formulations were prepared with alum, a human compatible adjuvant. In our studies, the combination of YopE + FliC induced significantly strong humoral and cellular immune responses. A combination of YopE + FliC provided 83% protection whereas YopE alone provided only 50% against 100LD50 of Y. pestis in a mouse model.
Collapse
Affiliation(s)
- Shailendra K Verma
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Ankit Gupta
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
15
|
Strzępa A, Lobo FM, Majewska-Szczepanik M, Szczepanik M. Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int Immunopharmacol 2018; 65:328-341. [PMID: 30359934 DOI: 10.1016/j.intimp.2018.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023]
Abstract
The newborn infant emerges from an almost sterile environment into a world of bacteria. Bacteria colonize the infant's skin, lungs, and, of most importance, the gut. The process of bacterial colonization is coordinated, and each body niche acquires a unique composition of bacteria. In the gut, most bacteria belong to the Firmicutes and Bacteroidetes phyla, while Actinobacteria and Proteobacteria are far less abundant. Some of these bacteria possess strong immunoregulatory properties. Bacterial colonization is essential to skew the newborn's immune response away from the allergy-favoring Type-2 response towards a Type-1 immune response, which is essential for pathogen elimination. Imbalance between Type 1 and Type 2 responses, however, can promote autoimmunity. In addition, the microbiota shapes immune responses in adults. Autoimmune and allergic diseases are commonly associated with an altered composition of resident bacteria, which is known as dysbiosis. Perhaps the most common cause of disruption and alteration of the bacterial colonization of newborns is the use of antibiotics. It is not known whether the dysbiosis precedes or is the consequence of allergic and autoimmune disorders, and whether antibiotics can be a trigger for these disorders, depending on the type of antibiotic used and the maturity of immune system. In this review, we discuss the development of the microbiota in different body niches and their immunomodulatory potential. We evaluate the impact of antibiotics, both in mice and in humans, on microbial communities and how that may impact the development and manifestation of diseases through all stages of life: the prenatal period, childhood, and adulthood.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland
| | - Francis M Lobo
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland.
| |
Collapse
|
16
|
Virus-like particles presenting flagellin exhibit unique adjuvant effects on eliciting T helper type 1 humoral and cellular immune responses to poor immunogenic influenza virus M2e protein vaccine. Virology 2018; 524:172-181. [PMID: 30199754 DOI: 10.1016/j.virol.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Abstract
Current licensed adjuvants including aluminum hydroxide (alum) bias immune responses toward T helper type 2 (Th2) immune responses. We tested whether virus-like particles presenting flagellin (Flag VLP) exhibit adjuvant effects on eliciting Th1 type immune responses and improving the efficacy of poor immunogenic tandem repeat M2e (M2e5x) protein vaccine against influenza virus. Co-immunization of mice with Flag VLP and M2e5x protein vaccine induced significantly higher levels of IgG2a isotype (Th1) antibodies in sera and mucosal sites, effector CD4+ T cells secreting IFN-γ and granzyme B, and more effective lung viral clearance and protection compared to alum adjuvant. Flag VLP stimulated primary macrophages and dendritic cells to secrete inflammatory cytokines, which is partially dependent on the Toll-like receptor 5. This study provides insight into developing effective vaccine adjuvants.
Collapse
|
17
|
Antonialli R, Sulczewski FB, Amorim KNDS, Almeida BDS, Ferreira NS, Yamamoto MM, Soares IS, Ferreira LCDS, Rosa DS, Boscardin SB. CpG Oligodeoxinucleotides and Flagellin Modulate the Immune Response to Antigens Targeted to CD8α + and CD8α - Conventional Dendritic Cell Subsets. Front Immunol 2017; 8:1727. [PMID: 29255470 PMCID: PMC5723008 DOI: 10.3389/fimmu.2017.01727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses. Normally, the hybrid mAbs are administered with adjuvants that induce DC maturation. In this work, we targeted an antigen to the CD8α+ or the CD8α− DC subsets in the presence of CpG oligodeoxinucleotides (ODN) or bacterial flagellin, using hybrid αDEC205 or αDCIR2 mAbs, respectively. We also accessed the role of toll-like receptors (TLRs) 5 and 9 signaling in the induction of specific humoral and cellular immune responses. Wild-type and TLR5 or TLR9 knockout mice were immunized with two doses of the hybrid αDEC205 or αDCIR2 mAbs, as well as with an isotype control, together with CpG ODN 1826 or flagellin. A chimeric antigen containing the Plasmodium vivax 19 kDa portion of the merozoite surface protein (MSP119) linked to the Pan-allelic DR epitope was fused to each mAb. Specific CD4+ T cell proliferation, cytokine, and antibody production were analyzed. We found that CpG ODN 1826 or flagellin were able to induce CD4+ T cell proliferation, CD4+ T cells producing pro-inflammatory cytokines, and specific antibodies when the antigen was targeted to the CD8α+ DC subset. On the other hand, antigen targeting to CD8α− DC subset promoted specific antibody responses and proliferation, but no detectable pro-inflammatory CD4+ T cell responses. Also, specific antibody responses after antigen targeting to CD8α+ or CD8α− DCs were reduced in the absence of TLR9 or TLR5 signaling, while CD4+ T cell proliferation was mainly affected after antigen targeting to CD8α+ DCs and in the absence of TLR9 signaling. These results extend our understanding of the modulation of specific immune responses induced by antigen targeting to DCs in the presence of different adjuvants. Such knowledge may be useful for the optimization of DC-based vaccines.
Collapse
Affiliation(s)
- Renan Antonialli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene Silva Soares
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
18
|
Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 2017; 49:e373. [PMID: 28860663 PMCID: PMC5628280 DOI: 10.1038/emm.2017.172] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023] Open
Abstract
Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests.
Collapse
|
19
|
Rostami H, Ebtekar M, Ardestani MS, Yazdi MH, Mahdavi M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol Lett 2017; 187:19-26. [PMID: 28479111 DOI: 10.1016/j.imlet.2017.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
Vaccines currently available for AIDS show poor efficiency, demonstrating the need for new strategies to increase their immunogenicity. In this study, the HIV-1P24-Nef peptide was used as a model vaccine, followed by utilization of a novel strategy to increase its immunogenicity. There is a growing interest in using TLR agonists for vaccine formulations. Such molecules bind to their receptors on immune cells, especially the cell surface of antigen presenting cells, thereby activating these cells and inflammatory responses. In the present study, FLiC (flagellin molecule sequence from Pseudomonas aeruginosa) was used as a TLR5 agonist. In addition, PLGA nanoparticles were used as a transmitter system to enhance vaccine efficiency and its effective transfer to immune systems. In light of this, the P24-Nef peptide was conjugated to FLiC through chemical reactions. The HIV-1P24-Nef/FLiC conjugate was constructed as a nano-vaccine using PLGA particles. Subsequently, mice were immunized intradermally three times with three-week intervals with HIV-p24-Nef/FLiC/PLGA, HIV-p24-Nef/PLGA, FLiC/PLGA, PLGA, and PBS in two doses (20 and 5μg). Three weeks after the last booster injection, cell proliferation was assessed using the Brdu/ELISA assay, and cytotoxicity was evaluated by CFSE and splenocyte cytokine secretion (IL-4 and IFN-γ); in addition, IgG1 and IgG2a antibody isotype titers were determined using a commercial ELISA kit. Our results showed that Co-utilization of TLR5 and nano-particles not only improves vaccine immunogenicity but also decreases the immunogenic dose of vaccine candidate required. We showed that the immune system was effectively stimulated via the nano-vaccination strategy using the TLR5 agonists. The effect of this strategy showed variations in different parameters of the immune system; in this regard, cellular immune responses had a higher stimulation level, compared with humoral immune responses.
Collapse
Affiliation(s)
- Hajar Rostami
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Evidence Based Medicine Group, Pharmaceutical Biotechnology Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Kitzmüller C, Kalser J, Mutschlechner S, Hauser M, Zlabinger GJ, Ferreira F, Bohle B. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity. J Allergy Clin Immunol 2017; 141:293-299.e6. [PMID: 28456624 DOI: 10.1016/j.jaci.2017.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. OBJECTIVE We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. METHODS A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. RESULTS Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. CONCLUSION Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics.
Collapse
Affiliation(s)
- Claudia Kitzmüller
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Julia Kalser
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Mutschlechner
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
22
|
Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis. Proc Natl Acad Sci U S A 2016; 113:E874-83. [PMID: 26831100 DOI: 10.1073/pnas.1521359113] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of an anticancer innate immune response is highly desirable because of its inherent ability to generate an adaptive antitumor T-cell response. However, insufficient safety of innate immune modulators limits clinical use to topical applications. Toll-like receptor 5 (TLR5) agonists are favorably positioned as potential systemic immunotherapeutic agents because of unusual tissue specificity of expression, uniquely safe profile of induced cytokines, and antitumor efficacy demonstrated in a number of animal models. Here, we decipher the molecular and cellular events underlying the metastasis suppressive activity of entolimod, a clinical stage TLR5 agonist that activates NF-κB-, AP-1-, and STAT3-driven immunomodulatory signaling pathways specifically within the liver. Used as a single agent in murine colon and mammary metastatic cancer models, entolimod rapidly induces CXCL9 and -10 that support homing of blood-borne CXCR3-expressing NK cells to the liver predominantly through an IFN-γ signaling independent mechanism. NK cell-dependent activation of dendritic cells is followed by stimulation of a CD8(+) T-cell response, which exert both antimetastatic effect of entolimod and establishment of tumor-specific and durable immune memory. These results define systemically administered TLR5 agonists as organ-specific immunoadjuvants, enabling efficient antitumor vaccination that does not depend on identification of tumor-specific antigens.
Collapse
|
23
|
Delavari S, Sohrabi M, Ardestani MS, Faezi S, Tebianian M, Taghizadeh M, Shajiei A, Hosseini SY, Moghaddampour M, Mahdavi M. Pseudomonas aeruginosa flagellin as an adjuvant: superiority of a conjugated form of flagellin versus a mixture with a human immunodeficiency virus type 1 vaccine candidate in the induction of immune responses. J Med Microbiol 2015; 64:1361-1368. [PMID: 26404477 DOI: 10.1099/jmm.0.000174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present study, the adjuvant activity of flagellin was compared, in the conjugated and mixed forms, against a peptide vaccine from human immunodeficiency virus type 1 (HIV-1) p24-Nef vaccine candidate. Mice were immunized with the HIV-1 p24-Nef peptide with flagellin in both conjugated and mixed forms. Lymphocyte proliferation, CTL activity, and IL-4 and IFN-γ cytokines were evaluated by bromodeoxyuridine, carboxyfluorescein succinimidyl ester and ELISA methods, respectively. At the same time, the frequency of IFN-γ-producing T-lymphocytes, as well as total and isotype-specific antibodies, were assessed by ELISPOT and indirect ELISA, respectively. Our experimental results showed that the immunized mice with the HIV-1 p24-Nef conjugated or mixed forms of flagellin led to increases in the proliferative responses and Th1 cytokine pattern. The conjugated form of vaccine led to increased CTL activity and a Th1 cytokine pattern of immune responses, as well as an IgM isotype of humoral responses in comparison with the mixed form. The flagellin-conjugated vaccine seems to be more potent in increasing vaccine immunogenicity.
Collapse
Affiliation(s)
- Safura Delavari
- Department of Biology, Faculty of Sciences, Qom branch of Islamic Azad University, Qom, Iran
| | - Mojtaba Sohrabi
- Department of Biology, Faculty of Sciences, Qom branch of Islamic Azad University, Qom, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Faezi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Morteza Taghizadeh
- Department of Medical Virology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Arezoo Shajiei
- Molecular Pathology Laboratory, Cancer Molecular Pathology Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Moghaddampour
- Department of Medical Virology, Razi Vaccine and Serum Research Institute, Karaj, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Geng D, Kaczanowska S, Tsai A, Younger K, Ochoa A, Rapoport AP, Ostrand-Rosenberg S, Davila E. TLR5 Ligand-Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity. Cancer Res 2015; 75:1959-1971. [PMID: 25795705 DOI: 10.1158/0008-5472.can-14-2467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment counters antitumor T-cell responses, in part, by blunting their activation and infiltration. Ligands that engage Toll-like receptors (TLR) on T cells and antigen-presenting cells can act as potent immune adjuvants. In this study, we show how tumor-reactive T cells engineered to secrete bacterial flagellin, a TLR5 ligand (TLR5L), can engender a costimulatory signal that augments antitumor activity. Human T cells engineered to express TLR5L along with DMF5, a T-cell receptor that recognizes the melanoma antigen MART-127-35 (DMF5(TLR5L) T cells), displayed increased proliferation, cytokine production, and cytolytic activity against melanoma cells. In a xenogenetic model, adoptive transfer of DMF5(TLR5L) T cells reduced tumor growth kinetics and prolonged mouse survival. In a syngeneic model, similarly engineered melanoma-reactive T cells (pmel(TLR5L)) displayed a relative increase in antitumor activity against established tumors, compared with unmodified T cells. In this model, we documented increased T-cell infiltration associated with increased levels of CCR1 and CXCR3 levels on T cells, a reduction in PD-1(+)Lag3(+) T cells and CD11(+)Gr1(+) myeloid-derived suppressor cells, and changes in the chemokine/cytokine profile of tumors. Our findings show how T cell-mediated delivery of a TLR agonist to the tumor site can contribute to antitumor efficacy, in the context of adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Degui Geng
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201
| | - Sabina Kaczanowska
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201
| | - Alexander Tsai
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201
| | - Kenisha Younger
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201
| | - Augusto Ochoa
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112
| | - Aaron P Rapoport
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201
| | - Sue Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Eduardo Davila
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, 21201.,Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, 21201
| |
Collapse
|
25
|
Sun H, Zhan Y, Liang T, Zhang C, Song J, Han J, Hou G. In vivo Toll-like receptor 5 (TLR5) imaging with radiolabeled anti-TLR5 monoclonal antibody in rapamycin-treated mouse allogeneic skin transplantation model. Transpl Infect Dis 2015; 17:80-8. [PMID: 25573439 DOI: 10.1111/tid.12332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND In organ transplantation, increasing evidence, both in experimental and human studies, indicates that Toll-like receptor (TLR) activation is involved in the innate immune recognition of allograft. TLR5, the only protein recognition receptor of TLRs, is indicated potentially to be the immune regulation target. This study was designed to determine whether TLR5 could be a biomarker for in vivo allograft visualization, after immunosuppressant rapamycin treatment, using radiolabeled sodium iodide ((131) I)-anti-TLR5 monoclonal antibody (mAb). METHODS BALB/c mice were transplanted with C57BL/6 skin, with/without rapamycin treatment (the rapamycin-treated group and the phosphate buffered saline [PBS]-rejection group, respectively). In vivo dynamic whole-body phosphor-autoradiography and ex vivo biodistribution studies were conducted after (131) I-anti-TLR5 mAb injection. RESULTS Dynamic phosphor-autoradiography imaging showed clear graft localization from 12 h onward. At 72 h after injection, graft uptake quantified from images was higher for the rapamycin-treated group (26,448 ± 904 digital light units [DLU]/mm(2) ), compared with the PBS-treated allo-rejection group (9176 ± 576 DLU/mm(2) ). Treatment with anti-TLR5 mAb inhibited graft uptake. Organ biodistribution study reflected the same tendency, and (131) I-anti-TLR5 mAb uptake reached a maximum of 12.05 ± 1.86 %ID/g (percent injected dose per gram) at 1 h, and graft-to-native skin ratio reached 8.10 ± 0.10 %ID/g at 72 h after injection in rapamycin-treated grafts. CONCLUSION Radiolabeled anti-TLR5 mAb showed higher uptake in allo-treated grafts compared with allo-rejection grafts, which was proved by non-invasive dynamic phosphor-autoradiography imaging, and invasive ex vivo biodistribution. Radiolabeled anti-TLR5 mAb is a new tracer for non-invasive in vivo imaging of TLR5 in rapamycin-treated allograft.
Collapse
Affiliation(s)
- H Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Deifl S, Kitzmüller C, Steinberger P, Himly M, Jahn‐Schmid B, Fischer GF, Zlabinger GJ, Bohle B. Differential activation of dendritic cells by toll-like receptors causes diverse differentiation of naïve CD4+ T cells from allergic patients. Allergy 2014; 69:1602-9. [PMID: 25093709 PMCID: PMC4245478 DOI: 10.1111/all.12501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND To avert the differentiation of allergen-specific Th2 cells in atopic individuals is a major goal in the prevention and therapy of IgE-mediated allergy. We aimed to compare different toll-like receptor (TLR) agonists regarding their effects on antigen-presenting cells and the differentiation of naïve T cells from allergic patients. METHODS Monocytes and monocyte-derived dendritic cells (mdDC) from allergic patients were stimulated with Pam3CSK4 (TLR1/2 ligand), FSL-1 (TLR2/6 ligand), monophosphoryl lipid (MPL)-A, lipopolysaccharide (LPS, both TLR4 ligands), and flagellin (TLR5 ligand). Allergen uptake and upregulation of CD40, CD80, CD83, CD86, CD58, CCR7 and PD-L1 were analyzed by flow cytometry. Functional maturation of mdDC was tested in mixed leukocyte reactions, and the synthesis of proinflammatory cytokines, IL-10 and members of the IL-12 family was assessed. TLR-ligand-activated mdDC were used to stimulate naïve CD4(+) T cells, and cytokine responses were assessed in supernatants and intracellularly. RESULTS All TLR ligands except flagellin enhanced allergen uptake. All TLR ligands induced functional maturation of mdDC with differential expression of surface molecules and cytokines and promoted the differentiation of IFN-γ-producing T cells. LPS-matured mdDC exclusively induced Th1-like responses, whereas mdDC stimulated with the other TLR ligands induced both Th1- and Th0-like cells. Pam3CSK4 and flagellin additionally induced Th2-like cells. Th1-like responses were associated with higher expression levels of co-stimulatory molecules, PD-L1, IL-6, TNF-α, and IL-12p70. None of the TLR-ligand-stimulated mdDC induced IL-10- or IL-17-producing T cells. CONCLUSION Different TLR ligands differently influence T-cell responses due to varying activation of the three signals relevant for T-cell activation, that is, antigen presentation, co-stimulation and cytokine milieu.
Collapse
Affiliation(s)
- S. Deifl
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - C. Kitzmüller
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - P. Steinberger
- Institute of Immunology Medical University of Vienna Vienna Austria
| | - M. Himly
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy Department of Molecular Biology University of Salzburg Salzburg Austria
| | - B. Jahn‐Schmid
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - G. F. Fischer
- Department of Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| | - G. J. Zlabinger
- Institute of Immunology Medical University of Vienna Vienna Austria
| | - B. Bohle
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
27
|
Girard A, Roques E, Massie B, Archambault D. Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non-disseminating adenovectors through the intrarectal route. Mol Biotechnol 2014; 56:394-407. [PMID: 24271565 DOI: 10.1007/s12033-013-9723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human rotavirus (HRV) is the worldwide leading cause of gastroenteritis in young children. Two live attenuated HRV vaccines have been approved since 2006. However, these live vaccines still have potential risks including reversion of virulence. Adenoviruses are suitable vectors for mucosal administration of subunit vaccines. In addition to the adjuvant effect of certain adenovirus components, the use of an adjuvant like flagellin is also another means to increase the immune response to the immunogen. The aim of this study was to determine whether flagellin in fusion with HRV structural proteins stimulates the innate immune response and enhances the HRV-specific immune response when delivered through the intrarectal route with replicating but non-disseminating adenovector (R-AdV). Salmonella typhimurium flagellin B (FljB) in fusion with HRV VP4Δ::VP7 protein induced IL-1β production in J774A.1 macrophages exposed to the R-AdV. Intrarectal administration of R-AdVs expressing either VP4Δ::VP7 or VP4Δ::VP7::FljB in BALB/c mice resulted in HRV-specific mixed Th1/Th2 immune responses. The HRV-specific antibody response elicited with the use of R-AdV expressing VP4Δ::VP7::FljB was higher than that with R-AdV expressing VP4Δ::VP7. The results also show that the replication capability of R-AdVs contributed to enhance the HRV-specific immune response as compared with that obtained with non-replicative AdVs. This work lays the foundation for using the R-AdV system and FljB-adjuvanted formulation to elicit a mucosal immune response specific to HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Québec at Montréal, P.O. Box 8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | | | | | | |
Collapse
|
28
|
Wang L, Yu Y. Dendritic cells primed with protein-protein fusion adjuvant. Methods Mol Biol 2014; 1139:57-75. [PMID: 24619671 DOI: 10.1007/978-1-4939-0345-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To develop efficient T cell priming cancer vaccines, various recombinant fusion proteins have been developed by fusing a tumor antigen with a protein capable of stimulating or targeting dendritic cells (DC), the most important antigen-presenting cells for inducing CD8(+) cytotoxic T lymphocytes (CTL) which can efficiently kill tumor cells expressing the tumor antigen. The DC-stimulating or DC-targeting proteins, including granulocyte/macrophage colony-stimulating factor (GM-CSF), anti-DEC-205 monoclonal antibodies, flagellin, and heat shock proteins (HSP), function as promising intermolecular adjuvants. Herein, we describe in vitro assays on human DC pulsed with HSP fusion proteins, which might be useful in preclinical studies for the screening and assessment of candidate cancer vaccines.
Collapse
Affiliation(s)
- Liying Wang
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | |
Collapse
|
29
|
Abstract
The use of probiotic strains as nutritional supplements has been gaining ground in the last decade. As the mechanisms with which they modulate innate and adaptive immunity start to unravel, probiotics have repeatedly been suggested as potential treatment for a wide variety of diseases, including inflammatory bowel disease (IBD). However, even though the benefits of probiotic treatment for conditions like atopic dermatitis are well established, very limited clinical benefit has been obtained on IBD treatment. This could be due to the lack of suitable models on which to obtain valid pre-clinical data to select the most appropriate strain for a given condition. We recently described a newly developed model for the culture and apical stimulation of whole human intestinal mucosal explants. We showed that the tissue was only viable if incubated in an O(2) chamber, but it was possible to stimulate the tissue with bacteria in a conventional incubator. We used the new set-up to test three different Lactobacilli strains, none of which appeared to be benign on inflamed IBD mucosa.
Collapse
Affiliation(s)
- Katerina Tsilingiri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
30
|
Hou J, Liu Y, Liu Y, Shao Y. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity. PLoS One 2012; 7:e47724. [PMID: 23077664 PMCID: PMC3471878 DOI: 10.1371/journal.pone.0047724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022] Open
Abstract
The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) has been shown to trigger naïve immune responses through the activation of monocytes, macrophages, natural killer cells (NK cells) and antigen presenting cells (APCs). Based on the hypothesis that PA-MSHA activates natural immunity through the Toll-like receptor (TLR) pathway, we scanned several critical TLR pathway molecules in mouse splenocytes using high-throughput real-time QRT-PCR and co-stimulatory molecule in bone marrow-derived dendritic cells (BMDCs) following in vitro stimulation by PA-MSHA. PA-MSHA enabled activation of the TLR pathway mediated by NF-κB and JNK signaling in splenocytes, and the co-stimulatory molecule CD86 was up-regulated in BMDCs. We then assessed the adjuvant effect of PA-MSHA for HIV-1 DNA vaccines. In comparison to DNA inoculation alone, co-inoculation with low dosage of PA-MSHA enhanced specific immunoreactivity against HIV-1 Env in both cellular and humoral responses, and promoted antibody avidity maturation. However, high doses of adjuvant resulted in an immunosuppressive effect; a two- or three-inoculation regimen yielded low antibody responses and the two-inoculation regimen exhibited only a slight cellular immunity response. To our knowledge, this is the first report demonstrating the utility of PA-MSHA as an adjuvant to a DNA vaccine. Further research is needed to investigate the exact mechanisms through which PA-MSHA achieves its adjuvant effects on innate immune responses, especially on dendritic cells.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Ding X, Bian G, Leigh ND, Qiu J, McCarthy PL, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A TLR5 agonist enhances CD8(+) T cell-mediated graft-versus-tumor effect without exacerbating graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:4719-27. [PMID: 23045613 DOI: 10.4049/jimmunol.1201206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allogeneic hematopoietic cell transplantation is an established treatment for hematologic and nonhematologic malignancies. Donor-derived immune cells can identify and attack host tumor cells, producing a graft-versus-tumor (GVT) effect that is crucial to the effectiveness of the transplantation therapy. CBLB502 is a novel agonist for TLR5 derived from Salmonella flagellin. On the basis of TLR5-mediated immunomodulatory function, we examined the effect of CBLB502 on GVT activity. Using two tumor models that do not express TLR5, and thereby do not directly respond to CBLB502, we found that CBLB502 treatment significantly enhanced allogeneic CD8(+) T cell-mediated GVT activity, which was evidenced by decreased tumor burden and improved host survival. Importantly, histopathologic analyses showed that CBLB502 treatment did not exacerbate the moderate graft-versus-host disease condition caused by the allogeneic CD8(+) T cells. Moreover, mechanistic analyses showed that CBLB502 stimulates CD8(+) T cell proliferation and enhances their tumor killing activity mainly indirectly through a mechanism that involves the IL-12 signaling pathway and the CD11c(+) and CD11b(+) populations in the bone marrow cells. This study demonstrates a new beneficial effect of CBLB502, and suggests that TLR5-mediated immune modulation may be a promising approach to improve GVT immunity without exacerbating graft-versus-host disease.
Collapse
Affiliation(s)
- Xilai Ding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
St Paul M, Paolucci S, Sharif S. Treatment with ligands for toll-like receptors 2 and 5 induces a mixed T-helper 1- and 2-like response in chicken splenocytes. J Interferon Cytokine Res 2012; 32:592-8. [PMID: 23030671 DOI: 10.1089/jir.2012.0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the induction of host responses to pathogens. Interactions between TLRs and their ligands result in the production of cytokines that modulate the adaptive immune response through polarizing CD4+ T cells into either T-helper (T(H))1 or T(H)2 phenotypes. In this regard, TLR2 and TLR5 ligands have been shown to induce responses in mammals that are biased toward T(H)1 or T(H)2 phenotypes. However, whether a similar phenomenon occurs in chickens remains to be elucidated. To this end, chicken splenocytes were stimulated with the TLR2 ligand Pam3CSK4 and the TLR5 ligand flagellin, and the relative expression of several cytokines and transcription factors was quantified at 1, 3, 8, and 18 h poststimulation. The results suggest that both TLR ligands induce a mixed T(H)1- and T(H)2-like response, as characterized by the upregulation of both the T(H)1-associated cytokine interferon-γ and the T(H)1-inducing cytokine interleukin (IL)-12, in addition to the T(H)2-associated cytokine IL-4, and in the case of flagellin, IL-13 as well. Future studies may be aimed at assessing the adjuvant potential of these ligands.
Collapse
Affiliation(s)
- Michael St Paul
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
33
|
Skert C, Fogli M, Perucca S, Garrafa E, Fiorentini S, Filì C, Bergonzi C, Malagola M, Turra A, Colombi C, Cattina F, Alghisi E, Caruso A, Russo D. Profile of toll-like receptors on peripheral blood cells in relation to acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2012; 19:227-34. [PMID: 23022388 DOI: 10.1016/j.bbmt.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/19/2012] [Indexed: 11/16/2022]
Abstract
Toll-like receptors (TLRs) play a key role in the cross-talk between the innate and adaptive immune systems. Previous studies investigating associations between certain TLRs and acute graft-versus-host disease (aGVHD) have reported contrasting results, and no studies relating aGVHD to the expression and function of all human TLRs together have been published to date. We prospectively evaluated the expression of 9 TLRs on T lymphocytes and monocytes by flow cytometry in relation to aGVHD in 34 patients. Induction of TNF-α, IL-4, IFN-γ, and monocyte chemotactic protein 1 on TLR activation was assessed by ELISA on cell supernatants. Nineteen patients developed aGVHD, at a median time of 28 days (range, 20-50 days) after transplantation. A 2-step multivariate analysis was performed using principal component analysis and multifactor analysis of variance. The levels of TLR-5 expression on monocytes and T lymphocytes were positively correlated to aGVHD (P = .01), whereas levels of TLR-1 and -9 were negative predictors (P = .03 and .01, respectively). This profile of TLR-1, -5, and -9 can promote an overall immunostimulatory/proinflammatory response. If our findings are confirmed by further studies, this TLR profile could be a useful biomarker of aGVHD.
Collapse
Affiliation(s)
- Cristina Skert
- Stem Cell Transplantation Unit, Department of Hematology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Selmi C, Leung PSC, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME. Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 2012; 39:272-84. [PMID: 22749494 DOI: 10.1016/j.jaut.2012.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/22/2023]
Abstract
The mechanisms leading to autoimmune diseases remain largely unknown despite numerous lines of experimental inquiry and epidemiological evidence. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins support the role of the environment (including infectious agents and chemicals) in the breakdown of tolerance leading to autoimmunity via numerous mechanisms. The present article reviews the major theories on the mechanisms of the environmental influence on autoimmunity by addressing the different degrees of confidence that characterize our knowledge. The theories discussed herein include (i) the role of innate immunity mediated by toll-like receptors in triggering the autoimmune adaptive response characterizing the observed pathology; (ii) changes in spleen marginal zone B cells in autoantibody production with particular focus on the B10 subpopulation; (iii) Th17 cell differentiation and T regulatory cells in the aryl hydrocarbon receptor model; (iv) self antigen changes induced by chemical and infectious agents which could break tolerance by post-translational modifications and molecular mimicry; and finally (v) epigenetic changes, particularly DNA methylation, that are induced by environmental stimuli and may contribute to autoimmunity initiation. We are convinced that these working hypotheses, in most cases supported by solid evidence, should be viewed in parallel with animal models and epidemiological observations to provide a comprehensive picture of the environmental causes of autoimmune diseases.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, Mandelin AM, Shahrara S. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. THE JOURNAL OF IMMUNOLOGY 2012; 189:475-83. [PMID: 22661088 DOI: 10.4049/jimmunol.1102977] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The innate immune system plays an important role in rheumatoid arthritis (RA) pathogenesis. Previous studies support the role of TLR2 and 4 in RA and experimental arthritis models; however, the regulation and pathogenic effect of TLR5 is undefined in RA. In this study, we show that TLR5 is elevated in RA and osteoarthritis ST lining and sublining macrophages and endothelial cells compared with normal individuals. Furthermore, expression of TLR5 is elevated in RA synovial fluid macrophages and RA peripheral blood monocytes compared with RA and normal peripheral blood in vitro-differentiated macrophages. We also found that TLR5 on RA monocytes is an important modulator of TNF-α in RA synovial fluid and that TLR5 expression on these cells strongly correlates with RA disease activity and TNF-α levels. Interestingly, TNF-α has a feedback regulation with TLR5 expression in RA monocytes, whereas expression of this receptor is regulated by IL-17 and IL-8 in RA macrophages and fibroblasts. We show that RA monocytes and macrophages are more responsive to TLR5 ligation compared with fibroblasts despite the proinflammatory response being mediated through the same signaling pathways in macrophages and fibroblasts. In conclusion, we document the potential role of TLR5 ligation in modulating transcription of TNF-α from RA synovial fluid and the strong correlation of TLR5 and TNF-α with each other and with disease activity score in RA monocytes. Our results suggest that expression of TLR5 may be a predictor for RA disease progression and that targeting TLR5 may suppress RA.
Collapse
Affiliation(s)
- Nathan D Chamberlain
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
TLR5 risk-associated haplotype for canine inflammatory bowel disease confers hyper-responsiveness to flagellin. PLoS One 2012; 7:e30117. [PMID: 22279566 PMCID: PMC3261174 DOI: 10.1371/journal.pone.0030117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/09/2011] [Indexed: 02/06/2023] Open
Abstract
Single nucleotide polymorphisms (SNP) in the TLR5 gene have been associated with human inflammatory bowel disease (IBD) and animal models of this disease. We recently demonstrated a significant association between three non-synonymous SNPs in the canine TLR5 gene and IBD in German shepherd dogs (GSDs). However, so far, no direct link between these SNPs and a disturbance in TLR5 function was shown. In the present study, we determined the functional significance of the canine TLR5 SNPs by transfecting the identified risk-protective and risk-associated haplotype into human embryonic kidney cells (HEK) and assessed nuclear factor-kappa B (NF-κB) activation and CXCL8 production after stimulation. In addition, a whole blood assay for TLR5 activation was developed using blood derived from carrier dogs of either haplotype. There was a significant increase in NF-kB activity when cells transfected with the risk-associated TLR5 haplotype were stimulated with flagellin compared to the cells expressing the risk-protective TLR5 haplotype. This difference in NFkB activation correlated with CXCL8 expression in the supernatant measured by ELISA. Furthermore, whole blood taken from carrier dogs of the risk-associated TLR5 haplotype produced significantly more TNF after stimulation with flagellin compared to that taken from carriers of the risk-protective haplotype. Thus, we show for the first time a direct functional impact of the canine IBD risk-associated TLR5 haplotype, which results in hyper-responsiveness to flagellin compared to the IBD risk-protective TLR5 haplotype. Our data potentially suggest that similarly to human IBD and experimental models, TLR5 may also play a role in canine IBD. Blocking the hyper-responsive receptor found in susceptible dogs with IBD may alleviate the inappropriate inflammation seen in this disease.
Collapse
|
37
|
Hossain MS, Jaye DL, Pollack BP, Farris AB, Tselanyane ML, David E, Roback JD, Gewirtz AT, Waller EK. Flagellin, a TLR5 agonist, reduces graft-versus-host disease in allogeneic hematopoietic stem cell transplantation recipients while enhancing antiviral immunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:5130-40. [PMID: 22013117 DOI: 10.4049/jimmunol.1101334] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in patients treated with allogeneic hematopoietic stem cell transplantation (HSCT). Posttransplant immunosuppressive drugs incompletely control GVHD and increase susceptibility to opportunistic infections. In this study, we used flagellin, a TLR5 agonist protein (∼50 kDa) extracted from bacterial flagella, as a novel experimental treatment strategy to reduce both acute and chronic GVHD in allogeneic HSCT recipients. On the basis of the radioprotective effects of flagellin, we hypothesized that flagellin could ameliorate GVHD in lethally irradiated murine models of allogeneic HSCT. Two doses of highly purified flagellin (administered 3 h before irradiation and 24 h after HSCT) reduced GVHD and led to better survival in both H-2(b) → CB6F1 and H-2(K) → B6 allogeneic HSCT models while preserving >99% donor T cell chimerism. Flagellin treatment preserved long-term posttransplant immune reconstitution characterized by more donor thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells and significantly enhanced antiviral immunity after murine CMV infection. The proliferation index and activation status of donor spleen-derived T cells and serum concentration of proinflammatory cytokines in flagellin-treated recipients were reduced significantly within 4 d posttransplant compared with those of the PBS-treated control recipients. Allogeneic transplantation of radiation chimeras previously engrafted with TLR5 knockout hematopoietic cells showed that interactions between flagellin and TLR5 expressed on both donor hematopoietic and host nonhematopoietic cells were required to reduce GVHD. Thus, the peritransplant administration of flagellin is a novel therapeutic approach to control GVHD while preserving posttransplant donor immunity.
Collapse
Affiliation(s)
- Mohammad S Hossain
- Division of Stem Cell and Bone Marrow Transplantation, Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Girard A, Saron W, Bergeron-Sandoval LP, Sarhan F, Archambault D. Flagellin produced in plants is a potent adjuvant for oral immunization. Vaccine 2011; 29:6695-703. [PMID: 21745522 DOI: 10.1016/j.vaccine.2011.06.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/14/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
The aim of this study was to produce adjuvant with high biosafety, efficacy and low cost. Towards this goal, the plant Nicotiana benthamiana transient expression system was successfully used to express Salmonella typhimurium's flagellin (FljB). The yield of the expressed FljB was 280 mg per kg of fresh weight (FW) leaves. The lyophilized plant powder containing plant expressing FljB was mixed with ovalbumin (OVA) and used for oral immunization of BALB/c mice. The ELISA analysis showed higher and accelerated OVA-specific serum antibody responses in mice given the mixture when compared to animals receiving OVA alone. Furthermore, FljB elicited a mixed Th1/Th2 response as shown by the presence of specific anti-OVA IgG1, IgG2a and IgG2b isotypes. OVA-specific IgAs were also detected in mice given the mixture. Cell-mediated immune response to OVA was induced by FljB as determined by a spleen lymphocyte specific proliferation test. No immune response was generated against FljB. In conclusion, our results showed for the first time the production of FljB in plants and the efficient use of the crude lyophilized extract as an adjuvant for oral immunization.
Collapse
Affiliation(s)
- Aurélie Girard
- University of Québec at Montréal, Department of Biological Sciences, PO Box 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | |
Collapse
|
39
|
Jezierska A, Kolosova IA, Verin AD. Toll Like Receptors Signaling Pathways as a Target for Therapeutic Interventions. ACTA ACUST UNITED AC 2011; 6:428-440. [PMID: 28373830 DOI: 10.2174/157436211797483930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the key role of Toll-Like Receptor (TLRs) molecules for igniting the immune system. Activated by a broad spectrum of pathogens, cytokines or other specific molecules, TLRs trigger innate immune responses. Published data demonstrate that the targeting and suppression of TLRs and TLR-related proteins with particular inhibitors may provide pivotal treatments for patients with cancer, asthma, sepsis, Crohn's disease and thrombosis. Many drugs that target cytokines act in the late phases of the activated pathways, after the final peptides, proteins or glycoproteins are formed in the cell environment. TLR activity occurs in the early activation of cellular pathways; consequently inhibiting them might be most beneficial in the treatment of human diseases.
Collapse
Affiliation(s)
| | - Irina A Kolosova
- Johns Hopkins University, Blumberg School of Public Health, Baltimore, Maryland, USA
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Medical College of Georgia, USA
| |
Collapse
|
40
|
Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans? J Parasitol Res 2011; 2011:965369. [PMID: 21603205 PMCID: PMC3095412 DOI: 10.1155/2011/965369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.
Collapse
|
41
|
Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. THE JOURNAL OF IMMUNOLOGY 2010; 185:5677-82. [PMID: 21048152 DOI: 10.4049/jimmunol.1002156] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flagellin is a potent activator of a broad range of cell types involved in innate and adaptive immunity. An increasing number of studies have demonstrated the effectiveness of flagellin as an adjuvant, as well as its ability to promote cytokine production by a range of innate cell types, trigger a generalized recruitment of T and B lymphocytes to secondary lymphoid sites, and activate TLR5(+)CD11c(+) cells and T lymphocytes in a manner that is distinct from cognate Ag recognition. The plasticity of flagellin has allowed for the generation of a range of flagellin-Ag fusion proteins that have proven to be effective vaccines in animal models. This review summarizes the state of our current understanding of the adjuvant effect of flagellin and addresses important areas of current and future research interest.
Collapse
Affiliation(s)
- Steven B Mizel
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
42
|
Roduit C, Wohlgensinger J, Frei R, Bitter S, Bieli C, Loeliger S, Büchele G, Riedler J, Dalphin JC, Remes S, Roponen M, Pekkanen J, Kabesch M, Schaub B, von Mutius E, Braun-Fahrländer C, Lauener R. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J Allergy Clin Immunol 2010; 127:179-85, 185.e1. [PMID: 21112617 DOI: 10.1016/j.jaci.2010.10.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/25/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cross-sectional studies have suggested that prenatal farm exposures might protect against allergic disease and increase the expression of receptors of the innate immune system. However, epidemiologic evidence supporting the association with atopic dermatitis remains inconsistent. OBJECTIVE To study the association between prenatal farm-related exposures and atopic dermatitis in a prospective study. We further analyzed the association between the expression of innate immune genes at birth and atopic dermatitis. METHODS A total of 1063 children who participated in a birth cohort study, Protection against Allergy-Study in Rural Environments, were included in this study. Doctor diagnosis of atopic dermatitis was reported by the parents from 1 to 2 years of age by questionnaire. Gene expression of Toll-like receptors (TLRs) and CD14 was assessed in cord blood leukocytes by quantitative PCR. RESULTS Maternal contact with farm animals and cats during pregnancy had a significantly protective effect on atopic dermatitis in the first 2 years of life. The risk of atopic dermatitis was reduced by more than half among children with mothers having contact with 3 or more farm animal species during pregnancy compared with children with mothers without contact (adjusted odds ratio, 0.43; 95% CI, 0.19-0.97). Elevated expression of TLR5 and TLR9 in cord blood was associated with decreased doctor diagnosis of atopic dermatitis. A significant interaction between polymorphism in TLR2 and prenatal cat exposure was observed in atopic dermatitis. CONCLUSION Maternal contact with farm animals and cats during pregnancy has a protective effect on the development of atopic dermatitis in early life, which is associated with a lower expression of innate immune receptors at birth.
Collapse
Affiliation(s)
- Caroline Roduit
- University of Zurich, Children's Hospital, and Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 2010; 5:e11216. [PMID: 20574522 PMCID: PMC2888579 DOI: 10.1371/journal.pone.0011216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined. METHODS/PRINCIPAL FINDINGS We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005). SIGNIFICANCE These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers.
Collapse
Affiliation(s)
- Olivier Renaudet
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alda Shi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California Irvine Medical Center, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, California, United States of America
| |
Collapse
|