1
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2025; 25:298-311. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Han L, Wu T, Zhang Q, Qi A, Zhou X. Immune Tolerance Regulation Is Critical to Immune Homeostasis. J Immunol Res 2025; 2025:5006201. [PMID: 39950084 PMCID: PMC11824399 DOI: 10.1155/jimr/5006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/07/2024] [Indexed: 02/16/2025] Open
Abstract
The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.
Collapse
Affiliation(s)
- Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Tianxiang Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Xiaohui Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
3
|
Wang YN, Li R, Huang Y, Chen H, Nie H, Liu L, Zou X, Zhong J, Zheng B, Gong Q. The role of B cells in the pathogenesis of type 1 diabetes. Front Immunol 2024; 15:1450366. [PMID: 39776900 PMCID: PMC11703732 DOI: 10.3389/fimmu.2024.1450366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies. In non-obese diabetic (NOD) mice, the absence of B cells prevents the development of T1D, and B-cell depletion can even restore the function of pancreatic β cells, emphasizing their involvement in the development of T1D. Naturally, besides pathogenic B cells, regulatory B cells (Bregs) might have a protective function in T1D. This article examines the mechanisms behind B-cell tolerance and the defects in B-cell tolerance checkpoints in T1D. We explored possible functions of B cells in T1D, including the role of islet autoantibodies in T1D, T-B cell interactions, and the role of Bregs in the pathogenesis of T1D. We also summarized the advances of B cell-targeted therapy, exploring new methods for intervention and treatment of T1D.
Collapse
Affiliation(s)
- Ya-nan Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Ruihua Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yaxuan Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Zhang W, Yao W, Meng Y, Luo F, Han M, Mu Q, Jiang L, He W, Fan X, Wang W, Wang B. Effect of Moniezia Benedeni infection on ileal transcriptome profile characteristics of sheep. BMC Genomics 2024; 25:933. [PMID: 39370521 PMCID: PMC11457389 DOI: 10.1186/s12864-024-10853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The intestinal mucosal immune system, renowned for its precise and sensitive regulation, can provide comprehensive and effective protection for the body, among which the ileum is a critical induction site for regulating mucosal immune homeostasis. Moniezia benedeni parasitizes the small intestine of sheep and can cause serious pathological damage or even death to the host when the infection is severe. In this study, 5 sheep infected with Moniezia benedeni were selected as the infected group, and 5 uninfected sheep were selected as the control group. The ileal transcriptome profile characteristics of Moniezia benedeni infection were analyzed based on RNA-seq sequencing technology, aiming to lay a foundation for further exploring the perception mechanism of sheep intestines to Moniezia benedeni infection and formulating effective prevention and control strategies. RESULTS The results showed that a total of 3,891 differentially expressed genes (DEGs) were detected in the ileum tissues of sheep between the infected and control groups with 2,429 up-regulated genes and 1,462 down-regulated genes. GO and KEGG pathway enrichment analysis of differential genes, as well as Clue GO analysis showed that differential genes were significantly enriched in immune and metabolic-related biological processes and signaling pathways. Particularly, in immune-related signaling pathways, the B cell receptor signaling pathway was significantly down-regulated, while in metabolic regulation related signaling pathways, Bile secretion, Fat digestion and absorption and Vitamin digestion and absorption were notably up-regulated. On this basis, the differential core genes related to immune metabolism were verified by qRT-PCR method. The results showed that OVAR, CD3E, CD8A, CD4 and CD28 were significantly up-regulated (P < 0.05), while CIITA, BLNK, BCL6 and CD79A were significantly down-regulated (P < 0.05), which were consistent with transcriptome sequencing data. CONCLUSIONS The results demonstrated that Moniezia benedeni infection significantly affected the immune and metabolic processes in sheep ileum, particularly, it significantly inhibited the activation process of host B cells, and also led to an overactive function of bile acid metabolism. This finding provides a solid foundation for further elucidating the response mechanism of Peyer's patches in sheep ileum to Moniezia tapeworm infection.
Collapse
Affiliation(s)
- Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongcheng Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fuzhen Luo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mengling Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qian Mu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidong Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Fiske BE, Wemlinger SM, Crute BW, Getahun A. The Src-family kinase Lyn plays a critical role in establishing and maintaining B cell anergy by suppressing PI3K-dependent signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595208. [PMID: 38826354 PMCID: PMC11142063 DOI: 10.1101/2024.05.21.595208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.
Collapse
|
6
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Fiske BE, Getahun A. Failed Downregulation of PI3K Signaling Makes Autoreactive B Cells Receptive to Bystander T Cell Help. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1150-1160. [PMID: 38353615 PMCID: PMC10948302 DOI: 10.4049/jimmunol.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The role of T cell help in autoantibody responses is not well understood. Because tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in murine autoantibody responses resulting from acute B cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. In this study, we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, although autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells' cooperation with noncognate T cell help and by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance.
Collapse
Affiliation(s)
- Brigita E. Fiske
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
8
|
He Y, Vinuesa CG. Germinal center versus extrafollicular responses in systemic autoimmunity: Who turns the blade on self? Adv Immunol 2024; 162:109-133. [PMID: 38866437 PMCID: PMC7616122 DOI: 10.1016/bs.ai.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Spontaneously formed germinal centers (GCs) have been reported in most mouse models of human autoimmune disease and autoimmune patients, and have long been considered a source of somatically-mutated and thus high affinity autoantibodies, but their role in autoimmunity is becoming increasingly controversial, particularly in the context of systemic autoimmune diseases like lupus. On the one hand, there is good evidence that some pathogenic lupus antibodies have acquired somatic mutations that increase affinity for self-antigens. On the other hand, recent studies that have genetically prevented GC formation, suggest that GCs are dispensable for systemic autoimmunity, pointing instead to pathogenic extrafollicular (EF) B-cell responses. Furthermore, several lines of evidence suggest germinal centers may in fact be somewhat protective in the context of autoimmunity. Here we review how some of the conflicting evidence arose, and current views on the role of GCs in autoimmunity, outlining mechanisms by which GC may eliminate self-reactivity. We also discuss recent advances in understanding extrafollicular B cell subsets that participate in autoimmunity.
Collapse
Affiliation(s)
- Yuke He
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Carola G Vinuesa
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
9
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
10
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Anaya EU, Amin AE, Wester MJ, Danielson ME, Michel KS, Neumann AK. Dectin-1 multimerization and signaling depends on fungal β-glucan structure and exposure. Biophys J 2023; 122:3749-3767. [PMID: 37515324 PMCID: PMC10541497 DOI: 10.1016/j.bpj.2023.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dectin-1A is a C-type lectin innate immunoreceptor that recognizes β-(1,3;1,6)-glucan, a structural component of Candida species cell walls. β-Glucans can adopt solution structures ranging from random coil to insoluble fiber due to tertiary (helical) and quaternary structure. Fungal β-glucans of medium and high molecular weight are highly structured, but low molecular weight glucan is much less structured. Despite similar affinity for Dectin-1, the ability of glucans to induce Dectin-1A-mediated signaling correlates with degree of structure. Glucan denaturation experiments showed that glucan structure determines agonistic potential, but not receptor binding affinity. We explored the impact of glucan structure on molecular aggregation of Dectin-1A. Stimulation with glucan signaling decreased Dectin-1A diffusion coefficient. Fluorescence measurements provided direct evidence of ligation-induced Dectin-1A aggregation, which positively correlated with increasing glucan structure content. In contrast, Dectin-1A is predominantly in a low aggregation state in resting cells. Molecular aggregates formed during interaction with highly structured, agonistic glucans did not exceed relatively small (<15 nm) clusters of a few engaged receptors. Finally, we observed increased molecular aggregation of Dectin-1A at fungal particle contact sites in a manner that positively correlated with the degree of exposed glucan on the particle surface. These results indicate that Dectin-1A senses the solution conformation of β-glucans through their varying ability to drive receptor dimer/oligomer formation and activation of membrane proximal signaling events.
Collapse
Affiliation(s)
- Eduardo U Anaya
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Akram Etemadi Amin
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico; Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | | | | | - Aaron K Neumann
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
12
|
Zhao Y, Song W, Yuan Z, Li M, Wang G, Wang L, Liu Y, Diao B. Exosome Derived from Human Umbilical Cord Mesenchymal Cell Exerts Immunomodulatory Effects on B Cells from SLE Patients. J Immunol Res 2023; 2023:3177584. [PMID: 37215068 PMCID: PMC10198761 DOI: 10.1155/2023/3177584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Background Excessive proliferation and activation of B cells, resulting in the production of various autoantibodies, is a crucial link and significant feature of the pathogenesis of systemic lupus erythematosus (SLE), as well as the pathological basis of systemic multiorgan damage. However, whether exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exo) are involved in the immune regulation of SLE has not been clarified. Objectives Therefore, our study aimed to investigate the efficacy of hucMSCs-Exo for treating SLE. Methods hucMSCs-Exo and peripheral blood mononuclear cells (PBMCs) of SLE patients were cocultured in vitro, and B cell apoptosis, activation, proliferation, and inflammation levels were detected by flow cytometry. Subsequently, the expression level of miR-155 in B lymphocytes of SLE patients was detected by qRT-PCR, and the target gene relationship between miR-155 and SHIP-1 was found through bioinformatics and dual luciferase activity experiments, which verified the inhibition of miR-155 in B lymphocytes of SLE patients to regulate immunity. Results We found that hucMSCs-Exo promoted B cell apoptosis, prevented B cell overactivation, and reduced inflammation. MicroRNA-155 (miR-155) has a powerful regulatory function in B cells. It was demonstrated that hucMSCs-Exo acts synergistically with miR-155 inhibitors to target SHIP-1 to B cells more effectively than exosomes alone. Conclusion Our results provide insight into how hucMSCs-Exo regulates autoimmunity in patients with lupus and suggest targeting miR-155 for autoimmunity while protecting immunity.
Collapse
Affiliation(s)
- Ying Zhao
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Wenbin Song
- People's Hospital of Xinyang, Xinyang 464000, Hennan Province, China
| | - Zilin Yuan
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Min Li
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Gang Wang
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Liping Wang
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Yueping Liu
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| | - Bo Diao
- Basic Medical Laboratory, General Hospital of the Central Theater Command, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, Hubei Province, China
| |
Collapse
|
13
|
Zheng Y, Yu M, Chen Y, Xue L, Zhu W, Fu G, Morris SW, Wen R, Wang D. CARD19, a Novel Regulator of the TAK1/NF-κB Pathway in Self-Reactive B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1222-1235. [PMID: 36961449 PMCID: PMC10156913 DOI: 10.4049/jimmunol.2200639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The caspase recruitment domain family member (CARD)11-Bcl10-Malt1 signalosome controls TGF-β-activated kinase 1 (TAK1) activation and regulates BCR-induced NF-κB activation. In this study, we discovered that CARD19 interacted with TAK1 and inhibited TAB2-mediated TAK1 ubiquitination and activation. Although CARD19 deficiency in mice did not affect B cell development, it enhanced clonal deletion, receptor editing, and anergy of self-reactive B cells, and it reduced autoantibody production. Mechanistically, CARD19 deficiency increased BCR/TAK1-mediated NF-κB activation, leading to increased expression of transcription factors Egr2/3, as well as the E3 ubiquitin ligases c-Cbl/Cbl-b, which are known inducers of B cell tolerance in self-reactive B cells. RNA sequencing analysis revealed that although CARD19 deficiency did not affect the overall Ag-induced gene expression in naive B cells, it suppressed BCR signaling and increased hyporesponsiveness of self-reactive B cells. As a result, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus. In summary, CARD19 negatively regulates BCR/TAK1-induced NF-κB activation and its deficiency increases Egr2/3 and c-Cbl/Cbl-b expression in self-reactive B cells, thereby enhancing B cell tolerance.
Collapse
Affiliation(s)
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Guoping Fu
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
14
|
Meier F, Burkhardt H. [Mechanisms of immunological tolerance and their dysregulation in rheumatic diseases]. Z Rheumatol 2023; 82:269-277. [PMID: 37099181 DOI: 10.1007/s00393-023-01352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/27/2023]
Abstract
The major tasks of the immune system are protection against infectious agents, maintaining homeostasis by recognizing and neutralizing noxious substances from the environment, and monitoring pathological, e.g. neoplastic tissue changes. It accomplishes these tasks through complex interactions of cellular and humoral components of the innate and adaptive immune system. This review article focuses on a central problem of self versus non-self discrimination in the development of B and T lymphocytes as carriers of adaptive immunity. During maturation of the lymphocytes in the bone marrow, large repertoires of lymphocyte receptors are randomly generated by somatic recombination, which as a whole have the capability of recognizing any foreign antigen. In order to reduce the implicit risk of autoaggressive immunity that might arise from evolutionary conserved structural motifs in self and foreign antigens, the adaptive immune system must provide redundant mechanisms (clonal deletion, anergy, quiescence and suppression) to eliminate or inactivate lymphocytes expressing highly avid receptors for autoantigens. Thus, the provision of costimulatory signals resulting in a reduced activation threshold of potentially autoreactive anergic T cells through infection, molecular mimicry, disrupted apoptosis regulation, altered "self" by post-translational modification, genetic changes in transcription factors with critical importance for thymic tolerance induction or signaling components of apoptosis can lead to a disruption of self-tolerance and the induction of pathogenic autoimmunity.
Collapse
Affiliation(s)
- Florian Meier
- Abteilung Rheumatologie, Medizinische Klinik II, Universitätsklinikum Frankfurt am Main, Fraunhofer Institut für Translationale Medizin und Pharmakologie (ITMP), Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| | - Harald Burkhardt
- Abteilung Rheumatologie, Medizinische Klinik II, Universitätsklinikum Frankfurt am Main, Fraunhofer Institut für Translationale Medizin und Pharmakologie (ITMP), Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| |
Collapse
|
15
|
Fiske BE, Getahun A. Failed down-regulation of PI3K signaling makes autoreactive B cells receptive to bystander T cell help. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525206. [PMID: 36747655 PMCID: PMC9900797 DOI: 10.1101/2023.01.23.525206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of T cell help in autoantibody responses is not well understood. Since tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in autoantibody responses resulting from acute cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA-reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. Here we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, while autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells’ cooperation with non-cognate T cell help, as well as by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance. Significance Phosphatase suppression of PI3K signaling is an important mechanism by which peripheral autoreactive B cells are kept in an unresponsive/anergic state. Loss of this suppression, due to genetic alleles that confer risk of autoimmunity, often occurs in autoreactive B cells of individuals who develop autoimmune disease. Here we demonstrate that de-repression of PI3K signaling promotes autoantibody responses of a DNA-reactive B cell clone by relaxing dependence of autoantibody responses on T cell-derived helper signals. These results suggest that impaired regulation of PI3K signaling can promote autoantibody responses in two ways: by restoring antigen receptor signaling and by enabling autoreactive B cells to circumvent restrictions imposed by T cell tolerance mechanisms.
Collapse
|
16
|
Liu Y, Qu M, Jiang H, Schneider R, Qin G, Luo W, Yu H, Zhang B, Wang X, Zhang Y, Zhang H, Zhang Z, Wu Y, Zhang Y, Yin J, Zhang S, Venkatesh B, Roth O, Meyer A, Lin Q. Immunogenetic losses co-occurred with seahorse male pregnancy and mutation in tlx1 accompanied functional asplenia. Nat Commun 2022; 13:7610. [PMID: 36494371 PMCID: PMC9734139 DOI: 10.1038/s41467-022-35338-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
In the highly derived syngnathid fishes (pipefishes, seadragons & seahorses), the evolution of sex-role reversed brooding behavior culminated in the seahorse lineage's male pregnancy, whose males feature a specialized brood pouch into which females deposit eggs during mating. Then, eggs are intimately engulfed by a placenta-like tissue that facilitates gas and nutrient exchange. As fathers immunologically tolerate allogenic embryos, it was suggested that male pregnancy co-evolved with specific immunological adaptations. Indeed, here we show that a specific amino-acid replacement in the tlx1 transcription factor is associated with seahorses' asplenia (loss of spleen, an organ central in the immune system), as confirmed by a CRISPR-Cas9 experiment using zebrafish. Comparative genomics across the syngnathid phylogeny revealed that the complexity of the immune system gene repertoire decreases as parental care intensity increases. The synchronous evolution of immunogenetic alterations and male pregnancy supports the notion that male pregnancy co-evolved with the immunological tolerance of the embryo.
Collapse
Affiliation(s)
- Yali Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Meng Qu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Han Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Ralf Schneider
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Geng Qin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Wei Luo
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Haiyan Yu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Bo Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Xin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Yanhong Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Huixian Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Zhixin Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.412785.d0000 0001 0695 6482Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Yongli Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Yingyi Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianping Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Si Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Byrappa Venkatesh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore, Singapore
| | - Olivia Roth
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Axel Meyer
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Qiang Lin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
17
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
18
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β- and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R. Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P. Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A. Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
19
|
Wemlinger SM, Parker Harp CR, Yu B, Hardy IR, Seefeldt M, Matsuda J, Mingueneau M, Spilker KA, Cameron TO, Larrick JW, Getahun A, Cambier JC. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1566-1584. [PMID: 35321883 PMCID: PMC8976721 DOI: 10.4049/jimmunol.2101056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
Abstract
The BCR comprises a membrane-bound Ig that is noncovalently associated with a heterodimer of CD79A and CD79B. While the BCR Ig component functions to sense extracellular Ag, CD79 subunits contain cytoplasmic ITAMs that mediate intracellular propagation of BCR signals critical for B cell development, survival, and Ag-induced activation. CD79 is therefore an attractive target for Ab and chimeric Ag receptor T cell therapies for autoimmunity and B cell neoplasia. Although the mouse is an attractive model for preclinical testing, due to its well-defined immune system, an obstacle is the lack of cross-reactivity of candidate therapeutic anti-human mAbs with mouse CD79. To overcome this problem, we generated knockin mice in which the extracellular Ig-like domains of CD79A and CD79B were replaced with human equivalents. In this study, we describe the generation and characterization of mice expressing chimeric CD79 and report studies that demonstrate their utility in preclinical analysis of anti-human CD79 therapy. We demonstrate that human and mouse CD79 extracellular domains are functionally interchangeable, and that anti-human CD79 lacking Fc region effector function does not cause significant B cell depletion, but induces 1) decreased expression of plasma membrane-associated IgM and IgD, 2) uncoupling of BCR-induced tyrosine phosphorylation and calcium mobilization, and 3) increased expression of PTEN, consistent with the levels observed in anergic B cells. Finally, anti-human CD79 treatment prevents disease development in two mouse models of autoimmunity. We also present evidence that anti-human CD79 treatment may inhibit Ab secretion by terminally differentiated plasmablasts and plasma cells in vitro.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | | | - Bo Yu
- Panorama Research Institute, Sunnyvale, CA
| | | | | | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO; and
| | | | | | | | | | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
20
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
21
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
22
|
Deenick EK, Bier J, Lau A. PI3K Isoforms in B Cells. Curr Top Microbiol Immunol 2022; 436:235-254. [PMID: 36243847 DOI: 10.1007/978-3-031-06566-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) control many aspects of cellular activation and differentiation and play an important role in B cells biology. Three different classes of PI3K have been described, all of which are expressed in B cells. However, it is the class IA PI3Ks, and the p110δ catalytic subunit in particular, which seem to play the most critical role in B cells. Here we discuss the important role that class IA PI3K plays in B cell development, activation and differentiation, as well as examine what is known about the other classes of PI3Ks in B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Julia Bier
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Anthony Lau
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
23
|
Renner K, Neumayer S, Talke Y, Buchtler S, Schmidbauer K, Nimmerjahn F, Lux A, Winter F, Salewski JN, Mack M. B cell modulation with anti-CD79bantibodies ameliorates experimental autoimmune encephalitis in mice. Eur J Immunol 2021; 52:656-668. [PMID: 34962287 DOI: 10.1002/eji.202149523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022]
Abstract
B cells play a major role in the pathogenesis of many autoimmune diseases like multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus. Depletion of B cells with anti-CD20 antibodies is an established therapy for multiple sclerosis. However, total B cell depletion will also affect regulatory B cells that are known to suppress autoimmune responses. In our studies we describe an alternative approach based on targeting of CD79b that induces only partial B cell depletion and achieves therapeutic effects by B cell modulation. Prophylactic and therapeutic treatment with an antibody against CD79b and also a deglycosylated variant of this antibody, lacking effector function like antibody-dependent cellular cytotoxicity or complement activation, significantly reduced the development and progression of experimental autoimmune encephalitis (EAE) in mice. Our data show that modulation of B cells via CD79b is equally effective as almost complete B cell depletion with anti-CD20 antibodies and may constitute an alternative approach to treat multiple sclerosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerstin Renner
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Sophia Neumayer
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Yvonne Talke
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Simone Buchtler
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Kathrin Schmidbauer
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University Erlangen-Nuernberg, Erwin-Rommel-Strasse 3, Erlangen, 91058, Germany
| | - Anja Lux
- Division of Genetics, Department of Biology, University Erlangen-Nuernberg, Erwin-Rommel-Strasse 3, Erlangen, 91058, Germany
| | - Frederike Winter
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany.,Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Jan-Nicklas Salewski
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany.,Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, Regensburg, 93042, Germany
| |
Collapse
|
24
|
Zhang X, Mei D, Wang H, Yu Q, Hong Z, Xu L, Ge J, Han L, Shu J, Liang F, Cai X, Zhu Y, Zhang F, Wang Q, Tai Y, Wang H, Zhang L, Wei W. hIgDFc-Ig inhibits B cell function by regulating the BCR-Syk-Btk-NF-κB signalling pathway in mice with collagen-induced arthritis. Pharmacol Res 2021; 173:105873. [PMID: 34500060 DOI: 10.1016/j.phrs.2021.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease targeting the synovium. Previous studies have found that IgD may be a potential target for the treatment of RA. We designed a new type of fusion protein, hIgDFc-Ig (DG), to block the binding of IgD to IgD receptor (IgDR). In this study, we found that DG has a significant therapeutic effect in mice with collagen-induced arthritis (CIA). DG improved the claw of irritation symptoms in these mice, inhibited the pathological changes in spleen and joint tissues, and had a moderating effect on B cell subsets at different inflammatory stages. Moreover, DG could also decrease the levels of IgA, IgD, IgM and IgG subtypes of immunoglobulin in the serum of mice with CIA. In vitro, B cell antigen receptor (BCR) knockout Ramos cells were established using the CRISPR/Cas9 technology to further study the activation of BCR signalling by IgD and the effect of DG. We found that the therapeutic effect of DG in mice with CIA may be achieved by inhibiting the activation of BCR signalling by IgD, which may be related to the activation of Igβ. In summary, DG may be a potential biological agent for the treatment of RA and it has broad application prospects in the future.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cell Line
- Gene Knockdown Techniques
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/pharmacology
- Immunoglobulins/therapeutic use
- Mice
- Mice, Inbred DBA
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/antagonists & inhibitors
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Syk Kinase/metabolism
- Thymus Gland/drug effects
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Zhongyang Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Le Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinling Shu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yue Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| |
Collapse
|
25
|
Amendt T, Jumaa H. Memory IgM protects endogenous insulin from autoimmune destruction. EMBO J 2021; 40:e107621. [PMID: 34369608 PMCID: PMC8408592 DOI: 10.15252/embj.2020107621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
The enormous diversity of antibody specificities is generated by random rearrangement of immunoglobulin gene segments and is important for general protection against pathogens. Since random rearrangement harbors the risk of producing self-destructive antibodies, it is assumed that autoreactive antibody specificities are removed during early B-cell development leading to a peripheral compartment devoid of autoreactivity. Here, we immunized wild-type mice with insulin as a common self-antigen and monitored diabetes symptoms as a measure for autoimmune disease. Our results show that autoreactive anti-insulin IgM and IgG antibodies associated with autoimmune diabetes can readily be generated in wild-type animals. Surprisingly, recall immunizations induced increased titers of high-affinity insulin-specific IgM, which prevented autoimmune diabetes. We refer to this phenomenon as adaptive tolerance, in which high-affinity memory IgM prevents autoimmune destruction by competing with self-destructive antibodies. Together, this study suggests that B-cell tolerance is not defined by the absolute elimination of autoreactive specificities, as harmful autoantibody responses can be generated in wild-type animals. In contrast, inducible generation of autoantigen-specific affinity-matured IgM acts as a protective mechanism preventing self-destruction.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of ImmunologyUniversity Hospital UlmUlmGermany
| | - Hassan Jumaa
- Institute of ImmunologyUniversity Hospital UlmUlmGermany
| |
Collapse
|
26
|
Metabolic determinants of B-cell selection. Biochem Soc Trans 2021; 49:1467-1478. [PMID: 34196360 DOI: 10.1042/bst20201316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
B-cells are antibody-producing cells of the adaptive immune system. Approximately 75% of all newly generated B-cells in the bone marrow are autoreactive and express potentially harmful autoantibodies. To prevent autoimmune disease, the immune system has evolved a powerful mechanism to eliminate autoreactive B-cells, termed negative B-cell selection. While designed to remove autoreactive clones during early B-cell development, our laboratory recently discovered that transformed B-cells in leukemia and lymphoma are also subject to negative selection. Indeed, besides the risk of developing autoimmune disease, B-cells are inherently prone to malignant transformation: to produce high-affinity antibodies, B-cells undergo multiple rounds of somatic immunoglobulin gene recombination and hypermutation. Reflecting high frequencies of DNA-breaks, adaptive immune protection by B-cells comes with a dramatically increased risk of development of leukemia and lymphoma. Of note, B-cells exist under conditions of chronic restriction of energy metabolism. Here we discuss how these metabolic gatekeeper functions during B-cell development provide a common mechanism for the removal of autoreactive and premalignant B-cells to safeguard against both autoimmune diseases and B-cell malignancies.
Collapse
|
27
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
29
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
30
|
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front Immunol 2020; 11:592329. [PMID: 33193438 PMCID: PMC7641642 DOI: 10.3389/fimmu.2020.592329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of “checkpoint blockade” immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography–mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.
Collapse
Affiliation(s)
- Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Sheraden
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vanessa L Ott
- Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - Isaac T W Harley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| |
Collapse
|
31
|
Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol 2020; 67:42-49. [PMID: 32916645 DOI: 10.1016/j.coi.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
In bone marrow VDJ-recombination continuously generates original repertoires of immature B cells expressing IgM-B cell receptor (BcR), in which each cell recognizes the wide variety of self and non-self antigens with an individually different spectrum of avidities. High avidity self-reactive B cells try to edit their BcRs by secondary or multiple VL-rearrangements to JL-rearrangements. If they do not manage to change their self reactivity, they are deleted by apoptosis. Low avidity self-reactive B cells are anergized, while B cells with no avidity to self are ignored. A rheostat crosslinking antigen-binding BcRs, self antigen complexed with pentameric IgM and Fcμ-receptor monitors high, low or no binding. PI3K and PTEN are the effectors of this self antigen-sensing device. In mature B cells this rheostat continues to function in the activation of resting B cells by foreign antigens which crosslink BcR, antigen and pentameric IgM with Fcμ-receptors.
Collapse
Affiliation(s)
- Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
32
|
Lau A, Avery DT, Jackson K, Lenthall H, Volpi S, Brigden H, Russell AJ, Bier J, Reed JH, Smart JM, Cole T, Choo S, Gray PE, Berglund LJ, Hsu P, Wong M, O'Sullivan M, Boztug K, Meyts I, Uzel G, Notarangelo LD, Brink R, Goodnow CC, Tangye SG, Deenick EK. Activated PI3Kδ breaches multiple B cell tolerance checkpoints and causes autoantibody production. J Exp Med 2020; 217:132760. [PMID: 31841125 PMCID: PMC7041712 DOI: 10.1084/jem.20191336] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
In patients, gain-of-function (GOF) mutations in PIK3CD break tolerance, causing highly penetrant secretion of autoreactive IgM. Mouse models reveal that Pik3cd GOF subverts the response to self-antigen, preventing the induction of anergy and instead stimulating plasmablast and GC formation. Antibody-mediated autoimmune diseases are a major health burden. However, our understanding of how self-reactive B cells escape self-tolerance checkpoints to secrete pathogenic autoantibodies remains incomplete. Here, we demonstrate that patients with monogenic immune dysregulation caused by gain-of-function mutations in PIK3CD, encoding the p110δ catalytic subunit of phosphoinositide 3-kinase (PI3K), have highly penetrant secretion of autoreactive IgM antibodies. In mice with the corresponding heterozygous Pik3cd activating mutation, self-reactive B cells exhibit a cell-autonomous subversion of their response to self-antigen: instead of becoming tolerized and repressed from secreting autoantibody, Pik3cd gain-of-function B cells are activated by self-antigen to form plasmablasts that secrete high titers of germline-encoded IgM autoantibody and hypermutating germinal center B cells. However, within the germinal center, peripheral tolerance was still enforced, and there was selection against B cells with high affinity for self-antigen. These data show that the strength of PI3K signaling is a key regulator of pregerminal center B cell self-tolerance and thus represents a druggable pathway to treat antibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Danielle T Avery
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Katherine Jackson
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Helen Lenthall
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini and Dipartimento di Neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Henry Brigden
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Amanda J Russell
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanne H Reed
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanne M Smart
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Paul E Gray
- School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Immunopathology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Michael O'Sullivan
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Western Australia, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Robert Brink
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia
| | - Christopher C Goodnow
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia
| | - Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, Australia
| |
Collapse
|
33
|
Ottens K, Schneider J, Kane LP, Satterthwaite AB. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2100-2108. [PMID: 32887751 DOI: 10.4049/jimmunol.2000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
PI3K plays multiple roles throughout the life of a B cell. As such, its signaling is tightly regulated. The importance of this is illustrated by the fact that both loss- and gain-of-function mutations in PI3K can cause immunodeficiency in humans. PIK3IP1, also known as TrIP, is a transmembrane protein that has been shown to inhibit PI3K in T cells. Results from the ImmGen Consortium indicate that PIK3IP1 expression fluctuates throughout B cell development in a manner inversely correlated with PI3K activity; however, its role in B cells is poorly understood. In this study, we define the consequences of B cell-specific deletion of PIK3IP1. B cell development, basal Ig levels, and T-independent responses were unaffected by loss of PIK3IP1. However, there was a significant delay in the production of IgG during T-dependent responses, and secondary responses were impaired. This is likely due to a role for PIK3IP1 in the extrafollicular response because germinal center formation and affinity maturation were normal, and PIK3IP1 is not appreciably expressed in germinal center B cells. Consistent with a role early in the response, PIK3IP1 was downregulated at late time points after B cell activation, in a manner dependent on PI3K. Increased activation of the PI3K pathway was observed in PIK3IP1-deficient B cells in response to engagement of both the BCR and CD40 or strong cross-linking of CD40 alone. Taken together, these observations suggest that PIK3IP1 promotes extrafollicular responses by limiting PI3K signaling during initial interactions between B and T cells.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jalyn Schneider
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Although type 1 diabetes (T1D) is characterized by destruction of the pancreatic beta cells by self-reactive T cells, it has become increasingly evident that B cells also play a major role in disease development, likely functioning as antigen-presenting cells. Here we review the biology of islet antigen-reactive B cells and their participation in autoimmune diabetes. RECENT FINDINGS Relative to late onset, individuals who develop T1D at an early age display increased accumulation of insulin-reactive B cells in islets. This B-cell signature is also associated with rapid progression of disease and responsiveness to B-cell depletion therapy. Also suggestive of B-cell participation in disease is loss of anergy in high-affinity insulin-reactive B cells. Importantly, loss of anergy is seen in patient's healthy first-degree relatives carrying certain T1D risk alleles, suggesting a role early in disease development. SUMMARY Recent studies indicate that islet-reactive B cells may play a pathogenic role very early in T1D development in young patients, and suggest utility of therapies that target these cells.
Collapse
Affiliation(s)
- Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
35
|
He S, Zheng G, Yang X, Dong J, Zhou D, Venugopal N, Yao Y, Cheng Z. Avian leukosis virus subgroup J induces B cell anergy mediated by Lyn inhibited BCR signal transduction. Vet Microbiol 2020; 247:108781. [PMID: 32768227 DOI: 10.1016/j.vetmic.2020.108781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
Immune tolerance induced by avian leukosis virus subgroup J (ALV-J) is a prerequisite for tumorigenesis. Although we had reported that B cell anergy induced by ALV-J was the main reason for immune tolerance, the molecular mechanism still remains unclear. Here, we found SU protein of ALV-J interacted with tyrosine kinase Lyn (a key protein in BCR signaling pathway) by confocal laser scanning microscopy and co-immunoprecipitation test, which suggested that Lyn might play an important role in B cell anergy induced by ALV-J. Correspondingly, the mRNA and protein level of Lyn was significantly up-regulated in B cells after ALV-J infection. Subsequently, the phosphorylated protein levels of Lyn at Tyr507 site were significantly up-regulated in ALV-J-infected B cells after BCR signal activation, but the phosphorylated protein level of Syk (a direct substrate of Lyn) at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were significantly down-regulated. Interestingly, the phosphorylated protein level of Syk at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were both significantly retrieved after the shLyn treatment in B cells infected by ALV-J. In summary, these results indicated that ALV-J activated the negative regulatory effect of phosphorylated Lyn protein at 507 site in BCR signal transduction pathway and then mediated B cell anergy, which will provide a new insight for revealing the pathogenesis of immune tolerance induced by ALV-J.
Collapse
Affiliation(s)
- Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China; College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Gaoying Zheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Xiaoxia Yang
- Hospital of Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Jianguo Dong
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Nair Venugopal
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
36
|
Pauls SD, Hou S, Marshall AJ. SHIP interacts with adaptor protein Nck and restricts actin turnover in B cells. Biochem Biophys Res Commun 2020; 527:207-212. [PMID: 32446368 DOI: 10.1016/j.bbrc.2020.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
Abstract
SH2 domain-containing inositol 5'-phosphatase (SHIP) has critical functions in regulating signal transduction. In additional to its lipid phosphatase activity, SHIP engages in multiple protein-protein interactions, which can serve to localize either SHIP or its binding partners to a particular subcellular domain. Knock-out and knock-down studies have elucidated that SHIP negatively regulates the accumulation of F-actin in leukocytes, usually resulting in inhibition of actin dependent cellular activities such as spreading and migration. Here, we demonstrate that overexpression of SHIP inhibits B cell antigen receptor (BCR)-mediated cell spreading in murine and human B cell lines. B cell stimulation via the BCR or pervanadate induces an interaction between SHIP and Nck, an adaptor protein known to promote actin polymerization. Using a fluorescence recovery after photobleaching (FRAP) assay, we demonstrate that overexpression of SHIP slows F-actin dynamics in BCR-stimulated B cells and this can be overcome by co-overexpression of Nck. Our data supports a role for SHIP in limiting actin turnover and suggests it may do so in part by sequestering Nck.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
37
|
Lemm EA, Valle-Argos B, Smith LD, Richter J, Gebreselassie Y, Carter MJ, Karolova J, Svaton M, Helman K, Weston-Bell NJ, Karydis L, Williamson CT, Lenz G, Pettigrew J, Harwig C, Stevenson FK, Cragg M, Forconi F, Steele AJ, Cross J, Mackenzie L, Klener P, Packham G. Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells. Clin Cancer Res 2020; 26:1700-1711. [PMID: 31831562 PMCID: PMC7124891 DOI: 10.1158/1078-0432.ccr-19-2202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Enzyme Activators/pharmacology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Sesquiterpenes/pharmacology
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Elizabeth A Lemm
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lindsay D Smith
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Johanna Richter
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yohannes Gebreselassie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Matthew J Carter
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jana Karolova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Michael Svaton
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nicola J Weston-Bell
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Laura Karydis
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chris T Williamson
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Jeremy Pettigrew
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark Cragg
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer Cross
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Lloyd Mackenzie
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
38
|
|
39
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
40
|
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
41
|
Excessive CD11c +Tbet + B cells promote aberrant T FH differentiation and affinity-based germinal center selection in lupus. Proc Natl Acad Sci U S A 2019; 116:18550-18560. [PMID: 31451659 DOI: 10.1073/pnas.1901340116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response-a process critical for antibody affinity maturation-is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+ age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ ABCs and deregulated TFH cell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ ABC differentiation, and blocking CD11c+Tbet+ ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFH cell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.
Collapse
|
42
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
43
|
Velappan N, Mahajan A, Naranjo L, Velappan P, Andrews N, Tiee N, Chakraborti S, Hemez C, Gaiotto T, Wilson B, Bradbury A. Selection and characterization of FcεRI phospho-ITAM specific antibodies. MAbs 2019; 11:1206-1218. [PMID: 31311408 PMCID: PMC6748597 DOI: 10.1080/19420862.2019.1632113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications, such as the phosphorylation of tyrosines, are often the initiation step for intracellular signaling cascades. Pan-reactive antibodies against modified amino acids (e.g., anti-phosphotyrosine), which are often used to assay these changes, require isolation of the specific protein prior to analysis and do not identify the specific residue that has been modified (in the case that multiple amino acids have been modified). Phosphorylation state-specific antibodies (PSSAs) developed to recognize post-translational modifications within a specific amino acid sequence can be used to study the timeline of modifications during a signal cascade. We used the FcϵRI receptor as a model system to develop and characterize high-affinity PSSAs using phage and yeast display technologies. We selected three β-subunit antibodies that recognized: 1) phosphorylation of tyrosines Y218 or Y224; 2) phosphorylation of the Y228 tyrosine; and 3) phosphorylation of all three tyrosines. We used these antibodies to study the receptor activation timeline of FcϵR1 in rat basophilic leukemia cells (RBL-2H3) upon stimulation with DNP24-BSA. We also selected an antibody recognizing the N-terminal phosphorylation site of the γ-subunit (Y65) of the receptor and applied this antibody to evaluate receptor activation. Recognition patterns of these antibodies show different timelines for phosphorylation of tyrosines in both β and γ subunits. Our methodology provides a strategy to select antibodies specific to post-translational modifications and provides new reagents to study mast cell activation by the high-affinity IgE receptor, FcϵRI.
Collapse
Affiliation(s)
- Nileena Velappan
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Avanika Mahajan
- Department of Pathology, University of New Mexico School of Medicine , Albuquerque , NM , USA
| | | | - Priyanka Velappan
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Nasim Andrews
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Nicholas Tiee
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Subhendu Chakraborti
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Colin Hemez
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Tiziano Gaiotto
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Bridget Wilson
- Department of Pathology, University of New Mexico School of Medicine , Albuquerque , NM , USA
| | | |
Collapse
|
44
|
Franks SE, Getahun A, Cambier JC. A Precision B Cell-Targeted Therapeutic Approach to Autoimmunity Caused by Phosphatidylinositol 3-Kinase Pathway Dysregulation. THE JOURNAL OF IMMUNOLOGY 2019; 202:3381-3393. [PMID: 31076529 DOI: 10.4049/jimmunol.1801394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/08/2019] [Indexed: 12/17/2022]
Abstract
The inositol lipid phosphatases PTEN and SHIP-1 play a crucial role in maintaining B cell anergy and are reduced in expression in B cells from systemic lupus erythematosus and type 1 diabetes patients, consequent to aberrant regulation by miRNA-7 and 155. With an eye toward eventual use in precision medicine therapeutic approaches in autoimmunity, we explored the ability of p110δ inhibition to compensate for PI3K pathway dysregulation in mouse models of autoimmunity. Low dosages of the p110δ inhibitor idelalisib, which spare the ability to mount an immune response to exogenous immunogens, are able to block the development of autoimmunity driven by compromised PI3K pathway regulation resultant from acutely induced B cell-targeted haploinsufficiency of PTEN and SHIP-1. These conditions do not block autoimmunity driven by B cell loss of the regulatory tyrosine phosphatase SHP-1. Finally, we show that B cells in NOD mice express reduced PTEN, and low-dosage p110δ inhibitor therapy blocks disease progression in this model of type 1 diabetes. These studies may aid in the development of precision treatments that act by enforcing PI3K pathway regulation in patients carrying specific risk alleles.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
45
|
The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat Immunol 2019; 20:736-746. [PMID: 31011187 PMCID: PMC6724213 DOI: 10.1038/s41590-019-0376-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Compared to naïve B cells (NBCs), both B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. The mechanism for BCR reprogramming in GCBCs remains unknown. We describe a GC-specific, AKT kinase-driven negative feedback loop that attenuates BCR signaling. A mass spectrometry proteomic approach revealed that AKT activity was retargeted in GCBCs compared to NBCs. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn due to GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN, which retuned phosphatidylinositol-3-OH kinase (PI3K) signals. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. Phosphorylation results in markedly increased enzymatic activity of these proteins, creating a negative-feedback loop that dampens upstream BCR signaling. Inhibiting AKT substantially enhanced activation of BCR proximal kinase LYN as well as downstream BCR signaling molecules in GCBCs, establishing the relevance of this pathway.
Collapse
|
46
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
47
|
Smith MJ, Ford BR, Rihanek M, Coleman BM, Getahun A, Sarapura VD, Gottlieb PA, Cambier JC. Elevated PTEN expression maintains anergy in human B cells and reveals unexpectedly high repertoire autoreactivity. JCI Insight 2019; 4:e123384. [PMID: 30728334 PMCID: PMC6413793 DOI: 10.1172/jci.insight.123384] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
It has been reported that 2.5%-30% of human peripheral CD27- B cells are autoreactive and anergic based on unresponsiveness to antigen receptor (BCR) stimulation and autoreactivity of cloned and expressed BCR. The molecular mechanisms that maintain this unresponsiveness are unknown. Here, we showed that in humans anergy is maintained by elevated expression of PTEN, a phosphatidylinositol 3,4,5P-3-phosphatase. Upregulation of PTEN was associated with reduced expression of microRNAs that control its expression. Pharmacologic inhibition of PTEN lead to significant restoration of responsiveness. Consistent with a role in conferring risk of autoimmunity, B cells from type 1 diabetics and autoimmune thyroid disease patients expressed reduced PTEN. Unexpectedly, in healthy individuals PTEN expression was elevated in on average 40% of CD27- B cells, with levels gradually decreasing as IgM levels increase. Our findings suggest that a much higher proportion of the peripheral repertoire is autoreactive than previously thought and that B cells upregulate PTEN in a manner that is proportional to the recognition of autoantigens of increasing avidity, thus tuning BCR signaling to prevent development of autoimmunity while providing a reservoir of cells that can be readily activated to respond when needed.
Collapse
Affiliation(s)
- Mia J. Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - B. Rhodes Ford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Virginia D. Sarapura
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
48
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
49
|
Tsantikos E, Lau M, Castelino CM, Maxwell MJ, Passey SL, Hansen MJ, McGregor NE, Sims NA, Steinfort DP, Irving LB, Anderson GP, Hibbs ML. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J Clin Invest 2018; 128:2406-2418. [PMID: 29708507 DOI: 10.1172/jci98224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.,Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra Mn Castelino
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mhairi J Maxwell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Samantha L Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle J Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Louis B Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Franks SE, Cambier JC. Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Front Immunol 2018; 9:665. [PMID: 29681901 PMCID: PMC5897502 DOI: 10.3389/fimmu.2018.00665] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
B cell antigen receptor (BCR) signaling is a tightly regulated process governed by both positive and negative mediators/regulators to ensure appropriate responses to exogenous and autologous antigens. Upon naïve B cell recognition of antigen CD79 [the immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling subunit of the BCR] is phosphorylated and recruits Src and Syk family kinases that then phosphorylate proximal intermediaries linked to downstream activating signaling circuitry. This plasma membrane localized signalosome activates PI3K leading to generation of PIP3 critical for membrane localization and activation of plecktrin homology domain-containing effectors. Conversely, in anergic B cells, chronic antigen stimulation drives biased monophosphorylation of CD79 ITAMs leading to recruitment of Lyn, but not Syk, which docks only to bi-phosphorylated ITAMS. In this context, Lyn appears to function primarily as a driver of inhibitory signaling pathways promoting the inhibition of the PI3K pathway by inositol phosphatases, SHIP-1 and PTEN, which hydrolyze PIP3 to PIP2. Lyn may also exert negative regulation of signaling through recruitment of SHP-1, a tyrosine phosphatase that dephosphorylates activating signaling molecules. Alleles of genes that encode or regulate expression of components of this axis, including SHIP-1, SHP-1, Csk/PTPn22, and Lyn, have been shown to confer risk of autoimmunity. This review will discuss functional interplay of components of this pathway and the impact of risk alleles on its function.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| |
Collapse
|