1
|
Sala E, Nelli M, Laura C, Di Lucia P, Beccaria CG, Bono EB, Mangione M, Marotta D, Sperto V, Grillo M, Giustini L, Tosi F, Nie J, Kim D, Furiato G, Malpighi C, Consolo E, Becher B, David E, Cohen M, Giladi A, Amit I, Bosselut R, Guidotti LG, Iannacone M, Kuka M. T-cell-derived IFN-γ suppresses T follicular helper cell differentiation and antibody responses. EMBO J 2025; 44:2400-2423. [PMID: 40169810 PMCID: PMC12048687 DOI: 10.1038/s44318-025-00414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
CD4+ T cells play a critical role in antiviral humoral and cellular immune responses. We have previously reported that subcutaneous lymphocytic choriomeningitis virus (s.c. LCMV) infection is characterized by a stark compartmentalization of CD4+ T cells, leading to strong TH1 cell polarization but virtually absent T follicular helper (TFH) cells, key drivers of humoral immunity. Here, we investigate the mechanisms responsible for this impaired TFH differentiation. We show that T-bet+ cells induced by LCMV infection encompass a TH1 cell subset expressing granzyme B (GzmB), and a Tcf-1+ cell subset that retains the potential for TFH differentiation without expressing mature TFH markers. Notably, IFN-γ blockade enables full differentiation of Tcf-1+ cells into TFH cells, formation of germinal centers, and increased antibody production. Suppression of TFH cells by IFN-γ is not directly mediated by CD4+ T cells but rather involves another cell type, likely dendritic cells (DCs). Our study provides novel insights into the mechanisms underlying early CD4+ T-cell polarization and humoral responses to viruses, with the potential to facilitate the development of effective vaccine strategies.
Collapse
Affiliation(s)
- Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Nelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Laura
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Di Lucia
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristian Gabriel Beccaria
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Mangione
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Marotta
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Sperto
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Tosi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daehong Kim
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Giuliana Furiato
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Consolo
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca G Guidotti
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Leão AC, Villar MJ, Adhikari R, Poveda C, Versteeg L, Almeida G, Hotez PJ, Bottazzi ME, Jones KM. Different responses involving Tfh cells delay parasite-specific antibody production in Trypanosoma cruzi acute experimental models. Front Immunol 2025; 16:1487317. [PMID: 40356908 PMCID: PMC12066522 DOI: 10.3389/fimmu.2025.1487317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Chagas disease (CD), caused by the parasite Trypanosoma cruzi, affects millions globally. Despite treatment options in the acute phase, most infections progress to a chronic indeterminate form or develop severe cardiac/gastrointestinal complications. Understanding the immune response is crucial for the development of vaccines and more efficient drugs for the disease control. Methods This work investigates the immune response to T. cruzi H1 K68 strain infection in female BALB/c and C57BL/6 mice to characterize differences in Tfh and B cell responses that may be involved in the poor parasite-specific antibody production during acute infection. For this, mice were euthanized 14, 28, and 49 days after infection, and splenic T and B cell populations were evaluated by flow cytometry. Results BALB/c mice exhibited a strong Th2-biased response with a massive expansion of classic Tfh cells and GC B cells, potentially linked with polyclonal B cell activation and hypergammaglobulinemia, but not with efficient parasite clearance. C57BL/6 mice displayed a Th1-skewed response with a population of "Th1-like Tfh" cells expressing IFN-γ and CXCR5 associated with lower parasite burden and more focused antibody response, including parasitespecific IgG2c during early acute infection. Discussion These findings suggest that these mouse models develop different immune responses mediated by Tfh cells, which are crucial for B cell activation and antibody production. The massive expansion of Tfh cells in BALB/c mice might lead to unspecific antibody production due to excessive B cell activation. Conversely, C57BL/6 mice exhibit a "Th1-like Tfh" response lacking classic Tfh cells, potentially explaining their weak parasite-specific antibody production throughout the acute infection. Overall, this study provides for the first time insights into the complex interplay between Tfh cells and antibody production during T. cruzi infection, suggesting potential targets for therapeutic intervention in CD.
Collapse
Affiliation(s)
- Ana Carolina Leão
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Maria Jose Villar
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Rakesh Adhikari
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Leroy Versteeg
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gregório Almeida
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter J. Hotez
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| | - Kathryn M. Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Lande R, Mennella A, Palazzo R, Favaro R, Facheris P, Mancini F, Ocone G, Botti E, Falchi M, Pietraforte I, Conrad C, Bianchi L, Costanzo A, Frasca L. The nature of the post-translational modifications of the autoantigen LL37 influences the autoreactive T-helper cell phenotype in psoriasis. Front Immunol 2025; 16:1546422. [PMID: 40270954 PMCID: PMC12014627 DOI: 10.3389/fimmu.2025.1546422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Psoriasis is a chronic skin disease evolving to psoriatic arthritis (PsA) in 30% of cases. LL37 is a psoriasis T-cell autoantigen and, in complex with self-DNA/RNA, a trigger of type I interferon (IFN-I) and pro-inflammatory factors in dendritic cells. LL37 can undergo irreversible post-translational modifications (PTMs), namely, citrullination and carbamylation, which are linked to a neutrophil-dominated inflammation. Notably, in PsA, carbamylated and citrullinated LL37 (carb-LL37 and cit-LL37) become antibody targets. Here, we analyze the presence of, and the T-cell and antibody reactivity to, cit-LL37 and carb-LL37, to address the occurrence and significance of these PTMs in psoriasis. The presence of modified LL37 in skin biopsies was assessed by laser scanner confocal microscopy (LSCM); T-cell responses to modified LL37 were assessed by Ki67 assay and intracellular cytokine staining using flow cytometry; serum autoantibodies to the same antigens were tested by enzyme-linked immunosorbent assay (ELISA). The results show that native and modified LL37 (both carb-LL37 and cit-LL37) are detectable in psoriatic skin, but not in healthy donors' (HD) skin, where they colocalize with neutrophil infiltrates and neutrophil extracellular trap formation (NETosis). Psoriatic T cells and antibodies recognize native LL37, cit-LL37, and carb-LL37, but only CD4-T-cell responses to native LL37 and carb-LL37 correlate with psoriasis area severity index (PASI), whereas CD8-T-cell responses to the same peptides correlate with PASI in the HLA-Cw6*02-positive subgroup. CD4-T cells specific for modified LL37 express heterogeneous T-helper (Th) phenotypes: native/carb-LL37-specific T cells mainly manifest a Th1/Th17-like phenotype, whereas cit-LL37-specific T cells resemble Th-follicular (Thf)-like cells. In vitro T-cell polarization experiments suggest that distinct pro-inflammatory effects of LL37 and modified LL37, in complex with self-nucleic acids, may concur to these phenomena. This is the first evidence in psoriasis that PTMs of an autoantigen with innate immune cell stimulatory ability dictate autoreactive Th-cell polarization. These data, obtained using LL37 as a model autoantigen, indicate that citrullination and carbamylation pathways may play a role in the psoriasis course, generating epitopes to which immunological tolerance does not exist and potentially concur to PsA development.
Collapse
Affiliation(s)
- Roberto Lande
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Anna Mennella
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Rebecca Favaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paola Facheris
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Flavia Mancini
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Giuseppe Ocone
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Falchi
- Istituto superiore di Sanità, National AIDS Center, Rome, Italy
| | - Immacolata Pietraforte
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, Rome, Italy
| | - Curdin Conrad
- Department of Dermatology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Loredana Frasca
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| |
Collapse
|
4
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Shao P, Antonetti RM, Arkee T, Hornick EL, Xue HH, Bishop GA, Butler NS. TRAF3 is critical for initial T follicular helper cell specification via coordination of the IL-6R/IL-2R-BCL6 signaling nexus. Sci Immunol 2025; 10:eadr0517. [PMID: 39951546 DOI: 10.1126/sciimmunol.adr0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
CD4+ T follicular helper (TFH) cells are essential for orchestrating robust humoral immunity, yet the signals that initiate TFH cell differentiation are not fully understood. We identified that the adapter protein TRAF3 was required for TFH cell differentiation and function during systemic inflammatory infections. Loss of CD4+ T cell-intrinsic TRAF3 impaired chromatin remodeling and transcriptional programming essential for TFH cell initiation and instead augmented TH1 development and function. TRAF3-deficient CD4+ T cells exhibited altered interleukin-6 (IL-6) and IL-2 responsiveness, which were coupled to failures in BCL6 expression. Enforced expression of either IL-6 receptor or BCL6 or blockade of IL-2 signaling was sufficient to rescue TFH cell differentiation. Human CD4+ T cells lacking TRAF3 exhibited impaired TFH polarization, supporting a conserved mechanism by which TRAF3 regulates CD4+ T cell fate determination. Thus, TRAF3 functions at the nexus of cytokine, transcriptional, and epigenetic nodes that promote the TFH cell specification during infection.
Collapse
Affiliation(s)
- Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Regina M Antonetti
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Tina Arkee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Hai Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Veterans Affairs Medical Center, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Liao Z, Su C, Li J, Liu J. Causal association of metformin treatment with diverse immune-mediated inflammatory diseases: A Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e41400. [PMID: 39928815 PMCID: PMC11813035 DOI: 10.1097/md.0000000000041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/23/2024] [Accepted: 01/12/2025] [Indexed: 02/12/2025] Open
Abstract
Metformin has been shown to possess immune-modulating and anti-inflammatory effects in various animal and clinical studies. It is believed to be effective in treating some immune-mediated inflammatory diseases (IMIDs). However, there remains ongoing debate regarding the extent to which metformin can reduce the risk of developing IMIDs. We used the data from genome-wide association studies to explore the causal relationship between metformin treatment and some IMIDs through the Mendelian randomization (MR) analysis. Additionally, sensitivity analyses were performed using the Cochran Q-test, MR-PRESSO and "leave-one-out" to confirm the robustness of our conclusions. The MR analysis indicated that metformin treatment could reduce the risk of rheumatoid arthritis (RA) (OR = 0.018, 95% CI: 1.33 × 10-3-0.233, P = .002), multiple sclerosis (MS) (OR = 0.966, 95% CI: 0.936-0.997, P = .030) and primary sclerosing cholangitis (PSC) (OR = 6.82 × 10-4, 95% CI: 7.83 × 10-6-5.93 × 10-2, P = .001). But metformin treatment is not significantly associated with the risk of Crohn disease (OR = 0.994, 95% CI: 0.979-1.009, P = .431), ulcerative colitis (UC) (OR = 0.987, 95% CI: 0.965-1.009, P = .234), systemic lupus erythematosus (SLE) (OR = 164.373, 95% CI: 0.158-1.71 × 105, P = .150), autoimmune hepatitis (AIH) (OR = 2.909, 95% CI: 4.58 × 10-3-1.85 × 103, P = .746) and primary biliary cholangitis (PBC) (OR = 0.055, 95% CI: 1.44 × 10-3-2.112, P = .119). Due to the heterogeneity of the data from UC, SLE, MS, and PBC, we adjusted them. After adjustment, there is no change in the results for UC, SLE, MS, and PBC. The findings of this study support metformin treatment may reduce the risk of RA, MS, and PSC.
Collapse
Affiliation(s)
- Zheng Liao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Chenguang Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jinlong Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
7
|
Elshikha A, Ge Y, Choi SC, Park YP, Padilla L, Zhu Y, Clapp WL, Sobel ES, Mohamadzadeh M, Morel L. Glycolysis inhibition functionally reprograms T follicular helper cells and reverses lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618563. [PMID: 39464003 PMCID: PMC11507846 DOI: 10.1101/2024.10.15.618563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the production of pathogenic autoantibodies depends on T follicular helper (T FH ) cells. This study was designed to investigate the mechanisms by which inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reduces the expansion of T FH cells and the associated autoantibody production in lupus-prone mice. Integrated cellular, transcriptomic, epigenetic and metabolic analyses showed that 2DG reversed the enhanced cell expansion and effector functions, as well as mitochondrial and lysosomal defects in lupus T FH cells, which include an increased chaperone-mediated autophagy induced by TLR7 activation. Importantly, adoptive transfer of 2DG-reprogrammed T FH cells protected lupus-prone mice from disease progression. Orthologs of genes responsive to 2DG in murine lupus T FH cells were overexpressed in the T FH cells of SLE patients, suggesting a therapeutic potential of targeting glycolysis to eliminate aberrant T FH cells and curb the production of autoantibodies inducing tissue damage.
Collapse
|
8
|
Moysi E, Sharma AA, O’Dell S, Georgakis S, Del Rio Estrada PM, Torres-Ruiz F, Navarro MG, Villalobos YAL, Rios SA, Reyes-Teran G, Beddall MH, Ko SH, Belinky F, Orfanakis M, de Leval L, Enriquez AB, Buckner CM, Moir S, Doria-Rose N, Boritz E, Mascola JR, Sekaly RP, Koup RA, Petrovas C. Neutralization activity in chronic HIV infection is characterized by a distinct programming of follicular helper CD4 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605954. [PMID: 39131331 PMCID: PMC11312598 DOI: 10.1101/2024.07.31.605954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sijy O’Dell
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Mauricio González Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico, Subdireccion de Otorrinolaringologia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”
| | - Yara Andrea Luna Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Santiago Avila Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Margaret H. Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Sung-Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana B. Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Nicole Doria-Rose
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- ModeX Therapeutics, Weston, MA, USA
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Liu C, Zeng X, Xiong Z, Bahabayi A, Hasimu A, Liu T, Zheng M, Ren L, Alimu X, Lu S. Id1 expression in CD4 T cells promotes differentiation and function of follicular helper T cells and upregulation of related functional molecules. Immunology 2024; 172:408-419. [PMID: 38501859 DOI: 10.1111/imm.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
11
|
Hu L, Xu Y, Zhang QS, Chen XY, Li C, Chen R, Hou GL, Lv Z, Xiao TY, Zou J, Wang HQ, Li JH. IL-6/STAT3 axis is hijacked by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109564. [PMID: 38631439 DOI: 10.1016/j.fsi.2024.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.
Collapse
Affiliation(s)
- Liang Hu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Qiu-Shi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao-Ying Chen
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Chun Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Chen
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Guo-Li Hou
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Zhao Lv
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Tiao-Yi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong-Quan Wang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun-Hua Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Nasa Y, Satake A, Tsuji R, Saito R, Tsubokura Y, Yoshimura H, Ito T. Concomitant use of interleukin-2 and tacrolimus suppresses follicular helper T cell proportion and exerts therapeutic effect against lupus nephritis in systemic lupus erythematosus-like chronic graft versus host disease. Front Immunol 2024; 15:1326066. [PMID: 38665907 PMCID: PMC11043470 DOI: 10.3389/fimmu.2024.1326066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Defective interleukin-2 (IL-2) production contributes to immune system imbalance in patients with systemic erythematosus lupus (SLE). Recent clinical studies suggested that low-dose IL-2 treatment is beneficial for SLE and the therapeutic effect is associated with regulatory T cell (Treg) expansion. Pharmacological calcineurin inhibition induces a reduction in the number of Tregs because they require stimulation of T cell receptor signaling and IL-2 for optimal proliferation. However, the activation of T cell receptor signaling is partially dispensable for the expansion of Tregs, but not for that of conventional T cells if IL-2 is present. Aim We examined whether addition of IL-2 restores the Treg proportion even with concurrent use of a calcineurin inhibitor and if the follicular helper T cell (Tfh) proportion is reduced in an SLE-like murine chronic graft versus host disease model. Methods Using a parent-into-F1 model, we investigated the effect of IL-2 plus tacrolimus on Treg and Tfh proportions and the therapeutic effect. Results Treatment with a combination of IL-2 and tacrolimus significantly delayed the initiation of proteinuria and decreased the urinary protein concentration, whereas tacrolimus or IL-2 monotherapy did not significantly attenuate proteinuria. Phosphorylation of signal transducer and activator of transcription 3, a positive regulator of Tfh differentiation, was reduced by combination treatment, whereas phosphorylation of signal transducer and activator of transcription 5, a negative regulator, was not reduced. Conclusion Addition of calcineurin inhibitors as adjunct agents may be beneficial for IL-2-based treatment of lupus nephritis.
Collapse
Affiliation(s)
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
14
|
Yang Q, Zhou L, Tan Z, Zhu Y, Mo L, Fang C, Li J, Chen C, Luo Y, Wei H, Yin W, Huang J. TLR7 enhancing follicular helper T (Tfh) cells response in C57BL/6 mice infected with Plasmodium yoelii NSM TLR7 mediated Tfh cells in P. yoelii infected mice. Immunology 2024; 171:413-427. [PMID: 38150744 DOI: 10.1111/imm.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.
Collapse
Affiliation(s)
- Quan Yang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lu Zhou
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chen Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ying Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haixia Wei
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Ding K, Li H, Tai F, Duan J, Wang Q, Zhai R, Fu H, Ge C, Zheng X. Unraveling the Role of RNase L Knockout in Alleviating Immune Response Activation in Mice Bone Marrow after Irradiation. Int J Mol Sci 2024; 25:2722. [PMID: 38473966 PMCID: PMC10932110 DOI: 10.3390/ijms25052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ionizing radiation (IR) induces severe hematopoietic injury by causing DNA and RNA damage as well as activating the immune responses, necessitating the development of effective therapeutic strategies. Ribonuclease L (RNase L) as an innate immune response pathway is triggered by exogenous and endogenous abnormal dsRNA under viral infection and dyshomeostasis, thereby activating the immune responses. Thus, we investigated the effect of RNase L on irradiation-induced bone marrow damage using RNase L knockout (RNase L-/-) mice. Phenotypic analysis revealed that RNase L knockout mitigates irradiation-induced injury in the bone marrow. Further investigation into the mechanism of RNase L by RNA-seq, qRT-PCR, and CBA analysis demonstrated that RNase L deficiency counteracts the upregulation of genes related to immune responses induced by irradiation, including cytokines and interferon-stimulated genes. Moreover, RNase L deficiency inhibits the increased levels of immunoglobulins in serum induced by irradiation. These findings indicate that RNase L plays a role in the immune response induced by irradiation in the bone marrow. This study further enhances our understanding of the biological functions of RNase L in the immune response induced by irradiation and offers a novel approach for managing irradiation-induced bone marrow injury through the regulation of RNase L activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changhui Ge
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China; (K.D.); (H.L.); (F.T.); (J.D.); (Q.W.); (R.Z.); (H.F.)
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China; (K.D.); (H.L.); (F.T.); (J.D.); (Q.W.); (R.Z.); (H.F.)
| |
Collapse
|
16
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
17
|
Pattnaik A, Dhalech AH, Condotta SA, Corn C, Richer MJ, Snell LM, Robinson CM. A viral-specific CD4 + T cell response protects female mice from Coxsackievirus B3 infection. Front Immunol 2024; 14:1327384. [PMID: 38274806 PMCID: PMC10808549 DOI: 10.3389/fimmu.2023.1327384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background Biological sex plays an integral role in the immune response to various pathogens. The underlying basis for these sex differences is still not well defined. Here, we show that Coxsackievirus B3 (CVB3) induces a viral-specific CD4+ T cell response that can protect female mice from mortality. Methods We inoculated C57BL/6 Ifnar-/- mice with CVB3. We investigated the T cell response in the spleen and mesenteric lymph nodes in male and female mice following infection. Results We found that CVB3 can induce expansion of CD62Llo CD4+ T cells in the mesenteric lymph node and spleen of female but not male mice as early as 5 days post-inoculation, indicative of activation. Using a recombinant CVB3 virus expressing a model CD4+ T cell epitope, we found that this response is due to viral antigen and not bystander activation. Finally, the depletion of CD4+ T cells before infection increased mortality in female mice, indicating that CD4+ T cells play a protective role against CVB3 in our model. Conclusions Overall, these data demonstrated that CVB3 can induce an early CD4 response in female but not male mice and further emphasize how sex differences in immune responses to pathogens affect disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Roach T, Park YP, Choi SC, Morel L. Regulation of the STAT3 pathway by lupus susceptibility gene Pbx1 in T cells. Mol Immunol 2024; 165:1-10. [PMID: 38056350 DOI: 10.1016/j.molimm.2023.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which poorly characterized genetic factors lead to the production of proinflammatory or autoreactive T cells. Pre-B cell leukemia homeobox 1 (PBX1) is a transcription factor whose dominant negative isoform (PBX1-D) is overexpressed in the CD4+ T cells of SLE patients and lupus-prone mice. Pbx1-D overexpression favors the expansion of proinflammatory T cells and impairs regulatory T (Treg) cell development. Here we show that Pbx1 deficiency and Pbx1-D overexpression decreased STAT3 expression and activation in T cells. Accordingly, Pbx1 deficiency in T cells and Pbx1-D overexpression reduced STAT3-dependent TH17 cell polarization in vitro, but it had no effect in vivo at steady state. STAT3-dependent follicular helper T (TFH) cell polarization in vitro and splenic TFH cell frequency were not affected by either Pbx1 deficiency or Pbx1-D overexpression. Pbx1 deficiency also increased the expression of cell cycle arrest and pro-apoptotic genes, with an increased apoptosis in T cells. Our results suggest a complex interplay between PBX1 and STAT3, which may contribute to lupus pathogenesis through dysregulation of the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Tracoyia Roach
- Department of Pathology, Immunology, and Laboratory Medicine, Gainesville, FL 32610-0275, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA.
| |
Collapse
|
19
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Pattnaik A, Dhalech AH, Condotta SA, Corn C, Richer MJ, Snell LM, Robinson CM. A viral-specific CD4 + T cell response protects female mice from Coxsackievirus B3 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563774. [PMID: 37961130 PMCID: PMC10634798 DOI: 10.1101/2023.10.24.563774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biological sex plays an integral role in the immune response to various pathogens. The underlying basis for these sex differences is still not well defined. Here, we show that Coxsackievirus B3 (CVB3) induces a viral-specific CD4 + T cell response that can protect female mice from mortality. We found that CVB3 can induce expansion of CD62L lo CD4 + T cells in the mesenteric lymph node and spleen of female but not male mice as early as 5 days post-inoculation, indicative of activation. Using a recombinant CVB3 virus expressing a model CD4 + T cell epitope, we found that this response is due to viral antigen and not bystander activation. Finally, the depletion of CD4 + T cells before infection increased mortality in female mice, indicating that CD4 + T cells play a protective role against CVB3 in our model. Overall, these data demonstrated that CVB3 can induce an early CD4 response in female but not male mice and further emphasize how sex differences in immune responses to pathogens affect disease outcomes.
Collapse
|
21
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
22
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Zhang Y, Pan Y, Zhang P, Wang F, Han Y, Li K, Jiang W, Wang J, Luan Y, Xin Q. AhR agonist tapinarof ameliorates lupus autoimmunity by suppressing Tfh cell differentiation via regulation of the JAK2-STAT3 signaling pathway. Immun Inflamm Dis 2023; 11:e903. [PMID: 37382269 PMCID: PMC10266146 DOI: 10.1002/iid3.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a critical regulator of the pathogenesis of autoimmune disorders. We aimed to investigate the therapeutic effect of the AhR agonist tapinarof during the development of systemic lupus erythematosus (SLE). METHODS MRL/lpr mice were intraperitoneally injected with 1 or 5 mg/kg tapinarof for 6 weeks. Kidney histopathology was evaluated using hematoxylin and eosin (H&E) and Periodic-Acid-Schiff (PAS) staining. Immunofluorescence microscopy was performed to detect immune complex renal depositions. Flow cytometry (FCM) analysis was carried out to determine the proportions of T and B cell subsets. Realtime qPCR was used to quantify the expression of Tfh cell-associated genes. We conducted an in vitro polarization experiment to observe the effect of tapinarof on Tfh differentiation. Western blotting was used to detect the expression of target proteins. RESULTS We found that tapinarof treatment ameliorated lupus phenotypes, including splenomegaly, lymph node enlargement, kidney damages, immune complex deposition, and excessive secretion of antibodies. Additionally, we showed that Treg subpopulation frequencies significantly increased in MRL/lpr mice treated with tapinarof, while the proportion of Th1/Th2 cells was reduced after tapinarof administration. Moreover, tapinarof suppressed Tfh cell differentiation and germinal center (GC) reaction in vivo. The inhibitory effect of tapinarof on Tfh cells was further verified in the in vitro Tfh cell polarization experiment. Realtime qPCR revealed that tapinarof repressed the expression of Tfh signature genes. Mechanistically, tapinarof significantly inhibited the phosphorylation levels of JAK2 and STAT3. The capacity for Tfh differentiation was partially rescued by the STAT3 activator Colivelin TFA. Furthermore, our in vitro Tfh polarization experiments indicated that tapinarof suppressed Tfh cell development in SLE. CONCLUSIONS Our data demonstrated that tapinarof modulated the JAK2-STAT3 pathway to suppress Tfh cell differentiation for the treatment of lupus symptoms in MRL/lpr mice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory MedicineThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yanyan Pan
- Department of PediatricsQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Peiyi Zhang
- Department of Rheumatology and ImmunologyJinan Central HospitalJinanShandongChina
| | - Fang Wang
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Ying Han
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Kailin Li
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Wen Jiang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Jue Wang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yun Luan
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Qian Xin
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
24
|
Fike AJ, Chodisetti SB, Wright NE, Bricker KN, Domeier PP, Maienschein-Cline M, Rosenfeld AM, Luckenbill SA, Weber JL, Choi NM, Luning Prak ET, Mandal M, Clark MR, Rahman ZSM. STAT3 signaling in B cells controls germinal center zone organization and recycling. Cell Rep 2023; 42:112512. [PMID: 37200190 PMCID: PMC10311431 DOI: 10.1016/j.celrep.2023.112512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/05/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.
Collapse
Affiliation(s)
- Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Phillip P Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara A Luckenbill
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Julia L Weber
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
25
|
Kim MH, Lee CW. Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4 + T Cell Lineages. Immune Netw 2023; 23:e12. [PMID: 37179750 PMCID: PMC10166661 DOI: 10.4110/in.2023.23.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 05/15/2023] Open
Abstract
Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
26
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
27
|
Zander R, Khatun A, Kasmani MY, Chen Y, Cui W. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4 + T cells during chronic viral infection. eLife 2022; 11:e80079. [PMID: 36255051 PMCID: PMC9629829 DOI: 10.7554/elife.80079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
| | - Achia Khatun
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Yao Chen
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Weiguo Cui
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
28
|
Vita AA, Pullen NA. Exploring the mechanism of berberine-mediated T fh cell immunosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154343. [PMID: 35901597 PMCID: PMC9948547 DOI: 10.1016/j.phymed.2022.154343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Our previous research revealed a novel function of berberine (BBR), a clinically relevant plant-derived alkaloid, as a suppressor of follicular T helper (Tfh) cell proliferation in secondary lymphoid organs of BBR-treated mice that underwent immunization for collagen-induced arthritis (CIA) in DBA1/J mice. Due to the importance of Tfh cell and B cell interactions in the generation of T cell-dependent humoral responses, the suppression of Tfh cell activity may have implications for the general safety of BBR as a prophylactic dietary supplement, and its potential use in antibody-driven autoimmune and hypersensitivity disorders. PURPOSE This research aims to characterize BBR's impact on the activation, differentiation, and proliferation of Tfh cells by examining the expression of key extracellular signaling molecules, as well as the activity of intracellular signaling molecules involved in the Ca2+-calcineurin-NFAT pathway and STAT3 phosphorylation, following activation. STUDY DESIGN In vitro experimental study using primary tissues. METHODS To explore the direct effects of BBR on the proliferation and differentiation of Tfh cells, isolated naïve CD4+ T cells (>95% pure) were activated and differentiated into pre- Tfh cells in the presence or absence of BBR. The resulting Tfh cell populations and the expression of the key extracellular molecules CXCR5, ICOS, and PD-1 were measured. In addition, we examined the impact of BBR treatment on the activity of key intracellular signaling molecules involved in Tfh cell activation and differentiation following TCR ligation and/or CD28 signaling (p-ZAP-70, p-Lck, p-PLCγ1, NFATc1 and intracellular calcium, Ca2+, concentrations), as well as IL-6 signaling (p-STAT3). RESULTS Treatment with BBR significantly reduced the expression of both CXCR5 (p < 0.01) and ICOS (p < 0.005), but not PD-1, and reduced the percentage of Tfh cells within the total CD4+ T cell population. BBR treatment also led to a reduction in intracellular Ca2+ flux, activation of p-STAT3, and IL-21 production. CONCLUSION Our observations provide insight into the mechanism of BBR-mediated Tfh cell suppression and suggest that BBR treatment can directly inhibit Tfh cell activity, perhaps through interfering with cytokine receptor or downstream signaling.
Collapse
Affiliation(s)
- Alexandra A Vita
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States; Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | - Nicholas A Pullen
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States.
| |
Collapse
|
29
|
Lai CY, Marcel N, Yaldiko AW, Delpoux A, Hedrick SM. A Bcl6 Intronic Element Regulates T Follicular Helper Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2022; 209:1118-1127. [DOI: 10.4049/jimmunol.2100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/07/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In response to an intracellular infectious agent, the immune system produces a specific cellular response as well as a T cell–dependent Ab response. Precursor T cells differentiate into effector T cells, including Th1 cells, and T follicular helper (TFH) cells. The latter cooperate with B cells to form germinal centers and induce the formation of Ab-forming plasmacytes. One major focal point for control of T cell differentiation is the transcription factor BCL6. In this study, we demonstrated that the Bcl6 gene is regulated by FOXO1-binding, cis-acting sequences located in a highly conserved region of the first Bcl6 intron. In both mouse and human T cells, deletion of the tandem FOXO1 binding sites increased the expression of BCL6 and enhanced the proportion of TFH cells. These results reveal a fundamental control point for cellular versus humoral immunity.
Collapse
Affiliation(s)
- Chen-Yen Lai
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Nimi Marcel
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Allen W. Yaldiko
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Arnaud Delpoux
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen M. Hedrick
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
30
|
Zheng HY, Wang XH, He XY, Chen M, Zhang MX, Lian XD, Song JH, Hu Y, Pang W, Wang Y, Hu ZF, Lv LB, Zheng YT. Aging induces severe SIV infection accompanied by an increase in follicular CD8+ T cells with overactive STAT3 signaling. Cell Mol Immunol 2022; 19:1042-1053. [PMID: 35851876 PMCID: PMC9424273 DOI: 10.1038/s41423-022-00899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Min Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yan Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Zheng-Fei Hu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
31
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
He C, Yang Y, Chen Z, Liu S, Lyu T, Zeng L, Wang L, Li Y, Wang M, Chen H, Zhang F. EZH2 Promotes T Follicular Helper Cell Differentiation Through Enhancing STAT3 Phosphorylation in Patients With Primary Sjögren’s Syndrome. Front Immunol 2022; 13:922871. [PMID: 35795677 PMCID: PMC9252457 DOI: 10.3389/fimmu.2022.922871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesEnhancer of zeste homolog 2 (EZH2) is an epigenetic regulator that plays an essential role in immune system development and autoimmune diseases. This study aimed to characterize the role of EZH2 in the pathogenesis of primary Sjögren’s syndrome (pSS).MethodsWe analyzed EZH2 expression in two transcriptomic datasets of peripheral blood mononuclear cells (PBMCs) from pSS patients and healthy controls. We measured EZH2 expression in CD4+ T cells, CD8+ T cells, and CD19+ B cells from pSS patients and healthy controls and correlated EZH2 expression with clinical parameters. We also examined the activation, proliferation, and T-cell differentiation of CD4+ T cells using the EZH2 inhibitor GSK126, EZH2 siRNA, and EZH2-expressing vector. We further examined the STAT3 signaling pathway after EZH2 inhibition and detected Tfh differentiation in EZH2-overexpressed CD4+ T cells with STAT3 knocked down.ResultsEZH2 was upregulated in GSE164885 and GSE48378. EZH2 expression was higher in pSS CD4+ and CD8+ T cells, and EZH2 expression in circulating pSS CD4+ T cells was positively correlated with IgG, IgA, ESR, RF, and the circulating Tfh population. EZH2 inhibition and silencing EZH2 suppressed activation, proliferation, and Tfh differentiation. Furthermore, overexpressing EZH2 promoted activation, proliferation, and Tfh differentiation in CD4+ T cells. EZH2 inhibition attenuated STAT3 phosphorylation in CD4+ T cells. STAT3 knockdown abrogated EZH2-promoted Tfh differentiation.ConclusionsEZH2 expression was abnormally elevated in pSS CD4+ T cells, which facilitated Tfh differentiation of CD4+ T cells by enhancing STAT3 phosphorylation. EZH2 promotes Tfh differentiation and might be implicated in pSS pathogenesis.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yanlei Yang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhilei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Taibiao Lyu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- *Correspondence: Hua Chen, ; Fengchun Zhang,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- *Correspondence: Hua Chen, ; Fengchun Zhang,
| |
Collapse
|
33
|
Du LJ, Feng YX, He ZX, Huang L, Wang Q, Wen CP, Zhang Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol Sin 2022; 43:1521-1533. [PMID: 34552214 PMCID: PMC9159996 DOI: 10.1038/s41401-021-00773-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder associated with severe organ damage. The abnormality of T cell apoptosis is considered as an important pathogenetic mechanism of SLE. Norcantharidin (NCTD), a derivative of Cantharidin, is an efficacious anti-cancer drug by inhibiting cell proliferation and inducing cell apoptosis. Besides, NCTD has also been proved to protect the function of kidneys, while damaged renal function is the most important predictor of morbidity and mortality in SLE. All these suggest the potential effects of NCTD in SLE treatment. In this study we investigated whether NCTD exerted therapeutic effects in a mouse SLE model. Lupus prone female MRL/lpr mice were treated with NCTD (1, 2 mg·kg-1·d-1, ip) for 8 weeks. We showed that NCTD administration significantly decreased mortality rate, diminished the expression of anti-dsDNA IgG antibody, a diagnostic marker for SLE, as well as restored renal structure and function in MRL/lpr mice. Moreover, NCTD administration dose-dependently inhibited lymphoproliferation and T cell accumulation in the spleens of MRL/lpr mice. We further revealed that NCTD specifically inhibited DN T cell proliferation and Th17 cell differentiation both via blocking activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the other hand, NCTD did not affect T cell apoptosis in MRL/lpr mice. Taken together, our data suggest that NCTD may be as a promising therapeutic drug through targeting T cells for the treatment of SLE.
Collapse
Affiliation(s)
- Li-jun Du
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yu-xiang Feng
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhi-xing He
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Lin Huang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Qiao Wang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Cheng-ping Wen
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yun Zhang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
34
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
35
|
Abstract
Follicular helper T (TFH) cells provide help to B cells, supporting the formation of germinal centres that allow affinity maturation of antibody responses. Although usually located in secondary lymphoid organs, T cells bearing features of TFH cells can also be identified in human blood, and their frequency and phenotype are often altered in people with autoimmune diseases. In this Perspective article, I discuss the increase in circulating TFH cells seen in autoimmune settings and explore potential explanations for this phenomenon. I consider the multistep regulation of TFH cell differentiation by the CTLA4 and IL-2 pathways as well as by regulatory T cells and highlight that these same pathways are crucial for regulating autoimmune diseases. The propensity of infection to serve as a cue for TFH cell differentiation and a potential trigger for autoimmune disease development is also discussed. Overall, I postulate that alterations in pathways that regulate autoimmunity are coupled to alterations in TFH cell homeostasis, suggesting that this population may serve as a core sentinel of dysregulated immunity.
Collapse
|
36
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
37
|
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022; 60:335-346. [PMID: 35089583 PMCID: PMC8795728 DOI: 10.1007/s12275-022-1608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NP- and VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
|
38
|
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Sci Immunol 2022; 7:eabl5652. [PMID: 34914544 PMCID: PMC8977051 DOI: 10.1126/sciimmunol.abl5652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)–based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cell–B cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine; New Haven, CT, USA
| | | | | | | | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Bridget L. Menasche
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington; Seattle, WA, USA
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School; Newark, NJ, USA
| | - Uthaman Gowthaman
- Deparment of Pathology, University of Massachusetts Medical School; Worcester, MA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | | | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| |
Collapse
|
39
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
40
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:4547-4557. [DOI: 10.1093/rheumatology/keac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Indexed: 11/14/2022] Open
|
41
|
Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med 2022; 37:13-26. [PMID: 34879473 PMCID: PMC8747910 DOI: 10.3904/kjim.2021.363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin is a first-line therapeutic agent for type 2 diabetes. Apart from its glucose-lowering effect, metformin is attracting interest regarding possible therapeutic benefits in various other conditions. As metformin regulates cell metabolism, proliferation, growth, and autophagy, it may also modulate immune cell functions. Given that metformin acts on multiple intracellular signaling pathways, including adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation, and that AMPK and its downstream intracellular signaling control the activation and differentiation of T and B cells and inflammatory responses, metformin may exert immunomodulatory and anti- inflammatory effects. The efficacy of metformin has been investigated in preclinical and clinical studies on rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, Sjögren's syndrome, scleroderma, ankylosing spondylitis, and gout. In this review, we discuss the potential mechanisms through which metformin exerts its therapeutic effects in these diseases, focusing particularly on rheumatoid arthritis and osteoarthritis.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
42
|
Interleukin-10 receptor signaling promotes the maintenance of a PD-1 int TCF-1 + CD8 + T cell population that sustains anti-tumor immunity. Immunity 2021; 54:2825-2841.e10. [PMID: 34879221 DOI: 10.1016/j.immuni.2021.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
T cell exhaustion limits anti-tumor immunity and responses to immunotherapy. Here, we explored the microenvironmental signals regulating T cell exhaustion using a model of chronic lymphocytic leukemia (CLL). Single-cell analyses identified a subset of PD-1hi, functionally impaired CD8+ T cells that accumulated in secondary lymphoid organs during disease progression and a functionally competent PD-1int subset. Frequencies of PD-1int TCF-1+ CD8+ T cells decreased upon Il10rb or Stat3 deletion, leading to accumulation of PD-1hi cells and accelerated tumor progression. Mechanistically, inhibition of IL-10R signaling altered chromatin accessibility and disrupted cooperativity between the transcription factors NFAT and AP-1, promoting a distinct NFAT-associated program. Low IL10 expression or loss of IL-10R-STAT3 signaling correlated with increased frequencies of exhausted CD8+ T cells and poor survival in CLL and in breast cancer patients. Thus, balance between PD-1hi, exhausted CD8+ T cells and functional PD-1int TCF-1+ CD8+ T cells is regulated by cell-intrinsic IL-10R signaling, with implications for immunotherapy.
Collapse
|
43
|
Pyle CJ, Labeur-Iurman L, Groves HT, Puttur F, Lloyd CM, Tregoning JS, Harker JA. Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity. J Exp Med 2021; 218:e20201555. [PMID: 34665220 PMCID: PMC8529914 DOI: 10.1084/jem.20201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.
Collapse
Affiliation(s)
- Chloe J. Pyle
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Lucia Labeur-Iurman
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Helen T. Groves
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - James A. Harker
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| |
Collapse
|
44
|
Wong CS, Buckner CM, Lage SL, Pei L, Assis FL, Dahlstrom EW, Anzick SL, Virtaneva K, Rupert A, Davis JL, Zhou T, Laidlaw E, Manion M, Galindo F, Anderson M, Seamon CA, Sneller MC, Lisco A, Deleage C, Pittaluga S, Moir S, Sereti I. Rapid Emergence of T Follicular Helper and Germinal Center B Cells Following Antiretroviral Therapy in Advanced HIV Disease. Front Immunol 2021; 12:752782. [PMID: 34938286 PMCID: PMC8686113 DOI: 10.3389/fimmu.2021.752782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/09/2021] [Indexed: 02/01/2023] Open
Abstract
Low nadir CD4 T-cell counts in HIV+ patients are associated with high morbidity and mortality and lasting immune dysfunction, even after antiretroviral therapy (ART). The early events of immune recovery of T cells and B cells in severely lymphopenic HIV+ patients have not been fully characterized. In a cohort of lymphopenic (CD4 T-cell count < 100/µL) HIV+ patients, we studied mononuclear cells isolated from peripheral blood (PB) and lymph nodes (LN) pre-ART (n = 40) and 6-8 weeks post-ART (n = 30) with evaluation of cellular immunophenotypes; histology on LN sections; functionality of circulating T follicular helper (cTfh) cells; transcriptional and B-cell receptor profile on unfractionated LN and PB samples; and plasma biomarker measurements. A group of 19 healthy controls (HC, n = 19) was used as a comparator. T-cell and B-cell lymphopenia was present in PB pre-ART in HIV+ patients. CD4:CD8 and CD4 T- and B-cell PB subsets partly normalized compared to HC post-ART as viral load decreased. Strikingly in LN, ART led to a rapid decrease in interferon signaling pathways and an increase in Tfh, germinal center and IgD-CD27- B cells, consistent with histological findings of post-ART follicular hyperplasia. However, there was evidence of cTfh cells with decreased helper capacity and of limited B-cell receptor diversification post-ART. In conclusion, we found early signs of immune reconstitution, evidenced by a surge in LN germinal center cells, albeit limited in functionality, in HIV+ patients who initiate ART late in disease.
Collapse
Affiliation(s)
- Chun-Shu Wong
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Clarisa M. Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Silvia Lucena Lage
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Luxin Pei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Felipe L. Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Eric W. Dahlstrom
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Sarah L. Anzick
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Adam Rupert
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeremy L. Davis
- Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ting Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frances Galindo
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Megan Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Catherine A. Seamon
- Critical Care Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael C. Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
45
|
Snell LM, Xu W, Abd-Rabbo D, Boukhaled G, Guo M, Macleod BL, Elsaesser HJ, Hezaveh K, Alsahafi N, Lukhele S, Nejat S, Prabhakaran R, Epelman S, McGaha TL, Brooks DG. Dynamic CD4 + T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nat Immunol 2021; 22:1524-1537. [PMID: 34795443 PMCID: PMC10286806 DOI: 10.1038/s41590-021-01060-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
Inhibiting PD-1:PD-L1 signaling has transformed therapeutic immune restoration. CD4+ T cells sustain immunity in chronic infections and cancer, yet little is known about how PD-1 signaling modulates CD4+ helper T (TH) cell responses or the ability to restore CD4+ TH-mediated immunity by checkpoint blockade. We demonstrate that PD-1:PD-L1 specifically suppressed CD4+ TH1 cell amplification, prevents CD4+ TH1 cytokine production and abolishes CD4+ cytotoxic killing capacity during chronic infection in mice. Inhibiting PD-L1 rapidly restored these functions, while simultaneously amplifying and activating TH1-like T regulatory cells, demonstrating a system-wide CD4-TH1 recalibration. This effect coincided with decreased T cell antigen receptor signaling, and re-directed type I interferon (IFN) signaling networks towards dominant IFN-γ-mediated responses. Mechanistically, PD-L1 blockade specifically targeted defined populations with pre-established, but actively suppressed proliferative potential, with limited impact on minimally cycling TCF-1+ follicular helper T cells, despite high PD-1 expression. Thus, CD4+ T cells require unique differentiation and functional states to be targets of PD-L1-directed suppression and therapeutic restoration.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giselle Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Bethany L Macleod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nirmin Alsahafi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sabelo Lukhele
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sara Nejat
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | | | - Slava Epelman
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Peter Munk Cardiac Centre, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Kuka M, Iannacone M. Heterogeneity in antiviral B cell responses: Lessons from the movies. Immunol Rev 2021; 306:224-233. [PMID: 34811768 DOI: 10.1111/imr.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Humoral and cellular responses to viral infections coexist in a dynamic equilibrium that often results in efficient viral clearance. However, in some infections one of the two responses prevails, for instance when an overactivation of cytotoxic T cells is accompanied by weak and insufficient antibody responses. Although the cellular response is usually sufficient to control a primary viral infection, in some cases clearance is not complete and persistent infections ensue. In order to design effective therapeutic or vaccination strategies aiming at inducing early and potent neutralizing antibody responses, a deep knowledge of the cellular and molecular determinants of antiviral immune responses is needed. Here, we review our understanding on the spatiotemporal dynamics of antiviral humoral immune responses, with a particular focus on recent studies using intravital imaging approaches as an insightful complement to more traditional techniques.
Collapse
Affiliation(s)
- Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Kubo M. The role of IL-4 derived from T follicular helper cells and TH2 cells. Int Immunol 2021; 33:717-722. [PMID: 34628505 DOI: 10.1093/intimm/dxab080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022] Open
Abstract
IL-4 is known to be the quintessential regulatory cytokine, playing a role in a vast number of immune and non-immune functions. This cytokine is commonly secreted by TH2 cells and follicular helper T (TFH) cells after antigenic sensitization. TH2 cells have been classically thought to be the major contributor to B cell help as a source of IL-4 responsible for class-switch recombination to Immunoglobulin G1 (IgG1) in mice (IgG4 in humans) and to IgE in mice and humans. Recent in vivo observations have shown that IgE and IgG1 antibody responses are mainly controlled by IL-4-secreting TFH cells but not by classical TH2 cells. IL-4 is distinctively regulated in these two T cell subsets by the GATA-3-mediated HS2 enhancer in TH2 cells and the Notch-mediated CNS-2 enhancer in TFH cells. Moreover, the IL-4 derived from TFH cells has an essential role in germinal center (GC) formation in the secondary lymphoid organs during humoral immune responses.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
48
|
Wang H, Li X, Kajikawa T, Shin J, Lim JH, Kourtzelis I, Nagai K, Korostoff JM, Grossklaus S, Naumann R, Chavakis T, Hajishengallis G. Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis. J Clin Invest 2021; 131:e150578. [PMID: 34403362 PMCID: PMC8483759 DOI: 10.1172/jci150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jieun Shin
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonathan M. Korostoff
- Department of Periodontics, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
50
|
Kim J, Kim YS, Park SH. Metformin as a Treatment Strategy for Sjögren's Syndrome. Int J Mol Sci 2021; 22:7231. [PMID: 34281285 PMCID: PMC8269365 DOI: 10.3390/ijms22137231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Sjögren's syndrome (SS), a chronic inflammatory disease involving the salivary and lacrimal glands, presents symptoms of sicca as well as systemic manifestations such as fatigue and musculoskeletal pain. Only a few treatments have been successful in management of SS; thus treatment of the disease is challenging. Metformin is the first-line agent for type 2 diabetes and has anti-inflammatory potential. Its immunomodulatory capacity is exerted via activation of 5' adenosine monophosphate-activated protein kinase (AMPK). Metformin inhibits mitochondrial respiratory chain complex I which leads to change in adenosine mono-phosphate (AMP) to adenosine tri-phosphate (ATP) ratio. This results in AMPK activation and causes inhibition of mammalian target of rapamycin (mTOR). mTOR plays an important role in T cell differentiation and mTOR deficient T cells differentiate into regulatory T cells. In this manner, metformin enhances immunoregulatory response in an individual. mTOR is responsible for B cell proliferation and germinal center (GC) differentiation. Thus, reduction of B cell differentiation into antibody-producing plasma cells occurs via downregulation of mTOR. Due to the lack of suggested treatment for SS, metformin has been considered as a treatment strategy and is expected to ameliorate salivary gland function.
Collapse
Affiliation(s)
- Joa Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Yun-Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|