1
|
Van Acker N, Frenois FX, Gravelle P, Tosolini M, Syrykh C, Laurent C, Brousset P. Spatial mapping of innate lymphoid cells in human lymphoid tissues and lymphoma at single-cell resolution. Nat Commun 2025; 16:4545. [PMID: 40374674 PMCID: PMC12081901 DOI: 10.1038/s41467-025-59811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Innate lymphoid cells (ILC) distribution and compartmentalization in human lymphoid tissues are incompletely described. Through combined multiplex immunofluorescence, multispectral imaging, and advanced computer vision methods, we provide a map of ILCs at the whole-slide single-cell resolution level, and study their proximity to T helper (Th) cells. The results show that ILC2 predominates in thymic medulla; by contrast, immature Th cells prevail in the cortex. Unexpectedly, we find that Th2-like and Th17-like phenotypes appear before complete T cell receptor gene rearrangements in these immature thymocytes. In the periphery, ILC2 are more abundant in lymph nodes and tonsils, penetrating lymphoid follicles. NK cells are uncommon in lymphoid tissues but abundant in the spleen, whereas ILC1 and ILC3 predominate in the ileum and appendix. Under pathogenic conditions, a deep perturbation of both ILC and Th populations is seen in follicular lymphoma compared with non-neoplastic conditions. Lastly, all ILCs are preferentially in close proximity to their Th counterparts. In summary, our histopathology tool help present a spatial mapping of human ILCs and Th cells, in normal and neoplastic lymphoid tissues.
Collapse
Affiliation(s)
- Nathalie Van Acker
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pauline Gravelle
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Charlotte Syrykh
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Camille Laurent
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France.
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France.
| |
Collapse
|
2
|
Zhou W, Zhang J, Norlander AE, Cook DP, Toki S, Abney M, Rusznak M, Thomas C, Warren C, Richmond BW, Gibson-Corley K, Milne GL, Newcomb DC, Peebles RS. PGI2 restricts trained ILC2 responses in allergic inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf088. [PMID: 40334085 DOI: 10.1093/jimmun/vkaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025]
Abstract
Pulmonary type 2 innate lymphoid cells (ILC2s) exhibit immune memory, termed "trained immunity," which enhances their activation following exposure to an independent protease-containing allergen. The role of prostaglandin I2 (PGI2), a cyclooxygenase (COX) pathway metabolite, in modulating these trained ILC2 responses remains unclear. PGI2 acts through its G protein-coupled receptor IP. We hypothesized that IP signaling inhibits ILC2 training. To test this hypothesis, we used a mouse ILC2 training model in which we challenged wild-type (WT) and IP knockout (KO) mice with Alternaria alternata extract (Alt) to induce ILC2 activation and training. After a 33-d resting period, ILC2 responses subsided to a homeostatic level. Mice were then intranasally challenged with papain to evaluate responses to an unrelated allergen. IP KO mice displayed significantly heightened ILC2 interleukin (IL)-13 expression and with concomitant increased eosinophilia in the lungs post-papain challenge compared with WT control mice. Notably, neither WT nor IP KO mice challenged with papain only, devoid of ILC2 training, exhibited lung type 2 responses. The augmented type 2 inflammation observed in IP KO mice following both Alt and papain challenges correlated with increased numbers and percentages of IL-13-producing ILC2s and greater mean fluorescence intensity of IL-13 compared with WT mice. Furthermore, RNA sequencing of sorted ILC2s from WT and IP KO mice following Alt-papain challenges revealed heightened activation of immune response pathways and mitochondrial respiratory pathways in IP-deficient ILC2s. These findings reveal an inhibitory role of PGI2 signaling in trained ILC2 responses, emphasizing its pivotal contribution to innate immune responses and allergic inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jian Zhang
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Allison E Norlander
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Masako Abney
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Mark Rusznak
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher Thomas
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christian Warren
- VA Tennessee Valley Health Care System, U.S. Department of Veterans Affairs, Nashville, TN, United States
| | - Bradley W Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Katherine Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Health Care System, U.S. Department of Veterans Affairs, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
4
|
Meng J, Xiao H, Xu F, She X, Liu C, Canonica GW. Systemic barrier dysfunction in type 2 inflammation diseases: perspective in the skin, airways, and gastrointestinal tract. Immunol Res 2025; 73:60. [PMID: 40069459 PMCID: PMC11897119 DOI: 10.1007/s12026-025-09606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
The epithelial barrier in different organs is the first line of defense against environmental insults and allergens, with type 2 immunity serving as a protective function. Genetic factors, and biological and chemical insults from the surrounding environment altered regulate epithelial homeostasis through disruption of epithelial tight junction proteins or dilated intercellular spaces. Recent studies suggest that epithelial barrier dysfunction contributes to pathologic alteration in diseases with type 2 immune dysregulation including (but not limited to) atopic dermatitis, prurigo nodularis, asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. In this review, we summarized current understanding of dysfunction of barrier and its interaction with type 2 inflammation across different organs, and discussed the role of epithelial barrier disruption in the pathogenesis of type 2 inflammation. In addition, recent progresses of emerging barrier restorative therapies are reviewed.
Collapse
Affiliation(s)
- Juan Meng
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xiao
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Xu
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueke She
- Sanofi China Investment Co., Ltd. Shanghai Branch, Shanghai, 200000, P.R. China
| | - Chuntao Liu
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
- Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy
| |
Collapse
|
5
|
Gong Z, Yi H, Zhang J, Li W, Wang H, Guo P, Li C, Pan A, Cao Y, Lu Z, Jiang H. Role of Arg1 + ILC2s and ILCregs in gestational diabetes progression. Sci Rep 2025; 15:1580. [PMID: 39794391 PMCID: PMC11724119 DOI: 10.1038/s41598-025-85452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that are responsible for regulation of the immune microenvironment. In particular, the ILC categories ILC2s and regulatory ILCs (ILCregs) are associated with immunosuppression and chronic inflammation. Chronic low-grade inflammation leads to insulin resistance, a major etiological factor in gestational diabetes mellitus (GDM). However, the influence of ILCs on GDM remains poorly understood. Therefore, this study aims to investigate the potential role of ILCs in the development and progression of GDM. This study included 19 patients diagnosed with GDM and 19 age- and body mass index-matched individuals in the control group. Flow cytometry was employed to assess the frequency and function of ILC subsets in peripheral blood (PB), cord blood (CB), and placental tissues. Additionally, ELISA was utilized to measure the levels of the cytokines TNF-α, IFN-γ, TGF-β, and IL-4/10/13/22 in the serum samples of patients. Compared to the control group with normal pregnancy, significantly elevated levels of ILC2s, Arg1+ILC2s, and ILCregs were detected in the PB, CB, and placental tissues of the GDM group. With regard to inflammation-related cytokines, the levels of IL-13/22 in PB serum were significantly elevated, while the TGF-β levels were significantly reduced in the GDM group compared to the control group (CG). Further, in the CB serum samples, IL-13 levels were elevated in the GDM group. Additionally, a negative correlation was observed between the number of ILC3s and the number of ILCregs present in umbilical cord blood, while the IL-13 level in peripheral blood was negatively correlated with the number of ILC3s. The present findings indicate that chronic low-grade inflammation mediated by Arg-1+ILC2s and ILCregs is closely associated with the pathogenesis of GDM.
Collapse
Affiliation(s)
- Zhangyun Gong
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixing Yi
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wan Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peipei Guo
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Caihua Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anan Pan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhimin Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Huanhuan Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Wanshui Road No. 120, Hefei, 230000, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Kursancew ACDS, Prophiro JS, Generoso J, Petronilho F. Innate lymphoid cells in the brain: Focus on ischemic stroke. Microvasc Res 2025; 157:104755. [PMID: 39427988 DOI: 10.1016/j.mvr.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The innate immune system consists of a diverse set of immune cells, including innate lymphoid cells (ILCs), which are grouped into subsets based on their transcription factors and cytokine profiles. Among these are natural killer (NK) cells, group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Unlike T and B cells, ILCs do not express the diverse antigen receptors typically found on those cells. Although ILCs function in various systems, further research is needed to understand their role in the brain and their involvement in neurological diseases such as stroke. This review explores the general immunological aspects of ILCs, with a particular focus on their role in the central nervous system and the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
7
|
Kim GD, Yoo SH, Song JH, Lim KM, Lim EY, Yoo JY, Lee DK, Cho YB, Yu HJ, Lee SY, Shin HS. Nypa fruticans Wurmb Extract Recovered Compromised Immune Status Induced by Forced Swimming in a Mouse Model. J Microbiol Biotechnol 2024; 35:e2411006. [PMID: 39849928 PMCID: PMC11813364 DOI: 10.4014/jmb.2411.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Nypa fruticans Wurmb is known to contain large amounts of polyphenols and flavonoids with antioxidative and anti-inflammatory effects. However, the biological and physiological functions of N. fruticans have not been scientifically investigated. Thus, we investigated the immunomodulatory effect of N. fruticans hot water extract (YSK-N) in mice using an immune compromised model established by forced swimming (FS). Intensive exercise decreased body weight, organ index, and various immunological parameters in FS mice. However, oral administration of YSK-N significantly restored the FS-induced decreases in body, thymus, and spleen weights, as well as the reduction in the numbers of white blood cells and lymphocytes in the whole blood of mice. Additionally, YSK-N increased splenic cell proliferation in the absence and presence of concanavalin A or lipopolysaccharide stimulation in a concentration-dependent manner. Notably, YSK-N enhanced the cytotoxic activity of natural killer cells against YAC-1 tumor cells under immunosuppressive conditions. Furthermore, YSK-N supplementation reverted the FS-induced downregulation in immunoglobulin production and Il2, Il6, Il12, Ifnγ, Gzmb, and Prf1 mRNA expression. Therefore, our observations suggested that YSK-N promotes immune function and has potential as an immunomodulatory agent.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Sang Hyuk Yoo
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ju Hye Song
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Kyung min Lim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Yeong Lim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ji Yeon Yoo
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | | | | | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
9
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Lo JW, Schroeder JH, Roberts LB, Mohamed R, Cozzetto D, Beattie G, Omer OS, Ross EM, Heuts F, Jowett GM, Read E, Madgwick M, Neves JF, Korcsmaros T, Jenner RG, Walker LSK, Powell N, Lord GM. CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner. Nat Commun 2024; 15:9520. [PMID: 39496592 PMCID: PMC11535242 DOI: 10.1038/s41467-024-51719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2024] [Indexed: 11/06/2024] Open
Abstract
The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors, particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease and immune checkpoint colitis. Here, we show that CTLA-4 is expressed by innate lymphoid cells and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 in multiple in vivo models of colitis demonstrates that this pathway plays a key role in intestinal homeostasis. Lastly, we have found that this observation is conserved in human IBD. We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.
Collapse
Affiliation(s)
- Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rami Mohamed
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Matthew Madgwick
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Richard G Jenner
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Qi LJ, Gao S, Ning YH, Chen XJ, Wang RZ, Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118454. [PMID: 38852638 DOI: 10.1016/j.jep.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rβ2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rβ2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.
Collapse
Affiliation(s)
- Li-Jie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Yun-Hong Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
13
|
Laurie SJ, Foster JP, Bruce DW, Bommiasamy H, Kolupaev OV, Yazdimamaghani M, Pattenden SG, Chao NJ, Sarantopoulos S, Parker JS, Davis IJ, Serody JS. Type II innate lymphoid cell plasticity contributes to impaired reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Commun 2024; 15:6000. [PMID: 39019846 PMCID: PMC11255294 DOI: 10.1038/s41467-024-50263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Type II innate lymphoid cells (ILC2s) maintain homeostasis and barrier integrity in mucosal tissues. In both mice and humans, ILC2s poorly reconstitute after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Determining the mechanisms involved in their impaired reconstitution could improve transplant outcomes. By integrating single-cell chromatin and transcriptomic analyses of transplanted ILC2s, we identify a previously unreported population of converted ILC1-like cells in the mouse small intestine post-transplant. Exposure of ILC2s to proinflammatory cytokines resulted in a mixed ILC1-ILC2 phenotype but was able to convert only a small population of ILC2s to ILC1s, which were found post-transplant. Whereas ILC2s protected against acute graft-versus-host disease (aGVHD) mediated mortality, infusion of proinflammatory cytokine-exposed ILC2s accelerated aGvHD. Interestingly, murine ILC2 reconstitution post-HSCT is decreased in the presence of alloreactive T cells. Finally, peripheral blood cells from human patients with aGvHD have an altered ILC2-associated chromatin landscape compared to transplanted controls. These data demonstrate that following transplantation ILC2s convert to a pro-pathogenic population with an ILC1-like chromatin state and provide insights into the contribution of ILC plasticity to the impaired reconstitution of ILC2 cells, which is one of several potential mechanisms for the poor reconstitution of these important cells after allo-HSCT.
Collapse
Affiliation(s)
- Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joseph P Foster
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Danny W Bruce
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hemamalini Bommiasamy
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Duke Eye Center, Duke University, Durham, NC, USA
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Samantha G Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
Scarno G, Mazej J, Laffranchi M, Di Censo C, Mattiola I, Candelotti AM, Pietropaolo G, Stabile H, Fionda C, Peruzzi G, Brooks SR, Tsai WL, Mikami Y, Bernardini G, Gismondi A, Sozzani S, Di Santo JP, Vosshenrich CAJ, Diefenbach A, Gadina M, Santoni A, Sciumè G. Divergent roles for STAT4 in shaping differentiation of cytotoxic ILC1 and NK cells during gut inflammation. Proc Natl Acad Sci U S A 2023; 120:e2306761120. [PMID: 37756335 PMCID: PMC10556635 DOI: 10.1073/pnas.2306761120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Collapse
Affiliation(s)
- Gianluca Scarno
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Julija Mazej
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Arianna M. Candelotti
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome00161, Italy
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo1608582, Japan
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, INSERM U1223, Paris75724, France
| | | | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| |
Collapse
|
17
|
Xiong L, Helm EY, Dean JW, Sun N, Jimenez-Rondan FR, Zhou L. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nat Immunol 2023; 24:1671-1684. [PMID: 37709985 PMCID: PMC11256193 DOI: 10.1038/s41590-023-01612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Y Helm
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Pan J, Bu W, Guo T, Geng Z, Shao M. Development and validation of an in-hospital mortality risk prediction model for patients with severe community-acquired pneumonia in the intensive care unit. BMC Pulm Med 2023; 23:303. [PMID: 37592285 PMCID: PMC10436447 DOI: 10.1186/s12890-023-02567-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND A high mortality rate has always been observed in patients with severe community-acquired pneumonia (SCAP) admitted to the intensive care unit (ICU); however, there are few reported predictive models regarding the prognosis of this group of patients. This study aimed to screen for risk factors and assign a useful nomogram to predict mortality in these patients. METHODS As a developmental cohort, we used 455 patients with SCAP admitted to ICU. Logistic regression analyses were used to identify independent risk factors for death. A mortality prediction model was built based on statistically significant risk factors. Furthermore, the model was visualized using a nomogram. As a validation cohort, we used 88 patients with SCAP admitted to ICU of another hospital. The performance of the nomogram was evaluated by analysis of the area under the receiver operating characteristic (ROC) curve (AUC), calibration curve analysis, and decision curve analysis (DCA). RESULTS Lymphocytes, PaO2/FiO2, shock, and APACHE II score were independent risk factors for in-hospital mortality in the development cohort. External validation results showed a C-index of 0.903 (95% CI 0.838-0.968). The AUC of model for the development cohort was 0.85, which was better than APACHE II score 0.795 and SOFA score 0.69. The AUC for the validation cohort was 0.893, which was better than APACHE II score 0.746 and SOFA score 0.742. Calibration curves for both cohorts showed agreement between predicted and actual probabilities. The results of the DCA curves for both cohorts indicated that the model had a high clinical application in comparison to APACHE II and SOFA scoring systems. CONCLUSIONS We developed a predictive model based on lymphocytes, PaO2/FiO2, shock, and APACHE II scores to predict in-hospital mortality in patients with SCAP admitted to the ICU. The model has the potential to help physicians assess the prognosis of this group of patients.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Respiratory Intensive Care Unit, Anhui Chest Hospital, Hefei, China
| | - Wei Bu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Guo
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Colombo SAP, Brown SL, Hepworth MR, Hankinson J, Granato F, Kitchen SJ, Hussell T, Simpson A, Cook PC, MacDonald AS. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad009. [PMID: 37545765 PMCID: PMC10403752 DOI: 10.1093/discim/kyad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Felice Granato
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Semra J Kitchen
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
21
|
Xiao H, Yun S, Huang W, Dang H, Jia Z, Chen K, Zhao X, Wu Y, Shi Y, Wang J, Zou J. IL-4/13 expressing CD3γ/δ + T cells regulate mucosal immunity in response to Flavobacterium columnare infection in grass carp. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108586. [PMID: 36740082 DOI: 10.1016/j.fsi.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Interleukin (IL) 4 and 13 are signature cytokines orchestrating Th2 immune response. Teleost fish have two homologs, termed IL-4/13A and IL-4/13B, and have been functionally characterized. However, what cells express IL-4/13A and IL-4/13B has not been investigated in fish. In this work, the recombinant IL-4/13A and IL-4/13B proteins of grass carp (Ctenopharyngodon idella) were produced in the Escherichia coli (E. coli) cells and purified. Monoclonal antibodies (mAbs) against the recombinant CiIL-4/13A and CiIL-4/13B proteins were prepared and characterized. Western blotting analysis showed that the CiIL-4/13A and CiIL-4/13B mAbs could specifically recognize the recombinant proteins expressed in the E. coli cells and HEK293T cells and did not cross-react with each other. Confocal microscopy revealed that the CiIL-4/13A+ and CiIL-4/13B+ cells were present in the gills, intestine and spleen and could be upregulated in fish infected with Flavobacterium columnare (F. columnare). Interestingly, the cells expressing CiIL-4/13A and CiIL-4/13B were mostly CD3γ/δ+ cells. The CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells were significantly upregulated in the gill filaments and the intestinal mucosa after F. columnare infection. Our results imply that the CD3γ/δ+/IL-4/13A+ and CD3γ/δ+/IL-4/13B+ cells are important for homeostasis and the regulation of mucosal immunity.
Collapse
Affiliation(s)
- Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
22
|
Zhang L, Chen Z, Wang L, Luo X. Bullous pemphigoid: The role of type 2 inflammation in its pathogenesis and the prospect of targeted therapy. Front Immunol 2023; 14:1115083. [PMID: 36875098 PMCID: PMC9978795 DOI: 10.3389/fimmu.2023.1115083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease that mainly occurs in the elderly, severely affecting their health and life quality. Traditional therapy for BP is mainly based on the systemic use of corticosteroids, but long-term use of corticosteroids results in a series of side effects. Type 2 inflammation is an immune response largely mediated by group 2 innate lymphoid cells, type 2 T helper cells, eosinophils, and inflammatory cytokines, such as interleukin (IL)-4, IL-5 and IL-13. Among patients with BP, the levels of immunoglobulin E and eosinophils are significantly increased in the peripheral blood and skin lesions, suggesting that the pathogenesis is tightly related to type 2 inflammation. To date, various targeted drugs have been developed to treat type 2 inflammatory diseases. In this review, we summarize the general process of type 2 inflammation, its role in the pathogenesis of BP and potential therapeutic targets and medications related to type 2 inflammation. The content of this review may contribute to the development of more effective drugs with fewer side effects for the treatment of BP.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zihua Chen
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lanting Wang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqun Luo
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
24
|
ILCs-Crucial Players in Enteric Infectious Diseases. Int J Mol Sci 2022; 23:ijms232214200. [PMID: 36430676 PMCID: PMC9695539 DOI: 10.3390/ijms232214200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Research of the last decade has remarkably increased our understanding of innate lymphoid cells (ILCs). ILCs, in analogy to T helper (Th) cells and their cytokine and transcription factor profile, are categorized into three distinct populations: ILC1s express the transcription factor T-bet and secrete IFNγ, ILC2s depend on the expression of GATA-3 and release IL-5 and IL-13, and ILC3s express RORγt and secrete IL-17 and IL-22. Noteworthy, ILCs maintain a level of plasticity, depending on exposed cytokines and environmental stimuli. Furthermore, ILCs are tissue resident cells primarily localized at common entry points for pathogens such as the gut-associated lymphoid tissue (GALT). They have the unique capacity to initiate rapid responses against pathogens, provoked by changes of the cytokine profile of the respective tissue. Moreover, they regulate tissue inflammation and homeostasis. In case of intracellular pathogens entering the mucosal tissue, ILC1s respond by secreting cytokines (e.g., IFNγ) to limit the pathogen spread. Upon infection with helminths, intestinal epithelial cells produce alarmins (e.g., IL-25) and activate ILC2s to secrete IL-13, which induces differentiation of intestinal stem cells into tuft and goblet cells, important for parasite expulsion. Additionally, during bacterial infection ILC3-derived IL-22 is required for bacterial clearance by regulating antimicrobial gene expression in epithelial cells. Thus, ILCs can limit infectious diseases via secretion of inflammatory mediators and interaction with other cell types. In this review, we will address the role of ILCs during enteric infectious diseases.
Collapse
|
25
|
Naito M, Nakanishi Y, Motomura Y, Takamatsu H, Koyama S, Nishide M, Naito Y, Izumi M, Mizuno Y, Yamaguchi Y, Nojima S, Okuzaki D, Kumanogoh A. Semaphorin 6D-expressing mesenchymal cells regulate IL-10 production by ILC2s in the lung. Life Sci Alliance 2022; 5:5/11/e202201486. [PMID: 36038260 PMCID: PMC9434704 DOI: 10.26508/lsa.202201486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) have features specific to the niches in which they reside, and we found that semaphorin 6D signaling in the lung niche controls IL-10 production by ILC2s. Group 2 innate lymphoid cells (ILC2s) have been implicated in both physiologic tissue remodeling and allergic pathology, yet the niche signaling required for ILC2 properties is poorly understood. Here, we show that an axonal guidance cue semaphorin 6D (Sema6D) plays critical roles in the maintenance of IL-10–producing ILC2s. Sema6d−/− mice exhibit a severe steady-state reduction in ILC2s in peripheral sites such as the lung, visceral adipose tissue, and mesentery. Interestingly, loss of Sema6D results in suppressed alarmin-driven type 2 cytokine production but increased IL-10 production by lung ILC2s both in vitro and in vivo. Consequently, Sema6d−/− mice are resistant to the development of allergic lung inflammation. We further found that lung mesenchymal cells highly express Sema6D, and that niche-derived Sema6D is responsible for these phenotypes through plexin A1. Collectively, these findings suggest that niche-derived Sema6D is implicated in physiological and pathological characteristics of ILC2s.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, WPI, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan .,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
26
|
Thio CLP, Lai ACY, Ting YT, Chi PY, Chang YJ. The ketone body β-hydroxybutyrate mitigates ILC2-driven airway inflammation by regulating mast cell function. Cell Rep 2022; 40:111437. [PMID: 36170837 DOI: 10.1016/j.celrep.2022.111437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ketone bodies are increasingly understood to have regulatory effects on immune cell function, with β-hydroxybutyrate (BHB) exerting a predominantly anti-inflammatory response. Dietary strategies to increase endogenous ketone body availability such as the ketogenic diet (KD) have recently been shown to alleviate inflammation of the respiratory tract. However, the role of BHB has not been addressed. Here, we observe that BHB suppresses group 2 innate lymphoid cell (ILC2)-mediated airway inflammation. Central to this are mast cells, which support ILC2 proliferation through interleukin-2 (IL-2). Suppression of the mast cell/IL-2 axis by BHB attenuates ILC2 proliferation and the ensuing type 2 cytokine response and immunopathology. Mechanistically, BHB directly inhibits mast cell function in part through GPR109A activation. Similar effects are achieved with either the KD or 1,3-butanediol. Our data reveal the protective role of BHB in ILC2-driven airway inflammation, which underscores the potential therapeutic value of ketone body supplementation for the management of asthma.
Collapse
Affiliation(s)
| | | | - Yu-Tse Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
27
|
Kabil A, Shin SB, Hughes MR, McNagny KM. “Just one word, plastic!”: Controversies and caveats in innate lymphoid cell plasticity. Front Immunol 2022; 13:946905. [PMID: 36052086 PMCID: PMC9427196 DOI: 10.3389/fimmu.2022.946905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) are frontline immune effectors involved in the early stages of host defense and maintenance of tissue homeostasis, particularly at mucosal surfaces such as the intestine, lung, and skin. Canonical ILCs are described as tissue-resident cells that populate peripheral tissues early in life and respond appropriately based on environmental exposure and their anatomical niche and tissue microenvironment. Intriguingly, there are accumulating reports of ILC “plasticity” that note the existence of non-canonical ILCs that exhibit distinct patterns of master transcription factor expression and cytokine production profiles in response to tissue inflammation. Yet this concept of ILC-plasticity is controversial due to several confounding caveats that include, among others, the independent large-scale recruitment of new ILC subsets from distal sites and the local, in situ, differentiation of uncommitted resident precursors. Nevertheless, the ability of ILCs to acquire unique characteristics and adapt to local environmental cues is an attractive paradigm because it would enable the rapid adaptation of innate responses to a wider array of pathogens even in the absence of pre-existing ‘prototypical’ ILC responder subsets. Despite the impressive recent progress in understanding ILC biology, the true contribution of ILC plasticity to tissue homeostasis and disease and how it is regulated remains obscure. Here, we detail current methodologies used to study ILC plasticity in mice and review the mechanisms that drive and regulate functional ILC plasticity in response to polarizing signals in their microenvironment and different cytokine milieus. Finally, we discuss the physiological relevance of ILC plasticity and its implications for potential therapeutics and treatments.
Collapse
Affiliation(s)
- Ahmed Kabil
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Samuel B. Shin
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart and Lung Innovation (HLI), St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Kelly M. McNagny,
| |
Collapse
|
28
|
Feng G, Li D, Liu J, Sun S, Zhang P, Liu W, Zhang Y, Meng B, Li J, Chai L. The Herbal Combination of Radix astragali, Radix angelicae sinensis, and Caulis lonicerae Regulates the Functions of Type 2 Innate Lymphocytes and Macrophages Contributing to the Resolution of Collagen-Induced Arthritis. Front Pharmacol 2022; 13:964559. [PMID: 35928276 PMCID: PMC9343953 DOI: 10.3389/fphar.2022.964559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphocytes (ILC2s), promoting inflammation resolution, was a potential target for rheumatoid arthritis (RA) treatment. Our previous studies confirmed that R. astragali and R. angelicae sinensis could intervene in immunologic balance of T lymphocytes. C. lonicerae also have anti-inflammatory therapeutic effects. In this study, the possible molecular mechanisms of the combination of these three herbs for the functions of ILC2s and macrophages contributing to the resolution of collagen-induced arthritis (CIA) were studied. Therefore, we used R. astragali, R. angelicae sinensis, and C. lonicerae as treatment. The synovial inflammation and articular cartilage destruction were alleviated after herbal treatment. The percentages of ILC2s and Tregs increased significantly. The differentiation of Th17 cells and the secretion of IL-17 and IFN-γ significantly decreased. In addition, treatment by the combination of these three herbs could increase the level of anti-inflammatory cytokine IL-4 secreted, active the STAT6 signaling pathway, and then contribute to the transformation of M1 macrophages to M2 phenotype. The combination of the three herbs could promote inflammation resolution of synovial tissue by regulating ILC2s immune response network. The synergistic effects of three drugs were superior to the combination of R. astragali and R. angelicae sinensis or C. lonicerae alone.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Meng
- Department of Pharmacy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| |
Collapse
|
29
|
Xue Y, Reddy SK, Garza LA. Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041241. [PMID: 35667792 PMCID: PMC9248820 DOI: 10.1101/cshperspect.a041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effective tissue repair is vital for the survival of organisms. Yet, how the immune system coordinates with tissue stem cells (SCs) to effect postnatal tissue restoration remains elusive. This review presents current knowledge surrounding wound-induced SC and immune signaling that favors tissue repair, including wound healing and regeneration. We discuss factors that affect regenerative capacities among organisms and the dynamics of local immune cells and SCs during reepithelialization. We also present recent insights into how immune niches communicate with SCs or other body systems to restore the epithelial architecture. Additionally, we summarize our findings on functional wound regeneration, specifically how alarmin (double-stranded RNA [dsRNA])-activated Toll-like receptor signaling and host-microbe interaction-related immune pathways alter the regenerative property of skin SCs. Last, we touch on mechanisms by which known immunologic cellular and molecular signaling might boost the skin's regenerative property. Overall, this review will provide insights into how therapeutically modulating immune signaling could enhance postnatal tissue regeneration.
Collapse
Affiliation(s)
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery
- Department of Biomedical Engineering
- Institute for NanoBioTechnology
| | - Luis A Garza
- Department of Dermatology
- Department of Cell Biology
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
30
|
Ercolano G, Moretti A, Falquet M, Wyss T, Tran NL, Senoner I, Marinoni M, Agosti M, Salvatore S, Jandus C, Trabanelli S. Gliadin-reactive vitamin D-sensitive proinflammatory ILCPs are enriched in celiac patients. Cell Rep 2022; 39:110956. [PMID: 35705047 DOI: 10.1016/j.celrep.2022.110956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a multisystem disease in which different organs may be affected. We investigate whether circulating innate lymphoid cells (ILCs) contribute to the CD peripheral inflammatory status. We find that the CD cytokine profile is characterized by high concentrations of IL-12p40, IL-18, and IFN-γ, paralleled by an expansion of ILC precursors (ILCPs). In the presence of the gliadin peptides p31-43 and pα-9, ILCPs from CD patients increase transglutaminase 2 (TG2) expression, produce IL-18 and IFN-γ, and stimulate CD4+ T lymphocytes. IFN-γ is also produced upon stimulation with IL-12p40 and IL-18 and is inhibited by the addition of vitamin D. Low levels of blood vitamin D correlate with high IFN-γ and ILCP presence and mark the CD population mostly affected by extraintestinal symptoms. Dietary vitamin D supplementation appears to be an interesting therapeutic approach to dampen ILCP-mediated IFN-γ production.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Departement of Oncology, UNIL-CHUV, Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Alex Moretti
- Pediatric Department, Hospital "F. Del Ponte," University of Insubria, 21100 Varese, Italy
| | - Maryline Falquet
- Departement of Oncology, UNIL-CHUV, Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tania Wyss
- Departement of Oncology, UNIL-CHUV, Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Maddalena Marinoni
- Pediatric Department, Hospital "F. Del Ponte," University of Insubria, 21100 Varese, Italy; Pediatric Onco-haematological Day Hospital, Hospital "F. Del Ponte", ASST-Settelaghi, 21100 Varese, Italy
| | - Massimo Agosti
- Pediatric Department, Hospital "F. Del Ponte," University of Insubria, 21100 Varese, Italy
| | - Silvia Salvatore
- Pediatric Department, Hospital "F. Del Ponte," University of Insubria, 21100 Varese, Italy
| | - Camilla Jandus
- Departement of Oncology, UNIL-CHUV, Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sara Trabanelli
- Departement of Oncology, UNIL-CHUV, Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
31
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
33
|
Dembic Z. Defending and Integrating an Organism by the Immune System. Scand J Immunol 2022; 95:e13172. [PMID: 35416326 PMCID: PMC9285719 DOI: 10.1111/sji.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
The Integrity model proposes that the adaptive immune response defends, protects and keeps vigilance over the unity of an organism. These functions conceptually rely on three signals that can explain them. All signals have a dual character. The signal‐1 is the recognition of antigen or peptide/MHC ligand. The signal‐2 comprises either help and costimulation or suppression and coinhibition. Lastly, the signal‐3 signals tissues' condition, state or integrity. A part overlaps with the Danger‐associated molecular patterns, and the other part should be detected by putative cell‐surface molecules, intracellular factors or epigenetic events. They are called the Integrity‐associated molecular patterns (IAMPs). The IAMPs originate from damaged (positive signal‐3) or undamaged (negative signal‐3) tissues. The positive signal‐3 would induce costimulatory signal‐2, whereas the negative signal‐3 would induce coinhibitory signal‐2 in APCs. However, in analogue reality, we might more likely encounter a range of signals supposedly sensed by a group of responder cells and integrated overtime (quorum sensing). The predominant option would sway the decision of the immune system to perform either defence or protection (active tolerance). Thus, the quorum sensing supposedly delivers two qualitative thresholds for T (and B) cells' decisions to defend or suppress. If these were not attained, the vigilance (anergy) of adaptive immunocytes for T‐dependent antigens would ensue. These functions provide defence against pathogens and preservation of unity/integrity of an organism, which in turn permits protection of commensals.
Collapse
Affiliation(s)
- Zlatko Dembic
- Department of Oral Biology, University of Oslo, Norway
| |
Collapse
|
34
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
35
|
Sarmento A, Simões CD. Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation. COMPREHENSIVE GUT MICROBIOTA 2022:423-441. [DOI: 10.1016/b978-0-12-819265-8.00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Altun I, Yan X, Ussar S. Immune Cell Regulation of White Adipose Progenitor Cell Fate. Front Endocrinol (Lausanne) 2022; 13:859044. [PMID: 35422761 PMCID: PMC9001836 DOI: 10.3389/fendo.2022.859044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue is essential for energy storage and endocrine regulation of metabolism. Imbalance in energy intake and expenditure result in obesity causing adipose tissue dysfunction. This alters cellular composition of the stromal cell populations and their function. Moreover, the individual cellular composition of each adipose tissue depot, regulated by environmental factors and genetics, determines the ability of the depots to expand and maintain its endocrine and storage function. Thus, stromal cells modulate adipocyte function and vice versa. In this mini-review we discuss heterogeneity in terms of composition and fate of adipose progenitor subtypes and their interactions with and regulation by different immune cell populations. Immune cells are the most diverse cell populations in adipose tissue and play essential roles in regulating adipose tissue function via interaction with adipocytes but also with adipocyte progenitors. We specifically discuss the role of macrophages, mast cells, innate lymphoid cells and T cells in the regulation of adipocyte progenitor proliferation, differentiation and lineage commitment. Understanding the factors and cellular interactions regulating preadipocyte expansion and fate decision will allow the identification of novel mechanisms and therapeutic strategies to promote healthy adipose tissue expansion without systemic metabolic impairment.
Collapse
Affiliation(s)
- Irem Altun
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xiaocheng Yan
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Siegfried Ussar
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
- *Correspondence: Siegfried Ussar,
| |
Collapse
|
37
|
Teng F, Tachó-Piñot R, Sung B, Farber DL, Worgall S, Hammad H, Lambrecht BN, Hepworth MR, Sonnenberg GF. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep 2021; 37:110051. [PMID: 34818549 PMCID: PMC8635287 DOI: 10.1016/j.celrep.2021.110051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) critically regulate host-microbe
interactions in the gastrointestinal tract, but their role in the airway remains
poorly understood. Here, we demonstrate that lymphoid-tissue-inducer (LTi)-like
ILC3s are enriched in the lung-draining lymph nodes of healthy mice and humans.
These ILC3s abundantly express major histocompatibility complex class II (MHC
class II) and functionally restrict the expansion of allergen-specific
CD4+ T cells upon experimental airway challenge. In a mouse model
of house-dust-mite-induced allergic airway inflammation, MHC class
II+ ILC3s limit T helper type 2 (Th2) cell responses,
eosinophilia, and airway hyperresponsiveness. Furthermore, MHC class
II+ ILC3s limit a concomitant Th17 cell response and airway
neutrophilia. This exacerbated Th17 cell response requires exposure of the lung
to microbial stimuli, which can be found associated with house dust mites. These
findings demonstrate a critical role for antigen-presenting ILC3s in
orchestrating immune tolerance in the airway by restricting pro-inflammatory T
cell responses to both allergens and microbes. In this study, Teng et al. demonstrate that an innate immune cell type,
ILC3, is enriched in the lung draining lymph node of healthy humans and mice and
functions to limit airway inflammation through antigen presentation and control
of T cell responses directed against allergens or microbes.
Collapse
Affiliation(s)
- Fei Teng
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Biin Sung
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology and Departments of Surgery and Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA; Drukier Institute for Children's Health, Weill Cornell Medicine, New York, New York, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
38
|
Chemokines and Innate Lymphoid Cells in Skin Inflammation. Cells 2021; 10:cells10113074. [PMID: 34831296 PMCID: PMC8621478 DOI: 10.3390/cells10113074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
As the outermost barrier, skin plays an important role in protecting our bodies against outside invasion. Under stable conditions or during inflammation, leukocytes migration is essential for restoring homeostasis in the skin. Immune cells trafficking is orchestrated by chemokines; leukocytes express receptors that bind to chemokines and trigger migration. The homeostasis of the immune ecosystem is an extremely complicated dynamic process that requires the cooperation of innate and adaptive immune cells. Emerging studies have been shedding a light on the unique characteristics of skin-resident innate lymphoid cells (ILCs). In this review, we discuss how chemokines orchestrate skin ILCs trafficking and contribute to tissue homeostasis and how abnormal chemokine–chemokine receptor interactions contribute to and augment skin inflammation, as seen in conditions such as contact hypersensitivity, atopic dermatitis, and psoriasis.
Collapse
|
39
|
Huang Y, Zhang N, Xu Z, Zhang L, Bachert C. The development of the mucosal concept in chronic rhinosinusitis and its clinical implications. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:707-715. [PMID: 34742931 DOI: 10.1016/j.jaip.2021.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
In the last 2 decades, an increasing understanding of pathophysiological mechanisms in chronic rhinosinusitis opened an avenue from phenotyping to endotyping, from eosinophilic inflammation to type 2 immunity, and from the "ventilation and drainage" paradigm to the mucosal concept for therapeutic considerations. With the advent of type 2 endotyping and targeted biomarkers, precise endotype-driven therapeutic options are possible including biologics and adapted surgical approaches. We here aim to focus on the complexity and heterogeneity of the features of chronic rhinosinusitis (CRS) endotypes, especially for those with nasal polyps, including its history, latest developments, clinical associations and endotype-driven solutions. In order to better manage uncontrolled severe CRS in clinical practice, medical decisions based on a profound understanding of the pathology and immunology of this heterogeneous disease, aiding a precision-medicine based approach for patient's treatment are pivotal.
Collapse
Affiliation(s)
- Yanran Huang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China
| | - Nan Zhang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Zhaofeng Xu
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China
| | - Luo Zhang
- Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China; Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, P.R. China.
| | - Claus Bachert
- Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China; Division of ENT diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden; The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China.
| |
Collapse
|
40
|
Singh TP, Carvalho AM, Sacramento LA, Grice EA, Scott P. Microbiota instruct IL-17A-producing innate lymphoid cells to promote skin inflammation in cutaneous leishmaniasis. PLoS Pathog 2021; 17:e1009693. [PMID: 34699567 PMCID: PMC8570469 DOI: 10.1371/journal.ppat.1009693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/05/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TPS); (PS)
| | - Augusto M. Carvalho
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laís Amorim Sacramento
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TPS); (PS)
| |
Collapse
|
41
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
42
|
Yu HB, Yang H, Allaire JM, Ma C, Graef FA, Mortha A, Liang Q, Bosman ES, Reid GS, Waschek JA, Osborne LC, Sokol H, Vallance BA, Jacobson K. Vasoactive intestinal peptide promotes host defense against enteric pathogens by modulating the recruitment of group 3 innate lymphoid cells. Proc Natl Acad Sci U S A 2021; 118:e2106634118. [PMID: 34625492 PMCID: PMC8521691 DOI: 10.1073/pnas.2106634118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.
Collapse
Affiliation(s)
- Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Hyungjun Yang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Joannie M Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Else S Bosman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Gregor S Reid
- Division of Oncology, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - James A Waschek
- The Semel Institute and Department of Psychiatry, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, Sorbonne Université, Paris, F-75012, France
- Institut national de la recherche agronomique, Micalis Institute and AgroParisTech, Jouy en Josas, F-78350, France
- Paris Center for Microbiome Medicine, Fédérations Hospitalo-universitaires, Paris, F-75012, France
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Kevan Jacobson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| |
Collapse
|
43
|
Nakatani-Kusakabe M, Yasuda K, Tomura M, Nagai M, Yamanishi K, Kuroda E, Kanazawa N, Imai Y. Monitoring Cellular Movement with Photoconvertible Fluorescent Protein and Single-Cell RNA Sequencing Reveals Cutaneous Group 2 Innate Lymphoid Cell Subtypes, Circulating ILC2 and Skin-Resident ILC2. JID INNOVATIONS 2021; 1:100035. [PMID: 34909732 PMCID: PMC8659747 DOI: 10.1016/j.xjidi.2021.100035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
We previously generated a transgenic mouse line expressing skin-specific IL-33 (IL33tg mice) and showed that IL-33 elicits group 2 innate lymphoid cell (ILC2)-dependent atopic dermatitis-like skin inflammation. ILC2s are believed to be tissue-resident cells under steady-state conditions, but the dynamics of ILC2 migration are not fully understood. We sorted ILC2s from the skin and draining lymph nodes of IL33tg mice and analyzed their transcriptomes using the single-cell RNA sequencing technique, which revealed that the skin ILC2s had split into two clusters: circulating ILC2 and skin-resident ILC2. The circulating ILC2s expressed H2-related major histocompatibility complex class II genes. Conversely, the skin-resident ILC2s demonstrated increased mRNA expression of the ICOS, IL-5, and IL-13. Next, we tracked ILC2 migration using IL33tg-Kikume Green-Red mice. Exposing the IL33tg-Kikume Green-Red mice's inflamed skin to violet light allowed us to label the circulating ILC2s in their skin and track the ILC2 migration from the skin to the draining lymph nodes. Cutaneous local innate responses could transition to systemic type 2 responses by migrating the activated ILC2s from the skin into the draining lymph node. Conversely, the skin-resident ILC2s produced a large number of cytokines. Thus, the skin ILC2s turned out to be a heterogeneous cell population.
Collapse
Affiliation(s)
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Makoto Nagai
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyofumi Yamanishi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasutomo Imai
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
44
|
Nabatanzi R, Bayigga L, Cose S, Canderan G, Rowland Jones S, Joloba M, Nakanjako D. Innate lymphoid cell dysfunction during long-term suppressive antiretroviral therapy in an African cohort. BMC Immunol 2021; 22:59. [PMID: 34445953 PMCID: PMC8390268 DOI: 10.1186/s12865-021-00450-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Innate lymphoid cells (ILC) are lymphoid lineage innate immune cells that do not mount antigen-specific responses due to their lack of B and T-cell receptors. ILCs are predominantly found at mucosal surfaces, as gatekeepers against invading infectious agents through rapid secretion of immune regulatory cytokines. HIV associated destruction of mucosal lymphoid tissue depletes ILCs, among other immune dysfunctions. Studies have described limited restoration of ILCs during the first three years of combined antiretroviral therapy (cART). Little is known about restoration of ILCs during long-term cART, particularly in sub-Saharan Africa which hosts increasing numbers of adults with at least a decade of cART. RESULTS We examined phenotypes and function of ILCs from peripheral blood mononuclear cells after 12 years of suppressive cART. We report that ILC1 frequencies (T-BET + CD127 + and CD161 +) were higher in cART-treated HIV-infected relative to age-matched health HIV-negative adults; P = 0.04 whereas ILC precursors (ILCP) were comparable in the two groups (P = 0.56). Interferon gamma (IFN-γ) secretion by ILC1 was higher among cART-treated HIV-infected relative to HIV-negative adults (P = 0.03). CONCLUSION HIV associated alteration of ILC persisted during cART and may likely affect the quality of host innate and adaptive immune responses during long-term cART.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | | | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Institute, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
45
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|
46
|
Zhu T, Zhao Y, Zhang P, Shao Y, He J, Xue P, Zheng W, Qu W, Jia X, Zhou Z, Lu R, He M, Zhang Y. Lead Impairs the Development of Innate Lymphoid Cells by Impeding the Differentiation of Their Progenitors. Toxicol Sci 2021; 176:410-422. [PMID: 32428222 DOI: 10.1093/toxsci/kfaa074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lead (Pb) is a heavy metal toxic to the immune system, yet the influence of Pb on innate lymphoid cells (ILC) remains to be defined. In this study, we found that occupationally relevant level of Pb exposure impaired ILC development at the progenitor level by activating Janus Kinase1. C57BL/6 mice treated with 1250 ppm, but not 125 ppm Pb acetic via drinking water for 8 weeks had reduced number of mature ILC, which was not caused by increased apoptosis or suppressed proliferation. Conversely, Pb increased the number of innate lymphoid cell progenitors (ILCP) in the bone marrow. The discordant observation indicated that an obstruction of ILCP differentiation into mature ILC during Pb exposure existed. Pb directly acted on ILCP to suppress their proliferation, indicating that ILCP were less activated during Pb exposure. Reciprocal ILCP transplantation assay confirmed that Pb impeded the differentiation of ILCP into mature ILC, as ILCP gave rise to fewer mature ILC in Pb-treated recipients compared with control recipients. In vitro assays suggested that the obstruction of ILCP differentiation by Pb exposure was due to increased activation of Janus Kinase1. Thus, Pb impeded ILCP differentiation into mature ILC to result in an accumulation of ILCP in the bone marrow and the resultant decreased number of mature ILC in lymphoid and nonlymphoid tissues in mice. Moreover, by analyses of ILC and ILCP in peripheral blood mononuclear cells of human subjects occupationally exposed to Pb, we revealed that Pb might also impede the development of ILC in human.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Zhejiang 313000, China
| | - Yiming Shao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Jinyi He
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Xiaodong Jia
- Shanghai Chemical Industry Park Medical Center, Shanghai 201507, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
48
|
Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc Natl Acad Sci U S A 2021; 118:2101169118. [PMID: 34244432 DOI: 10.1073/pnas.2101169118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.
Collapse
|
49
|
Wang N, Bai X, Jin X, Tang B, Yang Y, Sun Q, Li S, Wang C, Chang Q, Liu M, Liu X. The dynamics of select cellular responses and cytokine expression profiles in mice infected with juvenile Clonorchis sinensis. Acta Trop 2021; 217:105852. [PMID: 33548205 DOI: 10.1016/j.actatropica.2021.105852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
Clonorchiasis is a zoonotic disease that can result in chronic infection in humans. The causative agent, Clonorchis sinensis (C. sinensis), is believed to primarily induce a Th2 immune response in infected mice. However, few studies have profiled host immune responses to C. sinensis infection during the juvenile phase. In the present study, the dynamics of select cellular responses and cytokine expression profiles during juvenile C. sinensis infection were investigated. The flow cytometry results showed that the CD4+ T cells percentage was significantly decreased between 12 days post-infection (dpi) and 24 dpi in the peripheral blood, and the CD8+ T cells percentage was significantly elevated after 3 dpi. The ratio of CD4+/CD8+ T cells was also significantly decreased after 3 dpi. Furthermore, we observed that the proportion of CD14+ monocyte-macrophages in the peripheral blood was significantly increased between 1 dpi and 12 dpi and peaked at 6 dpi. The percentage of classically activated macrophages (M1) and alternatively activated macrophages (M2) in the liver was significantly increased between 18 dpi and 30 dpi. qRT-PCR results showed that the expression levels of iNOS in the liver were significantly elevated after 3 dpi, and Arg-1 expression was significantly increased beginning at 12 dpi. ELISA results showed that the serum levels of the Th1 cytokines IFN-γ and IL-2 peaked at 6 dpi and decreased thereafter. Furthermore, the Th2 cytokines IL-4 and IL-13 began to be expressed and peaked at 24 dpi and 30 dpi, respectively. In addition, the levels of the Treg cytokines IL-10 and TGF-β1 were significantly increased beginning at 6 dpi until 30 dpi. In the liver homogenate, the expression of IFN-γ, IL-2, and IL-4 mainly occurred before 6 dpi. IL-13 expression was significantly increased at 30 dpi. IL-10 and TGF-β1 levels were significantly increased at 12 dpi and 24 dpi, and expression peaked at 24 dpi and 30 dpi, respectively. This study provides a fundamental characterization for the future analysis of host-parasite interactions and immune responses in hosts infected with juvenile C. sinensis.
Collapse
|
50
|
Fali T, Aychek T, Ferhat M, Jouzeau JY, Busslinger M, Moulin D, Eberl G. Metabolic regulation by PPARγ is required for IL-33-mediated activation of ILC2s in lung and adipose tissue. Mucosal Immunol 2021; 14:585-593. [PMID: 33106586 DOI: 10.1038/s41385-020-00351-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 02/04/2023]
Abstract
Type 2 innate lymphoid cells (ILC2s) play a critical role early in the response to infection by helminths and in the development of allergic reactions. ILC2s are also involved in the physiologic regulation of adipose tissue and its metabolic response to cold shock. We find that the metabolic sensor peroxisome proliferator-activated receptor gamma (PPARγ) is highly expressed in ILC2s of the lung and adipose tissue and increases responsiveness to IL-33. In turn, activation of ILC2 by IL-33 leads to increased expression of PPARγ, a prerequisite for proliferation and expression of the effector cytokines IL-5 and IL-13. In contrast, pharmacological inhibition of PPARγ leads to decreased expression of CD36 and fatty acid uptake, a necessary source of energy for ILC2s and of potential ligands for PPARγ. As a consequence, treatment of mice with a PPARγ antagonist reduces the severity of an ILC2-dependent acute airway inflammation. Together, our results demonstrate the critical role of the metabolic sensor PPARγ for the functions of ILC2s.
Collapse
Affiliation(s)
- Tinhinane Fali
- Institut Pasteur, Microenvironment & Immunity Unit, 75724, Paris, France.,INSERM U1224, 75724, Paris, France
| | - Tegest Aychek
- Institut Pasteur, Microenvironment & Immunity Unit, 75724, Paris, France.,INSERM U1224, 75724, Paris, France
| | - Maroua Ferhat
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Yves Jouzeau
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - David Moulin
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France. .,CHRU de Nancy, Contrat d'interface, Vandœuvre-lès-Nancy, France.
| | - Gérard Eberl
- Institut Pasteur, Microenvironment & Immunity Unit, 75724, Paris, France. .,INSERM U1224, 75724, Paris, France.
| |
Collapse
|