1
|
Toghani D, Gupte S, Zeng S, Mahammadov E, Crosse EI, Seyedhassantehrani N, Burns C, Gravano D, Radtke S, Kiem HP, Rodriguez S, Carlesso N, Pradeep A, Georgiades A, Lucas F, Wilson NK, Kinston SJ, Göttgens B, Zong L, Beerman I, Park B, Janssens DH, Jones D, Toghani A, Nerlov C, Pietras EM, Mesnieres M, Maes C, Kumanogoh A, Worzfeld T, Cheong JG, Josefowicz SZ, Kharchenko P, Scadden DT, Scialdone A, Spencer JA, Silberstein L. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. NATURE AGING 2025; 5:558-575. [PMID: 39881190 PMCID: PMC12025894 DOI: 10.1038/s43587-024-00798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, Semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress. We show that, in the absence of Sema4A, myHSC inflammatory hyper-responsiveness in young mice drives excessive myHSC expansion, myeloid bias and profound loss of regenerative function with age. Mechanistically, Sema4A is mainly produced by neutrophils, signals via a cell surface receptor, Plexin D1, and safeguards the myHSC epigenetic state. Our study shows that, by selectively protecting a distinct stem cell subset, an extrinsic factor preserves functional diversity of somatic stem cell pool throughout organismal lifespan.
Collapse
Affiliation(s)
- Dorsa Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sanika Gupte
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon Zeng
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Edie I Crosse
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - David Gravano
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonia Rodriguez
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Amogh Pradeep
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexis Georgiades
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fabienne Lucas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicola K Wilson
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Le Zong
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Derek H Janssens
- Department of Epigenetics, Van Del Institute, Grand Rapids, MI, USA
| | - Daniel Jones
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claus Nerlov
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric M Pietras
- Department of Medicine-Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marion Mesnieres
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, University of Osaka, Osaka, Japan
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kharchenko
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Joel A Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Lev Silberstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Hsu AY, Huang Q, Pi X, Fu J, Raghunathan K, Ghimire L, Balasubramanian A, Xie X, Yu H, Loison F, Haridas V, Zha J, Liu F, Park SY, Bagale K, Ren Q, Fan Y, Zheng Y, Cancelas JA, Chai L, Stowell SR, Chen K, Xu R, Wang X, Xu Y, Zhang L, Cheng T, Ma F, Thiagarajah JR, Wu H, Feng S, Luo HR. Neutrophil-derived vesicles control complement activation to facilitate inflammation resolution. Cell 2025; 188:1623-1641.e26. [PMID: 39938514 PMCID: PMC11934499 DOI: 10.1016/j.cell.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
Although subsets with immunosuppressive properties exist, neutrophils are typically known for their pro-inflammatory role and pathogen clearance capabilities. Here, we reveal that neutrophils can paradoxically aid in resolving inflammation by actively producing anti-inflammatory extracellular vesicles. These large aging-neutrophil-derived vesicles (LAND-Vs) do not fit into classical vesicle categorizations due to their specific size, structure, or biogenesis pathway. They are protected from efferocytotic clearance by phagocytes due to surface "do not eat me" signals and accumulate in the resolution phase of inflammation. CD55 on LAND-Vs exerts a robust, sustained anti-inflammatory effect by inhibiting complement 3 convertase, thereby reducing neutrophil recruitment and tissue damage. CD55+ LAND-Vs originate in ordered lipid raft domains, where CD55 accumulates asymmetrically during neutrophil aging, and are subsequently formed through RhoA-dependent budding. Collectively, LAND-V emerges as a pivotal physiological immunomodulator and showcases functions that transcend the limited lifespan of neutrophils, offering a therapeutic target for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Qingxiang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 20115, USA
| | - Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 20115, USA
| | - Krishnan Raghunathan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 20115, USA
| | - Laxman Ghimire
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Arumugam Balasubramanian
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Xuemei Xie
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, Boston, MA 02132, USA
| | - Fabien Loison
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Viraga Haridas
- Flow and Imaging Cytometry Resources, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiali Zha
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Fei Liu
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Shin-Young Park
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yuping Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zheng
- Experimental Hematology and Cancer Biology Research, Cincinnati Children's Hospital Medical Center, Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Experimental Hematology and Cancer Biology Research, Cincinnati Children's Hospital Medical Center, Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Sean R Stowell
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Kanchao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Rong Xu
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA
| | - Xiaoxue Wang
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 20115, USA; Congenital Enteropathy Program, Boston Children's Hospital, PediCODE Consortium, Harvard Digestive Disease Center, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 20115, USA
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Hongbo R Luo
- Department of Pathology, PhD Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA; Department of Pathology, Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2025; 117:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
4
|
Bujko K, Adamiak M, Konopko A, Chumak V, Ratajczak J, Brzezniakiewicz-Janus K, Kucia M, Ratajczak MZ. Defect in Migration of HSPCs in Nox-2 Deficient Mice Explained by Impaired Activation of Nlrp3 Inflammasome and Impaired Formation of Membrane Lipid Rafts. Stem Cell Rev Rep 2025; 21:45-58. [PMID: 39134888 PMCID: PMC11762604 DOI: 10.1007/s12015-024-10775-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 01/26/2025]
Abstract
NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Konopko
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Vira Chumak
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | | | - Magdalena Kucia
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, Multi-Specialist Hospital Gorzow Wlkp, University of Zielona Gora, Zielona Góra, Poland.
| |
Collapse
|
5
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
6
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
7
|
Schleicher WE, Hoag B, De Dominici M, DeGregori J, Pietras EM. CHIP: a clonal odyssey of the bone marrow niche. J Clin Invest 2024; 134:e180068. [PMID: 39087468 PMCID: PMC11290965 DOI: 10.1172/jci180068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the selective expansion of hematopoietic stem and progenitor cells (HSPCs) carrying somatic mutations. While CHIP is typically asymptomatic, it has garnered substantial attention due to its association with the pathogenesis of multiple disease conditions, including cardiovascular disease (CVD) and hematological malignancies. In this Review, we will discuss seminal and recent studies that have advanced our understanding of mechanisms that drive selection for mutant HSPCs in the BM niche. Next, we will address recent studies evaluating potential relationships between the clonal dynamics of CHIP and hematopoietic development across the lifespan. Next, we will examine the roles of systemic factors that can influence hematopoietic stem cell (HSC) fitness, including inflammation, and exposures to cytotoxic agents in driving selection for CHIP clones. Furthermore, we will consider how - through their impact on the BM niche - lifestyle factors, including diet, exercise, and psychosocial stressors, might contribute to the process of somatic evolution in the BM that culminates in CHIP. Finally, we will review the role of old age as a major driver of selection in CHIP.
Collapse
Affiliation(s)
| | - Bridget Hoag
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James DeGregori
- Division of Hematology, Department of Medicine, and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
8
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
9
|
Trinh VH, Choi JM, Nguyen Huu T, Sah DK, Yoon HJ, Park SC, Jung YS, Ahn YK, Lee KH, Lee SR. Redox Regulation of Phosphatase and Tensin Homolog by Bicarbonate and Hydrogen Peroxide: Implication of Peroxymonocarbonate in Cell Signaling. Antioxidants (Basel) 2024; 13:473. [PMID: 38671920 PMCID: PMC11047460 DOI: 10.3390/antiox13040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphoinositide 3-kinases/protein kinase B (PI3K/AKT) signaling pathway. Notably, its active site contains a cysteine residue that is susceptible to oxidation by hydrogen peroxide (H2O2). This oxidation inhibits the phosphatase function of PTEN, critically contributing to the activation of the PI3K/AKT pathway. Upon the stimulation of cell surface receptors, the activity of NADPH oxidase (NOX) generates a transient amount of H2O2, serving as a mediator in this pathway by oxidizing PTEN. The mechanism underlying this oxidation, occurring despite the presence of highly efficient and abundant cellular oxidant-protecting and reducing systems, continues to pose a perplexing conundrum. Here, we demonstrate that the presence of bicarbonate (HCO3-) promoted the rate of H2O2-mediated PTEN oxidation, probably through the formation of peroxymonocarbonate (HCO4-), and consequently potentiated the phosphorylation of AKT. Acetazolamide (ATZ), a carbonic anhydrase (CA) inhibitor, was shown to diminish the oxidation of PTEN. Thus, CA can also be considered as a modulator in this context. In essence, our findings consolidate the crucial role of HCO3- in the redox regulation of PTEN by H2O2, leading to the presumption that HCO4- is a signaling molecule during cellular physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Jin-Myung Choi
- Luxanima Inc., Room 102, 12-55, Sandan-gil, Hwasun-eup, Hwasun-gun 58128, Republic of Korea;
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Hyun-Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| | - Sang-Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu-Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Young-Keun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea;
| | - Kun-Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea;
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (H.-J.Y.)
| |
Collapse
|
10
|
Zhang Y, Zhou Y, Li X, Pan X, Bai J, Chen Y, Lai Z, Chen Q, Ma F, Dong Y. Small-molecule α-lipoic acid targets ELK1 to balance human neutrophil and erythrocyte differentiation. Stem Cell Res Ther 2024; 15:100. [PMID: 38589882 PMCID: PMC11003016 DOI: 10.1186/s13287-024-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.
Collapse
Affiliation(s)
- Yimeng Zhang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Xindu Road 783, Chengdu, 610500, China
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ju Bai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | | | - Qiang Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.
| | - Yong Dong
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Xindu Road 783, Chengdu, 610500, China.
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.
| |
Collapse
|
11
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
12
|
Li B, Lv X, Xu Z, He J, Liu S, Zhang X, Tong X, Li J, Zhang Y. Helicobacter pylori infection induces autophagy via ILK regulation of NOXs-ROS-Nrf2/HO-1-ROS loop. World J Microbiol Biotechnol 2023; 39:284. [PMID: 37599292 DOI: 10.1007/s11274-023-03710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Reactive oxygen species (ROS) can regulate the occurrence of autophagy, and effective control of the balance between ROS and autophagy may be an important strategy for Helicobacter pylori induced gastric-related diseases. In this study, infection with H. pylori led to a lower level of ILK phosphorylation and increased ROS generation. Knockdown of ILK enhanced total ROS generation, and upregulated NADPH oxidase (NOX) subunit p22-phox levels. Inhibition of NOXs affected total ROS generation. The inhibition of NOX and ROS generation reduced Nrf2 and HO-1 levels, and knockdown of ILK significantly enhanced Nrf2 levels in H. pylori-infected GES-1 cells. Activation of Nrf2 by DMF decreased ROS levels. Therefore, NOX-dependent ROS production regulated by ILK was essential for activation of Nrf2/HO-1 signaling pathways in H. pylori-infected GES-1 cells. Beclin1, ATG5 and LC3B-II levels were higher both in H. pylori-infected and ILK-knockdown GES-1 cells. In NAC-pretreated GES-1 cells infected with H. pylori, the LC3B-II level was decreased compared to that in cells after H. pylori infection alone. Stable low expression of ILK with further knockdown of Beclin1 or ATG5 significantly reduced LC3B-II levels in GES-1 cells, while with the addition of the autophagy inhibitor chloroquine (CQ), LC3B-II and p62 protein levels were both remarkably upregulated. H. pylori accelerated the accumulation of ROS and further led to the induction of ROS-mediated autophagy by inhibiting ILK levels. Together, these results indicate that H. pylori infection manipulates the NOX-ROS-Nrf2/HO-1-ROS loop to control intracellular oxygen stress and further induced ROS-mediated autophagy by inhibiting ILK levels.
Collapse
Affiliation(s)
- Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xin Lv
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Zheng Xu
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing He
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - SiSi Liu
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaolin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China.
| |
Collapse
|
13
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
14
|
Wu C, Zhong Q, Shrestha R, Wang J, Hu X, Li H, Rouchka EC, Yan J, Ding C. Reactive myelopoiesis and FX-expressing macrophages triggered by chemotherapy promote cancer lung metastasis. JCI Insight 2023; 8:e167499. [PMID: 36976637 PMCID: PMC10243818 DOI: 10.1172/jci.insight.167499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Several preclinical studies have demonstrated that certain cytotoxic drugs enhance metastasis, but the importance of host responses triggered by chemotherapy in regulating cancer metastasis has not been fully explored. Here, we showed that multidose gemcitabine (GEM) treatment promoted breast cancer lung metastasis in a transgenic spontaneous breast cancer model. GEM treatment significantly increased accumulation of CCR2+ macrophages and monocytes in the lungs of tumor-bearing as well as tumor-free mice. These changes were largely caused by chemotherapy-induced reactive myelopoiesis biased toward monocyte development. Mechanistically, enhanced production of mitochondrial ROS was observed in GEM-treated BM Lin-Sca1+c-Kit+ cells and monocytes. Treatment with the mitochondria targeted antioxidant abrogated GEM-induced hyperdifferentiation of BM progenitors. In addition, GEM treatment induced upregulation of host cell-derived CCL2, and knockout of CCR2 signaling abrogated the pro-metastatic host response induced by chemotherapy. Furthermore, chemotherapy treatment resulted in the upregulation of coagulation factor X (FX) in lung interstitial macrophages. Targeting activated FX (FXa) using FXa inhibitor or F10 gene knockdown reduced the pro-metastatic effect of chemotherapy. Together, these studies suggest a potentially novel mechanism for chemotherapy-induced metastasis via the host response-induced accumulation of monocytes/macrophages and interplay between coagulation and inflammation in the lungs.
Collapse
Affiliation(s)
- Caijun Wu
- UofL Health - Brown Cancer Center and
| | | | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | - Hong Li
- UofL Health - Brown Cancer Center and
| | - Eric C. Rouchka
- Department of Computer Science and Engineering, University of Louisville J.B. Speed School of Engineering, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health - Brown Cancer Center and
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health - Brown Cancer Center and
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Elworthy S, Rutherford HA, Prajsnar TK, Hamilton NM, Vogt K, Renshaw SA, Condliffe AM. Activated PI3K delta syndrome 1 mutations cause neutrophilia in zebrafish larvae. Dis Model Mech 2023; 16:dmm049841. [PMID: 36805642 PMCID: PMC10655814 DOI: 10.1242/dmm.049841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
People with activated PI3 kinase delta syndrome 1 (APDS1) suffer from immune deficiency and severe bronchiectasis. APDS1 is caused by dominant activating mutations of the PIK3CD gene that encodes the PI3 kinase delta (PI3Kδ) catalytic subunit. Despite the importance of innate immunity defects in bronchiectasis, there has been limited investigation of neutrophils or macrophages in APDS1 patients or mouse models. Zebrafish embryos provide an ideal system to study neutrophils and macrophages. We used CRISPR-Cas9 and CRISPR-Cpf1, with oligonucleotide-directed homologous repair, to engineer zebrafish equivalents of the two most prevalent human APDS1 disease mutations. These zebrafish pik3cd alleles dominantly caused excessive neutrophilic inflammation in a tail-fin injury model. They also resulted in total body neutrophilia in the absence of any inflammatory stimulus but normal numbers of macrophages. Exposure of zebrafish to the PI3Kδ inhibitor CAL-101 reversed the total body neutrophilia. There was no apparent defect in neutrophil maturation or migration, and tail-fin regeneration was unimpaired. Overall, the finding is of enhanced granulopoeisis, in the absence of notable phenotypic change in neutrophils and macrophages.
Collapse
Affiliation(s)
- Stone Elworthy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Holly A. Rutherford
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Tomasz K. Prajsnar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Noémie M. Hamilton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Katja Vogt
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
17
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
18
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
19
|
Urao N, Liu J, Takahashi K, Ganesh G. Hematopoietic Stem Cells in Wound Healing Response. Adv Wound Care (New Rochelle) 2022; 11:598-621. [PMID: 34353116 PMCID: PMC9419985 DOI: 10.1089/wound.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Emerging evidence has shown a link between the status of hematopoietic stem cells (HSCs) and wound healing responses. Thus, better understanding HSCs will contribute to further advances in wound healing research. Recent Advances: Myeloid cells such as neutrophils and monocyte-derived macrophages are critical players in the process of wound healing. HSCs actively respond to wound injury and other tissue insults, including infection and produce the effector myeloid cells, and a failing of the HSC response can result in impaired wound healing. Technological advances such as transcriptome at single-cell resolution, epigenetics, three-dimensional imaging, transgenic animals, and animal models, have provided novel concepts of myeloid generation (myelopoiesis) from HSCs, and have revealed cell-intrinsic and -extrinsic mechanisms that can impact HSC functions in the context of health conditions. Critical Issues: The newer concepts include-the programmed cellular fate at a differentiation stage that is used to be considered as the multilineage, the signaling pathways that can activate HSCs directly and indirectly, the mechanisms that can deteriorate HSCs, the roles and remodeling of the surrounding environment for HSCs and their progenitors (the niche). Future Directions: The researches on HSCs, which produce blood cells, should contribute to the development of blood biomarkers predicting a risk of chronic wounds, which may transform clinical practice of wound care with precision medicine for patients at high risk of poor healing.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA.,Correspondence: Department of Pharmacology, State University of New York Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Room 5322, Syracuse, NY 13210, USA.
| | - Jinghua Liu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kentaro Takahashi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gayathri Ganesh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
20
|
Nguyen TH, Abidin BM, Heinonen KM. Frizzled-6 promotes hematopoietic stem/progenitor cell mobilization and survival during LPS-induced emergency myelopoiesis. Stem Cell Reports 2022; 17:2303-2317. [PMID: 36084638 PMCID: PMC9561701 DOI: 10.1016/j.stemcr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/31/2022] Open
Abstract
Emergency hematopoiesis involves the activation of bone marrow hematopoietic stem/progenitor cells (HSPCs) in response to systemic inflammation by a combination of cell-autonomous and stroma-dependent signals and leads to their release from bone marrow and migration to periphery. We have previously shown that FZD6 plays a pivotal role in regulating HSPC expansion and long-term maintenance. Now we sought to better understand the underlying mechanisms. Using lipopolysaccharide (LPS)-induced emergency granulopoiesis as a model, we show that failed expansion was intrinsic to FZD6-deficient HSPCs but also required a FZD6-deficient environment. FZD6-deficient HSPCs became more strongly activated, but their mobilization to peripheral blood was impaired and they were more susceptible to inflammatory cell death, leading to enhanced release of pro-inflammatory cytokines in the marrow. These studies indicate that FZD6 has a protective effect in the bone marrow to prevent an overactive inflammatory response and further suggest that mobilization improves HSPC survival during bone marrow inflammation.
Collapse
Affiliation(s)
- Trieu Hai Nguyen
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Belma Melda Abidin
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Krista M Heinonen
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, QC, Canada.
| |
Collapse
|
21
|
Microbe capture by splenic macrophages triggers sepsis via T cell-death-dependent neutrophil lifespan shortening. Nat Commun 2022; 13:4658. [PMID: 35945238 PMCID: PMC9361272 DOI: 10.1038/s41467-022-32320-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan. Hyperinflammation and immune dysfunction are key drivers of immunopathology in sepsis. Here the authors show microbial exploitation of phagocytic receptors is linked to triggering of sepsis and the immune cell mediated reduction in neutrophil life span.
Collapse
|
22
|
Dong Y, Zhang Y, Zhang Y, Pan X, Bai J, Chen Y, Zhou Y, Lai Z, Chen Q, Hu S, Zhou Q, Zhang Y, Ma F. Dissecting the process of human neutrophil lineage determination by using alpha-lipoic acid inducing neutrophil deficiency model. Redox Biol 2022; 54:102392. [PMID: 35797799 PMCID: PMC9287745 DOI: 10.1016/j.redox.2022.102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
Granulocyte-monocyte progenitors (GMPs) differentiate into both neutrophils and monocytes. Recently, uni-potential neutrophil progenitors have been identified both in mice and humans using an array of surface markers. However, how human GMPs commit to neutrophil progenitors and the regulatory mechanisms of fate determination remain incompletely understood. In the present study, we established a human neutrophil deficiency model using the small molecule alpha-lipoic acid. Using this neutrophil deficiency model, we determined that the neutrophil progenitor commitment process from CD371+ CD115– GMPs defined by CD34 and CD15 and discovered that critical signals generated by RNA splicing and rRNA biogenesis regulate the process of early commitment for human early neutrophil progenitors derived from CD371+ CD115– GMPs. These processes were elucidated by single-cell RNA sequencing both in vitro and in vivo derived cells. Sequentially, we identified that the transcription factor ELK1 is essential for human neutrophil lineage commitment using the alpha-lipoic acid (ALA)-inducing neutrophil deficiency model. Finally, we also revealed differential roles for long-ELK1 and short-ELK1, balanced by SF3B1, in the commitment process of neutrophil progenitors. Taken together, we discovered a novel function of ALA in regulating neutrophil lineage specification and identified that the SF3B1-ELK axis regulates the commitment of human neutrophil progenitors from CD371+ CD115– GMPs. ALA completely blocks the differentiation of human neutrophils derived from CD34+ stem cells in ex-vivo culture. CD34 and CD15 could be used to define the early differentiation stages of human neutrophil lineage determination. SF3B1-ELK1 signal axis regulates human neutrophil lineage determination.
Collapse
|
23
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
24
|
Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021; 339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Cell-based therapies could overcome the limitations of traditional drugs for the treatment of refractory diseases. Cell exchange between the bone marrow and blood is bidirectional. Several kinds of cells in the blood have the capability to enter the bone marrow by interacting with sinusoidal cells under specific physiological or pathological conditions. These cells are the potential living therapeutics or delivery vehicles to treat or prevent bone marrow-related hematologic diseases. In this review, we summarized the in vivo molecular mechanisms and kinetics of these cells in entering the bone marrow. The advances in the fabrication of living cell drugs and the strategies to design cell-based carriers into the bone marrow were discussed. The latest studies on how to use blood cells as living drugs or as drug carriers to improve therapeutic outcomes of hematologic diseases inside the bone marrow were highlighted.
Collapse
|
25
|
PERINATAL CENTRILOBULAR HEPATIC NECROSIS IN GIANT PANDAS ( AILUROPODA MELANOLEUCA): A RETROSPECTIVE STUDY. J Zoo Wildl Med 2021; 52:926-938. [PMID: 34687509 DOI: 10.1638/2016-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Between 1983 and 2012, six giant panda cubs (Ailuropoda melanoleuca) born at a zoological institution were stillborn or died between the ages of 3 and 200 h. Two of the six cubs had panhepatic centrilobular hepatic necrosis (CHN), granulocytic extramedullary hematopoiesis (GEM), positive liver culture for Staphylococcus species, and terminal liver failure. Another low-weight cub was administered oxygen therapy immediately after birth and developed hyaline membranes in air spaces and hepatic necrosis restricted to the hilar region. A retrospective analysis of liver and lung lesions, pulmonary microanatomy, blood-gas barrier ultrastructure, and hepatic myofibroblast proliferation was conducted on the six cubs. Neonates with CHN had concurrent severe periportal GEM accompanied by severe myofibroblast proliferation. The pulmonary blood-gas barrier was markedly increased in one cub with CHN. Developmentally, the lungs of all but one cub were at the late saccular stage, and the lowest-weight cub was in early saccular stage, consistent with immaturity, and had pneumonia comparable to neonatal respiratory distress syndrome (RDS). Stage of lung development was eliminated as the primary factor leading to CHN. The pathogenesis of CHN in these neonates is proposed to be transformation of hepatic stellate cells to myofibroblasts initiating blockage and microvascular constriction of hepatic sinusoids, resulting in insufficient perfusion and cellular hypoxia of hepatocytes surrounding central veins in acinar zone 3.
Collapse
|
26
|
Mitochondria and the Tumour Microenvironment in Blood Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:181-203. [PMID: 34664240 DOI: 10.1007/978-3-030-73119-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.
Collapse
|
27
|
Kaiser L, Quint I, Csuk R, Jung M, Deigner HP. Lineage-Selective Disturbance of Early Human Hematopoietic Progenitor Cell Differentiation by the Commonly Used Plasticizer Di-2-ethylhexyl Phthalate via Reactive Oxygen Species: Fatty Acid Oxidation Makes the Difference. Cells 2021; 10:cells10102703. [PMID: 34685682 PMCID: PMC8534767 DOI: 10.3390/cells10102703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to ubiquitous endocrine-disrupting chemicals (EDCs) is a major public health concern. We analyzed the physiological impact of the EDC, di-2-ethylhexyl phthalate (DEHP), and found that its metabolite, mono-2-ethylhexyl phthalate (MEHP), had significant adverse effects on myeloid hematopoiesis at environmentally relevant concentrations. An analysis of the underlying mechanism revealed that MEHP promotes increases in reactive oxygen species (ROS) by reducing the activity of superoxide dismutase in all lineages, possibly via its actions at the aryl hydrocarbon receptor. This leads to a metabolic shift away from glycolysis toward the pentose phosphate pathway and ultimately results in the death of hematopoietic cells that rely on glycolysis for energy production. By contrast, cells that utilize fatty acid oxidation for energy production are not susceptible to this outcome due to their capacity to uncouple ATP production. These responses were also detected in non-hematopoietic cells exposed to alternate inducers of ROS.
Collapse
Affiliation(s)
- Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany;
| | - Isabel Quint
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany;
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, 18057 Rostock, Germany
- Associated Member of Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7720-307-4232
| |
Collapse
|
28
|
Chavakis T, Wielockx B, Hajishengallis G. Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annu Rev Physiol 2021; 84:183-207. [PMID: 34614373 DOI: 10.1146/annurev-physiol-052521-013627] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammation-adapted hematopoietic stem and progenitor cells (HSPCs) have long been appreciated as key drivers of emergency myelopoiesis, thereby enabling the bone marrow to meet the elevated demand for myeloid cell generation under various stress conditions, such as systemic infection, inflammation, or myelosuppressive insults. In recent years, HSPC adaptations were associated with potential involvement in the induction of long-lived trained immunity and the emergence of clonal hematopoiesis of indeterminate potential (CHIP). Whereas trained immunity has context-dependent effects, protective in infections and tumors but potentially detrimental in chronic inflammatory diseases, CHIP increases the risk for hematological neoplastic disorders and cardiometabolic pathologies. This review focuses on the inflammatory regulation of HSPCs in the aforementioned processes and discusses how modulation of HSPC function could lead to novel therapeutic interventions. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA;
| |
Collapse
|
29
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
30
|
Heat-inactivated Escherichia coli promotes hematopoietic regeneration after irradiation with IL-1β. Cytotherapy 2021; 24:172-182. [PMID: 34426082 DOI: 10.1016/j.jcyt.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AIMS Hematopoietic stem and progenitor cells (HSPCs) are known to produce short-lived mature blood cells via proliferation and differentiation in a process that depends partially on regulatory cytokines from the bone marrow (BM) microenvironment. Delayed BM recovery after tremendous damage to the hematopoietic system can lead to neutropenia, anemia, thrombopenia and even death. However, efficiently promote BM recovery is still a big problem to be solved. Here, the authors aim to use heat-inactivated Escherichia coli (HIEC) to enhance BM recovery and further to find out the potential mechanism. METHODS X-rad was used to establish HIEC/IL-1β-induced radioprotection model. Single-cell RNA sequencing, RT-PCR, and western blotting were performed to detect the expression of IL-1R1 on HSPCs. Flow cytometry and automated hematology analyzer were used to analyze the percentage and absolute number of different populations of hematopoietic cells. The effects of IL-1β on HSPCs were studied using in vivo and in vitro experiments. RESULTS HIEC/IL-1β pre-treatment can significantly increase the survival rate of lethally irradiated mice, and these mice showed better hematopoietic regeneration compared with control group. IL-1R was expressed on HSPCs, and IL-1β could directly function on HSPCs to promote the proliferation and differentiation of HSPCs, and inhibit the apoptosis of HSPCs. CONCLUSIONS HIEC pre-treatment can rescue lethally irradiated mice by promoting hematopoietic recovery via IL-1β/IL-1R1 signaling, which can promote the proliferation of HSPCs by enhancing the cell cycle and attenuating the apoptosis of HSPCs.
Collapse
|
31
|
Sasaki Y, Guo YM, Goto T, Ubukawa K, Asanuma K, Kobayashi I, Sawada K, Wakui H, Takahashi N. IL-6 Generated from Human Hematopoietic Stem and Progenitor Cells through TLR4 Signaling Promotes Emergency Granulopoiesis by Regulating Transcription Factor Expression. THE JOURNAL OF IMMUNOLOGY 2021; 207:1078-1086. [PMID: 34341172 DOI: 10.4049/jimmunol.2100168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPβ, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.
Collapse
Affiliation(s)
- Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan;
| | - Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University School of Medicine, Akita, Japan; and
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Sawada
- Medical Corporation Hokubukai Utsukushigaoka Hospital, Hokkaido, Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
32
|
Gao J, Hou S, Yuan S, Wang Y, Gao Y, Sun X, Wang W, Chu Y, Zhou Y, Feng X, Luo HR, Cheng T, Shi J, Yuan W, Wang X. Rheb1-Deficient Neutrophils Promote Hematopoietic Stem/Progenitor Cell Proliferation via Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650599. [PMID: 34124040 PMCID: PMC8191467 DOI: 10.3389/fcell.2021.650599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells have been identified as hematopoietic stem cell (HSC)-regulating cells. However, the mechanisms by which myeloid cells regulate the function of HSCs are not fully defined. Our previous study indicated that the HSCs are over-expanded in Vav1-Cre;Rheb1 f l/fl mice. Here, using in vivo and in vitro models, we found that Rheb1-deficient neutrophils remodeled the bone marrow environment and induced expansion of HSCs in vivo. Further studies showed that loss of Rheb1 impaired neutrophils' ability to secrete IL-6, led mesenchymal stem cells (MSCs) to produce more SCF, and promote HSC proliferation. We further found that IL-6 suppressed SCF mRNA expression in human MSCs. Interesting, the high level of IL-6 was also related with poor survival of chronic myeloid leukemia (CML) patients, and higher expression of IL-6 in CML cells is associated with the lower expression of SCF in MSCs in patients. Our studies suggested that blocking IL-6 signaling pathway might stimulate MSCs to secrete more SCF, and to support hematopoietic stem/progenitor cells proliferation.
Collapse
Affiliation(s)
- Juan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Eye Institute, Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaolu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
McDowell SAC, Luo RBE, Arabzadeh A, Doré S, Bennett NC, Breton V, Karimi E, Rezanejad M, Yang RR, Lach KD, Issac MSM, Samborska B, Perus LJM, Moldoveanu D, Wei Y, Fiset B, Rayes RF, Watson IR, Kazak L, Guiot MC, Fiset PO, Spicer JD, Dannenberg AJ, Walsh LA, Quail DF. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. ACTA ACUST UNITED AC 2021; 2:545-562. [DOI: 10.1038/s43018-021-00194-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
|
34
|
Serrano-Lopez J, Hegde S, Kumar S, Serrano J, Fang J, Wellendorf AM, Roche PA, Rangel Y, Carrington LJ, Geiger H, Grimes HL, Luther S, Maillard I, Sanchez-Garcia J, Starczynowski DT, Cancelas JA. Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. eLife 2021; 10:e66190. [PMID: 33830019 PMCID: PMC8137144 DOI: 10.7554/elife.66190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Innate immune cellular effectors are actively consumed during systemic inflammation, but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here, we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NF-κB independent, Traf6/IκB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.
Collapse
Affiliation(s)
- Juana Serrano-Lopez
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Shailaja Hegde
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sachin Kumar
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Josefina Serrano
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Jing Fang
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ashley M Wellendorf
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Paul A Roche
- Center for Cancer Research, National Cancer InstituteBethesdaUnited States
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yamileth Rangel
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | | | - Hartmut Geiger
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Institute of Molecular Medicine, Ulm UniversityUlmGermany
| | - H Leighton Grimes
- Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sanjiv Luther
- Center for Immunity and Infection, Department of Biochemistry, University of LausanneEpalingesSwitzerland
| | - Ivan Maillard
- University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Joaquin Sanchez-Garcia
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Daniel T Starczynowski
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Cancer Biology, University of CincinnatiCincinnatiUnited States
| | - Jose A Cancelas
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
35
|
Chen M, Wang J, Yang Y, Zhong T, Zhou P, Ma H, Li J, Li D, Zhou J, Xie S, Liu M. Redox-dependent regulation of end-binding protein 1 activity by glutathionylation. SCIENCE CHINA. LIFE SCIENCES 2021; 64:575-583. [PMID: 32737853 DOI: 10.1007/s11427-020-1765-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Cytoskeletal proteins are susceptible to glutathionylation under oxidizing conditions, and oxidative damage has been implicated in several neurodegenerative diseases. End-binding protein 1 (EB1) is a master regulator of microtubule plus-end tracking proteins (+TIPs) and is critically involved in the control of microtubule dynamics and cellular processes. However, the impact of glutathionylation on EB1 functions remains unknown. Here we reveal that glutathionylation is important for controlling EB1 activity and protecting EB1 from irreversible oxidation. In vitro biochemical and cellular assays reveal that EB1 is glutathionylated. Diamide, a mild oxidizing reagent, reduces EB1 comet number and length in cells, indicating the impairment of microtubule dynamics. Three cysteine residues of EB1 are glutathionylated, with mutations of these three cysteines to serines attenuating microtubule dynamics but buffering diamide-induced decrease in microtubule dynamics. In addition, glutaredoxin 1 (Grx1) deglutathionylates EB1, and Grx1 depletion suppresses microtubule dynamics and leads to defects in cell division orientation and cell migration, suggesting a critical role of Grx1-mediated deglutathionylation in maintaining EB1 activity. Collectively, these data reveal that EB1 glutathionylation is an important protective mechanism for the regulation of microtubule dynamics and microtubule-based cellular activities.
Collapse
Affiliation(s)
- Miao Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tao Zhong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Huixian Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jingrui Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
36
|
Innamarato P, Pilon-Thomas S. Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cell Immunol 2020; 361:104277. [PMID: 33476931 DOI: 10.1016/j.cellimm.2020.104277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of cancer, providing long-term regressions in patients. However, only a minority of patients that receive ACT with tumor-specific T cells exhibit durable benefit. Thus, there is an urgent need to characterize mechanisms of resistance and define strategies to alleviate immunosuppression in the context of ACT in cancer. This article reviews the importance of lymphodepleting regimens in promoting the optimal engraftment and expansion of T cells in hosts after adoptive transfer. In addition, we discuss the role of concomitant immunosuppression and the accumulation of myeloid derived suppressor cells (MDSCs) during immune recovery after lymphodepleting regimens and mobilization regimens.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
37
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
38
|
Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, Yu H, Park SY, Guo R, Ren Q, Zhang S, Xu Y, Silberstein LE, Cheng T, Ma F, Li C, Luo HR. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol 2020; 21:1119-1133. [PMID: 32719519 PMCID: PMC7442692 DOI: 10.1038/s41590-020-0736-z] [Citation(s) in RCA: 457] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function, and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transition between each subpopulation, and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers, and therapeutic targets at single-cell resolution.
Collapse
Affiliation(s)
- Xuemei Xie
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Qiang Shi
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Peng Wu
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoyu Zhang
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Hiroto Kambara
- Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Jiayu Su
- Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA.,School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shin-Young Park
- Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Sudong Zhang
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Leslie E Silberstein
- Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Department of Laboratory Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. .,Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
39
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
40
|
Mitroulis I, Kalafati L, Bornhäuser M, Hajishengallis G, Chavakis T. Regulation of the Bone Marrow Niche by Inflammation. Front Immunol 2020; 11:1540. [PMID: 32849521 PMCID: PMC7396603 DOI: 10.3389/fimmu.2020.01540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lydia Kalafati
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
41
|
Reactive Myelopoiesis Triggered by Lymphodepleting Chemotherapy Limits the Efficacy of Adoptive T Cell Therapy. Mol Ther 2020; 28:2252-2270. [PMID: 32615068 DOI: 10.1016/j.ymthe.2020.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of tumors, providing long-term regression in cancer patients. Despite that lymphodepleting regimens condition the host for optimal engraftment and expansion of adoptively transferred T cells, lymphodepletion concomitantly promotes immunosuppression during the course of endogenous immune recovery. In this study, we have identified that lymphodepleting chemotherapy initiates the mobilization of hematopoietic progenitor cells that differentiate to immunosuppressive myeloid cells, leading to a dramatic increase of peripheral myeloid-derived suppressor cells (MDSCs). In melanoma and lung cancer patients, MDSCs rapidly expanded in the periphery within 1 week after completion of a lymphodepleting regimen and infusion of autologous tumor-infiltrating lymphocytes (TILs). This expansion was associated with disease progression, poor survival, and reduced TIL persistence in melanoma patients. We demonstrated that the interleukin 6 (IL-6)-driven differentiation of mobilized hematopoietic progenitor cells promoted the survival and immunosuppressive capacity of post-lymphodepletion MDSCs. Furthermore, the genetic abrogation or therapeutic inhibition of IL-6 in mouse models enhanced host survival and reduced tumor growth in mice that received ACT. Thus, the expansion of MDSCs in response to lymphodepleting chemotherapy may contribute to ACT failure, and targeting myeloid-mediated immunosuppression may support anti-tumor immune responses.
Collapse
|
42
|
Gomes AC, Saraiva M, Gomes MS. The bone marrow hematopoietic niche and its adaptation to infection. Semin Cell Dev Biol 2020; 112:37-48. [PMID: 32553581 DOI: 10.1016/j.semcdb.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
43
|
Mice Lacking γδ T Cells Exhibit Impaired Clearance of Pseudomonas aeruginosa Lung Infection and Excessive Production of Inflammatory Cytokines. Infect Immun 2020; 88:IAI.00171-20. [PMID: 32229615 PMCID: PMC7240087 DOI: 10.1128/iai.00171-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. In this study, the role of γδ T cells was examined in an acute mouse model of P. aeruginosa lung infection. In the absence of γδ T cells, mice displayed impaired bacterial clearance and decreased survival, outcomes which were associated with delayed neutrophil recruitment and impaired recruitment of other immune cells (macrophages, T cells, natural killer cells, and natural killer T [NKT] cells) into the airways. Despite reduced NKT cell recruitment in the airways of mice lacking γδ T cells, NKT cell-deficient mice exhibited wild-type level control of P. aeruginosa infection. Proinflammatory cytokines were also altered in γδ T cell-deficient mice, with increased production of interleukin-1β, interleukin-6, and tumor necrosis factor. γδ T cells did not appear to contribute significantly to the production of interleukin-17A or the chemokines CXCL1 and CXCL2. Importantly, host survival could be improved by inhibiting tumor necrosis factor signaling with the soluble receptor construct etanercept in γδ cell-deficient mice. These findings demonstrate that γδ T cells play a protective role in coordinating the host response to P. aeruginosa lung infection, both in contributing to early immune cell recruitment and by limiting inflammation.
Collapse
|
44
|
Horton RH, Wileman T, Rushworth SA. Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment. Curr Cancer Drug Targets 2020; 20:501-512. [PMID: 32342819 DOI: 10.2174/1568009620666200428111051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/27/2019] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
The leukaemias are a heterogeneous group of blood cancers, which together, caused 310,000 deaths in 2016. Despite significant research into their biology and therapeutics, leukaemia is predicted to account for an increased 470,000 deaths in 2040. Many subtypes remain without targeted therapy, and therefore the mainstay of treatment remains generic cytotoxic drugs with bone marrow transplant the sole definitive option. In this review, we will focus on cellular mechanisms which have the potential for therapeutic exploitation to specifically target and treat this devastating disease. We will bring together the disciplines of autophagy and extracellular vesicles, exploring how the dysregulation of these mechanisms can lead to changes in the leukaemic microenvironment and the subsequent propagation of disease. The dual effect of these mechanisms in the disease microenvironment is not limited to leukaemia; therefore, we briefly explore their role in autoimmunity, inflammation and degenerative disease.
Collapse
Affiliation(s)
- Rebecca H Horton
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
45
|
Zhang X, Karatepe K, Chiewchengchol D, Zhu H, Guo R, Liu P, Yu H, Ren Q, Luo X, Cheng T, Ma F, Xu Y, Han M, Luo HR. Bacteria-Induced Acute Inflammation Does Not Reduce the Long-Term Reconstitution Capacity of Bone Marrow Hematopoietic Stem Cells. Front Immunol 2020; 11:626. [PMID: 32373117 PMCID: PMC7179742 DOI: 10.3389/fimmu.2020.00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Pathogen-initiated chronic inflammation or autoimmune diseases accelerate proliferation and promote differentiation of hematopoietic stem cells (HSCs) but simultaneously reduce reconstitution capacity. Nevertheless, the effect of acute infection and inflammation on functional HSCs is still largely unknown. Here we found that acute infection elicited by heat-inactivated Escherichia coli (HIEC) expanded bone marrow lineage-negative (Lin)− stem-cell antigen 1 (Sca-1)+cKit+ (LSK) cell population, leading to reduced frequency of functional HSCs in LSK population. However, the total number of BM phenotypic HSCs (Flk2−CD48−CD150+ LSK cells) was not altered in HIEC-challenged mice. Additionally, the reconstitution capacity of the total BM between infected and uninfected mice was similar by both the competitive repopulation assay and measurement of functional HSCs by limiting dilution. Thus, occasionally occurring acute inflammation, which is critical for host defenses, is unlikely to affect HSC self-renewal and maintenance of long-term reconstitution capacity. During acute bacterial infection and inflammation, the hematopoietic system can replenish hematopoietic cells consumed in the innate inflammatory response by accelerating hematopoietic stem and progenitor cell proliferation, but preserving functional HSCs in the BM.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States.,The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Direkrit Chiewchengchol
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, MA, United States
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
46
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
47
|
Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 2020; 22:7-17. [PMID: 31907409 DOI: 10.1038/s41556-019-0444-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.
Collapse
Affiliation(s)
- Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Myriam Luydmila Rachelle Haltalli
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK.
- Lo Celso Laboratory, The Francis Crick Institute, London, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
| |
Collapse
|
48
|
Sun Z, Wu K, Lin Q, Fei H, Jiang H, Chen T, Yuan Y. Toll-like receptor 4 protects against irradiation-induced hematopoietic injury by promoting granulopoiesis and alleviating marrow adipogenesis. Biochem Biophys Res Commun 2019; 520:420-427. [PMID: 31607480 DOI: 10.1016/j.bbrc.2019.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022]
Abstract
Irradiation induces severe damage in the hematopoietic system, which leads to bone marrow hyperplasia, pancytopenia, and aggravated tissue formation in bone marrow. Studies have shown that Toll-like receptor 4 (TLR4) has a protective effect against irradiation, but the underlying mechanism remains unclear. In this study, we used a TLR4 knockout (TLR4-/-) mouse irradiation model and found that the white blood cell and platelet counts in the peripheral blood of TLR4-/- mice recovered slowly after irradiation, with bone marrow hyperplasia and increased mortality. Additionally, we found that the proportion of CD11b+Gr1+ granulocytes in the peripheral blood and bone marrow of TLR4-/- mice was lower than that of wild-type mice after irradiation. Further, we found that the expression of NADPH Oxidases (NOXs) in the bone marrow was down-regulated after irradiation of TLR4-/- mice, and administration of the NOXs inhibitor VAS2870 reduced the proportion of CD11b+Gr1+ cells in the bone marrow and peripheral blood of wild-type mice after irradiation. Irradiation induced severe marrow adipocytes accumulation in TLR4-/- mice, TLR4 ligand lipopolysaccharide promoted proliferation and inhibited adipogenic differentiation of mesenchymal stromal cells. In summary, our data suggest that TLR4 promotes myeloid hyperplasia by up-regulating the expression of NOXs after irradiation, prohibits marrow adipogensis and increases the tolerance of mice to irradiation.
Collapse
Affiliation(s)
- Zhengxu Sun
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kunpeng Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiwang Lin
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - He Fei
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan Yuan
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc Natl Acad Sci U S A 2019; 116:24610-24619. [PMID: 31727843 PMCID: PMC6900710 DOI: 10.1073/pnas.1913278116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) undergo rapid expansion in response to stress stimuli. Here we investigate the bioenergetic processes which facilitate the HSC expansion in response to infection. We find that infection by Gram-negative bacteria drives an increase in mitochondrial mass in mammalian HSCs, which results in a metabolic transition from glycolysis toward oxidative phosphorylation. The initial increase in mitochondrial mass occurs as a result of mitochondrial transfer from the bone marrow stromal cells (BMSCs) to HSCs through a reactive oxygen species (ROS)-dependent mechanism. Mechanistically, ROS-induced oxidative stress regulates the opening of connexin channels in a system mediated by phosphoinositide 3-kinase (PI3K) activation, which allows the mitochondria to transfer from BMSCs into HSCs. Moreover, mitochondria transfer from BMSCs into HSCs, in the response to bacterial infection, occurs before the HSCs activate their own transcriptional program for mitochondrial biogenesis. Our discovery demonstrates that mitochondrial transfer from the bone marrow microenvironment to HSCs is an early physiologic event in the mammalian response to acute bacterial infection and results in bioenergetic changes which underpin emergency granulopoiesis.
Collapse
|
50
|
Hou Q, Liu F, Chakraborty A, Jia Y, Prasad A, Yu H, Zhao L, Ye K, Snyder SH, Xu Y, Luo HR. Inhibition of IP6K1 suppresses neutrophil-mediated pulmonary damage in bacterial pneumonia. Sci Transl Med 2019; 10:10/435/eaal4045. [PMID: 29618559 DOI: 10.1126/scitranslmed.aal4045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/16/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
The significance of developing host-modulating personalized therapies to counteract the growing threat of antimicrobial resistance is well-recognized because such resistance cannot be overcome using microbe-centered strategies alone. Immune host defenses must be finely controlled during infection to balance pathogen clearance with unwanted inflammation-induced tissue damage. Thus, an ideal antimicrobial treatment would enhance bactericidal activity while preventing neutrophilic inflammation, which can induce tissue damage. We report that disrupting the inositol hexakisphosphate kinase 1 (Ip6k1) gene or pharmacologically inhibiting IP6K1 activity using the specific inhibitor TNP [N2-(m-(trifluoromethyl)benzyl) N6-(p-nitrobenzyl)purine] efficiently and effectively enhanced host bacterial killing but reduced pulmonary neutrophil accumulation, minimizing the lung damage caused by both Gram-positive and Gram-negative bacterial pneumonia. IP6K1-mediated inorganic polyphosphate (polyP) production by platelets was essential for infection-induced neutrophil-platelet aggregate (NPA) formation and facilitated neutrophil accumulation in alveolar spaces during bacterial pneumonia. IP6K1 inhibition reduced serum polyP levels, which regulated NPAs by triggering the bradykinin pathway and bradykinin-mediated neutrophil activation. Thus, we identified a mechanism that enhances host defenses while simultaneously suppressing neutrophil-mediated pulmonary damage in bacterial pneumonia. IP6K1 is, therefore, a legitimate therapeutic target for such disease.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Anutosh Chakraborty
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yonghui Jia
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Amit Prasad
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Hongbo Yu
- Veterans Affairs Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 Veterans of Foreign Wars Parkway, West Roxbury, MA 02132, USA
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Solomon H Snyder
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA.
| |
Collapse
|