1
|
Ma C, Hua Y, Yang S, Zhao Y, Zhang W, Miao Y, Zhang J, Feng B, Zheng G, Li L, Liu Z, Zhang H, Zhu M, Gao X, Fan G. Wogonin Attenuates Atherosclerosis via KLF11-Mediated Suppression of PPARα-YAP1-Driven Glycolysis and Enhancement of ABCA1/G1-Mediated Cholesterol Efflux. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500610. [PMID: 40397286 DOI: 10.1002/advs.202500610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/04/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis, a chronic inflammatory disorder and leading cause of cardiovascular disease, is characterized by macrophage-derived inflammation and foam cell formation. Emerging evidence suggests that metabolic reprogramming of macrophages represents a promising therapeutic approach for atherosclerosis management. In this study, the therapeutic potential of wogonin, a bioactive flavonoid isolated from Scutellaria baicalensis, in modulating macrophage metabolism and attenuating atherogenesis is investigated. Wogonin reduces lesion size and plaque vulnerability, accompanied by a reduction in foam cell formation and inflammation. Mechanistically, wogonin reprogrammes macrophage metabolism from glycolysis to fatty acid oxidation (FAO) by activating the PPARα-CPT1α pathway and acts as a mitochondrial protector by activating PPARα. Wogonin also promotes the KLF11 expression and KLF11 knockout exacerbated atherosclerosis and abolishes the inhibitory effect of wogonin on glycolysis and atherosclerosis. KLF11 forms a transcriptional complex with PPARα and YAP1, serving both as a brake on PPARα-YAP1-mediated glycolysis and a transcriptional activator of ABCA1/G1. Collectively, wogonin reprograms macrophage metabolism from glycolysis to FAO through activation of the PPARα-KLF11-YAP1 pathway, thereby reducing inflammation and foam cell formation, ultimately attenuating atherogenesis.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300381, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300381, China
| | - Shu Yang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China, Shenzhen, Guangdong, 518000, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, P. R. China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Boxuan Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Mingjun Zhu
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Xiumei Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300381, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| |
Collapse
|
2
|
Wang J, Hu Y, Wang Z, Fan C, Liu Y, Xie Y, Liu L, Yang J, Xu Q. Exosomes Derived From Human Gingival Mesenchymal Stem Cells Induce Metabolic Reprogramming of Inflammatory Macrophages. J Clin Periodontol 2025. [PMID: 40388972 DOI: 10.1111/jcpe.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
AIM To investigate the influence and mechanism of exosomes derived from human gingival mesenchymal stem cells (GMSC-Exo) regulating macrophage polarisation through metabolic reprogramming. MATERIALS AND METHODS Human acute monocytic leukaemia cells (THP-1)-derived macrophages were treated with GMSC-Exo or Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) in vitro. Metabolic inhibitors were used to study the role of metabolic reprogramming in GMSC-Exo-induced polarisation, while the hypoxia-inducible factor-1 alpha (HIF-1α) modulators were employed to explore the HIF-1α signalling pathway's impact on macrophage metabolic reprogramming. The impact of GMSC-Exo on periodontitis and macrophage metabolism was assessed using a rat model in vivo. RESULTS In vitro experiments confirmed that GMSC-Exo promoted the polarisation of macrophages from pro-inflammatory M1 type (classically activated) to anti-inflammatory M2 type (alternatively activated) by promoting metabolic reprogramming (glycolysis to oxidative phosphorylation). In this process, the activation of the HIF-1α signalling pathway was inhibited. In vivo experiments revealed that GMSC-Exo could regulate the inflammatory microenvironment of periodontal tissue and the metabolic pattern of macrophages. CONCLUSION By inhibiting the activation of HIF-1α signalling pathway, GMSC-Exo trigger metabolic reprogramming in macrophages, thereby regulating the macrophage transformation from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. This change enhances the local inflammatory environment, aiding tissue repair and regeneration.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Yingzhe Hu
- Department of Stomatology, Qingdao Huangdao Central Hospital, Qingdao, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun Fan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jingshu Yang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Ma Q, Zhu Y, Zhang D, Su X, Jiang C, Zhang Y, Zhang X, Han N, Shu G, Yin G, Wang M. Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages. J Mater Chem B 2025; 13:5494-5520. [PMID: 40266660 DOI: 10.1039/d5tb00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cholesterol, as a major component of cell membranes, is closely related to the metabolic regulation of cells and organisms; tumor-associated macrophages play an important push role in tumor progression. We know that tumor-associated macrophages are polarized from macrophages, and the abnormalities of cholesterol metabolism that may be induced during their polarization are worth discussing. This manuscript focuses on metabolic abnormalities in tumor-associated macrophages, and first provides a basic summary of the regulatory mechanisms of abnormal macrophage polarization. Subsequently, it comprehensively describes the features of abnormal glucose, lipid and cholesterol metabolism in TAMs as well as the different regulatory pathways. Then, the paper also discusses the link between abnormal cholesterol metabolism in TAMs and tumors, chronic diseases and aging. Finally, the paper summarizes cancer therapeutic strategies targeting cholesterol metabolism that are already in clinical trials, as well as nanomaterials capable of targeting cholesterol metabolism that are in the research stage, in the hope of providing value for the design of targeting materials. Overall, elucidating metabolic abnormalities in tumor-associated macrophages, particularly cholesterol metabolism, could provide assistance in tumor therapy and the design of targeted drugs.
Collapse
Affiliation(s)
- Qiaoluo Ma
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Ying Zhu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Dongya Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xiaohan Su
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Can Jiang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Yuzhu Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xingting Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Na Han
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
5
|
Miao J, Yong Y, Zheng Z, Zhang K, Li W, Liu J, Zhou S, Qin JJ, Sun H, Wang Y, Fu X, Luo X, Chen S, She ZG, Cai J, Zhu P. Artesunate Inhibits Neointimal Hyperplasia by Promoting IRF4 Associated Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408992. [PMID: 40126336 DOI: 10.1002/advs.202408992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Vascular restenosis is a serious clinical issue initiated and aggravated by macrophage inflammation, with no effective treatments available, in cardiovascular and autoimmune diseases. However, the untapped mechanisms and new targets that can regulate macrophage polarization and vascular restenosis remain elusive. The research identifies interferon regulatory factor 4 (IRF4) expression as crucial in macrophage polarization during arterial restenosis. Myeloid-specific Irf4 deficiency and overexpression experiments showed that IRF4 promoted M2 macrophage polarization, inhibited M1 macrophage transitions, and disrupted the interaction between macrophages and vascular smooth muscle cells to reduce neointimal hyperplasia by directly upregulating krüppel like factor 4 (KLF4) expression. Artesunate, an FDA-approved drug, is screened as a potent activator of IRF4 expression in M2 polarization, and its treatment attenuated arterial restenosis in rodents and non-human primates. The findings reveal a significant protective role of IRF4 in the development of neointimal hyperplasia by regulating macrophage polarization, and artesunate may be proposed as a novel therapy for vascular restenosis.
Collapse
Affiliation(s)
- Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yule Yong
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaohui Zheng
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Kui Zhang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
- Institute of Model Animal, Wuhan University, Wuhan, 430071, China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
- Institute of Model Animal, Wuhan University, Wuhan, 430071, China
| | - Siyi Zhou
- Institute of Model Animal, Wuhan University, Wuhan, 430071, China
- School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital, Wuhan University, Wuhan, 430070, China
| | - Haoyang Sun
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yatao Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianghui Fu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Luo
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Siyu Chen
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
- Institute of Model Animal, Wuhan University, Wuhan, 430071, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
6
|
Maurício T, Guerra IMS, Pinho M, Melo T, Bonciarelli S, Goracci L, Neves B, Domingues R, Domingues P. Phosphatidylethanolamine species with n-3 and n-6 fatty acids modulate macrophage lipidome and attenuate responses to LPS stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159614. [PMID: 40254048 DOI: 10.1016/j.bbalip.2025.159614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Phospholipids are increasingly recognized as key regulators of biological processes, including macrophage polarization and function. Among these, phosphatidylethanolamine (PE), a major constituent of cell membranes, is pivotal in maintaining cellular structure and function, yet the mechanisms through which native PE species influence macrophage immunometabolism remain largely unexplored. This study investigates the effects of two native PE species, PE 18:0/22:6 and PE 18:0/20:4, on the lipidome of resting and LPS-activated macrophages. Using C18 HPLC-MS/MS, we identified 337 lipid molecular species across 15 lipid subclasses, 332 of which varied significantly among conditions. Both PE 18:0/22:6 and PE 18:0/20:4 supplementation modulated the macrophage lipidome without inducing a pro-inflammatory phenotype under basal conditions. Notably, supplementation with PE 18:0/22:6 and PE 18:0/20:4 significantly increased lipid classes such as PE, PE O-, SM, CL, PG, LPE and PS, producing unique lipid profiles. Pre-treatment with PE 18:0/22:6 and PE 18:0/20:4 partially attenuated LPS-induced lipidomic changes, significantly reducing lipid classes like PC, including PC O- and PC P-, and Cer, which are typically linked to inflammation. While PE 18:0/20:4, from an individual lipid species perspective, may promote certain lipid profiles compatible with pro-inflammatory signaling pathways, particularly under inflammatory conditions, PE 18:0/22:6 seems to foster a lipid profile more supportive of inflammation resolution. This behaviour of PE 18:0/22:6 and PE 18:0/20:4 highlights the intricate complexity of lipid-mediated immunomodulation and emphasizes the critical role of cellular context in determining the functional outcomes of phospholipid supplementation in macrophage lipid metabolism and immune responses.
Collapse
Affiliation(s)
- Tatiana Maurício
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M S Guerra
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | | | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2025; 58:e13794. [PMID: 39710429 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Lei Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Tang P, Wang J, Tang X, Li Y, Li S. Insulin‑like growth factor 2 in spermatogenesis dysfunction (Review). Mol Med Rep 2025; 31:129. [PMID: 40116127 PMCID: PMC11938415 DOI: 10.3892/mmr.2025.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Spermatogenesis dysfunction is characterized by abnormal morphology, destruction, atrophy of seminiferous tubules, blocked differentiation of spermatogenic cells, decreased sperm count and increased sperm abnormalities. Inflammation, oxidative stress, endoplasmic reticulum stress and obesity are important factors leading to spermatogenesis dysfunction. It has been demonstrated that insulin‑like growth factor 2 (IGF2) is closely related to the aforementioned factors. In the present review, the relationship between IGF2 and inflammation, oxidative stress, ER stress and obesity was investigated, providing theoretical and experimental evidence on the role of IGF2 in the prevention and treatment of spermatogenesis dysfunction of male infertility.
Collapse
Affiliation(s)
- Pingping Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiale Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yichun Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
9
|
Makassy D, Williams K, Karwi QG. The Evolving Role of Macrophage Metabolic Reprogramming in Obesity. Can J Cardiol 2025:S0828-282X(25)00320-4. [PMID: 40311669 DOI: 10.1016/j.cjca.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Recent research has extensively explored the critical role of energy metabolism in shaping the inflammatory response and polarization of macrophages in obesity. This rapidly growing field emphasizes the need to understand the connection between metabolic processes that support macrophage polarization in obesity. Although most published research in this area has focused on glucose and fatty acids, how the flux through other metabolic pathways (such as ketone and amino acid oxidation) in macrophages is altered in obesity is not well defined. This review summarizes the main alterations in uptake, storage, and oxidation of oxidative substrates (glucose, fatty acids, ketone bodies, and amino acids) in macrophages and how these alterations are linked to macrophage polarization and contribution to augmented inflammatory markers in obesity. The review also discusses how oxidative substrates could modulate macrophage energy metabolism and inflammatory responses via feeding into other nonoxidative pathways (such as the pentose phosphate pathway, triacylglycerol synthesis/accumulation), via acting as signalling molecules, or via mediating post-translational modifications (such as O-GlcNAcylation or β-hydroxybutyrylation). The review also identifies several critical unanswered questions regarding the characteristics (functional and metabolic) of macrophages from different origins (adipose tissue, skeletal muscle, bone marrow) in obesity and how these characteristics contribute to early vs late phases of obesity. We also identified a number of new therapeutic targets that could be evaluated in future investigations. Targeting macrophage metabolism in obesity is an exciting and active area of research with significant potential to help identify new treatments to limit the detrimental effects of inflammation in obesity.
Collapse
Affiliation(s)
- Dorcus Makassy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Kyra Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
10
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Beneat A, Rueda V, Patel H, Brune Z, Sherry B, Shih A, Kaplan S, Rao A, Lee A, Varghese A, Oropallo A, Barnes BJ. Elevation of Plasma IL-15 and RANTES as Potential Biomarkers of Healing in Chronic Venous Ulcerations: A Pilot Study. Biomolecules 2025; 15:395. [PMID: 40149931 PMCID: PMC11940644 DOI: 10.3390/biom15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic wounds present a large burden to our healthcare system and are typically marked by a failure to transition out of the inflammatory phase of wound healing. Venous leg ulcers (VLUs) represent the largest portion of chronic wounds. A pilot study of eleven (11) patients with VLUs seen over a 12-week period was undertaken utilizing RNA sequencing of wound biopsies and plasma cytokine levels to determine if biomarkers could be identified that would distinguish between wounds which heal versus those that do not. Chronic wounds were found to have increased expression of genes relating to epithelial-to-mesenchymal transition (EMT), cartilage and bone formation, and regulation of apical junction. Plasma cytokine levels showed predictive potential for IL-15 and RANTES, which were found to increase over time in patients with healed wounds. Further research is needed to validate these biomarkers as well as additional study of other chronic wound models, such as diabetic foot ulcers (DFUs).
Collapse
Affiliation(s)
- Amanda Beneat
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Vikki Rueda
- Drexel University College of Medicine, Philadelphia, PA 19104, USA;
| | - Hardik Patel
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Zarina Brune
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Andrew Shih
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Sally Kaplan
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Amit Rao
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Annette Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Asha Varghese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alisha Oropallo
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Betsy J. Barnes
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
12
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
15
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
16
|
Kady N, Abdelrahman S, Rauf AM, Burgess A, Weiss J, Gunasekara H, Ramseier N, Maine IP, Zevallos-Morales A, Perez-Silos V, Wolfe A, Hristov AC, Brown NA, Inamdar K, Sverdlov M, Hu YS, Murga-Zamalloa C, Wang C, Wilcox RA. The GATA-3-dependent transcriptome and tumor microenvironment are regulated by eIF4E and XPO1 in T-cell lymphomas. Blood 2025; 145:597-611. [PMID: 39652777 PMCID: PMC11811937 DOI: 10.1182/blood.2024025484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/15/2024] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT The transcription factor GATA-binding protein 3 (GATA-3) and the transcriptional program it regulates have emerged as oncogenic drivers across diverse T-cell lymphomas (TCLs), many of which are resistant to conventional chemotherapeutic agents and characterized by recurrent losses of key tumor suppressor genes, including TP53 and PTEN, both of which are clients of the nuclear export protein XPO1. Here, we demonstrated that XPO1 is highly expressed by malignant T cells expressing GATA-3 and by lymphoma-associated macrophages (LAMs) within their tumor microenvironment (TME). Using complementary genetically engineered mouse models, we demonstrated that TP53- and/or phosphate and tensin homolog (PTEN)-deficient TCLs, and LAMs within their TME, are sensitive to the selective exportin-1 (XPO1) antagonist selinexor. In an effort to identify TP53- and PTEN-independent mechanisms, we used complementary and orthogonal approaches to investigate the role of eIF4E and XPO1-dependent messenger RNA nuclear export in these TCLs. We identified a novel role for eIF4E/XPO1 in exporting GATA-3 and GATA-3-dependent transcripts from the nucleus in TCLs, and in the export of therapeutically relevant transcripts, including colony-stimulating factor-1 receptor, from LAMs. Therefore, XPO1 antagonism, by impairing oncogenic transcriptional programs in TCLs and depleting LAMs from their TME, is a novel approach to target 2 independent dependencies in a group of therapeutically challenging TCLs.
Collapse
Affiliation(s)
- Nermin Kady
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suhaib Abdelrahman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ahmar M. Rauf
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Jonathan Weiss
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Neal Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ira P. Maine
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | | | - Ashley Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Noah A. Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Maria Sverdlov
- Research Resources Center and Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | | | - Chenguang Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ryan A. Wilcox
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Peng W, Qin Q, Li R, Liu Y, Li L, Zhang Y, Zhu L. Blimp-1 orchestrates macrophage polarization and metabolic homeostasis via purine biosynthesis in sepsis. Cell Death Dis 2025; 16:72. [PMID: 39915460 PMCID: PMC11802726 DOI: 10.1038/s41419-025-07405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated immune response to infection, leading to systemic inflammation and organ dysfunction. Macrophage polarization plays a critical role in pathogenesis of sepsis, and the influence of B lymphocyte-induced maturation protein-1 (Blimp-1) on this polarization is an underexplored yet pivotal aspect. This study aimed to elucidate the role of Blimp-1 in macrophage polarization and metabolism during sepsis. Using a murine cecal ligation and puncture model, we observed elevated Blimp-1 expression in M2 macrophages. Knockdown of Blimp-1 by macrophage-targeted adeno-associated virus in this model resulted in decreased survival rates, exacerbated tissue damage, and impaired M2 polarization, underscoring its protective role in sepsis. In vitro studies with bone marrow-derived macrophage (BMDM), RAW264.7, and THP-1 cells further demonstrated Blimp-1 promotes M2 polarization and modulates key metabolic pathways. Metabolomics and dual-luciferase assays revealed Blimp-1 significantly influences purine biosynthesis and the downstream Ornithine cycle, which are essential for M2 macrophage polarization. In vitro studies with BMDM further suggested that the purine biosynthesis and Ornithine cycle metabolic regulation is involved in Blimp-1's effects on M2 macrophage polarization, and mediates Blimp-1's impact on septic mice. Our findings unveil a novel mechanism by which Blimp-1 modulates macrophage polarization through metabolic regulation, presenting potential therapeutic targets for sepsis. This study highlights the significance of Blimp-1 in orchestrating macrophage responses and metabolic adaptations in sepsis, offering valuable insights into its role as a critical regulator of immune and metabolic homeostasis.
Collapse
Affiliation(s)
- Wenjuan Peng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiushi Qin
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yujia Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
18
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
19
|
Tao H, Ma R, Cui J, Yang Z, He W, Li Y, Zhao Y. Immunomodulatory effect of efferocytosis at the maternal-fetal interface. Cell Commun Signal 2025; 23:49. [PMID: 39865240 PMCID: PMC11770964 DOI: 10.1186/s12964-025-02055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface. The dysregulation of efferocytosis is strongly linked to pregnancy complications such as preeclampsia and recurrent spontaneous abortion. In this review, we discuss the mechanisms of efferocytosis and its relationships with metabolism and inflammation. We also highlight the roles of professional and non-professional phagocytes in efferocytosis at the maternal-fetal interface and their impact on pregnancy outcomes and explore relevant regulatory factors. These insights are expected to guide future basic research and clinical strategies for identifying efferocytosis-related molecules as potential predictors or therapeutic targets in obstetric diseases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
- Department of Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
20
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Ito A, Suganami T. Lipid metabolism in myeloid cell function and chronic inflammatory diseases. Front Immunol 2025; 15:1495853. [PMID: 39911578 PMCID: PMC11794072 DOI: 10.3389/fimmu.2024.1495853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Immune cells adapt their metabolism in response to their differentiation and activation status to meet the energy demands for an appropriate immune response. Recent studies have elucidated that during immune cell metabolic reprogramming, lipid metabolism, including lipid uptake, de novo lipid synthesis and fatty acid oxidation, undergoes significant alteration, resulting in dynamic changes in the quantity and quality of intracellular lipids. Given that lipids serve as an energy source and structural components of cellular membranes, they have important implications for physiological function. Myeloid cells, which are essential in bridging innate and adaptive immunity, are sensitive to these changes. Dysregulation of lipid metabolism in myeloid cells can result in immune dysfunction, chronic inflammation and impaired resolution of inflammation. Understanding the mechanism by which lipids regulate immune cell function might provide novel therapeutic insights into chronic inflammatory diseases, including metabolic diseases, autoimmune diseases and cancer. (143 words).
Collapse
Affiliation(s)
- Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Jones AE, Rios A, Ibrahimovic N, Chavez C, Bayley NA, Ball AB, Hsieh WY, Sammarco A, Bianchi AR, Cortez AA, Graeber TG, Hoffmann A, Bensinger SJ, Divakaruni AS. The metabolic cofactor Coenzyme A enhances alternative macrophage activation via MyD88-linked signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.28.587096. [PMID: 38585887 PMCID: PMC10996702 DOI: 10.1101/2024.03.28.587096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo. Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.
Collapse
Affiliation(s)
- Anthony E Jones
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Amy Rios
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Neira Ibrahimovic
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Carolina Chavez
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas A Bayley
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Andréa B Ball
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Wei Yuan Hsieh
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Sammarco
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amber R Bianchi
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Angel A Cortez
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven J Bensinger
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Lead contact
| |
Collapse
|
23
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
24
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
25
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
26
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
27
|
Zhang A, Jiang J, Zhang C, Xu H, Yu W, Zhang ZN, Yuan L, Lu Z, Deng Y, Fan H, Fang C, Wang X, Shao A, Chen S, Li H, Ni J, Wang W, Zhang X, Zhang J, Luan B. Thermogenic Adipocytes Promote M2 Macrophage Polarization through CNNM4-Mediated Mg Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401140. [PMID: 39517124 DOI: 10.1002/advs.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
M2 macrophages promote adipose tissue thermogenesis which dissipates energy in the form of heat to combat obesity. However, the regulation of M2 macrophages by thermogenic adipocytes is unclear. Here, it is identified magnesium (Mg) as a thermogenic adipocyte-secreted factor to promote M2 macrophage polarization. Mg transporter Cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) induced by ADRB3-PKA-CREB signaling in thermogenic adipocytes during cold exposure mediates Mg efflux and Mg in turn binds to the DFG motif in mTOR to facilitate mTORC2 activation and M2 polarization in macrophages. In obesity, downregulation of CNNM4 expression inhibits Mg secretion from thermogenic adipocytes, which leads to decreased M2 macrophage polarization and thermogenesis. As a result, CNNM4 overexpression in adipocytes or Mg supplementation in adipose tissue ameliorates obesity by promoting thermogenesis. Importantly, an Mg wire implantation (AMI) approach is introduced to achieve adipose tissue-specific long-term Mg supplement. AMI promotes M2 macrophage polarization and thermogenesis and ameliorates obesity in mice. Taken together, a reciprocal regulation of thermogenic adipocytes and M2 macrophages important for thermogenesis is identified, and AMI is offered as a promising strategy against obesity.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, P. R. China
| | - Junkun Jiang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chuan Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Houshi Xu
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, School of Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Wenjing Yu
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ling Yuan
- School of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Zhangming Lu
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Yuqing Deng
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Haonan Fan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Xiaoyu Wang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Anwen Shao
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Sheng Chen
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Huaming Li
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Jiahua Ni
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wenhui Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, P. R. China
- Brain Research Institute, Zhejiang University, Hangzhou, 310009, P. R. China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Bing Luan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
28
|
Shao Y, Qin T. High TCTA expression is an adverse prognostic biomarker in acute myeloid leukemia. Cancer Biomark 2024; 41:18758592241296287. [PMID: 40095473 DOI: 10.1177/18758592241296287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAcute myeloid leukemia (AML) prognosis varies greatly, underscoring the need for novel biomarkers to improve patient stratification. T-cell leukemia translocation-associated gene (TCTA) has emerged as a potential player in hematological malignancies, yet its role in AML remains unexplored.ObjectiveTo investigate the prognostic significance of TCTA in AML and elucidate its functional mechanisms.MethodsRNA sequencing data from 173 AML patients (TCGA) and 70 normal controls (GTEx) were analyzed. Patients were categorized into high and low TCTA expression groups. Bioinformatics tools assessed Gene Ontology, KEGG pathways, and immune infiltration and constructed a nomogram predicting 1-5-year overall survival (OS).ResultsHigh TCTA expression correlated with significantly reduced OS (P < 0.001), with multivariate analysis identifying TCTA expression alongside age and cytogenetic risk as independent OS predictors. Receiver operating characteristic analysis validated TCTA's diagnostic potential. Enrichment analyses implicated TCTA in pathways critical to AML, such as hematopoiesis, p53 signaling, and DNA methylation, with a notable association with natural killer (NK) cell activity.ConclusionsElevated TCTA expression signifies poor prognosis in AML, positioning it as a promising prognostic biomarker. Its involvement in key AML-related pathways highlights TCTA's functional relevance and potential as a therapeutic target in AML management.
Collapse
Affiliation(s)
- Yunli Shao
- Department of Hematology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
29
|
Kovalovsky D, Noonepalle S, Suresh M, Kumar D, Berrigan M, Gajendran N, Upadhyay S, Horvath A, Kim A, Quiceno-Torres D, Musunuri K, Villagra A. The HDAC6 inhibitor AVS100 (SS208) induces a pro-inflammatory tumor microenvironment and potentiates immunotherapy. SCIENCE ADVANCES 2024; 10:eadp3687. [PMID: 39546602 PMCID: PMC11566997 DOI: 10.1126/sciadv.adp3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Histone deacetylase 6 (HDAC6) inhibition is associated with an increased pro-inflammatory tumor microenvironment and antitumoral immune responses. Here, we show that the HDAC6 inhibitor AVS100 (SS208) had an antitumoral effect in SM1 melanoma and CT26 colon cancer models and increased the efficacy of anti-programmed cell death protein 1 treatment, leading to complete remission in melanoma and increased response in colon cancer. AVS100 treatment increased pro-inflammatory tumor-infiltrating macrophages and CD8 effector T cells with an inflammatory and T cell effector gene signature. Acquired T cell immunity and long-term protection were evidenced as increased immunodominant T cell clones after AVS100 treatment. Last, AVS100 showed no mutagenicity, toxicity, or adverse effects in preclinical good laboratory practice studies, part of the package that has led to US Food and Drug Administration clearance of an investigational new drug application for initiating clinical trials. This would be a first-in-human combination therapy of pembrolizumab with HDAC6 inhibition for locally advanced or metastatic solid tumors.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Satish Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Manasa Suresh
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Dileep Kumar
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Michael Berrigan
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Nithya Gajendran
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Sumit Upadhyay
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Allen Kim
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - David Quiceno-Torres
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Karthik Musunuri
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| |
Collapse
|
30
|
Forni MF, Pizzurro GA, Krause W, Alexander AF, Bridges K, Xu Y, Justynski O, Gabry A, Camara NOS, Miller-Jensen K, Horsley V. Multiomics reveals age-dependent metabolic reprogramming of macrophages by wound bed niche secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621159. [PMID: 39553941 PMCID: PMC11565841 DOI: 10.1101/2024.10.30.621159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The cellular metabolism of macrophages depends on tissue niches and can control macrophage inflammatory or resolving phenotypes. Yet, the identity of signals within tissue niches that control macrophage metabolism is not well understood. Here, using single-cell RNA sequencing of macrophages in early mouse wounds, we find that, rather than gene expression of canonical inflammatory or resolving polarization markers, metabolic gene expression defines distinct populations of early wound macrophages. Single-cell secretomics and transcriptomics identify inflammatory and resolving cytokines expressed by early wound macrophages, and we show that these signals drive metabolic inputs and mitochondrial metabolism in an age-dependent manner. We show that aging alters the metabolome of early wound macrophages and rewires their metabolism from mitochondria to glycolysis. We further show that macrophage-derived Chi3l3 and IGF-1 can induce metabolic inputs and mitochondrial mass/metabolism in aged and bone marrow-derived macrophages. Together, these findings reveal that macrophage-derived signals drive the mitochondrial metabolism of macrophages within early wounds in an age-dependent manner and have implications for inflammatory diseases, chronic injuries, and age-related inflammatory diseases. In Brief This study reveals that macrophage subsets in early inflammatory stages of skin wound healing are defined by their metabolic profiles rather than polarization phenotype. Using single-cell secretomics, we establish key macrophage cytokines that comprise the in vivo wound niche and drive mitochondrial-based metabolism. Aging significantly alters macrophage heterogeneity and increases glycolytic metabolism, which can be restored to OxPHOS-based metabolism with young niche cytokines. These findings highlight the importance of the tissue niche in driving macrophage phenotypes, with implications for aging-related impairments in wound healing. Highlights Single cell transcriptional analysis reveals that reveals that metabolic gene expression identifies distinct macrophage populations in early skin wounds.Single-cell secretomic data show that young macrophages contribute to the wound bed niche by secreting molecules such as IGF-1 and Chi3l3.Old wound macrophages display altered metabolomics, elevated glycolytic metabolism and glucose uptake, and reduced lipid uptake and mitochondrial mass/metabolism.Chi3l3 but not IGF-1 secretion is altered in macrophages in an age dependent manner.Chi3l3 can restore mitochondrial mass/metabolism in aged macrophages.
Collapse
|
31
|
Dong L, Hu S, Li X, Pei S, Jin L, Zhang L, Chen X, Min A, Yin M. SPP1 + TAM Regulates the Metastatic Colonization of CXCR4 + Metastasis-Associated Tumor Cells by Remodeling the Lymph Node Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400524. [PMID: 39236316 PMCID: PMC11600252 DOI: 10.1002/advs.202400524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Indexed: 09/07/2024]
Abstract
Lymph node metastasis, the initial step in distant metastasis, represents a primary contributor to mortality in patients diagnosed with oral squamous cell carcinoma (OSCC). However, the underlying mechanisms of lymph node metastasis in OSCC remain incompletely understood. Here, the transcriptomes of 56 383 single cells derived from paired tissues of six OSCC patients are analyzed. This study founds that CXCR4+ epithelial cells, identified as highly malignant disseminated tumor cells (DTCs), exhibited a propensity for lymph node metastasis. Importantly, a distinct subset of tumor-associated macrophages (TAMs) characterized by exclusive expression of phosphoprotein 1 (SPP1) is discovered. These TAMs may remodel the metastatic lymph node microenvironment by potentially activating fibroblasts and promoting T cell exhaustion through SPP1-CD44 and CD155-CD226 ligand-receptor interactions, thereby facilitating colonization and proliferation of disseminated tumor cells. The research advanced the mechanistic understanding of metastatic tumor microenvironment (TME) and provided a foundation for the development of personalized treatments for OSCC patients with metastasis.
Collapse
Affiliation(s)
- Liang Dong
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shujun Hu
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Oral and Maxillofacial SurgeryCenter of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Research Center of Oral and Maxillofacail TumorXiangya HospitalCentral South UniversityChangshaHunan410008China
- Insititute of Oral Cancer and Precancerous LesionsCentral South UniversityChangshaHunan410008China
| | - Xin Li
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
| | - Shiyao Pei
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of DermatologyThird Xiangya HospitalCentral South UniversityChangsha410008China
| | - Liping Jin
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lining Zhang
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
| | - Xiang Chen
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Anjie Min
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Oral and Maxillofacial SurgeryCenter of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Research Center of Oral and Maxillofacail TumorXiangya HospitalCentral South UniversityChangshaHunan410008China
- Insititute of Oral Cancer and Precancerous LesionsCentral South UniversityChangshaHunan410008China
| | - Mingzhu Yin
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center (CRC)Medical Pathology Center (MPC)Cancer Early Detection and Treatment Center (CEDTC)Chongqing University Three Gorges HospitalChongqing UniversityChongqing404100China
- Translational Medicine Research Center (TMRC)School of Medicine Chongqing UniversityChongqing404100China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
32
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
34
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
de Juan A, Tabtim-On D, Coillard A, Becher B, Goudot C, Segura E. The aryl hydrocarbon receptor shapes monocyte transcriptional responses to interleukin-4 by prolonging STAT6 binding to promoters. Sci Signal 2024; 17:eadn6324. [PMID: 39405377 DOI: 10.1126/scisignal.adn6324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/25/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Cytokines induce functional and metabolic adaptations in immune cells, typically through transcriptional responses that can be influenced by other extracellular signals and by intracellular factors. The binding of the cytokine interleukin-4 (IL-4) to its receptor induces the phosphorylation and activation of the transcription factor STAT6. The aryl hydrocarbon receptor (AhR), a transcription factor activated by various endogenous and microbe-derived metabolites, modulates the responses of immune cells to danger signals or inflammatory mediators such as cytokines. Here, we investigated cross-talk between the AhR and signaling stimulated by IL-4 in human and mouse monocytes. AhR activation was required for a subset of IL-4-induced transcriptional responses and inhibited the IL-4-induced metabolic switch to fatty acid β-oxidation. The promoters of the genes that were induced by IL-4 in an AhR-dependent manner lacked canonical AhR binding sites, implying a nongenomic mechanism of AhR action. Mechanistically, AhR activation reduced the activity of SHP-1, a phosphatase that targets and inhibits STAT6, and prolonged STAT6 phosphorylation and binding to specific target loci, thus extending the duration of STAT6 activity. Our results identify AhR as a key player in the molecular control of responses to IL-4 in monocytes and suggest a nongenomic mechanism through which AhR ligands may influence the functional responses of cells to IL-4.
Collapse
Affiliation(s)
- Alba de Juan
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Darawan Tabtim-On
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Christel Goudot
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| |
Collapse
|
36
|
Li Y, Gong H, Gan T, Ma X, Geng Q, Yin S, Zhang H, Wu Y. Smart Hydrogel Dressing Enhances the Healing of Chronic Infectious Diabetic Wounds through Dual-Barrier Drug Delivery Action. Biomacromolecules 2024; 25:6814-6829. [PMID: 39235955 DOI: 10.1021/acs.biomac.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chronic diabetic wounds struggle to heal due to drug-resistant bacterial infections, oxidative stress microenvironment, and immune dysfunction. At present, the disease has become a huge clinical challenge. Multifunctional hydrogels with antibacterial, antioxidant, and anti-inflammatory properties are becoming an emerging trend in the treatment of chronic wounds. However, matching different bioactive functions with the wound healing process to sequentially exert antibacterial, antioxidant, anti-inflammatory, and immunomodulatory functions remains a significant challenge. In this research, a hydrogel dressing with bactericidal and anti-inflammatory properties was synthesized by crafting a pH/ROS-responsive scaffold from phenylboronic acid-grafted hyaluronic acid (HA-PBA) and 4-arm-PEG-dopamine (4A-PEG-Dopa), employing dynamic borate ester bonds. This structure was then infused with the antimicrobial peptide (AMP) and ROS-sensitive micelle mPEG-TK-PLGA loaded with quercetin (QC). This dressing embodied a dual-barrier drug delivery mechanism, engineered for the prolonged and consistent liberation of QC. In the experiment, the hydrogel dissociated within the acidic microenvironment of diabetic wounds, thereby liberating the encapsulated micelles and AMP. Upon further dissociation, the micelles release QC due to the ROS-abundant microenvironment, which could relieve oxidative stress and encourage M2 polarization of macrophage via the Akt/STAT6 signaling pathway. Therefore, this smart delivery system, developed through our innovative approach, holds promise for treating chronic infectious diabetic wounds.
Collapse
Affiliation(s)
- Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingjiang Gan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qirui Geng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shijiu Yin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Wang LL, Wang H, Lin SJ, Xu XY, Hu WJ, Liu J, Zhang HY. ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis. Acta Pharmacol Sin 2024; 45:2077-2091. [PMID: 38862817 PMCID: PMC11420366 DOI: 10.1038/s41401-024-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1β, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1β in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.
Collapse
Affiliation(s)
- Le-le Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Si-Jin Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Yu Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Juan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
38
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Shannon CE, Bakewell T, Fourcaudot MJ, Ayala I, Smelter AA, Hinostroza EA, Romero G, Asmis M, Freitas Lima LC, Wallace M, Norton L. The mitochondrial pyruvate carrier regulates adipose glucose partitioning in female mice. Mol Metab 2024; 88:102005. [PMID: 39137831 PMCID: PMC11382204 DOI: 10.1016/j.molmet.2024.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.
Collapse
Affiliation(s)
- Christopher E Shannon
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Terry Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel J Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Martina Wallace
- UCD Conway Institute, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
40
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
41
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Wang X, Zhang S, Xue D, Neculai D, Zhang J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00244-3. [PMID: 39304355 DOI: 10.1016/j.tem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors. Here, we highlight the metabolic reprogramming of macrophages as a potential approach for cancer immunotherapy. We explore the major pathways involved in the metabolic reprogramming of TAMs and offer new and valuable insights on the current technologies utilized for TAM reprogramming, including genome editing, antibodies, small molecules, nanoparticles and other in situ editing strategies.
Collapse
Affiliation(s)
- Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Hematology, Hangzhou, 310058, China; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
43
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
44
|
Ran L, Chen M, Ye J, Zhang S, Luo Z, Bai T, Qian C, Zhou Q, Shan M, Chu Y, Herrmann J, Li Q, Wang F. UK5099 Inhibits the NLRP3 Inflammasome Independently of its Long-Established Target Mitochondrial Pyruvate Carrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307224. [PMID: 38946607 PMCID: PMC11434118 DOI: 10.1002/advs.202307224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1β production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.
Collapse
Affiliation(s)
- Linyu Ran
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Miao Chen
- Department of EmergencyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainan570102China
| | - Jihui Ye
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Song Zhang
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
- Center for Regenerative MedicineMayo ClinicRochesterMN55902USA
| | - Zhibing Luo
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Tengfei Bai
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Chenchen Qian
- Division of Hospital Internal MedicineMayo ClinicPhoenixAZ85054USA
| | - Quan Zhou
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Mengtian Shan
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Yong Chu
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Joerg Herrmann
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| | - Feilong Wang
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| |
Collapse
|
45
|
Xu XS, Liu T, Chen YJ, Wu XY, Cheng MX, Li JZ. MSR1-dependent efferocytosis improved ischemia-reperfusion injury following aged-donor liver transplantation in mice by regulating the pro-resolving polarisation of macrophages. Exp Cell Res 2024; 442:114212. [PMID: 39168433 DOI: 10.1016/j.yexcr.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Compared with young liver donors, aged liver donors are more susceptible to ischemia-reperfusion injury (IRI) following transplantation, which may be related to excessive inflammatory response and macrophage dysfunction, but the specific mechanism is unclear. Macrophage scavenger receptor 1 (MSR1) is a member of the scavenger receptor family, and plays an important regulatory role in inflammation response and macrophage function regulation. But its role in IRI following aged-donor liver transplantation is still unclear. This study demonstrates that MSR1 expression is decreased in macrophages from aged donor livers, inhibiting their efferocytosis and pro-resolving polarisation. Decreased MSR1 is responsible for the more severe IRI suffered by aged donor livers. Overexpression of MSR1 using F4/80-labelled AAV9 improved intrahepatic macrophage efferocytosis and promoted pro-resolving polarisation, ultimately ameliorating IRI following aged-donor liver transplantation. In vitro co-culture experiments further showed that overexpression of MSR1 promoted an increase in calcium concentration, which further activated the PI3K-AKT-GSK3β pathway, and induced the upregulation of β-catenin. Overall, MSR1-dependent efferocytosis promoted the pro-resolving polarisation of macrophages through the PI3K-AKT-GSK3β pathway-induced up-regulating of β-catenin leading to improved IRI following aged-donor liver transplantation.
Collapse
Affiliation(s)
- Xue-Song Xu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ya-Jun Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin-Yi Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming-Xiang Cheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Jin-Zheng Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
46
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
47
|
He Y, Xu H, Liu Y, Kempa S, Vechiatto C, Schmidt R, Yilmaz EY, Heidemann L, Schnorr J, Metzkow S, Schellenberger E, Häckel A, Patzak A, Müller DN, Savic LJ. The Effects of Hypoxia on the Immune-Metabolic Interplay in Liver Cancer. Biomolecules 2024; 14:1024. [PMID: 39199411 PMCID: PMC11352590 DOI: 10.3390/biom14081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Han Xu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Yu Liu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Carolina Vechiatto
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Robin Schmidt
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Emine Yaren Yilmaz
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Luisa Heidemann
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Jörg Schnorr
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Susanne Metzkow
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Eyk Schellenberger
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Akvile Häckel
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Dominik N. Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
48
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
49
|
Zhang S, Gu J, Wang W, Sun L, Jiang T, Yang X, Yin J, Lin M, Lin D, Wang H, Tan L. Suppression of SENP3 enhances macrophage alternative activation by mediating IRF4 de-SUMOylation in ESCC progression. Cell Commun Signal 2024; 22:395. [PMID: 39123188 PMCID: PMC11312810 DOI: 10.1186/s12964-024-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Esophageal cancer is common worldwide, with ESCC being the most frequent tumor in East Asia. Tumor-associated macrophages are an important component of the ESCC microenvironment. SUMOylation is a post-translational modification of proteins, and SUMO-specific proteases (SENPs) play an important role in de-SUMOylation. In human patients, we discovered that the levels of SENP3 were upregulated in the tumor-associated macrophages. Furthermore, the loss of SENP3 enhanced the alternative activation of macrophages in the 4-NQO-induced ESCC mice model. This is the first study to identify SENP3-mediated macrophage polarization via the de-SUMOylation of interferon regulatory factor 4 (IRF4) at the K349 site. Alternative activation of macrophages increases the migration and invasion potential of ESCC cells and promotes their progression in vivo. Moreover, patients with relatively low SENP3 expression in macrophages exhibit higher primary PET SUVmax value and lymph node metastasis rates. In summary, this study revealed that SENP3-mediated IRF4 de-SUMOylation is crucial for the alternative activation of macrophages and influences the progression of ESCC.
Collapse
Affiliation(s)
- Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenhan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Linyi Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyu Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dong Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, People's Republic of China.
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|