1
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
2
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
3
|
Liu N, He J, Yang Y, Wang Y, Zhang L, Xiao Z, Xiong Z, Zhong S, Xu Y, Gu Y, Wang J, Lan Y, Du Y, Zhu P, Zhang Z, Fan X, Liu B, Fan Z. Enteric GABAergic neuron-derived γ-aminobutyric acid initiates expression of Igfbp7 to sustain ILC3 homeostasis. Nat Immunol 2025; 26:404-415. [PMID: 40033120 DOI: 10.1038/s41590-025-02081-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
Neuronal signals have emerged as critical factors that regulate group 3 innate lymphoid cell (ILC3) response and tissue homeostasis, but the molecular mechanisms underlying this regulation remain largely elusive. Here, we identified that the enteric GABAergic neuron-derived neurotransmitter γ-aminobutyric acid (GABA) inhibited proliferation and IL-17A production in ILC3s in a manner dependent on the GABA receptors Gabbr1 and Gabbr2. Conditional deletion of Gabbr1 or ablation of GABAergic neurons caused increased IL-17A production and aggravated colitis. Mechanistically, GABA suppressed the expression of the LIP isoform of the transcription factor C/EBP-β in ILC3s, which repressed the transcription of Igfbp7, which encodes the secreted factor Igfbp7. Autocrine Igfbp7 signaling through the receptor Igf1R inhibited ILC3 proliferation and IL-17A production. Suppression of signaling through the GABA-C/EBP-β-IGFBP7 pathway highly correlated with severity of intestinal inflammation in patients with inflammatory bowel disease (IBD). Collectively, our findings describe an important molecular mechanism underlying the maintenance of gut immune homeostasis.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng He
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanmei Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Yunlong Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingwei Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqi Xiao
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiong
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shangxun Zhong
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Xu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Gu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyi Wang
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Drug Control, Beijing, China
| | - Yufei Lan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinjuan Fan
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Zusen Fan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Su X, Zhao L, Zhang H, Wang D, Sun J, Shen L. Sirtuin 6 inhibits group 3 innate lymphoid cell function and gut immunity by suppressing IL-22 production. Front Immunol 2024; 15:1402834. [PMID: 39253083 PMCID: PMC11381250 DOI: 10.3389/fimmu.2024.1402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Di Luccia B, Molgora M, Khantakova D, Jaeger N, Chang HW, Czepielewski RS, Helmink BA, Onufer EJ, Fachi JL, Bhattarai B, Trsan T, Rodrigues PF, Hou J, Bando JK, da Silva CS, Cella M, Gilfillan S, Schreiber RD, Gordon JI, Colonna M. TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy. Sci Immunol 2024; 9:eadi5374. [PMID: 38758808 PMCID: PMC11299520 DOI: 10.1126/sciimmunol.adi5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.
Collapse
Affiliation(s)
- Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Darya Khantakova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Hao-Wei Chang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafael S. Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Beth A. Helmink
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily J. Onufer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Patrick F. Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - JinChao Hou
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Cristiane Sécca da Silva
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Cao S, Fachi JL, Ma K, Ulezko Antonova A, Wang Q, Cai Z, Kaufman RJ, Ciorba MA, Deepak P, Colonna M. The IRE1α/XBP1 pathway sustains cytokine responses of group 3 innate lymphoid cells in inflammatory bowel disease. J Clin Invest 2024; 134:e174198. [PMID: 38722686 PMCID: PMC11214543 DOI: 10.1172/jci174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. ER stress is linked to inflammatory bowel disease (IBD). Here, we used cell culture, mouse models, and human specimens to determine whether ER stress in ILC3s affects IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24-hour rhythmic expression pattern of the master ER stress response regulator inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1). Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial ROS (mtROS). IRE1α/XBP1 was activated in ILC3s from mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of the ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in patients with Crohn's disease before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with the response to treatment. We demonstrate that a noncanonical mtROS-IRE1α/XBP1 pathway augmented cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting the response to anti-IL-23 therapies in IBD.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine and
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Valle-Noguera A, Sancho-Temiño L, Castillo-González R, Villa-Gómez C, Gomez-Sánchez MJ, Ochoa-Ramos A, Yagüe-Fernández P, Soler Palacios B, Zorita V, Raposo-Ponce B, González-Granado JM, Aragonés J, Cruz-Adalia A. IL-18-induced HIF-1α in ILC3s ameliorates the inflammation of C. rodentium-induced colitis. Cell Rep 2023; 42:113508. [PMID: 38019650 DOI: 10.1016/j.celrep.2023.113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Lucía Sancho-Temiño
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Raquel Castillo-González
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villa-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Anne Ochoa-Ramos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Blanca Soler Palacios
- Department of Immunology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José María González-Granado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Aragonés
- Hospital Santa Cristina, Fundación de Investigación Hospital de la Princesa, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
8
|
Deng YF, Wu ST, Peng HY, Tian L, Li YN, Yang Y, Meng M, Huang LL, Xiong PW, Li SY, Yang QL, Wang LL, Li XY, Li LP, Lu XL, Li XH, Wei YL, Xiao ZH, Yu JH, Deng YC. mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development. Acta Pharmacol Sin 2023; 44:2243-2252. [PMID: 37407703 PMCID: PMC10618277 DOI: 10.1038/s41401-023-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.
Collapse
Affiliation(s)
- Ya-Fei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Shu-Ting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Hong-Yan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Ya-Na Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Yao Yang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Lan-Lan Huang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Pei-Wen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Song-Yang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Qing-Lan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Li-Li Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Yao Li
- Department of Clinical Pharmacy, Weifang Traditional Chinese Hospital, Weifang, 261041, China
| | - Li-Ping Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiu-Lan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Hui Li
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Yan-Ling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Zheng-Hui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China.
| | - Jian-Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Jiang S, Zheng Y, Lv B, He S, Yang W, Wang B, Zhou J, Liu S, Li D, Lin J. Single-cell landscape dissecting the transcription and heterogeneity of innate lymphoid cells in ischemic heart. Front Immunol 2023; 14:1129007. [PMID: 37228603 PMCID: PMC10203554 DOI: 10.3389/fimmu.2023.1129007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Until now, few articles have revealed the potential roles of innate lymphoid cells (ILCs) in cardiovascular diseases. However, the infiltration of ILC subsets in ischemic myocardium, the roles of ILC subsets in myocardial infarction (MI) and myocardial ischemia-reperfusion injury (MIRI) and the related cellular and molecular mechanisms have not been described with a sufficient level of detail. Method In the current study, 8-week-old male C57BL/6J mice were divided into three groups: MI, MIRI and sham group. Single-cell sequencing technology was used to perform dimensionality reduction clustering of ILC to analyze the ILC subset landscape at a single-cell resolution, and finally flow cytometry was used to confirm the existence of the new ILC subsets in different disease groups. Results Five ILC subsets were found, including ILC1, ILC2a, ILC2b, ILCdc and ILCt. It is worth noting that ILCdc, ILC2b and ILCt were identified as new ILC subclusters in the heart. The cellular landscapes of ILCs were revealed and signal pathways were predicted. Furthermore, pseudotime trajectory analysis exhibited different ILC statuses and traced related gene expression in normal and ischemic conditions. In addition, we established a ligand-receptor-transcription factor-target gene regulatory network to disclose cell communications among ILC clusters. Moreover, we further revealed the transcriptional features of the ILCdc and ILC2a subsets. Finally, the existence of ILCdc was confirmed by flow cytometry. Conclusion Collectively, by characterizing the spectrums of ILC subclusters, our results provide a new blueprint for understanding ILC subclusters' roles in myocardial ischemia diseases and further potential treatment targets.
Collapse
Affiliation(s)
- Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwei Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Brioschi S, Belk JA, Peng V, Molgora M, Rodrigues PF, Nguyen KM, Wang S, Du S, Wang WL, Grajales-Reyes GE, Ponce JM, Yuede CM, Li Q, Baer JM, DeNardo DG, Gilfillan S, Cella M, Satpathy AT, Colonna M. A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity 2023; 56:1027-1045.e8. [PMID: 36791722 PMCID: PMC10175109 DOI: 10.1016/j.immuni.2023.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jennifer M Ponce
- McDonnell Genome Institute, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Denosumab Is Superior to Raloxifene in Lowering Risks of Mortality and Ischemic Stroke in Osteoporotic Women. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Both osteoporosis and cardiovascular disease (CVD) share similar pathways in pathophysiology and are intercorrelated with increased morbidity and mortality in elderly women. Although denosumab and raloxifene are the current guideline-based pharmacological treatments, their impacts on cardiovascular protection are yet to be examined. This study aimed to compare mortality rate and cardiovascular events between denosumab and raloxifene in osteoporotic women. Risks of CVD development and all-cause mortality were estimated using Cox proportional hazard regression. A total of 7972 (3986 in each group) women were recruited between January 2003 and December 2018. No significant difference between denosumab and raloxifene was observed in composite CVDs, myocardial infarction, or congestive heart failure. However, comparison of the propensity score matched cohorts revealed that patients with proportion of days covered (PDC) ≥60% had lower incidence of ischemic stroke in the denosumab group than that in the raloxifene group (aHR 0.68; 95% CI 0.47–0.98; p = 0.0399). In addition, all-cause mortality was lower in the denosumab group than in the raloxifene group (aHR 0.59; 95% CI 0.48–0.72; p = 0.001), except in patients aged <65 y/o in this cohort study. We concluded that denosumab is superior to raloxifene in lowering risks of all-cause mortality and certain ischemic strokes in osteoporotic women.
Collapse
|
13
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
14
|
Jaschke NP, Pählig S, Sinha A, Adolph TE, Colunga ML, Hofmann M, Wang A, Thiele S, Schwärzler J, Kleymann A, Gentzel M, Tilg H, Wielockx B, Hofbauer LC, Rauner M, Göbel A, Rachner TD. Dickkopf1 fuels inflammatory cytokine responses. Commun Biol 2022; 5:1391. [PMID: 36539532 PMCID: PMC9765382 DOI: 10.1038/s42003-022-04368-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1-controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3-restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and non-malignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anupam Sinha
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Ledesma Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andrew Wang
- Department of Medicine (Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sylvia Thiele
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Kleymann
- Division of Rheumatology, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Marc Gentzel
- Molecular Analysis - Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8 + T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation. Int J Mol Sci 2022; 23:ijms232214122. [PMID: 36430600 PMCID: PMC9698886 DOI: 10.3390/ijms232214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
Collapse
|
16
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
17
|
Curio S, Belz GT. ZBTB46 in ILC3: shared transcriptional infrastructure defines gut-protective capabilities. Trends Immunol 2022; 43:690-692. [PMID: 35953346 DOI: 10.1016/j.it.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are distributed along the gastrointestinal tract at the interface between the immune system and the gut lumen, which carries a significant microbial burden. In a new study, Zhou et al. investigated the expression of transcription factor ZBTB46, normally thought to be restricted to classical dendritic cells (cDCs), and discovered that ZBTB46 expression by ILC3s in the mouse colon forms an essential part of the gastrointestinal armory to calibrate inflammatory responses.
Collapse
Affiliation(s)
- Sophie Curio
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gabrielle T Belz
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
18
|
Stem Cell Therapy and Innate Lymphoid Cells. Stem Cells Int 2022; 2022:3530520. [PMID: 35958032 PMCID: PMC9363162 DOI: 10.1155/2022/3530520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells have the capability to communicate with other immune cell types to coordinate the immune system functioning during homeostasis and inflammation. However, these cells behave differently at the functional level, unlike T cells, these cells do not need antigen receptors for activation because they are activated by the interaction of their receptor ligation. In hematopoietic stem cell transplantation (HSCT), T cells and NK cells have been extensively studied but very few studies are available on ILCs. In this review, an attempt has been made to provide current information related to NK and ILCs cell-based stem cell therapies and role of the stem cells in the regulation of ILCs as well. Also, the latest information on the differentiation of NK cells and ILCs from CD34+ hematopoietic stem cells is covered in the article.
Collapse
|
19
|
Pope RL, Chitrakar A, Sah P, Shadid T, Ballard JD, Zenewicz LA. Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infect Immun 2022; 90:e0007322. [PMID: 35377172 PMCID: PMC9022501 DOI: 10.1128/iai.00073-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/20/2022] Open
Abstract
Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.
Collapse
Affiliation(s)
- Rosemary L. Pope
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tyler Shadid
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
20
|
Peng V, Jaeger N, Colonna M. Innate Lymphoid Cells and Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:97-112. [DOI: 10.1007/978-981-16-8387-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
22
|
Momiuchi Y, Motomura Y, Suga E, Mizuno H, Kikuta J, Morimoto A, Mochizuki M, Otaki N, Ishii M, Moro K. Group 2 innate lymphoid cells in bone marrow regulate osteoclastogenesis in a reciprocal manner via RANKL, GM-CSF and IL-13. Int Immunol 2021; 33:573-585. [PMID: 34498703 DOI: 10.1093/intimm/dxab062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.
Collapse
Affiliation(s)
- Yoshiki Momiuchi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Emiko Suga
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroki Mizuno
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Akito Morimoto
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Miho Mochizuki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Natsuko Otaki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Graduate School of Medicine, Keio University, 3-5 Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Valle-Noguera A, Ochoa-Ramos A, Gomez-Sánchez MJ, Cruz-Adalia A. Type 3 Innate Lymphoid Cells as Regulators of the Host-Pathogen Interaction. Front Immunol 2021; 12:748851. [PMID: 34659248 PMCID: PMC8511434 DOI: 10.3389/fimmu.2021.748851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Type 3 Innate lymphoid cells (ILC3s) have been described as tissue-resident cells and characterized throughout the body, especially in mucosal sites and classical first barrier organs such as skin, gut and lungs, among others. A significant part of the research has focused on their role in combating pathogens, mainly extracellular pathogens, with the gut as the principal organ. However, some recent discoveries in the field have unveiled their activity in other organs, combating intracellular pathogens and as part of the response to viruses. In this review we have compiled the latest studies on the role of ILC3s and the molecular mechanisms involved in defending against different microbes at the mucosal surface, most of these studies have made use of conditional transgenic mice. The present review therefore attempts to provide an overview of the function of ILC3s in infections throughout the body, focusing on their specific activity in different organs.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid; 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Anne Ochoa-Ramos
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid; 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Maria José Gomez-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid; 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Aranzazu Cruz-Adalia
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid; 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
24
|
Hsu AT, Gottschalk TA, Tsantikos E, Hibbs ML. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front Immunol 2021; 12:733324. [PMID: 34630416 PMCID: PMC8492945 DOI: 10.3389/fimmu.2021.733324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
The lung is a vital mucosal organ that is constantly exposed to the external environment, and as such, its defenses are continuously under threat. The pulmonary immune system has evolved to sense and respond to these danger signals while remaining silent to innocuous aeroantigens. The origin of the defense system is the respiratory epithelium, which responds rapidly to insults by the production of an array of mediators that initiate protection by directly killing microbes, activating tissue-resident immune cells and recruiting leukocytes from the blood. At the steady-state, the lung comprises a large collection of leukocytes, amongst which are specialized cells of lymphoid origin known as innate lymphoid cells (ILCs). ILCs are divided into three major helper-like subsets, ILC1, ILC2 and ILC3, which are considered the innate counterparts of type 1, 2 and 17 T helper cells, respectively, in addition to natural killer cells and lymphoid tissue inducer cells. Although ILCs represent a small fraction of the pulmonary immune system, they play an important role in early responses to pathogens and facilitate the acquisition of adaptive immunity. However, it is now also emerging that these cells are active participants in the development of chronic lung diseases. In this mini-review, we provide an update on our current understanding of the role of ILCs and their regulation in the lung. We summarise how these cells and their mediators initiate, sustain and potentially control pulmonary inflammation, and their contribution to the respiratory diseases chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
27
|
Fachi JL, Pral LP, Dos Santos JAC, Codo AC, de Oliveira S, Felipe JS, Zambom FFF, Câmara NOS, Vieira PMMM, Colonna M, Vinolo MAR. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunol 2021; 14:828-841. [PMID: 33446906 PMCID: PMC8221997 DOI: 10.1038/s41385-020-00371-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) have a prominent role in the maintenance of intestine mucosa homeostasis. The hypoxia-inducible factor (HIF) is an important modulator of immune cell activation and a key mechanism for cellular adaptation to oxygen deprivation. However, its role on ILC3 is not well known. In this study, we investigated how a hypoxic environment modulates ILC3 response and the subsequent participation of HIF-1 signaling in this process. We found increased proliferation and activation of intestinal ILC3 at low oxygen levels, a response that was phenocopied when HIF-1α was chemically stabilized and was reversed when HIF-1 was blocked. The increased activation of ILC3 relied on a HIF-1α-dependent transcriptional program, but not on mTOR-signaling or a switch to glycolysis. HIF-1α deficiency in RORyt compartment resulted in impaired IL-17 and IL-22 production by ILC3 in vivo, which reflected in a lower expression of their target genes in the intestinal epithelium and an increased susceptibility to Clostridiodes difficile infection. Taken together, our results show that HIF-1α activation in intestinal ILC3 is relevant for their functions in steady state and infectious conditions.
Collapse
Affiliation(s)
- J L Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - L P Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J A C Dos Santos
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - A C Codo
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - S de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - J S Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - F F F Zambom
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - N O S Câmara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - P M M M Vieira
- Laboratory of Immunometabolism, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Campinas, Brazil
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - M Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - M A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
- Experimental Medicine Research Cluster, Campinas, Brazil.
- Obesity and Comorbolities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
28
|
Sécca C, Bando JK, Fachi JL, Gilfillan S, Peng V, Di Luccia B, Cella M, McDonald KG, Newberry RD, Colonna M. Spatial distribution of LTi-like cells in intestinal mucosa regulates type 3 innate immunity. Proc Natl Acad Sci U S A 2021; 118:e2101668118. [PMID: 34083442 PMCID: PMC8201890 DOI: 10.1073/pnas.2101668118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lymphoid tissue inducer (LTi)-like cells are tissue resident innate lymphocytes that rapidly secrete cytokines that promote gut epithelial integrity and protect against extracellular bacterial infections.Here, we report that the retention of LTi-like cells in conventional solitary intestinal lymphoid tissue (SILT) is essential for controlling LTi-like cell function and is maintained by expression of the chemokine receptor CXCR5. Deletion of Cxcr5 functionally unleashed LTi-like cells in a cell intrinsic manner, leading to uncontrolled IL-17 and IL-22 production. The elevated production of IL-22 in Cxcr5-deficient mice improved gut barrier integrity and protected mice during infection with the opportunistic pathogen Clostridium difficile Interestingly, Cxcr5-/- mice developed LTi-like cell aggregates that were displaced from their typical niche at the intestinal crypt, and LTi-like cell hyperresponsiveness was associated with the local formation of this unconventional SILT. Thus, LTi-like cell positioning within mucosa controls their activity via niche-specific signals that temper cytokine production during homeostasis.
Collapse
Affiliation(s)
- Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer K Bando
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - José L Fachi
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas, Campinas 13083-862, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Keely G McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rodney D Newberry
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
29
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Vanoni G, Ercolano G, Candiani S, Rutigliani M, Lanata M, Derré L, Marcenaro E, Schneider P, Romero P, Jandus C, Trabanelli S. Human primed ILCPs support endothelial activation through NF-κB signaling. eLife 2021; 10:e58838. [PMID: 33554861 PMCID: PMC7891932 DOI: 10.7554/elife.58838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
Innate lymphoid cells (ILCs) represent the most recently identified subset of effector lymphocytes, with key roles in the orchestration of early immune responses. Despite their established involvement in the pathogenesis of many inflammatory disorders, the role of ILCs in cancer remains poorly defined. Here we assessed whether human ILCs can actively interact with the endothelium to promote tumor growth control, favoring immune cell adhesion. We show that, among all ILC subsets, ILCPs elicited the strongest upregulation of adhesion molecules in endothelial cells (ECs) in vitro, mainly in a contact-dependent manner through the tumor necrosis factor receptor- and RANK-dependent engagement of the NF-κB pathway. Moreover, the ILCP-mediated activation of the ECs resulted to be functional by fostering the adhesion of other innate and adaptive immune cells. Interestingly, pre-exposure of ILCPs to human tumor cell lines strongly impaired this capacity. Hence, the ILCP-EC interaction might represent an attractive target to regulate the immune cell trafficking to tumor sites and, therefore, the establishment of an anti-tumor immune response.
Collapse
Affiliation(s)
- Giulia Vanoni
- Department of Oncology, Ludwig Institute for Cancer Research - University of LausanneLausanneSwitzerland
| | - Giuseppe Ercolano
- Department of Oncology, Ludwig Institute for Cancer Research - University of LausanneLausanneSwitzerland
| | - Simona Candiani
- Department of Earth Science, Environment and Life, University of GenovaGenovaItaly
| | - Mariangela Rutigliani
- Department of Laboratory and Service, Histological and Anatomical Pathology, E.O. Galliera HospitalGenovaItaly
| | - Mariangela Lanata
- Department of Laboratory and Service, Histological and Anatomical Pathology, E.O. Galliera HospitalGenovaItaly
| | - Laurent Derré
- Department of Urology, University Hospital of Lausanne (CHUV)LausanneSwitzerland
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of GenovaGenovaItaly
| | - Pascal Schneider
- Department of Biochemistry, University of LausanneLausanneSwitzerland
| | - Pedro Romero
- Department of Oncology, University of LausanneLausanneSwitzerland
| | - Camilla Jandus
- Department of Oncology, Ludwig Institute for Cancer Research - University of LausanneLausanneSwitzerland
| | - Sara Trabanelli
- Department of Oncology, Ludwig Institute for Cancer Research - University of LausanneLausanneSwitzerland
| |
Collapse
|
31
|
Kawakami M, Yasuda H, Nishida D, Katakura A, Mizoguchi T. Development of a method for the identification of receptor activator of nuclear factor-κB + populations in vivo. J Oral Biosci 2021; 63:45-51. [PMID: 33516894 DOI: 10.1016/j.job.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/19/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Osteoclasts are induced by macrophage colony-stimulating factor-1 (CSF-1) and receptor activator of nuclear factor-κB (RANK) ligand (RANKL). Monocyte/macrophage lineages are thought to be osteoclast precursors; however, such cells have not been fully characterized owing to a lack of tools for their identification. Osteoclast precursors express colony-stimulating factor-1 receptor (CSF-1R) and RANK. However, the capacity of conventional methods using anti-RANK antibodies to detect RANK+ cells by flow cytometry is insufficient. Here, we developed a high-sensitivity method for detecting RANK+ cells using biotinylated recombinant glutathione S-transferase-RANKL (GST-RANKL-biotin). METHODS We sorted sub-populations of mouse bone marrow (BM) or peripheral blood (PB) cells using GST-RANKL-biotin, anti-CSF1R, and anti-B220 antibodies and induced osteoclastogenesis in vitro. RESULTS The frequency of the RANK+ population in BM detected by GST-RANKL-biotin was significantly higher than that detected by anti-RANK antibodies. Although RANK+ cells were detected in both the B220+ and B220- populations, the macrophage lineage was present only in B220-. Unexpectedly, a significantly higher number of osteoclasts was induced in RANK-CSF-1R+ cells than in RANK+CSF-1R+ cells contained in the B220- population. In contrast, the PB-derived B220-RANK+CSF-1R+ population contained a significantly higher frequency of osteoclast precursors than the B220-RANK-CSF-1R+ population. CONCLUSIONS These results suggest that GST-RANKL-biotin is useful for the detection of RANK+ cells and that RANK and CSF-1R may be helpful indicators of osteoclast precursors in PB.
Collapse
Affiliation(s)
- Mana Kawakami
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Shiga, 526-0804, Japan
| | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
32
|
Sylvester FA. Effects of Digestive Diseases on Bone Metabolism. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:1023-1031.e7. [DOI: 10.1016/b978-0-323-67293-1.00091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021; 39:54-63. [PMID: 33438173 PMCID: PMC8670018 DOI: 10.1007/s00774-020-01178-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Xian Y, Lv X, Xie M, Xiao F, Kong C, Ren Y. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s). Life Sci 2020; 262:118504. [PMID: 32991877 DOI: 10.1016/j.lfs.2020.118504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Of the three groups of innate lymphoid cells, the type 3 innate lymphoid cell(s) (ILC3) include the subgroup of enteric ILC3 that participates in many physiological functions of the organism, such as promoting the repair of damaged mucosa, maintaining the homeostasis of gut symbiotic microorganisms, and presenting specific antigens. ILC3 also includes splenic and decidual ILC3. Like other physiological processes in the organism, enteric ILC3 functions are precisely regulated at the endogenous and exogenous levels. However, there has been no review on the physiological functions and regulatory signals of intestinal ILC3. In this paper, based on the current research on the physiological functions of enteric ILC3 in animals and the human, we summarize the signals that regulate cytokine secretion, antigen presentation and the quantity of ILC3 under normal intestinal conditions. We discuss for the first time the classification of the promoting mechanism of secretagogues of ILC3 into direct and indirect types. We also propose that ILC3 can promote intestinal homeostasis, and intestinal homeostasis can ensure the physiological phenotype of ILC3. If homeostasis is disturbed, ILC3 may participate in intestinal pathological changes. Therefore, regulating ILC3 and maintaining intestinal homeostasis are critical to the body.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Minjia Xie
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Fuyang Xiao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Chenyang Kong
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China.
| |
Collapse
|
35
|
Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity 2020; 52:650-667.e10. [PMID: 32294406 DOI: 10.1016/j.immuni.2020.03.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/17/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Appropriate balance of T helper 17 (Th17) and regulatory T (Treg) cells maintains immune tolerance and host defense. Disruption of Th17-Treg cell balance is implicated in a number of immune-mediated diseases, many of which display dysregulation of the insulin-like growth factor (IGF) system. Here, we show that, among effector T cell subsets, Th17 and Treg cells selectively expressed multiple components of the IGF system. Signaling through IGF receptor (IGF1R) activated the protein kinase B-mammalian target of rapamycin (AKT-mTOR) pathway, increased aerobic glycolysis, favored Th17 cell differentiation over that of Treg cells, and promoted a heightened pro-inflammatory gene expression signature. Group 3 innate lymphoid cells (ILC3s), but not ILC1s or ILC2s, were similarly responsive to IGF signaling. Mice with deficiency of IGF1R targeted to T cells failed to fully develop disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Thus, the IGF system represents a previously unappreciated pathway by which type 3 immunity is modulated and immune-mediated pathogenesis controlled.
Collapse
|
36
|
Bando JK, Gilfillan S, Di Luccia B, Fachi JL, Sécca C, Cella M, Colonna M. ILC2s are the predominant source of intestinal ILC-derived IL-10. J Exp Med 2020; 217:jem.20191520. [PMID: 31699824 PMCID: PMC7041711 DOI: 10.1084/jem.20191520] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
This study shows that the regulatory innate lymphoid cell (ILCreg), a recently described IL-10–producing innate lymphocyte, is not present in mice bred in four different facilities. Instead, group 2 ILCs provide an inducible source of IL-10 in the intestine. Although innate lymphoid cells (ILCs) functionally analogous to T helper type 1 (Th1), Th2, and Th17 cells are well characterized, an ILC subset strictly equivalent to IL-10–secreting regulatory T cells has only recently been proposed. Here, we report the absence of an intestinal regulatory ILC population distinct from group 1 ILCs (ILC1s), ILC2s, and ILC3s in (1) mice bred in our animal facility; (2) mice from The Jackson Laboratory, Taconic Biosciences, and Charles River Laboratories; and (3) mice subjected to intestinal inflammation. Instead, a low percentage of intestinal ILC2s produced IL-10 at steady state. A screen for putative IL-10 elicitors revealed that IL-2, IL-4, IL-27, IL-10, and neuromedin U (NMU) increased IL-10 production in activated intestinal ILC2s, while TL1A suppressed IL-10 production. Secreted IL-10 further induced IL-10 production in ILC2s through a positive feedback loop. In summary, ILC2s provide an inducible source of IL-10 in the gastrointestinal tract, whereas ILCregs are not a generalizable immune cell population in mice.
Collapse
Affiliation(s)
- Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - José L Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
37
|
An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat Commun 2020; 11:4076. [PMID: 32796851 PMCID: PMC7427797 DOI: 10.1038/s41467-020-17944-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3−/−Rag1−/− and circKcnt2−/−Rag1−/− mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis. Type 3 innate lymphoid cells (ILC3) are involved in maintaining gut immune homeostasis. Here the authors identify a circular RNA, circKcnt2, to be induced in ILC3s from inflamed gut, yet circKcnt2 deletion aggravates mouse experimental colitis, thereby implicating circKcnt2 as a potential feedback regulator of ILC3 activation and gut immunity.
Collapse
|
38
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Zhou W, Sonnenberg GF. Activation and Suppression of Group 3 Innate Lymphoid Cells in the Gut. Trends Immunol 2020; 41:721-733. [PMID: 32646594 PMCID: PMC7395873 DOI: 10.1016/j.it.2020.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) have emerged as master regulators of intestinal health and tissue homeostasis in mammals. Through a diverse array of cytokines and cellular interactions, ILC3s crucially orchestrate lymphoid organogenesis, promote tissue protection or regeneration, facilitate antimicrobial responses, and directly regulate adaptive immunity. Further, translational studies have found that ILC3 responses are altered in the intestine of defined patient populations with chronic infectious, inflammatory, or metabolic diseases. Therefore, it is essential to broadly understand the signals that activate, suppress, or fine-tune ILC3s in the gut. Here, we discuss recent exciting advances in this field, integrate them into our current understanding of ILC3 biology, and highlight fundamental gaps in knowledge that require additional investigation.
Collapse
Affiliation(s)
- Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
40
|
Wang W, Li Y, Hao J, He Y, Dong X, Fu YX, Guo X. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 2020; 32:107936. [DOI: 10.1016/j.celrep.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
|
41
|
Interleukin-17A and Keratinocytes in Psoriasis. Int J Mol Sci 2020; 21:ijms21041275. [PMID: 32070069 PMCID: PMC7072868 DOI: 10.3390/ijms21041275] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
The excellent clinical efficacy of anti-interleukin 17A (IL-17A) biologics on psoriasis indicates a crucial pathogenic role of IL-17A in this autoinflammatory skin disease. IL-17A accelerates the proliferation of epidermal keratinocytes. Keratinocytes produce a myriad of antimicrobial peptides and chemokines, such as CXCL1, CXCL2, CXCL8, and CCL20. Antimicrobial peptides enhance skin inflammation. IL-17A is capable of upregulating the production of these chemokines and antimicrobial peptides in keratinocytes. CXCL1, CXCL2, and CXCL8 recruit neutrophils and CCL20 chemoattracts IL-17A-producing CCR6+ immune cells, which further contributes to forming an IL-17A-rich milieu. This feed-forward pathogenic process results in characteristic histopathological features, such as epidermal hyperproliferation, intraepidermal neutrophilic microabscess, and dermal CCR6+ cell infiltration. In this review, we focus on IL-17A and keratinocyte interaction regarding psoriasis pathogenesis.
Collapse
|
42
|
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020; 40:2. [PMID: 32047573 PMCID: PMC7006158 DOI: 10.1186/s41232-019-0111-3] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage-lineage cells into the bone-resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK, or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells (DCs) and has many functions in the immune system, including organogenesis, cellular development. The essentiality of RANKL in the bone and the immune systems lies at the root of the field of "osteoimmunology." Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g., mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/OPG system in biological processes.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
43
|
Alisjahbana A, Willinger T. Metabolite Sensing by Colonic ILC3s: How Far Is Too Ffar2 Go? Immunity 2020; 51:786-788. [PMID: 31747578 DOI: 10.1016/j.immuni.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is poorly understood how group 3 innate lymphoid cells (ILC3s) recognize metabolites produced by the gut microbiota. In this issue of Immunity, Chun et al. show that short-chain fatty acids sensed through the G protein-coupled receptor Ffar2 promote ILC3 function in the colon.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden.
| |
Collapse
|
44
|
The EGFR-ERK/JNK-CCL20 Pathway in Scratched Keratinocytes May Underpin Koebnerization in Psoriasis Patients. Int J Mol Sci 2020; 21:ijms21020434. [PMID: 31936670 PMCID: PMC7013594 DOI: 10.3390/ijms21020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epidermal keratinocytes represent a rich source of C-C motif chemokine 20 (CCL20) and recruit CCR6+ interleukin (IL)-17A–producing T cells that are known to be pathogenic for psoriasis. A previous study revealed that scratch injury on keratinocytes upregulates CCL20 production, which is implicated in the Koebner phenomenon characteristically seen in psoriasis patients. However, the molecular mechanisms leading to scratch-induced CCL20 production remain elusive. In this study, we demonstrate that scratch injury upregulates the phosphorylation of epidermal growth factor receptor (EGFR) and that the specific EGFR inhibitor PD153035 attenuates scratch-induced CCL20 upregulation in an extracellular signal-related kinase (ERK)-dependent, and to a lesser extent, a c-Jun N-terminal kinase (JNK)-dependent but p38 mitogen-activated protein kinase (MAPK)–independent manner. Immunoreactive CCL20 was visualized in the keratinocytes that lined the scratched wound. IL-17A also induced the phosphorylation of EGFR and further augmented scratch-induced CCL20 upregulation. The EGFR-ERK/JNK-CCL20 pathway in scratched keratinocytes may explain why Koebnerization is frequently seen in psoriasis patients.
Collapse
|
45
|
Jarjour NN, Bradstreet TR, Schwarzkopf EA, Cook ME, Lai CW, Huang SCC, Taneja R, Stappenbeck TS, Van Dyken SJ, Urban JF, Edelson BT. BHLHE40 Promotes T H2 Cell-Mediated Antihelminth Immunity and Reveals Cooperative CSF2RB Family Cytokines. THE JOURNAL OF IMMUNOLOGY 2020; 204:923-932. [PMID: 31900338 DOI: 10.4049/jimmunol.1900978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/24/2019] [Indexed: 11/19/2022]
Abstract
The transcription factor BHLHE40 is an emerging regulator of the immune system. Recent studies suggest that BHLHE40 regulates type 2 immunity, but this has not been demonstrated in vivo. We found that BHLHE40 is required in T cells for a protective TH2 cell response in mice infected with the helminth Heligmosomoides polygyrus bakeri H. polygyrus elicited changes in gene and cytokine expression by lamina propria CD4+ T cells, many of which were BHLHE40 dependent, including production of the common β (CSF2RB) chain family cytokines GM-CSF and IL-5. In contrast to deficiency in GM-CSF or IL-5 alone, loss of both GM-CSF and IL-5 signaling impaired protection against H. polygyrus Overall, we show that BHLHE40 regulates the TH2 cell transcriptional program during helminth infection to support normal expression of Csf2, Il5, and other genes required for protection and reveal unexpected redundancy of common β chain-dependent cytokines previously thought to possess substantially divergent functions.
Collapse
Affiliation(s)
- Nicholas N Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Melissa E Cook
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chin-Wen Lai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; and
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
46
|
Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps. Mucosal Immunol 2020; 13:86-95. [PMID: 31641233 PMCID: PMC6917894 DOI: 10.1038/s41385-019-0215-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 inflammation with accumulation of activated group 2 innate lymphoid cells (ILC2s) and elevation of thymic stromal lymphopoietin (TSLP). A member of the TNF superfamily (TNFSF), TNFSF15, is known to induce the production of type 2 cytokines in ILC2s. Although ILC2s have been implicated in CRSwNP, the presence and role of TNFSFs in ILC2-mediated type 2 inflammation in CRSwNP has not been elucidated. Here, we investigate the involvement of TNFSFs in ILC2-mediated type 2 inflammation in CRSwNP. We found that receptor activator of NF-κB (RANK) ligand (RANK-L (TNFSF11)) was significantly elevated in nasal polyps (NPs), and that the receptor of RANK-L, RANK, was expressed on ILC2s in human peripheral blood and NPs. An agonistic antibody against RANK induced production of type 2 cytokines in human ILC2s, and TSLP significantly enhanced this reaction. The membrane-bound RANK-L was detected mainly on CD45 + immune cells, including TH2 cells in NPs. The co-culture of NP-derived ILC2s and TH2 cells significantly enhanced production of type 2 cytokines, and anti-RANK-L monoclonal antibody suppressed this enhancement. In conclusion, RANK-L, together with TSLP, may play an inductive role in the ILC2-mediated type 2 inflammation in CRSwNP.
Collapse
|
47
|
McFarland AP, Colonna M. Sense and immuno-sensibility: innate lymphoid cell niches and circuits. Curr Opin Immunol 2019; 62:9-14. [PMID: 31825814 DOI: 10.1016/j.coi.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023]
Abstract
Tissue-resident lymphocytes that lack expression of rearranged antigen receptors and are lineage negative for classical T and B cell markers are collectively known as innate lymphoid cells (ILCs). The ILC family is remarkably heterogeneous and exhibits plasticity; however, mature ILCs can be grouped based on their steady state expression of distinct surface receptors and transcription factors as well as production of signature cytokines following activation. The study of ILC subsets in mouse and human tissues has revealed that the elicitation and magnitude of their effector functions are determined by a combination of extrinsic cues specific to the niches in which they reside. In this short review, we will summarize some recent findings related to tissue-specific signals that govern ILC responses and localization.
Collapse
Affiliation(s)
- Adelle P McFarland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
48
|
Dougall WC, Roman Aguilera A, Smyth MJ. Dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity. Clin Transl Immunology 2019; 8:e01081. [PMID: 31572609 PMCID: PMC6763724 DOI: 10.1002/cti2.1081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives The addition of RANKL/RANK blockade to immune checkpoint inhibitors (ICIs) such as anti‐PD‐1/PD‐L1 and anti‐CTLA4 antibodies is associated with increased anti‐tumor immunity in mice. Recent retrospective clinical studies in patients with advanced melanoma and lung cancer suggest the addition of anti‐RANKL antibody to ICI increases the overall response rate relative to ICI treatment alone. Based on this rationale, we developed a novel bispecific antibody (BsAb) co‐targeting RANKL and PD‐1. Methods We characterized target binding and functional activity of the anti‐RANKL/PD‐1 BsAb in cell‐based assays. Anti‐tumor activity was confirmed in experimental lung metastasis models and in mice with established subcutaneously transplanted tumors. Results The anti‐RANKL/PD‐1 BsAb retained binding to both RANKL and PD‐1 and blocked the interaction with respective counter‐structures RANK and PD‐L1. The inhibitory effect of anti‐RANKL/PD‐1 BsAb was confirmed by demonstrating a complete block of RANKL‐dependent osteoclast formation. Monotherapy activity of anti‐RANKL/PD‐1 BsAb was observed in anti‐PD‐1 resistant tumors and, when combined with anti‐CTLA‐4 mAb, increased anti‐tumor responses. An equivalent or superior anti‐tumor response was observed with the anti‐RANKL/PD‐1 BsAb compared with the combination of parental anti‐RANKL plus anti‐PD‐1 antibodies depending upon the tumor model. Discussion Mechanistically, the anti‐tumor activity of anti‐RANKL/PD‐1 BsAb required CD8+T cells, host PD‐1 and IFNγ. Targeting RANKL and PD‐1 simultaneously within the tumor microenvironment (TME) improved anti‐tumor efficacy compared with combination of two separate mAbs. Conclusion In summary, the bispecific anti‐RANKL/PD‐1 antibody demonstrates potent tumor growth inhibition in settings of ICI resistance and represents a novel modality for clinical development in advanced cancer.
Collapse
Affiliation(s)
- William C Dougall
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| |
Collapse
|
49
|
Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Netw 2019; 19:e31. [PMID: 31720042 PMCID: PMC6829071 DOI: 10.4110/in.2019.19.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
50
|
Willinger T. Metabolic Control of Innate Lymphoid Cell Migration. Front Immunol 2019; 10:2010. [PMID: 31507605 PMCID: PMC6713999 DOI: 10.3389/fimmu.2019.02010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are specialized immune cells that rapidly respond to environmental challenges, such as infection and tissue damage. ILCs play an important role in organ homeostasis, tissue repair, and host defense in the mucosal tissues intestine and lung. ILCs are sentinels of healthy tissue function, yet it is poorly understood how ILCs are recruited, strategically positioned, and maintained within tissues. Accordingly, ILC migration is an area that has recently come into focus and it is important to define the signals that control ILC migration to and within tissues. In this context, signals from the local tissue microenvironment are relevant. For example, ILCs in the intestine are exposed to an environment that is rich in dietary, microbial, and endogenous metabolites. It has been shown that the Vitamin A metabolite retinoic acid promotes ILC1 and ILC3 homing to the intestine. In addition, recent studies have discovered cholesterol metabolites (oxysterols) as a novel class of molecules that regulate ILC migration through the receptor GPR183. ILCs are considered to be largely tissue-resident cells, yet recent data indicate that ILCs actively migrate during inflammation. Furthermore, the discovery of circulating ILC precursors in humans and their presence within tissues has fueled the concept of local ILC-poiesis. However, it is unclear how circulating ILCs enter tissue during embryogenesis and inflammation and how they are directed to local tissue niches. In this review, I will discuss the metabolic signals that regulate ILC homing and their strategic positioning in healthy and inflamed tissues. It is becoming increasingly clear that ILC function is closely linked to their tissue localization. Therefore, understanding the tissue signals that control ILC migration could open new avenues for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|