1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Chen H, Zhang Z, Lu C, Ding Y, Huang Z, Li M, Zhu L. Urolithin a attenuates rheumatoid arthritis by inhibiting inflammation and pyroptosis in fibroblasts via the AMPK/ NF-κB signaling pathway. Int Immunopharmacol 2025; 155:114604. [PMID: 40215775 DOI: 10.1016/j.intimp.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Urolithin A (UA), a metabolite of natural polyphenols produced by the gut microbiota, alleviates the symptoms of rheumatoid arthritis (RA) by inhibiting the inflammatory response. UA alleviates the clinical symptoms of RA by inhibiting the occurrence of an inflammatory response, but the specific regulatory mechanism remains unclear. In this study, we established a CIA model in 8-week-old DBA mice and chose LPS-stimulated NIH/3 T3 cells to explore the effects of UA and attempted to elucidate its potential mechanisms. Our results showed UA significantly reduced arthritis scores, and inhibited inflammation, pannus formation, and cartilage and bone destruction of inflamed joints in CIA mice. In vitro, UA inhibited LPS-induced migration and proliferation, and alleviated NLRP3-mediated pyroptosis, significantly inhibiting the protein expression levels of NLRP3, N-terminal gasdermin D, interleukin-1β, caspase-1, and ASC in NIH/3T3 cells. A mechanistic investigation revealed that LPS enhanced phosphorylation of NF-κB and downregulated that of AMPK, which were categorically counteracted by UA treatment. Therefore, UA represents a new class of promising RA treatments targeting fibroblasts, widening the therapeutic options for RA.
Collapse
Affiliation(s)
- Hao Chen
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Zhen Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Congcong Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Yi Ding
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Zhengao Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Maoqiang Li
- Department of Orthopedic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| | - Liulong Zhu
- Department of Orthopedic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| |
Collapse
|
3
|
Liu Y, Wu Q, Shao J, Mei Y, Zhang J, Xu Q, Mao L. The NLRP3 inflammasome: a therapeutic target of phytochemicals in treating atherosclerosis (a systematic review). Front Immunol 2025; 16:1568722. [PMID: 40443656 PMCID: PMC12119316 DOI: 10.3389/fimmu.2025.1568722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the gradual accumulation of plaques in arterial walls, with its pathogenesis remaining incompletely understood. Recent studies have highlighted that development of AS is closely associated with the aberrant activation of the NLRP3 inflammasome in the arteries. Inhibition of the NLRP3 inflammasome by natural products and formulae derived from Chinese herbal medicines (CHMs) has been shown to alleviate AS-associated pathologies. However, therapies that effectively and safely target the NLRP3 inflammasome remain limited. This review aims to summarize the key discoveries from recent studies on the effects of these natural products and formulae on the NLRP3 inflammasome in the context of AS treatment. A comprehensive literature search was conducted on databases such as PubMed/MEDLINE up to January 2025, yielding 38 eligible studies. Our analysis indicates that certain therapies can effectively prevent arterial inflammation in animal models by targeting multiple pathways and mechanisms related to the NLRP3 inflammasome. This review summarizes the primary findings of these studies, focusing on the therapeutic effects and underlying mechanisms of action. Based on these insights, we propose future strategies to enhance the efficacy, specificity, and safety of existing natural products and formulae for AS treatment. Additionally, this study offers a perspective for future research that may enhance our understanding of the roles and the mechanisms of CHM-derived phytochemicals and formulae in regulating the NLRP3 inflammasome and treating AS.
Collapse
Affiliation(s)
- Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Qianyi Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Jing Shao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Nantong, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Liming Mao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
4
|
Kraus Z, Birla S, Powell T, Petrovskaya S, Mills F, Dement-Brown J, Culhane C, Dokhaee K, Tolnay M. Secretory IgA binding to FCRL3 triggers shared inflammatory cytokine secretion by human regulatory T cells and effector T cells. J Leukoc Biol 2025; 117:qiaf054. [PMID: 40313182 DOI: 10.1093/jleuko/qiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
Several human lymphocyte subsets express the novel secretory IgA receptor FCRL3 (Fc receptor-like 3). Secretory IgA binding to FCRL3 diminishes the inhibitory capacity of regulatory T cells and promotes a T helper 17-like phenotype. Here, we report that in CD4+ regulatory T cells and CD8+ terminal effector T cells secretory IgA induced a shared inflammatory gene signature that included PTGS2 encoding COX2, and the prototypic inflammatory cytokine genes IL1A, IL1B, and IL8. Secretory IgA in regulatory T cells also elevated gene transcripts required for lineage identity and function. Secretory IgA promoted interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon γ, and tumor necrosis factor α protein secretion by both T cell types. Moreover, secretory IgA promoted NLRP3 inflammasome activation in regulatory T cells. Pharmacologic COX2 and NLRP3 inhibitors partially rescued the inhibitory competence of regulatory T cells, suggesting respective mechanistic roles. We propose that secretory IgA provokes a coordinated inflammatory response in regulatory and effector T cells to facilitate mucosal pathogen clearance.
Collapse
Affiliation(s)
- Zachary Kraus
- Office of Pharmaceutical Quality Assessment III, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Shama Birla
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Taylor Powell
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Svetlana Petrovskaya
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Frederick Mills
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Jessica Dement-Brown
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Casey Culhane
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Kimia Dokhaee
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Mate Tolnay
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
5
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
6
|
Liu W, Li G, Shi J, Gao Y, Fang P, Zhao Y, Zhong F, Guo X, Lyu Y, Da X, Li Z, Fa J, Hu L, Yuan A, Chen L, Liu J, Chen AF, Sheng B, Ji Y, Lu X, Pu J. NR4A1 Acts as a Novel Regulator of Platelet Activation and Thrombus Formation. Circ Res 2025; 136:809-826. [PMID: 40035146 PMCID: PMC11984555 DOI: 10.1161/circresaha.124.325645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Mounting evidence indicates that nuclear receptors play a critical regulatory role in platelet pathophysiology and thrombotic disorders. Although NR4A (the nuclear receptor subfamily 4 group A) plays an important role in cardiovascular pathophysiology, the expression profile and biological function of NR4A member 1 (NR4A1) in platelets have never been reported. METHODS We evaluated the functions and the underlying mechanisms of NR4A1 in platelet activation and thrombus formation using platelet-specific NR4A1-deficient mice and NR4A1-specific agonists. Using a hyperlipidemic mouse model and platelets from patients with hypercholesterolemia, we explored the influence of hypercholesterolemia on NR4A1 expression and the effects of NR4A1-specific agonists on platelet hyperreactivity induced by hypercholesterolemia. RESULTS NR4A1 was expressed in both human and mouse platelets. Platelet-specific NR4A1 deletion accelerated FeCl3-induced carotid arterial occlusive thrombus formation, enhanced collagen/epinephrine-induced pulmonary thromboembolism, and exacerbated microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. NR4A1-deficient platelets exhibited enhanced agonist-induced aggregation responses, integrin αIIbβ3 activation, dense granule release, α-granule release, platelet spreading, and clot retraction. Consistently, pharmacological activation of NR4A1 by specific agonists decreased platelet activation in both mouse and human platelets. Mechanistically, CAP1 (adenylyl cyclase-associated protein 1) was identified as the direct downstream interacting protein of NR4A1. NR4A1 deletion decreased cAMP levels and phosphorylation of VASP (vasodilator-stimulated phosphoprotein), while NR4A1-specific agonists increased cAMP levels and phosphorylation of VASP in platelets. Importantly, NR4A1 expression in platelets was upregulated in the setting of hypercholesterolemia, which was derived from its upregulation in megakaryocytes in a reactive oxygen species-dependent manner. Platelets from hypercholesterolemic patients and mice exhibited hyperreactivity. However, NR4A1-specific agonists significantly inhibited the activation of hypercholesterolemic platelets to the levels of healthy control platelets. CONCLUSIONS We provide the first evidence that nuclear receptor NR4A1 negatively regulates platelet activation and thrombus formation. NR4A1 may serve as a novel therapeutic target for managing thrombosis-based cardiovascular diseases, especially with hypercholesterolemia.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/blood
- Platelet Activation/physiology
- Humans
- Thrombosis/metabolism
- Thrombosis/blood
- Thrombosis/genetics
- Blood Platelets/metabolism
- Mice
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Hypercholesterolemia/blood
- Hypercholesterolemia/genetics
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Gaoxiang Li
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jianfeng Shi
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yu Gao
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Peiliang Fang
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Fangyuan Zhong
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiao Guo
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yuyan Lyu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xingwen Da
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zhaoyan Li
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jingjing Fa
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Baoshan Branch (J.F.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Liuhua Hu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Ancai Yuan
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lei Chen
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Junling Liu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education (J.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Alex F. Chen
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China (B.S.)
| | - Yong Ji
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China(Y.J.)
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Heilongjiang, China (Y.J.)
| | - Xiyuan Lu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
7
|
Jin Y, Dong W, Jiang Y, Dong L, Li Z, Yu D. VDAC1 Inhibition Protects Against Noise-Induced Hearing Loss via the PINK1/Parkin Pathway. CNS Neurosci Ther 2025; 31:e70410. [PMID: 40285415 PMCID: PMC12032401 DOI: 10.1111/cns.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
AIMS This study examined the effect of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an anion channel blocker of voltage-dependent anion channel 1 (VDAC1), on noise-induced hearing loss (NIHL) and its underlying mechanisms. METHODS Cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were used to assess the effect of DIDS in vitro. Auditory brainstem responses were used to assess auditory functions in mice. Immunofluorescence staining of myosin 7a and CTBP2 were used to examine hair cells and synaptic ribbons. The accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. The gene expression changes of cochlea were analyzed using RNA sequencing. RESULTS DIDS reduced the levels of ROS in cochlear explants and attenuated cell death caused by hydrogen peroxide in both cochlear explants and HEI-OC1 cells. In C57BL/6 mice, DIDS reduced ROS generation and tumor necrosis factor-α induced by noise exposure, thereby protecting outer hair cells and inner hair cell synaptic ribbons from noise-induced damage through a mechanism involving the PINK1/Parkin signaling pathway. The preventive effect of DIDS in cochlear explants was eliminated by mitophagy inhibition. CONCLUSION VDAC1 inhibition enhances mitophagy in cochlear hair cells, playing a critical role in defending against oxidative stress and inflammation. Downregulation of VDAC1 may thus be considered a therapeutic strategy for preventing cochlear hair cell damage and reducing NIHL.
Collapse
Affiliation(s)
- Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhuangzhuang Li
- Department of Otolaryngology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Wang Y, Li N, Guan W, Wang D. Controversy and multiple roles of the solitary nucleus receptor Nur77 in disease and physiology. FASEB J 2025; 39:e70468. [PMID: 40079203 PMCID: PMC11904867 DOI: 10.1096/fj.202402775rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions. In cancer, Nur77 demonstrates dual roles, acting as both a tumor suppressor and promoter, depending on the cancer type and stage, making it a controversial yet promising anticancer target. This review provides a structured analysis of the functions of Nur77, focusing on its physiological and pathological roles, therapeutic potential, and existing controversies. Emphasis is placed on its emerging applications in neurodegenerative diseases and cancer, offering key insights for future research and clinical translation.
Collapse
Affiliation(s)
- Yanteng Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Li
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wenwei Guan
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Difei Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
9
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
10
|
Yu X, He Y, Kamenecka TM, Kojetin DJ. Towards a unified molecular mechanism for liganddependent activation of NR4A-RXR heterodimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.642122. [PMID: 40166180 PMCID: PMC11956975 DOI: 10.1101/2025.03.19.642122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A subset of nuclear receptors (NRs) function as permissive heterodimers with retinoid X receptor (RXR), defined by transcriptional activation in response to binding RXR agonist ligands. Permissive NR-RXR activation operates via a classical pharmacological mechanism, where binding of an RXR agonist increases coactivator recruitment to the heterodimer. However, we previously demonstrated that transcriptional activation of permissive Nurr1-RXRα (NR4A2-NR2B1) heterodimers by an RXR ligand set, which included pharmacological RXR agonists and selective Nurr1-RXRα agonists that function as antagonists of RXRα homodimers, occurs via a non-classical mechanism: ligand-binding domain (LBD) heterodimer dissociation (Yu et al., 2023). Here, we extend mechanistic ligand profiling of the same RXR ligand set to Nur77-RXRγ (NR4A1-NR2B3), which is evolutionarily related to Nurr1-RXRα. Biochemical and NMR protein-protein interaction profiling along with cellular transcription studies indicate that the RXR ligand set, which lacks selective Nur77-RXRγ agonists, may influence Nur77-RXRγ transcriptional activation through both classical pharmacological activation and LBD heterodimer dissociation. However, upon reanalyzing our previously published data for Nurr1-RXRα, we found that the inclusion of selective Nurr1-RXRα agonists was essential for elucidating the LBD heterodimer dissociation mechanism. Our findings underscore the need for a more functionally diverse RXR ligand set to explore Nur77-RXRγ activation and unify LBD heterodimer dissociation as a potential targeting mechanism for NR4A-RXR heterodimers in neurodegenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Yuanjun He
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Theodore M. Kamenecka
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Douglas J. Kojetin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Qiao M, Ni J, Qing H, Qiu Y, Quan Z. Role of Peripheral NLRP3 Inflammasome in Cognitive Impairments: Insights of Non-central Factors. Mol Neurobiol 2025:10.1007/s12035-025-04779-8. [PMID: 40000575 DOI: 10.1007/s12035-025-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cognitive impairments are common clinical manifestation of Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and autoimmune diseases. Emerging evidence has suggested a strong correlation between peripheral chronic inflammation and cognitive impairments. For example, nearly 40% of individuals with inflammatory bowel disease also suffer from cognitive impairments. In this condition, NLRP3 inflammasome (NLRP3-I) generating pro-inflammatory cytokines like IL-1β serves as a significant effector, and its persistence exerts adverse effects to both periphery and the brain. Moreover, investigations on serum biomarkers of mild cognitive impairments have shown NLRP3-I components' upregulation, suggesting the involvement of peripheral inflammasome pathway in this disorder. Here, we systematically reviewed the current knowledge of NLRP3-I in inflammatory disease to uncover its potential role in bridging peripheral chronic inflammation and cognitive impairments. This review summarizes the molecular features and ignition process of NLRP3-I in inflammatory response. Meanwhile, various effects of NLRP3-I involved in peripheral inflammation-associated disease are also reviewed, especially its chronic disturbances to brain homeostasis and cognitive function through routes including gut-brain, liver-brain, and kidney-brain axes. In addition, current promising compounds and their targets relative to NLRP3-I are discussed in the context of cognitive impairments. Through the detailed investigation, this review highlights the critical role of peripheral NLRP3-I in the pathogenesis of cognitive disorders, and offers novel perspectives for developing effective therapeutic interventions for diseases associated with cognitive impairments. The present review outlines the current knowledge on the ignition of NLRP3-I in inflammatory disease and more importantly, emphasizes the role of peripheral NLRP3-I as a causal pathway in the development of cognitive disorders. Although major efforts to restrain cognitive decline are mainly focused on the central nervous system, it has become clear that disturbances from peripheral immune are closely associated with the dysfunctional brain. Therefore, attenuation of these inflammatory changes through inhibiting the NLRP3-I pathway in early inflammatory disease may reduce future risk of cognitive impairments, and in the meantime, considerations on such pathogenesis for combined drug therapy will be required in the clinical evaluation of cognitive disorders.
Collapse
Affiliation(s)
- Mengfan Qiao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Qian Y, Liu Q, Cheng X, Wang C, Kong C, Li M, Ren C, Jiang D, Wang S, Xia P. A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome. eLife 2025; 13:RP99939. [PMID: 39998486 PMCID: PMC11856931 DOI: 10.7554/elife.99939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Xiangyun Cheng
- Department of Sports Medicine, Peking University Third HospitalBeijingChina
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking UniversityBeijingChina
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Mengqian Li
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| | - Chao Ren
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical UniversityBeijingChina
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third HospitalBeijingChina
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking UniversityBeijingChina
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityBeijingChina
- NHC Key Laboratory of Medical Immunology, Peking UniversityBeijingChina
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
13
|
Baishan A, Aikebaier A, Dilimulati D, Nueraihemaiti N, Paerhati Y, Hailati S, Maihemuti N, Zhou W. Bioinformatics Analysis of the Anti-Inflammatory Mechanism and Potential Therapeutic Efficacy of Kezimuke granules in Treating Urinary Tract Infections by Inhibiting NLRP3 Inflammasome Activation. Int J Mol Sci 2025; 26:1764. [PMID: 40004227 PMCID: PMC11854959 DOI: 10.3390/ijms26041764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Kezimuke granules (KZMK), derived from traditional Kazakh folk medicine, exhibit a variety of pharmacological properties. Long-term clinical studies have demonstrated their efficacy in clearing heat, detoxifying, promoting qi circulation, and alleviating gonorrhea. However, their specific pharmacological effects on urinary tract infections remain unclear. This study employed UHPLC-MS/MS technology to identify the blood components of KZMK and integrated network pharmacology with bioinformatics analysis for molecular docking validation. The anti-inflammatory activity of KZMK was further evaluated using a rat model of LPS-induced cystitis. A total of 17 components in KZMK were identified as capable of entering the bloodstream. Predictive analysis revealed that its primary targets include Caspase-1, NLRP3, STAT1, TLR4, and TNF, with the NLRP3 inflammasome signaling pathway emerging as the key mechanism. In vivo studies showed that KZMK effectively reduced the white blood cell (WBC) count and bladder index in urine sediments of rats with cystitis. Additionally, KZMK alleviated bladder congestion, edema, and histopathological changes in the animals. Treatment with KZMK led to decreased levels of IL-18 and IL-1β cytokines. KZMK significantly inhibited the expression of NLRP3, GSDMD, and Caspase-1 in LPS-induced cystitis, further confirming its anti-inflammatory effects. These findings indicate that KZMK provides protection against LPS-induced cystitis, primarily by inhibiting the activation of the NLRP3 inflammasome. Collectively, the results suggest that KZMK holds promise as a potential therapeutic option for urinary tract infections.
Collapse
Affiliation(s)
- Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Yipaerguli Paerhati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (A.B.); (A.A.); (D.D.); (N.N.); (Y.P.); (S.H.); (N.M.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
14
|
Lin R, Yu Y, Du L, Ding Z, Wang Z, Wei J, Guo Z. Active ingredients of traditional Chinese medicine inhibit NOD-like receptor protein 3 inflammasome: a novel strategy for preventing and treating heart failure. Front Immunol 2025; 16:1520482. [PMID: 39925805 PMCID: PMC11802527 DOI: 10.3389/fimmu.2025.1520482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Heart failure (HF) has emerged as a significant global public health challenge owing to its high rates of morbidity and mortality. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is regarded as a pivotal factor in the onset and progression of HF. Therefore, inhibiting the activation of the NLRP3 inflammasome may represent a promising therapeutic approach for preventing and treating HF. The active ingredients serve as the foundation for the therapeutic effects of traditional Chinese medicine (TCM). Recent research has revealed significant advantages of TCM active ingredients in inhibiting the activation of the NLRP3 inflammasome and enhancing cardiac structure and function in HF. The study aimed to explore the impact of NLRP3 inflammasome activation on the onset and progression of HF, and to review the current advancements in utilizing TCM active ingredients to inhibit the NLRP3 inflammasome for preventing and treating HF. This provides a novel perspective for the future development of precise intervention strategies targeting the NLRP3 inflammasome to prevent and treat HF.
Collapse
Affiliation(s)
- Ruifang Lin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yunfeng Yu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lixin Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zehui Ding
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ziyan Wang
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaming Wei
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
15
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Wang Y, Zhang Y, Kim K, Han J, Okin D, Jiang Z, Yang L, Subramaniam A, Means TK, Nestlé FO, Fitzgerald KA, Randolph GJ, Lesser CF, Kagan JC, Mathis D, Benoist C. A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control. Immunity 2024; 57:2737-2754.e12. [PMID: 39571575 PMCID: PMC11634661 DOI: 10.1016/j.immuni.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Ligand-dependent transcription factors of the nuclear receptor (NR) family regulate diverse aspects of metazoan biology, enabling communications between distant organs via small lipophilic molecules. Here, we examined the impact of each of 35 NRs on differentiation and homeostatic maintenance of all major immunological cell types in vivo through a "Rainbow-CRISPR" screen. Receptors for retinoic acid exerted the most frequent cell-specific roles. NR requirements varied for resident macrophages of different tissues. Deletion of either Rxra or Rarg reduced frequencies of GATA6+ large peritoneal macrophages (LPMs). Retinoid X receptor alpha (RXRα) functioned conventionally by orchestrating LPM differentiation through chromatin and transcriptional regulation, whereas retinoic acid receptor gamma (RARγ) controlled LPM survival by regulating pyroptosis via association with the inflammasome adaptor ASC. RARγ antagonists activated caspases, and RARγ agonists inhibited cell death induced by several inflammasome activators. Our findings provide a broad view of NR function in the immune system and reveal a noncanonical role for a retinoid receptor in modulating inflammasome pathways.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yanbo Zhang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jichang Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Okin
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Arum Subramaniam
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terry K Means
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Frank O Nestlé
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
17
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS, Pang T. Discovery of Balasubramide Derivative with Tissue-Specific Anti-Inflammatory Activity Against Acute Lung Injury by Targeting VDAC1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410550. [PMID: 39556713 DOI: 10.1002/advs.202410550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Macrophage-mediated inflammatory responses including pyroptosis are involved in the pathogenesis of sepsis and acute lung injury (ALI), for which there are currently no effective therapeutic treatments. The natural product (+)-Balasubramide is an eight-membered lactam compound extracted from the leaves of the Sri Lanka plant Clausena Indica and has shown anti-inflammatory activities, but its poor pharmacokinetic properties limit its further application for ALI. In this study, a compound (+)3C-20 is discovered with improved both pharmacokinetic properties and anti-inflammatory activity from a series of (+)-Balasubramide derivatives. The compound (+)3C-20 exhibits a markedly enhanced inhibitory effect against LPS-induced expressions of pro-inflammatory factors in mouse macrophages and human PBMCs from ALI patients and shows a preferable lung tissue distribution in mice. (+)3C-20 remarkably attenuates LPS-induced ALI through lung tissue-specific anti-inflammatory actions. Mechanistically, a chemical proteomics study shows that (+)3C-20 directly binds to mitochondrial VDAC1 and inhibits VDAC1 oligomerization to block mtDNA release, further preventing NLRP3 inflammasome activation. These findings identify (+)3C-20 as a novel VDAC1 inhibitor with promising therapeutic potential for ALI associated with inflammation.
Collapse
Affiliation(s)
- Jin-Qian Song
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Li-Juan Shen
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Hao-Jie Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, 571199, P.R. China
| | - Lian-Bao Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian, 116044, P. R. China
| | - Bin Cai
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Han-Sen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
18
|
Zhu L, Tong H, Ren C, Chen K, Luo S, Wang Q, Guo M, Xu Y, Hu M, Fang J, Xu J, Shi P. Inflammation unleashed: The role of pyroptosis in chronic liver diseases. Int Immunopharmacol 2024; 141:113006. [PMID: 39213865 DOI: 10.1016/j.intimp.2024.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pyroptosis, a newly identified form of programmed cell death intertwined with inflammatory responses, is facilitated by the Gasdermin family's pore-forming activity, leading to cell lysis and the release of pro-inflammatory cytokines. This process is a double-edged sword in innate immunity, offering protection against pathogens while risking excessive inflammation and tissue damage when dysregulated. Specifically, pyroptosis operates through two distinct signaling pathways, namely the Caspase-1 pathway and the Caspase-4/5/11 pathway. In the context of chronic liver diseases like fibrosis and cirrhosis, inflammation emerges as a central contributing factor to their pathogenesis. The identification of inflammation is characterized by the activation of innate immune cells and the secretion of pro-inflammatory cytokines such as IL-1α, IL-1β, and TNF-α. This review explores the interrelationship between pyroptosis and the inflammasome, a protein complex located in liver cells that recognizes danger signals and initiates Caspase-1 activation, resulting in the secretion of IL-1β and IL-18. The article delves into the influence of the inflammasome and pyroptosis on various liver disorders, with a specific focus on their molecular and pathophysiological mechanisms. Additionally, the potential therapeutic implications of targeting pyroptosis for liver diseases are highlighted for future consideration.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Ren
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Kun Chen
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengnan Luo
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yichen Xu
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinyong Fang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinxian Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Peifei Shi
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| |
Collapse
|
19
|
Wen Z, Yuan T, Liu J, Wang D, Ni J, Yan X, Tang J, Tang J, Wu X, Wang Z. Atg16l2 augments Nlrc4 inflammasome activation by facilitating NAIPs-NLRC4 association. Eur J Immunol 2024; 54:e2451078. [PMID: 39175123 DOI: 10.1002/eji.202451078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with Salmonella typhimurium, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.
Collapse
Affiliation(s)
- Zhoujin Wen
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Banister G, Boucher D. LPS gets a fresh trim. Nat Chem Biol 2024; 20:1389-1390. [PMID: 38561545 DOI: 10.1038/s41589-024-01589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
| | - Dave Boucher
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, York, UK.
| |
Collapse
|
21
|
Li W, Liu Q, Qian Y, Wang C, Kong C, Sun L, Sun L, Liu H, Zhang Y, Jiang D, Jiang C, Wang S, Xia P. Adipose triglyceride lipase suppresses noncanonical inflammasome by hydrolyzing LPS. Nat Chem Biol 2024; 20:1434-1442. [PMID: 38413746 DOI: 10.1038/s41589-024-01569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1β, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.
Collapse
Affiliation(s)
- Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Liangliang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
23
|
Liu Q, Li W, Qian Y, Wang C, Kong C, Li M, Sun L, Sun L, Pang Y, Jiang C, Wang S, Xia P. The TET3 inflammasome senses unique long HSV-1 proteins for virus particle budding from the nucleus. Cell Mol Immunol 2024; 21:1322-1334. [PMID: 39379602 PMCID: PMC11527991 DOI: 10.1038/s41423-024-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Inflammasomes play important roles in resisting infections caused by various pathogens. HSV-1 is a highly contagious virus among humans. The process by which HSV-1 particles bud from the nucleus is unique to herpes viruses, but the specific mechanism is still unclear. Here, we screened genes involved in HSV-1 replication. We found that TET3 plays an essential role in HSV-1 infection. TET3 recognizes the UL proteins of HSV-1 and, upon activation, can directly bind to caspase-1 to activate an ASC-independent inflammasome in the nucleus. The subsequent cleavage of GSDMD in the nucleus is crucial for the budding of HSV-1 particles from the nucleus. Inhibiting the perforation ability of GSDMD on the nuclear membrane can significantly reduce the maturation and spread of HSV-1. Our results may provide a new approach for the treatment of HSV-1 in the future.
Collapse
Affiliation(s)
- Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Mengqian Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Liangliang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Lang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yanli Pang
- State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
24
|
Collins CA, Waller C, Batourina E, Kumar L, Mendelsohn CL, Gilbert NM. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat Commun 2024; 15:8308. [PMID: 39333075 PMCID: PMC11436794 DOI: 10.1038/s41467-024-52454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined. Here we show that Nur77 protects against intracellular infection in the bladder by uropathogenic Escherichia coli (UPEC), the leading cause of urinary tract infections (UTI). Nur77 deficiency in mice promotes the formation of UPEC intracellular bacterial communities (IBCs) in the cells lining the bladder lumen, leading to persistent infection in bladder tissue. Conversely, treatment with a small-molecule Nur77 agonist, cytosporone B, inhibits invasion and enhances the expulsion of UPEC from human urothelial cells in vitro, and significantly reduces UPEC IBC formation and bladder infection in mice. Our findings reveal a new role for Nur77 in control of bacterial infection and suggest that pharmacologic agonism of Nur77 function may represent a promising antibiotic-sparing therapeutic approach for UTI.
Collapse
Affiliation(s)
- Christina A Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chevaughn Waller
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lokesh Kumar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Zhang Z, Wu H, Yin K, Zheng X, Cao Z, Guo W, Zhao C, Gu X. Design, Synthesis, and Bioevaluation of Novel NLRP3 Inhibitor with IBD Immunotherapy from the Virtual Screen. J Med Chem 2024; 67:16612-16634. [PMID: 39269610 DOI: 10.1021/acs.jmedchem.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
NLRP3, a crucial member of the NLRP family, plays a pivotal role in immune regulation and inflammatory modulation. Here, we report a potent and specific NLRP3 inhibitor Z48 obtained though docking-based virtual screening and structure-activity relationship studies with an IC50 of 0.26 μM in THP-1 cells and 0.21 μM in mouse bone marrow-derived macrophages. Mechanistic studies indicated that Z48 could bind directly to the NLRP3 protein (KD = 1.05 μM), effectively blocking the assembly and activation of the NLRP3 inflammasome, consequently manifesting anti-inflammatory properties. Crucially, with acceptable mouse pharmacokinetic profiles, Z48 demonstrated notable therapeutic efficacy in a mouse model of DSS-induced ulcerative colitis, while displaying no significant therapeutic impact on NLRP3KO mice. In conclusion, this study provided a promising NLRP3 inflammasome inhibitor with novel molecular scaffold, poised for further development as a therapeutic candidate in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Hongyu Wu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Kai Yin
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Xinru Zheng
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Zhonglian Cao
- Department of Biopharmaceuticals, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfeng Gu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| |
Collapse
|
26
|
Yang G, Yang L, Xu F. Isoalantolactone: a review on its pharmacological effects. Front Pharmacol 2024; 15:1453205. [PMID: 39376605 PMCID: PMC11456459 DOI: 10.3389/fphar.2024.1453205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Isoalantolactone (ISA) is a sesquiterpene lactone that could be isolated from Inula helenium as well as many other herbal plants belonging to Asteraceae. Over the past 2 decades, lots of researches have been made on ISA, which owns multiple pharmacological effects, such as antimicrobial, anticancer, anti-inflammatory, neuroprotective, antidepressant-like activity, as well as others. The anticancer effects of ISA involve proliferation inhibition, ROS overproduction, apoptosis induction and cell cycle arrest. Through inhibiting NF-κB signaling, ISA exerts its anti-inflammatory effects which are involved in the neuroprotection of ISA. This review hackled the reported pharmacological effects of ISA and associated mechanisms, providing an update on understanding its potential in drug development.
Collapse
Affiliation(s)
- Guang Yang
- Department of Traditional Chinese Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Li Y, Zhuang Y, Chen Y, Wang G, Tang Z, Zhong Y, Zhang Y, Wu L, Ji X, Zhang Q, Pan B, Luo Y. Euphorbia factor L2 alleviated gouty inflammation by specifically suppressing both the priming and activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 138:112598. [PMID: 38981223 DOI: 10.1016/j.intimp.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1β production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Zhuang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuehong Chen
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 6a004a, Sichuan, China
| | - Zhigang Tang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zhong
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Liang Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Ji
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Zandigohar M, Pang J, Rodrigues A, Roberts RE, Dai Y, Koh TJ. Transcription Factor Activity Regulating Macrophage Heterogeneity during Skin Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:506-518. [PMID: 38940624 PMCID: PMC11300156 DOI: 10.4049/jimmunol.2400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Monocytes and macrophages (Mos/Mϕs) play diverse roles in wound healing by adopting a spectrum of functional phenotypes; however, the regulation of such heterogeneity remains poorly defined. We enhanced our previously published Bayesian inference TF activity model, incorporating both single-cell RNA sequencing and single-cell ATAC sequencing data to infer transcription factor (TF) activity in Mos/Mϕs during skin wound healing. We found that wound Mos/Mϕs clustered into early-stage Mos/Mϕs, late-stage Mϕs, and APCs, and that each cluster showed differential chromatin accessibility and differential predicted TF activity that did not always correlate with mRNA or protein expression. Network analysis revealed two highly connected large communities involving a total of 19 TFs, highlighting TF cooperation in regulating wound Mos/Mϕs. This analysis also revealed a small community populated by NR4A1 and NFKB1, supporting a proinflammatory link between these TFs. Importantly, we validated a proinflammatory role for NR4A1 activity during wound healing, showing that Nr4a1 knockout mice exhibit decreased inflammatory gene expression in early-stage wound Mos/Mϕs, along with delayed wound re-epithelialization and impaired granulation tissue formation. In summary, our study provides insight into TF activity that regulates Mo/Mϕ heterogeneity during wound healing and provides a rational basis for targeting Mo/Mϕ TF networks to alter phenotypes and improve healing.
Collapse
Affiliation(s)
- Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Alannah Rodrigues
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Rita E. Roberts
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| |
Collapse
|
29
|
Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, Qiu SQ, Cheng BH, Zeng XH. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol 2024; 15:1435892. [PMID: 39131161 PMCID: PMC11310156 DOI: 10.3389/fimmu.2024.1435892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1β and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1β, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xi-Jia Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dan-Dan Luo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Shu-Qi Qiu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Bao-Hui Cheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| |
Collapse
|
30
|
Liao C, Xu F, Yu Z, Ding K, Jia Y. The Novel Role of the NLRP3 Inflammasome in Mycotoxin-Induced Toxicological Mechanisms. Vet Sci 2024; 11:291. [PMID: 39057975 PMCID: PMC11281663 DOI: 10.3390/vetsci11070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Mycotoxins are secondary metabolites produced by several fungi and moulds that exert toxicological effects on animals including immunotoxicity, genotoxicity, hepatotoxicity, teratogenicity, and neurotoxicity. However, the toxicological mechanisms of mycotoxins are complex and unclear. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric cytosolic protein complex composed of the NLRP3 sensor, ASC adapter protein, and caspase-1 effector. Activation of the NLRP3 inflammasome plays a crucial role in innate immune defence and homeostatic maintenance. Recent studies have revealed that NLRP3 inflammasome activation is linked to tissue damage and inflammation induced by mycotoxin exposure. Thus, this review summarises the latest advancements in research on the roles of NLRP3 inflammasome activation in the pathogenesis of mycotoxin exposure. The effects of exposure to multiple mycotoxins, including deoxynivalenol, aflatoxin B1, zearalenone, T-2 toxin, ochratoxin A, and fumonisim B1, on pyroptosis-related factors and inflammation-related factors in vitro and in vivo and the pharmacological inhibition of specific and nonspecific NLRP3 inhibitors are summarized and examined. This comprehensive review contributes to a better understanding of the role of the NLRP3 inflammasome in toxicity induced by mycotoxin exposure and provides novel insights for pharmacologically targeting NLRP3 as a novel anti-inflammatory agent against mycotoxin exposure.
Collapse
Affiliation(s)
- Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Fengru Xu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Yanyan Jia
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
31
|
Akaho R, Kiyoura Y, Tamai R. Synergistic effect of Toll-like receptor 2 ligands and alendronate on proinflammatory cytokine production in mouse macrophage-like RAW-ASC cells is accompanied by upregulation of MyD88 expression. J Oral Biosci 2024; 66:412-419. [PMID: 38614429 DOI: 10.1016/j.job.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES Toll-like receptors (TLRs) recognize whole cells or components of microorganisms. Alendronate (ALN) is an anti-bone-resorptive drug that has inflammatory side effects. The aim in this study was to examine whether ALN augments TLR2 ligand-induced proinflammatory cytokine production using mouse macrophage-like RAW264.7 cells transfected with murine apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) gene (hereafter, referred to as "RAW-ASC cells"). METHODS RAW-ASC cells were pretreated with or without ALN and then incubated with or without TLR2 ligands. The levels of secreted mouse IL-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in culture supernatants and the activation of activator protein-1 (AP-1) or nuclear factor-κB (NF-κB) were measured using enzyme-linked immunosorbent assay (ELISA). The expressions of myeloid differentiation factor 88 (MyD88), caspase-11, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), ASC, NF-κB p65, and actin were analyzed via Western blotting. TLR2 expression was analyzed using flow cytometry. RESULTS ALN substantially upregulated the Pam3CSK4-induced release of IL-1α, IL-1β, IL-6, and TNF-α and MyD88 expression in RAW-ASC cells. ST-2825, a MyD88 inhibitor, inhibited the ALN-augmented release of these cytokines. Pretreatment with ALN augmented Pam3CSK4-induced NF-κB activation in RAW-ASC cells and upregulated AP-1 activation. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein and ALN synergically upregulated the release of IL-1α, IL-1β, IL-6 and TNF-α in RAW-ASC cells. CONCLUSIONS Our findings suggest that ALN augments TLR2 ligand-induced proinflammatory cytokine production via the upregulation of MyD88 expression, and this augmentation is accompanied by the activation of NF-κB and AP-1 in RAW-ASC cells.
Collapse
Affiliation(s)
- Reiko Akaho
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
32
|
Fu Y, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Wang CC, Tan GH, Li Q. Penicilazaphilone C alleviates allergic airway inflammation and improves the immune microenvironment by hindering the NLRP3 inflammasome. Biomed Pharmacother 2024; 175:116788. [PMID: 38772153 DOI: 10.1016/j.biopha.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
AIMS Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1β, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.
Collapse
Affiliation(s)
- Yongshu Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China.
| |
Collapse
|
33
|
Li W, Li Y, Zhao J, Liao J, Wen W, Chen Y, Cui H. Release of damaged mitochondrial DNA: A novel factor in stimulating inflammatory response. Pathol Res Pract 2024; 258:155330. [PMID: 38733868 DOI: 10.1016/j.prp.2024.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.
Collapse
Affiliation(s)
- Wenting Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Zhao
- Department of TCM Endocrinology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China
| | - Jiabao Liao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Weibo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Yao Chen
- Department of TCM Encephalopathy, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China.
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
34
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
37
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
38
|
Ge XR, Zhao Y, Ren HR, Jiang FW, Liu S, Lou M, Huang YF, Chen MS, Wang JX, Li JL. Phthalate drives splenic inflammatory response via activating HSP60/TLR4/NLRP3 signaling axis-dependent pyroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123610. [PMID: 38382728 DOI: 10.1016/j.envpol.2024.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
As the most produced phthalate, di-(2-ethylhexyl) phthalate (DEHP) is a widely environmental pollutant primarily used as a plasticizer, which cause the harmful effects on human health. However, the impact of DEHP on spleen and its underlying mechanisms are still unclear. Pyroptosis is a novel form of cell death induced by activating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and implicated in pathogenesis of numerous inflammatory diseases. The current study aimed to explore the impact of DEHP on immune inflammatory response in mouse spleen. In this study, the male ICR mice were treated with DEHP (200 mg/kg) for 28 days. Here, DEHP exposure caused abnormal pathohistological and ultrastructural changes, accompanied by inflammatory cells infiltration in mouse spleen. DEHP exposure arouse heat shock response that involves increase of heat shock proteins 60 (HSP60) expression. DEHP also elevated the expressions of toll-like receptor 4 (TLR4) and myeloid differentiation protein 88 (MyD88) proteins, as well as the activation of NF-κB pathway. Moreover, DEHP promoted NLRP3 inflammasome activation and triggered NLRP3 inflammasome-induced pyroptosis. Mechanistically, DEHP drives splenic inflammatory response via activating HSP60/TLR4/NLRP3 signaling axis-dependent pyroptosis. Our findings reveal that targeting HSP60-mediated TLR4/NLRP3 signaling axis may be a promising strategy for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Xin-Ran Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hao-Ran Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
39
|
Liu J, Kang R, Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol 2024; 45:274-287. [PMID: 38494365 DOI: 10.1016/j.it.2024.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Chiu HW, Wu CH, Lin WY, Wong WT, Tsai WC, Hsu HT, Ho CL, Cheng SM, Cheng CC, Yang SP, Li LH, Hua KF. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024; 47:696-717. [PMID: 38319541 DOI: 10.1007/s10753-023-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024]
Abstract
The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Che Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Hu H, Zhong Z, Meng L, Chen J, Yu Z, Lu K. Knockdown of NR4A1 alleviates doxorubicin-induced cardiotoxicity through inhibiting the activation of the NLRP3 inflammasome. Biochem Biophys Res Commun 2024; 700:149582. [PMID: 38306930 DOI: 10.1016/j.bbrc.2024.149582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1β and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.
Collapse
Affiliation(s)
- Huanhuan Hu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Zhejiang, 325000, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Zhejiang, 312000, China
| | - Jiming Chen
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Ziheng Yu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Kongjie Lu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China.
| |
Collapse
|
42
|
Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, Sun H, Zhu X, Ma S, Shi Y. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol 2024; 261:129696. [PMID: 38280701 DOI: 10.1016/j.ijbiomac.2024.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated β-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qasim Ali
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China.
| |
Collapse
|
43
|
Sun M, Zhang Y, Guo A, Xia Z, Peng L. Progress in the Correlation Between Inflammasome NLRP3 and Liver Fibrosis. J Clin Transl Hepatol 2024; 12:191-200. [PMID: 38343611 PMCID: PMC10851067 DOI: 10.14218/jcth.2023.00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 01/04/2025] Open
Abstract
Liver fibrosis is a reversible condition that occurs in the early stages of chronic liver disease. To develop effective treatments for liver fibrosis, understanding the underlying mechanism is crucial. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is a part of the innate immune system, plays a crucial role in the progression of various inflammatory diseases. NLRP3 activation is also important in the development of various liver diseases, including viral hepatitis, alcoholic or nonalcoholic liver disease, and autoimmune liver disease. This review discusses the role of NLRP3 and its associated molecules in the development of liver fibrosis. It also highlights the signal pathways involved in NLRP3 activation, their downstream effects on liver disease progression, and potential therapeutic targets in liver fibrosis. Further research is encouraged to develop effective treatments for liver fibrosis.
Collapse
Affiliation(s)
- Meihua Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yanqing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Anbing Guo
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zongting Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
44
|
Lyu CC, Ji XY, Che HY, Meng Y, Wu HY, Zhang JB, Zhang YH, Yuan B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024; 10:e25004. [PMID: 38317876 PMCID: PMC10838784 DOI: 10.1016/j.heliyon.2024.e25004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Mastitis is an easy clinical disease in dairy cows, which seriously affects the milk yield and quality of dairy cows. Chlorogenic acid (CGA), a polyphenolic substance, is abundant in Eucommia ulmoides leaves and has anti-inflammatory and anti-oxidative stress effects. Here, we explore whether CGA attenuated lipopolysaccharide (LPS)-induced inflammation and decreased milk fat in bovine mammary epithelial cells (BMECs). 10 μg/mL LPS was used to induce mastitis in BMECs. QRT-PCR, Western blotting, oil red O staining, and triglyceride (TG) assay were used to examine the effects of CGA on BMECs, including inflammatory response, oxidative stress response, and milk fat synthesis. The results showed that CGA repaired LPS-induced inflammation in BMECs. The expression of IL-6, IL-8, TNF-α, IL-1β, and iNOS was decreased, and the expression levels of CHOP, XCT, NRF2, and HO-1 were increased, which reduced the oxidative stress level of cells and alleviated the reduction of milk fat synthesis. In addition, the regulation of P65 phosphorylation by CGA suggests that CGA may exert its anti-inflammatory and anti-oxidative effects through the NF-κB signaling pathway. Our study showed that CGA attenuated LPS-induced inflammation and oxidative stress, and restored the decrease in milk fat content in BMECs by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Hao-Yu Che
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Yu Meng
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Hong-Yu Wu
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Jia-Bao Zhang
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | | | | |
Collapse
|
45
|
Zhu Y, Wang Z, Zheng J, Wang J, Chen Y, Huang C, Zhou H. RNA-seq revealed the anti-pyroptotic effect of suramin by suppressing NLRP3/caspase-1/GSDMD pathway in LPS-induced MH-S alveolar macrophages. Gene 2024; 893:147888. [PMID: 37839766 DOI: 10.1016/j.gene.2023.147888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), acting as one common sepsis-associated organ injury, induces uncontrolled and self-amplifies pulmonary inflammation. Given the lack of clinically effective approaches, the mortality rate of it still remains high. Suramin(SUR), as an antiparasitic drug initially, was found to ameliorate sepsis associated ALI in our previous work. However, the underlying mechanism of its protective effects has not been clarified. Pyroptosis, categorized as an inflammatory form of programmed cell death, could aggravate lung inflammatory responses via inducing alveolar macrophages (AM) pyroptosis. METHODS MH-S AM cell line was stimulated with or without lipopolysaccharide (LPS) or suramin, and the differential expression genes (DEGs) were excavated using RNA sequencing (RNA-seq). To identify the regulatory roles of these genes, pyroptosis-related genes (PRGs), GO/KEGG and GSEA analysis were conducted. We also performed WB, qRTPCR and ELISA to validate the RNA-seq results and further expound the protective effect of suramin. RESULTS 624 DEGs were identified between control (CON) and lipopolysaccharide (LPS) groups, and enrichment analysis of these genes revealed significantly enriched pathways that related to immune system and signal transduction. Meanwhile, 500 DEGs were identified in LPS/SUR+LPS group. In addition to the pathways mentioned above, IL-17 pathway and C-type lectin receptor signaling pathway were also enriched. All 6 pathways were connected with pyroptosis. Concurrently, the "DESeq2" R package was used to identify differentially expressed PRGs. Nod1, Nod2, interleukin (IL)-1b, IL-6, tumor necrosis factor (TNF), NLRP3 were upregulated under LPS stimulation. Then, in SUR+LPS group, Nod2, IL-6, IL-1b, NLRP3 were downregulated. The validation results of WB, qRT-PCR, and ELISA showed: the protein and mRNA expression levels of NLRP3, caspase-1, GSDMD and the concentrations of IL-1b, IL-18 were decreased when treated with suramin and LPS. CONCLUSION Suramin could inhibit NLRP3/caspase-1/GSDMD canonical pyroptosis pathway in LPS-induced MH-S alveolar macrophages.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Zhen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Jungang Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Jun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Changshun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Haidong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| |
Collapse
|
46
|
Vande Walle L, Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov 2024; 23:43-66. [PMID: 38030687 DOI: 10.1038/s41573-023-00822-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes - and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular - have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1β and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lieselotte Vande Walle
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
48
|
Yang F, Lv XT, Lin XL, Wang RH, Wang SM, Wang GE. Restraint stress promotes nonalcoholic steatohepatitis by regulating the farnesoid X receptor/NLRP3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1961-1971. [PMID: 37997375 PMCID: PMC10753372 DOI: 10.3724/abbs.2023240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 11/25/2023] Open
Abstract
Psychological stress promotes nonalcoholic steatohepatitis (NASH) development. However, the pathogenesis of psychological stress-induced NASH remains unclear. This study aims to explore the underlying mechanism of restraint stress-induced NASH, which mimics psychological stress, and to discover potential NASH candidates. Methionine choline deficient diet- and high fat diet-induced hepatosteatotic mice are subjected to restraint stress to induce NASH. The mice are administrated with Xiaoyaosan granules, NOD-like receptor family pyrin domain containing 3 (NLRP3) inhibitors, farnesoid X receptor (FXR) agonists, or macrophage scavengers. Pathological changes and NLRP3 signaling in the liver are determined. These results demonstrate that restraint stress promotes hepatic inflammation and fibrosis in hepatosteatotic mice. Restraint stress increases the expressions of NLRP3, Caspase-1, Gasdermin D, interleukin-1β, cholesterol 7α-hydroxylase, and sterol 12α-hydroxylase and decreases the expression of FXR in NASH mice. Xiaoyaosan granules reverse hepatic inflammation and fibrosis and target FXR and NLRP3 signals. In addition, inhibition of NLRP3 reduces the NLRP3 inflammasome and liver damage in mice with restraint stress-induced NASH. Elimination of macrophages and activation of FXR also attenuate inflammation and fibrosis by inhibiting NLRP3 signaling. However, NLRP3 inhibitors or macrophage scavengers fail to affect the expression of FXR. In conclusion, restraint stress promotes NASH-related inflammation and fibrosis by regulating the FXR/NLRP3 signaling pathway. Xiaoyaosan granules, NLRP3 inhibitors, FXR agonists, and macrophage scavengers are potential candidates for the treatment of psychological stress-related NASH.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xi-Ting Lv
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xiao-Li Lin
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Ruo-Hong Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Shu-Mei Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Guo-En Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| |
Collapse
|
49
|
Liu Y, Zhai H, Alemayehu H, Boulanger J, Hopkins LJ, Borgeaud AC, Heroven C, Howe JD, Leigh KE, Bryant CE, Modis Y. Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat Commun 2023; 14:7246. [PMID: 37945612 PMCID: PMC10636019 DOI: 10.1038/s41467-023-43180-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
NLRP3 induces caspase-1-dependent pyroptotic cell death to drive inflammation. Aberrant activity of NLRP3 occurs in many human diseases. NLRP3 activation induces ASC polymerization into a single, micron-scale perinuclear punctum. Higher resolution imaging of this signaling platform is needed to understand how it induces pyroptosis. Here, we apply correlative cryo-light microscopy and cryo-electron tomography to visualize ASC/caspase-1 in NLRP3-activated cells. The puncta are composed of branched ASC filaments, with a tubular core formed by the pyrin domain. Ribosomes and Golgi-like or endosomal vesicles permeate the filament network, consistent with roles for these organelles in NLRP3 activation. Mitochondria are not associated with ASC but have outer-membrane discontinuities the same size as gasdermin D pores, consistent with our data showing gasdermin D associates with mitochondria and contributes to mitochondrial depolarization.
Collapse
Affiliation(s)
- Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Helen Alemayehu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lee J Hopkins
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Wren Therapeutics, Clarendon House, Clarendon Road, Cambridge, CB2 8FH, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Christina Heroven
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan D Howe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| |
Collapse
|
50
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|