1
|
Dawe HR, Di Meglio P. The Aryl Hydrocarbon Receptor (AHR): Peacekeeper of the Skin. Int J Mol Sci 2025; 26:1618. [PMID: 40004095 PMCID: PMC11855870 DOI: 10.3390/ijms26041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In the last decade, the aryl hydrocarbon receptor (AHR) has emerged as a critical peacekeeper for the maintenance of healthy skin. The evolutionary conservation of AHR implied physiological functions for this receptor, beyond the detoxification of man-made compounds, a notion further supported by the existence of physiological AHR ligands, notably derivates of tryptophan by the host and host microbiome. The UV light-derived ligand, 6-formylindolo[3,2-b]carbazole (FICZ), anticipated a role for AHR in skin, a UV light-exposed organ, where physiological AHR activation promotes a healthy skin barrier and constrains inflammation. The clinical development of tapinarof, the first topical AHR modulating drug for inflammatory skin disease, approved by the FDA for mild-to-moderate psoriasis and poised for approval in atopic dermatitis, supports the therapeutic targeting of the AHR pathway to harness its beneficial effect in skin inflammation. Here, we describe how a tightly controlled, physiological activation of the AHR pathway maintains skin homeostasis, and discuss how the pathway is dysregulated in psoriasis and atopic dermatitis, identifying areas offering opportunities for alternative therapeutic approaches, for further investigation.
Collapse
Affiliation(s)
- Hannah R. Dawe
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| | - Paola Di Meglio
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| |
Collapse
|
2
|
Wang J, Wang M, Yi S, Tang H. Functions of Langerhans cells in diisononyl phthalate-aggravated allergic contact dermatitis. Int Immunopharmacol 2024; 143:113493. [PMID: 39486183 DOI: 10.1016/j.intimp.2024.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Diisononyl phthalate (DINP), a widely-used plasticizer, is associated with the development of allergic diseases including allergic contact dermatitis (ACD). Langerhans cells (LCs) are reported to be involved in the sensitization phase of ACD. However, the effect of skin DINP exposure on ACD in C57BL/6 mice and the functions of LCs remain unclear. Our results showed that DINP aggravated ACD in C57BL/6 mice, which was paralleled by ear thickening, mast cell degranulation, expressions of immunological cytokines, including IL-4, IL-5, IL-13, IL-17, IL-6, IL-1β, transforming growth factor (TGF)-β1 in the ear, serum and submaxillary lymph nodes (SMLN) and thymic stromal lymphopoietin (TSLP) in the ear. DINP activated LCs through enhancing antigen-uptake by LCs in ear epidermis and stimulated the migratory DC via elevating the expression of surface molecules, including CD86, CD80, PD-L1 and PD-L2 in SMLN. Ablation of LCs promoted the enhancement effect of DINP on ACD and Th2/Th17 responses, suggesting that LCs may not be essential for DINP-related ACD and Th2/Th17 responses. In conclusion, DINP aggravates ACD through activating LCs, enhancing mDC function and mast cell degranulation, promoting Th2/Th17 responses, and stimulating the expression of immunological cytokines. DINP is responsible for the prevalence of ACD and inhibiting Th2/Th17 cell response may be a new therapeutic strategy.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China; Institute of Orthopedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Meixiang Wang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China
| | - Shuying Yi
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China.
| | - Hua Tang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital & Co-research Group for Institute of Infection and Immunity, Shandong First Medical University and Institute of Orthopedic Biomedical and Device Innovation, University of Shanghai for Science and Technology, Jinan, Shandong 250014, China; Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000 Shandong, China.
| |
Collapse
|
3
|
Sun J, Yuan H, Yu Y, Li A, Zhao Z, Tang Y, Zheng F. Immunomodulatory potential of primary cilia in the skin. Front Immunol 2024; 15:1456875. [PMID: 39676858 PMCID: PMC11638010 DOI: 10.3389/fimmu.2024.1456875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia (PC) are essential signaling hubs for proper epithelial formation and the maintenance of skin homeostasis. Found on most cells in the human body, including skin cells, PC facilitate signal transduction that allows ciliated cells to interact with the immune system via multiple pathways, helping to maintain immune system homeostasis. PC can be altered by various microenvironmental stimuli to develop corresponding regulatory functions. Both PC and ciliary signaling pathways have been shown to be involved in the immune processes of various skin lesions. However, the mechanisms by which PC regulate cellular functions and maintain immune homeostasis in tissues are highly complex, and our understanding of them in the skin remains limited. In this paper, we discuss key ciliary signaling pathways and ciliated cells in the skin, with a focus on their immunomodulatory functions. We have compiled evidence from various cells, tissues and disease models to help explore the potential immunomodulatory effects of PC in the skin and their molecular mechanisms.
Collapse
Affiliation(s)
- Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan Y, Zhao X. Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway mediates benzo[a]pyrene-induced airway epithelial mesenchymal transformation in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124384. [PMID: 38901818 DOI: 10.1016/j.envpol.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.
Collapse
Affiliation(s)
- Lingling Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bailei Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bohan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China
| | - Jing Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yiwen Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
5
|
Zhou S, Lei L, Jiang L, Fu C, Wen Y, Huang J, Zhang K, Huang J, Chen J, Zeng Q. Polycyclic aromatic hydrocarbons exposure associated with increased risk of psoriasis. Exp Dermatol 2024; 33:e15166. [PMID: 39171861 DOI: 10.1111/exd.15166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Psoriasis is considered to be multifactorial, with both genetic and environmental factors contributing to its development. Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment, originating from sources such as cigarette smoke, exhaust emissions, grilled foods, smoked foods and urban air. Researchs have established a link between PAHs exposure and autoimmune disorders; however, specific effects of PAHs on psoriasis remain underexplored. This study aims to evaluate the correlation between PAHs exposure and susceptibility to psoriasis. We analysed eight monohydroxy PAHs (1-Hydroxynaphthalene (1-NAP), 2-Hydroxynaphthalene (2-NAP), 3-Hydroxyfluorene (3-FLU), 2-Hydroxyfluorene (2-FLU), 1-Hydroxyphenanthrene (1-PHE), 1-Hydroxypyrene (1-PYR), 2-Hydroxyphenanthrene (2-PHE) and 3-Hydroxyphenanthrene (3-PHE)) in 5996 participants from the National Health and Nutrition Examination Survey (NHANES). We employed multivariate logistic regression, trend analysis, weighted quantile sum (WQS) regression and restricted cubic spline (RCS) analysis to investigate the relationship between PAHs exposure and psoriasis risk. Multivariate logistic regression and trend analysis revealed that monohydroxy PAHs, including 2-NAP, 3-FLU, 2-FLU and the mixture of 2-PHE and 3-PHE, are associated with an increased risk of psoriasis. Additionally, WQS regression showed a significant positive correlation between combined exposure to monohydroxy PAHs and psoriasis risk, with the mixture of 2-PHE and 3-PHE (47.3%) being the most influential factor. RCS regression further corroborated these findings. Specifically, 2-FLU can increase the expression of psoriasis-related inflammatory factors in HaCaT cells. In conclusion, PAHs exposure increases the risk of developing psoriasis. Efforts to reduce PAHs levels in the environment and minimise exposure are crucial for public health strategies aimed at preventing psoriasis.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqing Wen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangfeng Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Keyi Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [DOI: pmid: 38718731 doi: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
8
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
9
|
Venkatraman G, Giribabu N, Mohan PS, Muttiah B, Govindarajan VK, Alagiri M, Abdul Rahman PS, Karsani SA. Environmental impact and human health effects of polycyclic aromatic hydrocarbons and remedial strategies: A detailed review. CHEMOSPHERE 2024; 351:141227. [PMID: 38253087 DOI: 10.1016/j.chemosphere.2024.141227] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Barathan Muttiah
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Venkat Kumar Govindarajan
- Department of Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, 600 089, Tamil Nadu, India
| | - Mani Alagiri
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu district, Tamil Nadu, India.
| | | | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
10
|
Jhanani GK, Al-Ansari MM, M R, Lee J, Sathiyamoorthi E, Karuppusamy I. Photocatalytic removal of benzo[a]pyrene and antibacterial efficacy of Graphitic Carbon Nitride-silver-nickel (g-C 3N 4-Ag-Ni) mediated nanocomposites. CHEMOSPHERE 2024; 350:141122. [PMID: 38184078 DOI: 10.1016/j.chemosphere.2024.141122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
A few PAHs (polycyclic aromatic hydrocarbons) which are known to be pervasive and are of high priority are found to be detrimental pollutants having high potential in the destruction of the network. Hence, photocatalytic disintegration of these PAHs, namely benzo [a]pyrene, found in water is explored. A novel nanocomposite of Ag-Ni on g-C3N4 was fabricated. The prepared nanocomposites were characterized by techniques like UV, XRD, SEM-EDAX, FTIR, and DLS to understand their nature. The activity of the same as a catalyst in the deterioration of the benzopyrene molecule in water was investigated under different conditions including change in the concentration of the PAH, dosage of the catalyst prepared, pH of the reaction mixture, and by changing the source of irradiation. In addition, antibacterial analysis of the prepared nanocomposite material was conducted to determine whether it could be applied to environmental cleanup strategies of high quality.
Collapse
Affiliation(s)
- G K Jhanani
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rithika M
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ezhaveni Sathiyamoorthi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Indira Karuppusamy
- Department of Chemistry, M. Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India.
| |
Collapse
|
11
|
Proper SP, Dwyer AT, Appiagyei A, Felton JM, Ben-Baruch Morgenstern N, Marlman JM, Kotliar M, Barski A, Troutman TD, Rothenberg ME, Mersha TB, Azouz NP. Aryl hydrocarbon receptor and IL-13 signaling crosstalk in human keratinocytes and atopic dermatitis. FRONTIERS IN ALLERGY 2024; 5:1323405. [PMID: 38344408 PMCID: PMC10853333 DOI: 10.3389/falgy.2024.1323405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic skin disease mediated by skin barrier impairment and IL-13-driven immune response. Activation of the aryl hydrocarbon receptor (AHR) has shown promise in early clinical trials for AD; however, the mechanism by which AHR partially ameliorates AD is not well known. Methods Gene expression data from human biopsies were analyzed, and compared to gene expression from RNA-sequencing in our in-vitro HaCaT cell model system. Western blot, ELISA qRT-PCR were used to further explore the relationship between AHR and IL-13 signaling in HaCaT cells. Results The AHR target gene CYP1A1 was decreased in lesional skin compared with healthy control skin (p = 4.30 × 10-9). Single-cell RNA sequencing (scRNAseq) demonstrated increased AHR expression (p < 1.0 × 10-4) and decreased CYP1A1 expression in lesional AD keratinocytes compared with healthy control keratinocytes (p < 0.001). Activation of AHR by AHR agonists in HaCaT cells reversed IL-13-dependent gene expression of several key genes in AD pathogenesis, most notably the eosinophil chemoattractant CCL26 (eotaxin-3). Differentially expressed genes in keratinocytes of patients with AD substantially overlapped with genes regulated by AHR agonists from HaCaT cells by RNAseq, but in reverse direction. Mechanistically, there was evidence for direct transcriptional effects of AHR; AHR binding motifs were identified in the differentially expressed genes from lesional AD keratinocytes compared to control keratinocytes, and AHR activation did not modify IL-13-dependent signal transducer and activator of transcription 6 (STAT6) translocation to the nucleus. Discussion Together, these data suggest that the AHR pathway is dysregulated in AD and that AHR modulates IL-13 downstream signaling in keratinocytes through genome-wide, transcriptional regulatory effects.
Collapse
Affiliation(s)
- Steven P. Proper
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander T. Dwyer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrews Appiagyei
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jennifer M. Felton
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Justin M. Marlman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ty D. Troutman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tesfaye B. Mersha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nurit P. Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Huang Y, Chen L, Liu F, Xiong X, Ouyang Y, Deng Y. Tryptophan, an important link in regulating the complex network of skin immunology response in atopic dermatitis. Front Immunol 2024; 14:1300378. [PMID: 38318507 PMCID: PMC10839033 DOI: 10.3389/fimmu.2023.1300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Atopic dermatitis (AD) is a common chronic relapsing inflammatory skin disease, of which the pathogenesis is a complex interplay between genetics and environment. Although the exact mechanisms of the disease pathogenesis remain unclear, the immune dysregulation primarily involving the Th2 inflammatory pathway and accompanied with an imbalance of multiple immune cells is considered as one of the critical etiologies of AD. Tryptophan metabolism has long been firmly established as a key regulator of immune cells and then affect the occurrence and development of many immune and inflammatory diseases. But the relationship between tryptophan metabolism and the pathogenesis of AD has not been profoundly discussed throughout the literatures. Therefore, this review is conducted to discuss the relationship between tryptophan metabolism and the complex network of skin inflammatory response in AD, which is important to elucidate its complex pathophysiological mechanisms, and then lead to the development of new therapeutic strategies and drugs for the treatment of this frequently relapsing disease.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lingna Chen
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fuming Liu
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongliang Ouyang
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
- Health Management Center, Luzhou People’s Hospital, Luzhou, China
| | - Yongqiong Deng
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Kim HR, Lee SY, You GE, Park CW, Kim HO, Chung BY. Exosomes released by environmental pollutant-stimulated Keratinocytes/PBMCs can trigger psoriatic inflammation in recipient cells via the AhR signaling pathway. Front Mol Biosci 2024; 10:1324692. [PMID: 38288335 PMCID: PMC10822922 DOI: 10.3389/fmolb.2023.1324692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Exosomes, pivotal in intercellular communication during skin disease pathogenesis, have garnered substantial attention. However, the impact of environmental pollutants, such as benzo[a]pyrene (BaP) and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), on exosome release amid inflammatory skin diseases remains unexplored. This study addresses this gap by examining the influence of BaP and TCDD on exosome function, specifically focusing on immune-related pathway alterations in normal recipient keratinocytes and peripheral blood mononuclear cells (PBMCs). Methods: HaCaT cells were treated with exosomes from BaP- or TCDD-treated keratinocytes. Proinflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-6, IL-8, CXCL1, and CXCL5, were assessed. The involvement of the p65NF-κB/p38MAPK/ERK signaling pathway in recipient keratinocytes was investigated. Aryl hydrocarbon receptor (AhR) silencing was employed to elucidate its role in mediating the proinflammatory response induced by exosomes from BaP- or TCDD-treated keratinocytes. Results and discussion: Treatment with exosomes from BaP- or TCDD-treated keratinocytes induced a significant increase in proinflammatory cytokines and chemokines in HaCaT cells. The upregulation implicated the p65NF-κB/p38MAPK/ERK signaling pathway. AhR silencing attenuated this response, suggesting a role for AhR in mediating this response. In PBMCs from healthy controls, exosomes from BaP-stimulated PBMCs of psoriatic patients led to increased expression of proinflammatory cytokines and modulation of Th1/Th17 cell distribution via AhR activation. These findings unveil a novel dimension in the interplay between environmental xenobiotic agents (BaP and TCDD) and exosomal functions. The study establishes their influence on psoriatic inflammatory responses, shedding light on the underlying mechanisms mediated through the AhR signaling pathway in recipient keratinocytes and PBMCs.
Collapse
Affiliation(s)
- Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Lee
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ga Eun You
- Research and Development Institute, Biosolution, Seoul, Republic of Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
16
|
Ma X, Ru Y, Luo Y, Kuai L, Chen QL, Bai Y, Liu YQ, Chen J, Luo Y, Song JK, Zhou M, Li B. Post-Translational Modifications in Atopic Dermatitis: Current Research and Clinical Relevance. Front Cell Dev Biol 2022; 10:942838. [PMID: 35874824 PMCID: PMC9301047 DOI: 10.3389/fcell.2022.942838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by compromised immune system, excessive inflammation, and skin barrier disruption. Post-translational modifications (PTMs) are covalent and enzymatic modifications of proteins after their translation, which have been reported to play roles in inflammatory and allergic diseases. However, less attention has been paid to the effect of PTMs on AD. This review summarized the knowledge of six major classes (including phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD pathogenesis and discussed the opportunities for disease management.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jia Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| |
Collapse
|
17
|
Aryl Hydrocarbon Receptors: Evidence of Therapeutic Targets in Chronic Inflammatory Skin Diseases. Biomedicines 2022; 10:biomedicines10051087. [PMID: 35625824 PMCID: PMC9139118 DOI: 10.3390/biomedicines10051087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is important for xenobiotic metabolism and binds to various endogenous and exogenous ligands present in the skin. AhR is known to be associated with diseases in various organs; however, its functions in chronic inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis (PS), have recently been elucidated. Here, we discuss the molecular mechanisms of AhR related to chronic inflammatory skin diseases, such as AD and PS, and the mechanisms of action of AhR on the skin immune system. The importance of AhR molecular biological pathways, clinical features in animal models, and AhR ligands in skin diseases need to be investigated. In conclusion, the therapeutic effects of AhR ligands are demonstrated based on the relationship between AhR and skin diseases. Nevertheless, further studies are required to elucidate the detailed roles of AhR in chronic inflammatory skin diseases.
Collapse
|
18
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
19
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
20
|
Vogeley C, Sondermann NC, Woeste S, Momin AA, Gilardino V, Hartung F, Heinen M, Maaß SK, Mescher M, Pollet M, Rolfes KM, Vogel CFA, Rossi A, Lang D, Arold ST, Nakamura M, Haarmann-Stemmann T. Unraveling the differential impact of PAHs and dioxin-like compounds on AKR1C3 reveals the EGFR extracellular domain as a critical determinant of the AHR response. ENVIRONMENT INTERNATIONAL 2022; 158:106989. [PMID: 34991250 PMCID: PMC8852774 DOI: 10.1016/j.envint.2021.106989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), dioxin-like compounds (DLCs) and structurally-related environmental pollutants may contribute to the pathogenesis of various diseases and disorders, primarily by activating the aryl hydrocarbon receptor (AHR) and modulating downstream cellular responses. Accordingly, AHR is considered an attractive molecular target for preventive and therapeutic measures. However, toxicological risk assessment of AHR-modulating compounds as well as drug development is complicated by the fact that different ligands elicit remarkably different AHR responses. By elucidating the differential effects of PAHs and DLCs on aldo-keto reductase 1C3 expression and associated prostaglandin D2 metabolism, we here provide evidence that the epidermal growth factor receptor (EGFR) substantially shapes AHR ligand-induced responses in human epithelial cells, i.e. primary and immortalized keratinocytes and breast cancer cells. Exposure to benzo[a]pyrene (B[a]P) and dioxin-like polychlorinated biphenyl (PCB) 126 resulted in a rapid c-Src-mediated phosphorylation of EGFR. Moreover, both AHR agonists stimulated protein kinase C activity and enhanced the ectodomain shedding of cell surface-bound EGFR ligands. However, only upon B[a]P treatment, this process resulted in an auto-/paracrine activation of EGFR and a subsequent induction of aldo-keto reductase 1C3 and 11-ketoreduction of prostaglandin D2. Receptor binding and internalization assays, docking analyses and mutational amino acid exchange confirmed that DLCs, but not B[a]P, bind to the EGFR extracellular domain, thereby blocking EGFR activation by growth factors. Finally, nanopore long-read RNA-seq revealed hundreds of genes, whose expression is regulated by B[a]P, but not by PCB126, and sensitive towards pharmacological EGFR inhibition. Our data provide novel mechanistic insights into the ligand response of AHR signaling and identify EGFR as an effector of environmental chemicals.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Selina Woeste
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Afaque A Momin
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Viola Gilardino
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Markus Heinen
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sophia K Maaß
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Marius Pollet
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Andrea Rossi
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, Research Center, 42096 Wuppertal, Germany
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Motoki Nakamura
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; Department of Environmental and Geriatric Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | | |
Collapse
|
21
|
Role of Aryl Hydrocarbon Receptor Activation in Inflammatory Chronic Skin Diseases. Cells 2021; 10:cells10123559. [PMID: 34944067 PMCID: PMC8700074 DOI: 10.3390/cells10123559] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Aryl Hydrocarbon Receptor (AhR) is an evolutionary transcription factor which acts as a crucial sensor of different exogenous and endogenous molecules Recent data indicate that AhR is implicated in several physiological processes such as cell physiology, host defense, proliferation and differentiation of immune cells, and detoxification. Moreover, AhR involvement has been reported in the development and maintenance of several pathological conditions. In recent years, an increasing number of studies have accumulated highlighting the regulatory role of AhR in the physiology of the skin. However, there is evidence of both beneficial and harmful effects of AHR signaling. At present, most of the evidence concerns inflammatory skin diseases, in particular atopic dermatitis, psoriasis, acne, and hidradenitis suppurativa. This review exam-ines the role of AhR in skin homeostasis and the therapeutic implication of its pharmacological modulation in these cutaneous inflammatory diseases.
Collapse
|
22
|
Yanagisawa R, Koike E, Takano H. Benzo[a]pyrene aggravates atopic dermatitis-like skin lesions in mice. Hum Exp Toxicol 2021; 40:S269-S277. [PMID: 34424081 DOI: 10.1177/09603271211036123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Benzo[a]pyrene (BaP) affects the immune system and causes mutagenic and carcinogenic effects. Purpose: We aimed to evaluate the effects of systemic exposure to BaP on mite allergen-induced atopic dermatitis (AD)-like skin lesions in mice. Methods: Mite allergen (Dermatophagoides pteronyssinus; Dp) was injected intradermally into the right ears of NC/Nga male mice on eight occasions every 2-3 days. Benzo[a]pyrene was administered intraperitoneally in the equivalent doses of 0, 2, 20, 200, or 2000 μg/kg/day, once a week on four occasions. Results: AD-like skin inflammation related to mite allergen worsened by BaP exposure at 2, 20 µg/kg/day doses; this was in parallel with eosinophil and mast cell infiltration and mast cell degranulation. A trend was also observed toward increased proinflammatory molecule expression, including macrophage inflammatory protein-1 alpha, interleukin (IL)-4, IL-13, and IL-18, in the ear tissue. However, 200 or 2000 µg/kg/day BaP attenuated the enhancing effects. In the regional lymph nodes, 2 µg/kg/day BaP with Dp enhanced antigen-presenting cell and T cell activation compared with Dp alone. Conclusions: This suggests that BaP exposure can aggravate Dp-induced AD-like skin lesions through TH2-biased responses in the inflamed sites and the activation of regional lymph nodes. Therefore, BaP may be responsible for the recent increase in AD incidence.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, 12918Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Tseng YH, Chen YC, Yu AL, Yu J. Benzo[a]pyrene induces fibrotic changes and impairs differentiation in lung stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111892. [PMID: 33429317 DOI: 10.1016/j.ecoenv.2021.111892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Human activities have generated air pollution, with extremely small particles (PM 2.5, particulate matter less than 2.5 µm in diameter) and liquid droplets, which become a menace to human health. Among the pollutants, polycyclic aromatic hydrocarbons (PAHs), which enhance the risks of pulmonary dysfunction and cancer development, have been extensively studied. Numerous studies have addressed the effects of PAHs on the respiratory system, whereas the effects on lung stem/progenitor cells remain unknown. Here, we provide evidence that benzo[a]pyrene (BaP), a major toxic PAH, induces fibrotic changes with a loss of α-1,6-fucosylation in CD54+CD157+CD45- cells (lung stem cells). In studies with aryl hydrocarbon receptor (AHR) antagonist, we found that these effects by BaP are independent of the canonical AHR pathway. In addition, these BaP-induced fibrotic changes are reduced by TGF-β antagonist, suggesting an alternative pathway of BaP toxicity is different from other PAH/AHR signaling pathways. Finally, it was observed that BaP impairs the spheroid formation and the podoplanin expression of CD54+CD157+CD45- cells, indicating that BaP suppresses the differentiation of lung stem cells. Taken together, our findings reveal specific BaP-induced injuries in CD54+CD157+CD45- cells.
Collapse
Affiliation(s)
- Yi-Hsin Tseng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chi Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; Department of Pediatrics, University of California in San Diego, California
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
24
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
25
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
26
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
27
|
Sato Y, Fujimura T, Hidaka T, Lyu C, Tanita K, Matsushita S, Yamamoto M, Aiba S. Possible Roles of Proinflammatory Signaling in Keratinocytes Through Aryl Hydrocarbon Receptor Ligands for the Development of Squamous Cell Carcinoma. Front Immunol 2020; 11:534323. [PMID: 33178182 PMCID: PMC7596320 DOI: 10.3389/fimmu.2020.534323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) provides a deeper insight into the pathogenesis of cutaneous squamous cell carcinoma (cSCC). AhR ligands, such as 6-formylindolo[3,2-b] carbazole (FICZ), and 7,12-Dimethylbenz[a]anthracene (DMBA), constitute major substrates for the cytochrome P450 (CYP) family, and influence the expression of various cytokine genes, including IL-17 and IL-23-related genes via the AhR. On the other hand, proinflammatory cytokines could drive tumor progression through the TRAF-ERK5 signaling pathway in cSCC. From the above findings, we hypothesized that AhR ligands might enhance the mRNA expression of proinflammatory cytokines via the AhR, leading to the development of cSCC. The purpose of this study was to investigate (1) the immunomodulatory effects of FICZ and DMBA on normal human keratinocytes (NHKCs), focusing on IL-17, and related cytokines/chemokines (IL-23, IL-36γ, and CCL20), (2) the expression of these factors in AhR-dependent pathways using a two-stage chemically induced skin carcinogenesis mouse model, and (3) the expression of these factors in lesion-affected skin in cSCC. Both FICZ and DMBA augmented the expression of CYP1A1, p19, CCL20, and IL-36γ mRNA in NHKCs in vitro. Moreover, the mRNA expression of these proinflammatory factors, as well as IL-17, in mouse cSCC is significantly decreased in the AhR-(fl/fl) Krt5-(Cre) mice compared to wild type mice, leading to a decrease in the number of developed cSCC lesions. Furthermore, CCL20, IL-23, as well as IL-17, are detected in the lesion-affected skin of cSCC patients. Our study demonstrates a possible mechanism for the development of cSCC involving AhR-mediated signaling by epidermal keratinocytes and recruitment of Th17 cells.
Collapse
Affiliation(s)
- Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Selective AhR knockout in langerin-expressing cells abates Langerhans cells and polarizes Th2/Tr1 in epicutaneous protein sensitization. Proc Natl Acad Sci U S A 2020; 117:12980-12990. [PMID: 32461368 DOI: 10.1073/pnas.1917479117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) represents an environmental sensor regulating immune responses. In the skin, AhR is expressed in several cell types, including keratinocytes, epidermal Langerhans cells (LC), and dermal dendritic cells (DC). The mechanisms how AhR activates or inhibits cutaneous immune responses remain controversial, owing to differences in the cell-specific functions of AhR and the different activating ligands. Therefore, we sought to investigate the role of AhR in LC and langerin+ and negative DC in the skin. To this aim, we generated Langerin-specific and CD11c-specific knockout (-/-) mice lacking AhR, respectively, in LC and Langerin+ dermal DC and in all CD11c+ cells. These were then tested in an epicutaneous protein (ovalbumin, Ova) sensitization model. Immunofluorescence microscopy and flow cytometry revealed that Langerin-AhR-/- but not CD11c-AhR-/- mice harbored a decreased number of LC with fewer and stunted dendrites in the epidermis as well as a decreased number of LC in skin-draining lymph nodes (LN). Moreover, in the absence of AhR, we detected an enhanced T helper type-2 (Th2) [increased interleukin 5 (IL-5) and interleukin 13 (IL-13)] and T regulatory type-1 (Tr1) (IL-10) response when LN cells were challenged with Ova in vitro, though the number of regulatory T cells (Treg) in the LN remained comparable. Langerin-AhR-/- mice also exhibited increased blood levels of Ova-specific immunoglobulin E (IgE). In conclusion, deletion of AhR in langerin-expressing cells diminishes the number and activation of LC, while enhancing Th2 and Tr1 responses upon epicutaneous protein sensitization.
Collapse
|
29
|
Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2019; 20:ijms20215424. [PMID: 31683543 PMCID: PMC6862295 DOI: 10.3390/ijms20215424] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.
Collapse
|
30
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
31
|
Rachna, Rani M, Shanker U. Sunlight mediated improved photocatalytic degradation of carcinogenic benz[a]anthracene and benzo[a]pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111861] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sato Y, Fujimura T, Tanita K, Chunbing L, Matsushita S, Fujisawa Y, Otsuka A, Yamamoto Y, Hidaka T, Aiba S. Malassezia-derived aryl hydrocarbon receptor ligands enhance the CCL20/Th17/soluble CD163 pathogenic axis in extra-mammary Paget's disease. Exp Dermatol 2019; 28:933-939. [PMID: 31001887 DOI: 10.1111/exd.13944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
Abstract
Malassezia yeast play a role in the pathogenesis of chronic dermatitis, especially in apocrine areas, by polarizing the local immunologic background to a Th2/Th17 state through aryl hydrocarbon receptor (AhR)-dependent pathways. Extra-mammary Paget's disease (EMPD) is an adenocarcinoma of apocrine origin, and except for cases associated with Malassezia yeast and their metabolites, the lesions typically develop in areas not exposed to environmental material. The purpose of this study was to investigate (a) the immunomodulatory effects of Malassezia metabolites on normal human keratinocytes (NHKCs), focusing on interleukin (IL)-17 and related cytokines/chemokines (IL-23, IL-36γ, CCL20), (b) the expression of these factors in lesion-affected skin in EMPD and (c) the activation of tumor-associated macrophages (TAMs) by these factors. Malassezia metabolites augmented the expression of cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CCL20 and IL-36γ mRNA in NHKCs in vitro. In lesion-affected skin of patients with EMPD, epidermal keratinocytes expressed CYP1A1 and CCL20. In addition, Paget cells expressed CCL20 and IL-23. IL-17-producing cells were distributed adjacent to Paget cells. Compared to healthy donors, patients with EMPD exhibited significantly increased serum levels of soluble (s)CD163, CXCL5, CXCL10 and CCL20. In addition, serum levels of sCD163 decreased significantly following tumor resection. Our study demonstrates a possible mechanism for the development of EMPD involving AhR-mediated signalling by epidermal keratinocytes and RANKL-induced recruitment of Th17 cells and TAMs.
Collapse
Affiliation(s)
- Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lyu Chunbing
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of University of Tsukuba, Tsukuba, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Wang Q, Xu X, Cong X, Zeng Z, Xu L, Huo X. Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:191-210. [PMID: 30293161 DOI: 10.1007/s10653-018-0201-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 09/29/2018] [Indexed: 02/05/2023]
Abstract
Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene-environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment-gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma-work as risk factors; (2) the possible mechanisms involved in PAH-related asthma-through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma-enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people's vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public's concern on PAH control and develop strategies for individual asthma primary prevention.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
34
|
Cui Q, Chen FY, Zhang M, Peng H, Wang KJ. Transcriptomic analysis revealing hepcidin expression in Oryzias melastigma regulated through the JAK-STAT signaling pathway upon exposure to BaP. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:134-141. [PMID: 30476743 DOI: 10.1016/j.aquatox.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Our previous study revealed that an antimicrobial peptide hepcidin, can be significantly up-regulated either with LPS challenge or upon exposure to Benzo[a]pyrene (BaP) in red sea bream, but the molecular mechanism involved in whether the transcriptional expression of hepcidin induced by LPS or BaP is regulated through a similar signaling pathway is not yet known. To elucidate the underlying molecular mechanism, the marine model fish Oryzias melastigma was exposed to 1 μg/L BaP as well as challenged with 5 μg of LPS per fish. Samples at 3 h post-LPS challenge, and 2 d and 3 d post-BaP exposure were separately collected for transcriptome analysis. General analysis of the predicted immune-associated unigenes based on the transcriptomic data showed that the percentages of modulated immune-associated genes were 7% with LPS challenge, and 3% and 7% with BaP exposure at 2 and 3 days, respectively. Genes involved in functions like antimicrobial activity, neutrophil activation, and leukocyte chemotaxis were up-regulated with LPS challenge, whereas more than half of the immune associated genes including the KLF family were down-regulated upon BaP exposure, indicating a difference in the modulated immune genes between LPS challenge and BaP exposure. Specific comparative analyses of the immune-associated signal pathways NOD, TOLL, NF-κB and JAK-STAT with LPS challenge or upon exposure to BaP, indicated that most of the modulated genes in association with the NOD, TOLL and NF-κB pathways were induced with LPS challenge but only a few after exposure to BaP, suggesting that BaP exposure was generally not associated with any of the three signal pathways. Interestingly, further transcriptomic analysis revealed that 5 of the 8 modulated genes associated with the JAK-STAT pathway were down-regulated, while 2 inhibiting genes were up-regulated after BaP exposure for 2 days whereas LPS challenge resulted in only less than half modulated, suggesting the possibility of down-regulation caused by BaP exposure through JAK-STAT pathway. Further testing using an EPC cell culture demonstrated that expression of the hepcidin1 gene was less involved in the known signal pathways, such as c/EBP, BMP, and NF-κB, but instead mostly in association with the JAK-STAT pathway upon BaP exposure.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Min Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
35
|
Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol 2018; 179:260-272. [PMID: 29573406 DOI: 10.1111/bjd.16561] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Disintegration of the infundibula of terminal hair follicles (HFs) in intertriginous skin areas exhibits the histological hallmark of hidradenitis suppurativa (HS)/acne inversa, featuring a dissecting terminal hair folliculitis. Elevated serum levels of interleukin (IL)-17 and local increase in the ratio of proinflammatory T helper (Th)17 cells and anti-inflammatory regulatory T cells (Tregs) have been reported. Perifollicular Tregs play a key role in HF stem cell homeostasis and infundibular integrity. OBJECTIVES In this review, we evaluate the Th17/Treg ratio in HS, its aggravating conditions and associated comorbidities. Furthermore, we intended to clarify whether drugs with reported beneficial effects in the treatment of HS readjust the deviated Th17/Treg axis. METHODS PubMed-listed, peer-reviewed original research articles characterizing Th17/Treg regulation in HS/acne inversa and associated comorbidities were selected for this review. RESULTS This review presents HS as a disease that exhibits an increased Th17/Treg ratio. Perifollicular deficiencies in Treg numbers or function may disturb HF stem cell homeostasis, initiating infundibular dissection of terminal HFs and perifollicular inflammation. The Th17/Treg imbalance is aggravated by obesity, smoking and decreased Notch signalling. In addition, HS-associated autoimmune diseases exhibit a disturbed Th17/Treg axis resulting in a Th17-dominant state. All drugs that have beneficial effects in the treatment of HS normalize the Th17/Treg ratio. CONCLUSIONS HS immunopathogenesis is closely related to deviations of the Th17/Treg balance, which may negatively affect Treg-controlled HF stem cell homeostasis and infundibular integrity. Pharmacological intervention should not only attenuate Th17/IL-17 signalling, but should also improve Treg function in order to stabilize HF stem cell homeostasis and infundibular integrity.
Collapse
Affiliation(s)
- B C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - S M John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - W Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
36
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
37
|
Speyer CB, Costenbader KH. Cigarette smoking and the pathogenesis of systemic lupus erythematosus. Expert Rev Clin Immunol 2018; 14:481-487. [PMID: 29724134 DOI: 10.1080/1744666x.2018.1473035] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a multi-system inflammatory autoimmune disease of incompletely understood etiology. It is thought that environmental exposures 'trigger' or accelerate the disease in genetically-predisposed individuals. Areas covered: Substantial epidemiological evidence exists to support the association between cigarette smoking and the risk of incident SLE. Recent evidence points to current smoking as the specific risk factor, with decreasing risk 5 years after smoking cessation, and the greatest risk for disease characterized by the presence of SLE-specific autoantibodies. Research has begun to search for possible explanations for the temporal nature of the relationship between current smoking and autoantibody positive-SLE. Here we review potential biologic mechanisms linking smoking and SLE risk, including effects upon T and B cells, inflammatory cytokines, oxidative stress, and the formation of short-lived DNA adducts. Expert commentary: The directions for future research in this field include studies of gene-environment interactions, epigenetics, metabolomics and putative biologic mechanisms.
Collapse
Affiliation(s)
- Cameron B Speyer
- a Division of Rheumatology, Immunology and Allergy , Brigham and Women's Hospital , Boston , MA , USA
| | - Karen H Costenbader
- a Division of Rheumatology, Immunology and Allergy , Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
38
|
Wong TH, Lee CL, Su HH, Lee CL, Wu CC, Wang CC, Sheu CC, Lai RS, Leung SY, Lin CC, Wei YF, Wang CJ, Lin YC, Chen HL, Huang MS, Yen JH, Huang SK, Suen JL. A prominent air pollutant, Indeno[1,2,3-cd]pyrene, enhances allergic lung inflammation via aryl hydrocarbon receptor. Sci Rep 2018; 8:5198. [PMID: 29581487 PMCID: PMC5979946 DOI: 10.1038/s41598-018-23542-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is associated with asthma, but its regulatory mechanisms remain incompletely defined. We report herein that elevated levels of urinary 1-hydroxypyrene, a biomarker of PAH exposure, were found in asthmatic subjects (n = 39) as compared to those in healthy subjects (n = 43) living in an industrial city of Taiwan, where indeno[1,2,3-cd]pyrene (IP) was found to be a prominent PAH associated with ambient PM2.5. In a mouse model, intranasal exposure of mice with varying doses of IP significantly enhanced antigen-induced allergic inflammation, including increased airway eosinophilia, Th2 cytokines, including IL-4 and IL-5, as well as antigen-specific IgE level, which was absent in dendritic cell (DC)-specific aryl hydrocarbon receptor (AhR)-null mice. Mechanistically, IP treatment significantly altered DC's function, including increased level of pro-inflammatory IL-6 and decreased generation of anti-inflammatory IL-10. The IP's effect was lost in DCs from mice carrying an AhR-mutant allele. Taken together, these results suggest that chronic exposure to environmental PAHs may pose a significant risk for asthma, in which IP, a prominent ambient PAH in Taiwan, was shown to enhance the severity of allergic lung inflammation in mice through, at least in part, its ability in modulating DC's function in an AhR-dependent manner.
Collapse
Affiliation(s)
- Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruay-Sheng Lai
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chi-Cheng Lin
- Chest Division, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Ping-Tung, Taiwan
| | - Yu-Feng Wei
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chun Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Shyan Huang
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Liu Q, Wu J, Song J, Liang P, Zheng K, Xiao G, Liu L, Zouboulis CC, Lei T. Particulate matter 2.5 regulates lipid synthesis and inflammatory cytokine production in human SZ95 sebocytes. Int J Mol Med 2017; 40:1029-1036. [PMID: 28849137 PMCID: PMC5593471 DOI: 10.3892/ijmm.2017.3109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
A large body of evidence indicates that particulate matter (PM)2.5 is associated with various negative effects on human health. However, the impact and molecular mechanism of PM2.5 on the skin have not been elucidated. Therefore, the present study aimed to investigate the effects of two types of PM2.5 [water-soluble extracts (W-PM2.5) and non-water-soluble extracts (NW-PM2.5)] on cell proliferation, cell cycle progression, lipid synthesis, and inflammatory cytokine production of human SZ95 sebocytes. The results demonstrated that NW-PM2.5 and W-PM2.5 exposure dose-dependently inhibited SZ95 sebocyte proliferation by inducing G1 cell arrest. Furthermore, NW-PM2.5 and W-PM2.5 significantly reduced sebaceous lipid synthesis and markedly promoted the production of inflammatory cytokines, including interleukin-1α (IL-1α), IL-6 and IL-8 in SZ95 sebocytes. Additionally, the expression of aryl hydrocarbon (Ah) receptor (AhR), AhR nuclear translocator protein (ARNT), as well as cytochrome P450 1A1 were significantly increased following PM2.5 exposure. Thus, these findings indicate that PM2.5 exerts inhibitory effects on cell proliferation and lipid synthesis, and stimulatory effects on inflammatory cytokine production and AhR signaling activation in human SZ95 sebocytes.
Collapse
Affiliation(s)
- Qin Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Jianbo Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Jiquan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Pin Liang
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Kaiping Zheng
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Guifeng Xiao
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Lanting Liu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Theodore Fontane Medical University of Brandenburg, Dessau D-06847, Germany
| | - Tiechi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|