1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Serrano A, Casares N, Trocóniz IF, Lozano T, Lasarte JJ, Zalba S, Garrido MJ. Foxp3 inhibitory peptide encapsulated in a novel CD25-targeted nanoliposome promotes efficient tumor regression in mice. Acta Pharmacol Sin 2025; 46:171-183. [PMID: 39075226 PMCID: PMC11695603 DOI: 10.1038/s41401-024-01338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
P60, a Foxp3 inhibitory peptide, can hinder the regulatory T cell (Treg) activity and impair tumor proliferation. However, low systemic stability and poor specificity have led to daily dosing to achieve therapeutic effect. Therefore, this study aims to improve P60 stability and specific delivery through its encapsulation in liposomes targeting CD25, constitutively expressed in Tregs. P60 liposomes formulated with DSPE-PEG750 or DSPE-PEG2000 were incubated with DSPE-PEG2000-Maleimide micelles conjugated to Fab' fragments of anti-CD25 to develop two targeted formulations or immunoliposomes (IL): IL-P602000 (DSPE-PEG2000 only) and IL-P60750 (combining DSPE-PEG750 and DSPE-PEG2000). P60 encapsulation efficiency was 50%-60% irrespective of PEG chain length. Treg uptake was 2.5 and 14 times higher for IL-PEG750 compared with IL-PEG2000 and non-targeted liposomes, respectively, in in-vitro assays. In fact, IL-P60750 allowed CD8+ T cells ex-vivo proliferation in presence of Treg at doses 10-20 times lower than for free P60. Antitumor response of P60 and IL-P60750 in monotherapy and combined with anti-PD-1 was evaluated in MC38 and LLCOVA tumor bearing mice. In MC38 model, IL-P60750 monotherapy induced total tumor regression in 40% of mice reaching 100% for anti-PD-1 combination. This effect was associated with a significant increase in activated CD8+ T cells in tumors. Notably, IL-P60750 also inhibited human Treg in ex-vivo assay, showing the translational capability of this formulation. In conclusion, IL-P60750 formulated with different PEG chain lengths, has demonstrated antitumor efficacy by selective inhibition of Treg activity and enhances the effect of anti-PD1. Altogether, this novel IL represents a promising nanoplatform for cancer immunotherapies.
Collapse
Affiliation(s)
- Alejandro Serrano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Noelia Casares
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, CIMA, Pamplona, Spain
| | - Iñaki F Trocóniz
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Teresa Lozano
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, CIMA, Pamplona, Spain
| | - Juan J Lasarte
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, CIMA, Pamplona, Spain
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain.
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdisNA), Pamplona, Spain.
| |
Collapse
|
3
|
Kim J, Lee Y, Chung Y. Control of T-cell immunity by fatty acid metabolism. Ann Pediatr Endocrinol Metab 2024; 29:356-364. [PMID: 39778404 PMCID: PMC11725633 DOI: 10.6065/apem.2448160.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically. These processes affect T-cell activation, differentiation, and function, with implications for diseases such as autoimmune disease and cancer. Based on these insights, fatty acid pathways can potentially be modulated by novel therapeutics, paving the way for novel treatment approaches for immune-mediated disorders and cancer immunotherapy.
Collapse
Affiliation(s)
- Jaemin Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoosun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Li Y, Zhang C, Jiang A, Lin A, Liu Z, Cheng X, Wang W, Cheng Q, Zhang J, Wei T, Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J Transl Med 2024; 22:293. [PMID: 38509593 PMCID: PMC10953261 DOI: 10.1186/s12967-024-05104-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
Collapse
Affiliation(s)
- Yu Li
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, China
| | - Wanting Wang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ting Wei
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Imeri J, Marcoux P, Huyghe M, Desterke C, Fantacini DMC, Griscelli F, Covas DT, de Souza LEB, Griscelli AB, Turhan AG. Chimeric antigen-receptor (CAR) engineered natural killer cells in a chronic myeloid leukemia (CML) blast crisis model. Front Immunol 2024; 14:1309010. [PMID: 38259442 PMCID: PMC10801069 DOI: 10.3389/fimmu.2023.1309010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
During the last two decades, the introduction of tyrosine kinase inhibitors (TKIs) to the therapy has changed the natural history of CML but progression into accelerated and blast phase (AP/BP) occurs in 3-5% of cases, especially in patients resistant to several lines of TKIs. In TKI-refractory patients in advanced phases, the only curative option is hematopoietic stem cell transplantation. We and others have shown the relevance of the expression of the Interleukin-2-Receptor α subunit (IL2RA/CD25) as a biomarker of CML progression, suggesting its potential use as a therapeutic target for CAR-based therapies. Here we show the development of a CAR-NK therapy model able to target efficiently a blast crisis cell line (K562). The design of the CAR was based on the scFv of the clinically approved anti-CD25 monoclonal antibody (Basiliximab). The CAR construct was integrated into NK92 cells resulting in the generation of CD25 CAR-NK92 cells. Target K562 cells were engineered by lentiviral gene transfer of CD25. In vitro functionality experiments and in vivo leukemogenicity experiments in NSG mice transplanted by K562-CD25 cells showed the efficacy and specificity of this strategy. These proof-of-concept studies could represent a first step for further development of this technology in refractory/relapsed (R/R) CML patients in BP as well as in R/R acute myeloblastic leukemias (AML).
Collapse
Affiliation(s)
- Jusuf Imeri
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
| | - Paul Marcoux
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
| | - Matthias Huyghe
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
| | - Christophe Desterke
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
| | | | - Frank Griscelli
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
- INGESTEM National iPSC Infrastructure, Villejuif, France
- CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Evry, France
- Université Paris Descartes, Faculté Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Dimas T. Covas
- Blood Center of Ribeirão Preto/Ribeirão Preto School of Medicine/University of São Paulo, Ribeirao Preto, SP, Brazil
- Biotechnology Nucleus of Ribeirão Preto/Butantan Institute - Ribeirão Preto, Ribeirao Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto/Ribeirão Preto School of Medicine/University of São Paulo, Ribeirao Preto, SP, Brazil
- Biotechnology Nucleus of Ribeirão Preto/Butantan Institute - Ribeirão Preto, Ribeirao Preto, SP, Brazil
| | - Annelise Bennaceur Griscelli
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
- INGESTEM National iPSC Infrastructure, Villejuif, France
- CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Evry, France
- APHP Paris Saclay, Department of Hematology, Hopital Bicetre & Paul Brousse, Villejuif, France
| | - Ali G. Turhan
- INSERM UMR-S-1310, Université Paris Saclay, Villejuif, France and ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
- INGESTEM National iPSC Infrastructure, Villejuif, France
- CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Evry, France
- APHP Paris Saclay, Department of Hematology, Hopital Bicetre & Paul Brousse, Villejuif, France
| |
Collapse
|
6
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
7
|
Liu Z, Zhou J, Wu S, Chen Z, Wu S, Chen L, Zhu X, Li Z. Why Treg should be the focus of cancer immunotherapy: The latest thought. Biomed Pharmacother 2023; 168:115142. [PMID: 37806087 DOI: 10.1016/j.biopha.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 10/10/2023] Open
Abstract
Regulatory T cells are a subgroup of T cells with immunomodulatory functions. Different from most cytotoxic T cells and helper T cells, they play a supporting role in the immune system. What's more, regulatory T cells often play an immunosuppressive role, which mainly plays a role in maintaining the stability of the immune system and regulating the immune response in the body. However, recent studies have shown that not only playing a role in autoimmune diseases, organ transplantation, and other aspects, regulatory T cells can also play a role in the immune escape of tumors in the body, through various mechanisms to help tumor cells escape from the demic immune system, weakening the anti-cancer effect in the body. For a better understanding of the role that regulatory T cells can play in cancer, and to be able to use regulatory T cells for tumor immunotherapy more quickly. This review focuses on the research progress of various mechanisms of regulatory T cells in the tumor environment, the related research of tumor cells acting on regulatory T cells, and the existing various therapeutic methods acting on regulatory T cells.
Collapse
Affiliation(s)
- Ziyu Liu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Jiajun Zhou
- Kidney Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shihui Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhihong Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Shuhong Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Ling Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
8
|
Fang L, Yao Y, Guan X, Liao Y, Wang B, Cui L, Han S, Zou H, Su D, Ma Y, Liu B, Wang Y, Huang R, Ruan Y, Yu X, Yao Y, Liu C, Zhang Y. China special issue on gastrointestinal tumors-Regulatory-immunoscore-A novel indicator to guide precision adjuvant chemotherapy in colorectal cancer. Int J Cancer 2023; 153:1904-1915. [PMID: 37085990 DOI: 10.1002/ijc.34539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Novel biomarkers are essential to improve the treatment efficacy and overall survival of stage II and III colorectal cancer (CRC), allowing for personalized treatment decisions. Here, the densities of CD8+ and FOXP3+ T cells in the tumor and invasive margin were processed by immunohistochemistry and digital pathology to form a scoring system named regulatory-Immunoscore (RIS). Cox proportional hazards regression models were used to determine the risk factors associated with time to recurrence. Harrell's concordance index and the time-dependent area under the curve were used to assess model performance. A total of 1213 stage I-III DNA mismatch repair-proficient colorectal cancer (pMMR CRC) patients were randomly assigned to a training set (n = 642) and a validation set (n = 571). From the Cox multivariable analysis, the association of RIS with survival was independent of patient age, sex and anatomy-based tumor risk parameters (P < .0001). For stage II patients, chemotherapy was significantly associated with better recurrence time in patients with low (95% confidence interval [CI]: 0.11-0.54, P = .001) and intermediate (95% CI = 0.25-0.57, P < .001) RIS values. In stage III patients treated with adjuvant chemotherapy, a treatment duration of 6 or more months was significantly associated with better recurrence time in patients with intermediate RIS values (95% CI = 0.38-0.90, P = .016) when compared with duration under 6 months. Therefore, these findings suggest that RIS is reliable for predicting recurrence risk and treatment responsiveness for patients with stage I-III pMMR CRC.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Biao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Rui Huang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
9
|
Rose DC, Rolig AS, Redmond WL. Characterization of murine lymphocyte activation and exhaustion markers by a 14-color flow cytometry panel. Bioanalysis 2023. [PMID: 37125902 DOI: 10.4155/bio-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previously designed flow cytometry panels have provided a framework to analyze T-cell activation; however, few provide an extensive view of lymphocyte populations, and none are optimized for murine models. This article describes a panel designed specifically to assess the expression of activation and exhaustion markers in expanding lymphocyte populations in tumor-bearing mice across two distinct genetic backgrounds: BALB/c and C57BL/6. This comprehensive panel enables the assessment of multiple functional states and immune checkpoint markers across cytotoxic CD8+ T cells, helper and regulatory CD4+ T cells and NK cells in murine whole blood, lymph nodes and tumor.
Collapse
Affiliation(s)
- Daniel C Rose
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
- ThermoFisher Scientific, Waltham, MA 02451, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| |
Collapse
|
10
|
Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. Br J Cancer 2023; 128:715-725. [PMID: 36463323 PMCID: PMC9977958 DOI: 10.1038/s41416-022-02076-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy (CIT) has gained increasing attention and made promising progress in recent years, especially immune checkpoint inhibitors such as antibodies blocking programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, its therapeutic efficacy is only 10-30% in solid tumours and treatment sensitivity needs to be improved. The complex tissue environment in which cancers originate is known as the tumour microenvironment (TME) and the complicated and dynamic TME is correlated with the efficacy of immunotherapy. Ultrasound-targeted microbubble destruction (UTMD) is an emerging technology that integrates diagnosis and therapy, which has garnered much traction due to non-invasive, targeted drug delivery and gene transfection characteristics. UTMD has also been studied to remodel TME and improve the efficacy of CIT. In this review, we analyse the effects of UTMD on various components of TME, including CD8+ T cells, tumour-infiltrating myeloid cells, regulatory T cells, natural killer cells and tumour vasculature. Moreover, UTMD enhances the permeability of the blood-brain barrier to facilitate drug delivery, thus improving CIT efficacy in vivo animal experiments. Based on this, we highlight the potential of immunotherapy against various cancer species and the clinical application prospects of UTMD.
Collapse
|
11
|
Xue C, Du Y, Li Y, Xu H, Zhu Z. Tumor budding as a predictor for prognosis and therapeutic response in gastric cancer: A mini review. Front Oncol 2023; 12:1003959. [PMID: 36755859 PMCID: PMC9900096 DOI: 10.3389/fonc.2022.1003959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
In recent years, the role of tumor budding in gastric cancer has received increased attention across a number of disciplines. Several studies have found associations between tumor budding and the prediction of lymph node metastasis in early gastric cancer, prognosis of advanced gastric cancer, predictors of therapeutic response to immune checkpoint inhibitors, such as microsatellite instability (MSI), and therapeutic targets of molecular targeted therapy, such as human epidermal growth factor receptor 2 (HER-2). Therefore, tumor budding is a major element in the formulation of risk stratification and precision medicine strategies for patients with gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Zhu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|
13
|
Ashenafi S, Brighenti S. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field. Front Immunol 2022; 13:1059725. [PMID: 36591229 PMCID: PMC9797505 DOI: 10.3389/fimmu.2022.1059725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world and every 20 seconds a person dies from TB. An important attribute of human TB is induction of a granulomatous inflammation that creates a dynamic range of local microenvironments in infected organs, where the immune responses may be considerably different compared to the systemic circulation. New and improved technologies for in situ quantification and multimodal imaging of mRNA transcripts and protein expression at the single-cell level have enabled significantly improved insights into the local TB granuloma microenvironment. Here, we review the most recent data on regulation of immunity in the TB granuloma with an enhanced focus on selected in situ studies that enable spatial mapping of immune cell phenotypes and functions. We take advantage of the conceptual framework of the cancer-immunity cycle to speculate how local T cell responses may be enhanced in the granuloma microenvironment at the site of Mycobacterium tuberculosis infection. This includes an exploratory definition of "hot", immune-inflamed, and "cold", immune-excluded TB granulomas that does not refer to the level of bacterial replication or metabolic activity, but to the relative infiltration of T cells into the infected lesions. Finally, we reflect on the current knowledge and controversy related to reactivation of active TB in cancer patients treated with immune checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4. An understanding of the underlying mechanisms involved in the induction and maintenance or disruption of immunoregulation in the TB granuloma microenvironment may provide new avenues for host-directed therapies that can support standard antibiotic treatment of persistent TB disease.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,*Correspondence: Susanna Brighenti,
| |
Collapse
|
14
|
Dai Y, Zhao L, Hua D, Cui L, Zhang X, Kang N, Qu L, Li L, Li H, Shen D, Wang Z, Wang J. Tumor immune microenvironment in endometrial cancer of different molecular subtypes: evidence from a retrospective observational study. Front Immunol 2022; 13:1035616. [PMID: 36532042 PMCID: PMC9756131 DOI: 10.3389/fimmu.2022.1035616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Tumor immune microenvironmental features may predict survival and guide treatment. This study aimed to comprehensively decipher the immunological features of different molecular subtypes of endometrial cancer. Methods In this retrospective study, 26 patients with primary endometrial cancer and four with recurrent disease treated in our center from December 2018 to November 2021 were included. Next-generation sequencing was performed on tumor samples. Patients were classified into four subtypes, including POLE mutant, microsatellite instability high (MSI-H), no specific molecular profile (NSMP) and TP53 mutant subtypes. Tumor-infiltrating immune cells were quantified using multiplex immunofluorescence assays. Results Of the 26 primary endometrial cancer cases, three were POLE mutant, six were MSI-H, eight were NSMP and nine were TP53 mutant. Of the four recurrent cases, two belonged to the NSMP subtype and two belonged to the TP53 mutant subtype. The tumor mutation burden (TMB) levels of POLE mutant and MSI-H cases were significantly higher than that of the other two subtypes (p< 0.001). We combined POLE mutant and MSI-H subtypes into the TMB high (TMB-H) subtype. The TMB-H subtype showed a high degree of infiltration of CD8+ T cells. In the NSMP subtype, the overall degree of intra-tumoral infiltrating immune cells was low. In the TP53 mutant subtype, the densities of both PD-L1+ macrophages (p = 0.047) and PD-1+ T cells (p = 0.034) in tumor parenchyma were the highest among the four subtypes. Conclusion Endometrial cancer of TMB-H, NSMP and TP53 mutant subtypes displayed phenotypes of normal immune response, absence of immune infiltration, and suppressed immune response, respectively. These features may provide mechanistic explanations for the differences in patients' prognosis and efficacy of immune checkpoint blockade therapies among different endometrial cancer subtypes.
Collapse
Affiliation(s)
- Yibo Dai
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Dingchao Hua
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Lina Cui
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Xiaobo Zhang
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Nan Kang
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Linlin Qu
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Liwei Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - He Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Danhua Shen
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China,*Correspondence: Zhiqi Wang,
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
15
|
Daly RJ, Scott AM, Klein O, Ernst M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol Cancer 2022; 21:189. [PMID: 36175961 PMCID: PMC9523960 DOI: 10.1186/s12943-022-01656-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has been established as the standard of care for many types of cancer, but the strategies employed have continued to evolve. Recently, much clinical focus has been on combining targeted therapies with ICI for the purpose of manipulating the immune setpoint. The latter concept describes the equilibrium between factors that promote and those that suppress anti-cancer immunity. Besides tumor mutational load and other cancer cell-intrinsic determinants, the immune setpoint is also governed by the cells of the tumor microenvironment and how they are coerced by cancer cells to support the survival and growth of the tumor. These regulatory mechanisms provide therapeutic opportunities to intervene and reduce immune suppression via application of small molecule inhibitors and antibody-based therapies against (receptor) tyrosine kinases and thereby improve the response to ICIs. This article reviews how tyrosine kinase signaling in the tumor microenvironment can promote immune suppression and highlights how therapeutic strategies directed against specific tyrosine kinases can be used to lower the immune setpoint and elicit more effective anti-tumor immunity.
Collapse
Affiliation(s)
- Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
| | - Andrew M Scott
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
- Department of Molecular Imaging & Therapy, Austin Health, and Faculty of Medicine, University of Melbourne, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Matthias Ernst
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
16
|
Zhao Y, Sun J, Liang Y, Jiang X, Tang X, Sun Y, Xu C, Wan G, Sun J, Pan C. Increased expression of ST2 on regulatory T cells is associated with cancer associated fibroblast-derived IL-33 in laryngeal cancer. Pathol Res Pract 2022; 237:154023. [PMID: 35908385 DOI: 10.1016/j.prp.2022.154023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Interleukin (IL)- 33 plays an essential role in regulatory T cell (Treg)-mediated immunosuppression in cancers and underlies the crosstalk between Tregs and the tumor microenvironment. However, the phenotypic characteristics of subset Tregs modulated by IL-33 and its association with the tumor microenvironment are not fully understood. This study aimed to examine the expression of ST2, the receptor of IL-33, on Tregs in tumors and to evaluate their association with cancer associated fibroblasts (CAFs) and reciprocal influences on the prognosis of laryngeal cancer. Our results showed that increased numbers of Tregs were found in laryngeal tumor tissues. Tregs in stromal IL-33-positive tumor tissues demonstrated significantly higher expression of ST2 than those in IL-33- or adjacent nontumor tissues. ST2-expressing Tregs exhibited upregulation of Ki67 and CTLA4 compared with their ST2- negative counterparts. Furthermore, IL-33 in the tumor microenvironment was mainly derived from fibroblasts. ST2 expression on Tregs was correlated with the number of IL-33-positive CAFs. High ST2 expression on Tregs, combined high ST2 on Tregs and the presence of IL-33 expressing CAFs was associated with worse survival outcomes in laryngeal cancer. This study indicated that increased expression of ST2 on Tregs is associated with microenvironmental IL-33 signaling derived from CAFs in laryngeal cancer, unraveling the special role of Tregs and fibroblasts in modulating IL-33/ST2 involved immune-evasive tumor microenvironment.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiaqiang Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yue Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xuan Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaomin Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuxuan Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chenyu Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guanglun Wan
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jingwu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chunchen Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
17
|
Kalita CA, Gusev A. DeCAF: a novel method to identify cell-type specific regulatory variants and their role in cancer risk. Genome Biol 2022; 23:152. [PMID: 35804456 PMCID: PMC9264694 DOI: 10.1186/s13059-022-02708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Here, we propose DeCAF (DEconvoluted cell type Allele specific Function), a new method to identify cell-fraction (cf) QTLs in tumors by leveraging both allelic and total expression information. Applying DeCAF to RNA-seq data from TCGA, we identify 3664 genes with cfQTLs (at 10% FDR) in 14 cell types, a 5.63× increase in discovery over conventional interaction-eQTL mapping. cfQTLs replicated in external cell-type-specific eQTL data are more enriched for cancer risk than conventional eQTLs. Our new method, DeCAF, empowers the discovery of biologically meaningful cfQTLs from bulk RNA-seq data in moderately sized studies.
Collapse
Affiliation(s)
- Cynthia A. Kalita
- Division of Population Sciences, Dana–Farber Cancer Institute & Harvard Medical School, Boston, USA
| | - Alexander Gusev
- Division of Population Sciences, Dana–Farber Cancer Institute & Harvard Medical School, Boston, USA
- The Broad Institute, Boston, USA
- Division of Genetics, Brigham & Women’s Hospital, Boston, USA
| |
Collapse
|
18
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 572] [Impact Index Per Article: 190.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
19
|
Oshi M, Sarkar J, Wu R, Tokumaru Y, Yan L, Nakagawa K, Ishibe A, Matsuyama R, Endo I, Takabe K. Intratumoral density of regulatory T cells is a predictor of host immune response and chemotherapy response in colorectal cancer. Am J Cancer Res 2022; 12:490-503. [PMID: 35261782 PMCID: PMC8899991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023] Open
Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T lymphocytes known to dampen the host immune response against cancer cells. Within the tumor microenvironment, Tregs are potent facilitators of immune tolerance, and a higher proportion of Tregs compared to cytotoxic T cells predicts a worse outcome in most solid tumors. We studied the association between Treg density, and cancer biology and clinical outcome in colorectal cancer (CRC). We used xCell to estimate intratumoral Tregs in total of 898 CRC patients in the Cancer Genome Atlas (TCGA) and GCE39582 cohorts. High-Treg CRCs enriched immune response-related gene sets; inflammatory response, IFN-γ and IFN-α response, IL2/IL6 signaling, and allograft rejection, and had significantly high infiltration of CD8, CD4, M1 and M2 macrophage, and dendritic cells in both cohorts. While high-Treg CRCs enriched multiple pro-cancer signaling pathways compared to low-Treg CRCs, such as Epithelial Mesenchymal Transition, K-ras, Hypoxia, TGF-β, TNF-α, and angiogenesis, Treg infiltration was surprisingly associated with earlier CRC stage in TCGA. Notably, in two separate cohorts a higher proportion of Tregs predicted an improved response to chemotherapy. In the GSE28702 cohort, metastatic CRCs with more Tregs showed a significantly better response to mFOLFOX6 versus low-Treg CRC metastases (88.9% response vs. 16.7%, P<0.001). In the GSE72970 cohort, high-Treg CRCs were found to have a 68.8% response to FOLFOX/FOLFIRI without bevacizumab, compared to 44% response in the low-Treg CRCs. Additionally, high-Treg CRCs were associated with increased expression of immune checkpoint molecules PD-L1/PD-L2, CTLA4, TIGIT and BTLA, implying susceptibility to immunotherapy. We also found that CRCs with higher proportions of Tregs were associated with lower amounts of three microorganisms in the tumor: Lachnoclostridium, flavivirus, and Ornithobacterium. In conclusion, we show that amount of Treg in the tumor is a predictor of host immune response and chemotherapy response in CRC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Joy Sarkar
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
| | - Li Yan
- Department of Surgical Oncology, Graduate School of Medicine, Gifu UniversityGifu, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| |
Collapse
|
20
|
Schnellhardt S, Hirneth J, Büttner-Herold M, Daniel C, Haderlein M, Hartmann A, Fietkau R, Distel L. The Prognostic Value of FoxP3+ Tumour-Infiltrating Lymphocytes in Rectal Cancer Depends on Immune Phenotypes Defined by CD8+ Cytotoxic T Cell Density. Front Immunol 2022; 13:781222. [PMID: 35140715 PMCID: PMC8818710 DOI: 10.3389/fimmu.2022.781222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Tumour-infiltrating FoxP3+ regulatory T cells have been identified as both positive and negative prognostic factors in colorectal cancer (CRC) and rectal cancer (RC). In this study we investigated whether immune phenotypes, defined by CD8+ cytotoxic T cell density, may influence the prognostic association of FoxP3+ T cell densities in RC. Tissue microarrays from 154 rectal cancer resections were immunohistochemically double stained for CD8 and FoxP3. CD8+ and FoxP3+ cell densities were measured in the stromal and intraepithelial compartment. Stromal FoxP3+ cell densities were not associated with 10-year overall survival (OS). In the “immune-desert” phenotype, defined by very low stromal CD8+ cell density, a high density of stromal FoxP3+ T cells displayed a tendency towards an association with decreased 10-year OS (p = 0.179). In “inflamed” tumours, defined by high intraepithelial CD8+ T cell infiltration, the opposite was the case and high stromal FoxP3+ T cell densities were a positive prognostic factor (p = 0.048). Additionally, patients with an increased FoxP3/CD8 cell density ratio demonstrated a strong trend towards decreased 10-year OS (p = 0.066). These contrasting findings suggest functional heterogeneity within the group of FoxP3+ T cells. They are consistent with experimental studies which reported suppressive and non-suppressive populations of FoxP3+ T cells in CRC. Furthermore, our study demonstrates that CD8 immunohistochemistry may act as an instrument to identify tumours infiltrated by possibly functionally differing FoxP3+ T cell subtypes.
Collapse
Affiliation(s)
- Sören Schnellhardt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Johannes Hirneth
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Maike Büttner-Herold
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
- *Correspondence: Luitpold Distel,
| |
Collapse
|
21
|
Tumino N, Besi F, Martini S, Di Pace AL, Munari E, Quatrini L, Pelosi A, Fiore PF, Fiscon G, Paci P, Scordamaglia F, Covesnon MG, Bogina G, Mingari MC, Moretta L, Vacca P. Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Front Immunol 2022; 12:803014. [PMID: 35116033 PMCID: PMC8805733 DOI: 10.3389/fimmu.2021.803014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor microenvironment (TME) includes a wide variety of cell types and soluble factors capable of suppressing immune-responses. While the role of NK cells in TME has been analyzed, limited information is available on the presence and the effect of polymorphonuclear (PMN) myeloid-derived suppressor cells, (MDSC). Among the immunomodulatory cells present in TME, MDSC are potentially efficient in counteracting the anti-tumor activity of several effector cells. We show that PMN-MDSC are present in high numbers in the PB of patients with primary or metastatic lung tumor. Their frequency correlated with the overall survival of patients. In addition, it inversely correlated with low frequencies of NK cells both in the PB and in tumor lesions. Moreover, such NK cells displayed an impaired anti-tumor activity, even those isolated from PB. The compromised function of NK cells was consequent to their interaction with PMN-MDSC. Indeed, we show that the expression of major activating NK receptors, the NK cytolytic activity and the cytokine production were inhibited upon co-culture with PMN-MDSC through both cell-to-cell contact and soluble factors. In this context, we show that exosomes derived from PMN-MDSC are responsible of a significant immunosuppressive effect on NK cell-mediated anti-tumor activity. Our data may provide a novel useful tool to implement the tumor immunoscore. Indeed, the detection of PMN-MDSC in the PB may be of prognostic value, providing clues on the presence and extension of both adult and pediatric tumors and information on the efficacy not only of immune response but also of immunotherapy and, possibly, on the clinical outcome.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefania Martini
- Unità Operativa (UO) Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Enrico Munari
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Linda Quatrini
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Pelosi
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Piera Filomena Fiore
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Maria Grazia Covesnon
- Struttura Complessa (SC) Pneumologia Ospedale Villa Scassi, ASL3 Genovese, Genoa, Italy
| | - Giuseppe Bogina
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Maria Cristina Mingari
- Unità Operativa (UO) Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
- Experimental Medicine Department (DIMES), University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
- *Correspondence: Lorenzo Moretta,
| | - Paola Vacca
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
22
|
Qu Y, Wang X, Bai S, Niu L, Zhao G, Yao Y, Li B, Li H. The effects of TNF-α/TNFR2 in regulatory T cells on the microenvironment and progression of gastric cancer. Int J Cancer 2021; 150:1373-1391. [PMID: 34766338 PMCID: PMC9298834 DOI: 10.1002/ijc.33873] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
TNFR2+ regulatory T cells preferentially accumulate in the tumor microenvironment, express high levels of immunosuppressive molecules and possess strong suppressive activity. Our study aimed to explore the characteristics and role of TNFR2+ Tregs in the microenvironment and progression of gastric cancer via polychromatic immunofluorescence, single-cell RNA sequencing and flow cytometry assays. The TNFR2+ Treg infiltration level in the tumor microenvironment increased significantly as gastric cancer progressed and was demonstrated to be a prognostic marker. Single-cell RNA sequencing revealed high levels of TNFR2 in tumor-infiltrating Tregs. The TNF-α/TNFR2 signaling pathway was activated, accompanied by the upregulation of costimulatory molecules. Unlike blood Tregs, tumor-infiltrating Tregs existed in activated and effector states. In addition to expressing costimulatory molecules such as TNFR2, 4-1BB, OX40 and GITR, tumor-infiltrating Tregs were also characterized by high expression levels of immune checkpoints such as CTLA-4 and TIGIT and chemokines such as CCR6. In vitro studies showed that the TNF-α/TNFR2 pathway increased the Foxp3 expression in CD4+ CD25+ T cells and the latent TGF-β production in Tregs as well as enhanced the immunosuppressive function of Tregs. In summary, our study revealed high infiltration levels of TNFR2+ Tregs that were in activated and effector states in the tumor microenvironment. The infiltration level of TNFR2+ Tregs is a prognostic marker and an independent risk factor for gastric cancer. Activation of the TNF-α/TNFR2 pathway promotes the immunosuppressive phenotype and function of Tregs. Our study provides a new theoretical basis for TNFR2+ Tregs as a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Xianhao Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- National Clinical Research Center for Cancer, Tianjin, China.,Gastric Surgery Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Hao F, Tian M, Zhang X, Jin X, Jiang Y, Sun X, Wang Y, Peng P, Liu J, Xia C, Feng Y, Wei M. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci U S A 2021; 118:e2014681118. [PMID: 34035164 PMCID: PMC8179238 DOI: 10.1073/pnas.2014681118] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inducible regulatory T (iTreg) cells play a crucial role in immune suppression and are important for the maintenance of immune homeostasis. Mounting evidence has demonstrated connections between iTreg differentiation and metabolic reprogramming, especially rewiring in fatty acid oxidation (FAO). Previous work showed that butyrate, a specific type of short-chain fatty acid (SCFA) readily produced from fiber-rich diets through microbial fermentation, was critical for the maintenance of intestinal homeostasis and capable of promoting iTreg generation by up-regulating histone acetylation for gene expression as an HDAC inhibitor. Here, we revealed that butyrate could also accelerate FAO to facilitate iTreg differentiation. Moreover, butyrate was converted, by acyl-CoA synthetase short-chain family member 2 (ACSS2), into butyryl-CoA (BCoA), which up-regulated CPT1A activity through antagonizing the association of malonyl-CoA (MCoA), the best known metabolic intermediate inhibiting CPT1A, to promote FAO and thereby iTreg differentiation. Mutation of CPT1A at Arg243, a reported amino acid required for MCoA association, impaired both MCoA and BCoA binding, indicating that Arg243 is probably the responsible site for MCoA and BCoA association. Furthermore, blocking BCoA formation by ACSS2 inhibitor compromised butyrate-mediated iTreg generation and mitigation of mouse colitis. Together, we unveil a previously unappreciated role for butyrate in iTreg differentiation and illustrate butyrate-BCoA-CPT1A axis for the regulation of immune homeostasis.
Collapse
Affiliation(s)
- Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xinbo Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ying Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Pinghui Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
24
|
Intratumoral Foxp3 +RORγt + T cell infiltration determines poor prognosis and immunoevasive contexture in gastric cancer patients. Cancer Immunol Immunother 2021; 71:1-11. [PMID: 33978826 DOI: 10.1007/s00262-021-02950-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Foxp3+RORγt+ T cells possess both characteristics of regulatory T cells and T helper 17 cells and show significant immunoregulatory functions in autoimmune diseases. However, the role and clinical significance of Foxp3+RORγt+ T cells in gastric cancer remains unclear. METHODS We enrolled 452 gastric cancer tissue microarray samples and 60 fresh tumor tissue samples from Zhongshan Hospital. The infiltration of Foxp3+RORγt+ T cells and immune contexture were examined by immunohistochemistry and flow cytometry. Survival analyses of patient subgroups were conducted by Kaplan-Meier curves, log-rank test and Cox proportional model. RESULTS High infiltration of Foxp3+RORγt+ T cells predicted poor overall survival (P = 0.0222 and 0.0110) and inferior therapeutic response (P = 0.003 for interaction) in gastric cancer. Foxp3+RORγt+ T cells were associated with impaired effective function of CD8+ T cells featured by decreased interferon-γ, granzyme B and CD107a expression. Co-evaluation of Foxp3+RORγt+ T cells and CD8+ T cells could predict survival outcomes and chemotherapeutic responsiveness more precisely. CONCLUSIONS We found that Foxp3+RORγt+ T cells could potentially attenuate effective functions of CD8+ T cells and led to adverse survival outcomes and inferior chemotherapeutic responsiveness. Moreover, the novel co-evaluation system might be useful for prognosis prediction for appropriate treatment in gastric cancer. NOVELTY AND IMPACT STATEMENTS Clinical significance of Foxp3+RORγts+ T cells has not been studied in gastric cancer. Herein, we investigated the prognostic value of Foxp3+RORγt+ T cells in 452 patients. We demonstrated that intratumoral Foxp3+RORγt+ T cell infiltration was a prognostic biomarker for overall survival and the identification of patients might benefit from post-gastrectomy 5-fluorouracil. These findings allow a more precise stratification upon the co-evaluation with CD8+ T cells to better clinical management for patients who would benefit from 5-fluorouracil.
Collapse
|
25
|
Muscarella P, Bekaii-Saab T, McIntyre K, Rosemurgy A, Ross SB, Richards DA, Fisher WE, Flynn PJ, Mattson A, Coeshott C, Roder H, Roder J, Harrell FE, Cohn A, Rodell TC, Apelian D. A Phase 2 Randomized Placebo-Controlled Adjuvant Trial of GI-4000, a Recombinant Yeast Expressing Mutated RAS Proteins in Patients with Resected Pancreas Cancer. J Pancreat Cancer 2021; 7:8-19. [PMID: 33786412 PMCID: PMC7997807 DOI: 10.1089/pancan.2020.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose: GI-4000, a series of recombinant yeast expressing four different mutated RAS proteins, was evaluated in subjects with resected ras-mutated pancreas cancer. Methods: Subjects (n = 176) received GI-4000 or placebo plus gemcitabine. Subjects' tumors were genotyped to identify which matched GI-4000 product to administer. Immune responses were measured by interferon-γ (IFNγ) ELISpot assay and by regulatory T cell (Treg) frequencies on treatment. Pretreatment plasma was retrospectively analyzed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-ToF) mass spectrometry for proteomic signatures predictive of GI-4000 responsiveness. Results: GI-4000 was well tolerated, with comparable safety findings between treatment groups. The GI-4000 group showed a similar pattern of median recurrence-free and overall survival (OS) compared with placebo. For the prospectively defined and stratified R1 resection subgroup, there was a trend in 1 year OS (72% vs. 56%), an improvement in OS (523.5 vs. 443.5 days [hazard ratio (HR) = 1.06 [confidence interval (CI): 0.53-2.13], p = 0.872), and increased frequency of immune responders (40% vs. 8%; p = 0.062) for GI-4000 versus placebo and a 159-day improvement in OS for R1 GI-4000 immune responders versus placebo (p = 0.810). For R0 resection subjects, no increases in IFNγ responses in GI-4000-treated subjects were observed. A higher frequency of R0/R1 subjects with a reduction in Tregs (CD4+/CD45RA+/Foxp3low) was observed in GI-4000-treated subjects versus placebo (p = 0.033). A proteomic signature was identified that predicted response to GI-4000/gemcitabine regardless of resection status. Conclusion: These results justify continued investigation of GI-4000 in studies stratified for likely responders or in combination with immune check-point inhibitors or other immunomodulators, which may provide optimal reactivation of antitumor immunity. ClinicalTrials.gov Number: NCT00300950.
Collapse
Affiliation(s)
- Peter Muscarella
- Department of Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | | | - Sharona B Ross
- Digestive Disorders Institute, AdventHealth Tampa, Tampa, Florida, USA
| | | | | | - Patrick J Flynn
- Minnesota Oncology, US Oncology Research, Minneapolis, Minnesota, USA
| | - Alicia Mattson
- Smuggler Mountain Group (SMG, Inc.), Aspen, Colorado, USA
| | | | | | | | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Allen Cohn
- Rocky Mountain Cancer Center, Denver, Colorado, USA
| | | | - David Apelian
- Smuggler Mountain Group (SMG, Inc.), Aspen, Colorado, USA
| |
Collapse
|
26
|
Neumeyer S, Hua X, Seibold P, Jansen L, Benner A, Burwinkel B, Halama N, Berndt SI, Phipps AI, Sakoda LC, Schoen RE, Slattery ML, Chan AT, Gala M, Joshi AD, Ogino S, Song M, Herpel E, Bläker H, Kloor M, Scherer D, Ulrich A, Ulrich CM, Win AK, Figueiredo JC, Hopper JL, Macrae F, Milne RL, Giles GG, Buchanan DD, Peters U, Hoffmeister M, Brenner H, Newcomb PA, Chang-Claude J. Genetic Variants in the Regulatory T cell-Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiol Biomarkers Prev 2020; 29:2719-2728. [PMID: 33008876 PMCID: PMC7976673 DOI: 10.1158/1055-9965.epi-20-0714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High numbers of lymphocytes in tumor tissue, including T regulatory cells (Treg), have been associated with better colorectal cancer survival. Tregs, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and therefore variants in genes related to Treg differentiation and function could be associated with colorectal cancer prognosis. METHODS In a prospective German cohort of 3,593 colorectal cancer patients, we assessed the association of 771 single-nucleotide polymorphisms (SNP) in 58 Treg-related genes with overall and colorectal cancer-specific survival using Cox regression models. Effect modification by microsatellite instability (MSI) status was also investigated because tumors with MSI show greater lymphocytic infiltration and have been associated with better prognosis. Replication of significant results was attempted in 2,047 colorectal cancer patients of the International Survival Analysis in Colorectal Cancer Consortium (ISACC). RESULTS A significant association of the TGFBR3 SNP rs7524066 with more favorable colorectal cancer-specific survival [hazard ratio (HR) per minor allele: 0.83; 95% confidence interval (CI), 0.74-0.94; P value: 0.0033] was replicated in ISACC (HR: 0.82; 95% CI, 0.68-0.98; P value: 0.03). Suggestive evidence for association was found with two IL7 SNPs, rs16906568 and rs7845577. Thirteen SNPs with differential associations with overall survival according to MSI in the discovery analysis were not confirmed. CONCLUSIONS Common genetic variation in the Treg pathway implicating genes such as TGFBR3 and IL7 was shown to be associated with prognosis of colorectal cancer patients. IMPACT The implicated genes warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Epidemiology Department, University of Washington, Seattle, Washington
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles California
| | - John L Hopper
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Finlay Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Polly A Newcomb
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev 2020; 40:303-318. [PMID: 33026575 PMCID: PMC7897206 DOI: 10.1007/s10555-020-09935-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.
Collapse
|
28
|
Li Y, Li J, Dong J, Zhang L, Liu D, He J, She Y, Ma C, Liu Y. 15-PGDH Expression in Gastric Cancer: A Potential Role in Anti-Tumor Immunity. Cancer Manag Res 2020; 12:7419-7426. [PMID: 32884353 PMCID: PMC7443415 DOI: 10.2147/cmar.s245726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Host immunity plays a vital role in tumorigenesis, including in tumor invasion and metastasis. However, the precise underlying mechanism remains to be explored. The enzyme 15-PGDH, which plays a key role in prostaglandin degradation, is a critical inflammatory mediator in gastric cancer (GC) tumorigenesis. Materials and Methods Immunohistochemistry was performed to determine 15-PGDH expression in GC and the corresponding adjacent non-neoplastic tissues (n=92). Results The expression of 15-PGDH in GC tissues was significantly lower than that in paracancerous tissues (P<0.001) and found to correspond inversely with GC differentiation (P=0.043) and lymph node metastasis (P=0.046). In contrast, FOXP3 expression was increased in poorly differentiated GC tissues (P=0.001). Kaplan–Meier analysis revealed that GC patients with low expression of 15-PGDH (Log rank test, P=0.007) and high expression of FOXP3 (Log rank test, P=0.009) had shorter overall survival (OS) than those with high 15-PGDH and low FOXP3 expression. OS was also correlated with pathological tumor-node-metastasis stage (Log rank test, P=0.014). Furthermore, using Cox proportional hazard regression, 15-PGDH expression [hazard ratio (HR): 0.605 (0.440–0.833); P=0.002] was identified as an independent factor for OS. Conclusion Our data suggest that 15-PGDH may contribute to anti-tumor immunity by regulating FOXP3+ Treg cells. The findings are useful for the identification of therapeutic targets for the management of GC.
Collapse
Affiliation(s)
- Yaling Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| | - Junjie Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Juanjuan Dong
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Lei Zhang
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Dongling Liu
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Jianzheng He
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| | - Yali She
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Chengxu Ma
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yongqi Liu
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
29
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
30
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
31
|
Phenotypic Switching of Naïve T Cells to Immune-Suppressive Treg-Like Cells by Mutant KRAS. J Clin Med 2019; 8:jcm8101726. [PMID: 31635338 PMCID: PMC6832522 DOI: 10.3390/jcm8101726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Oncogenic (mutant) Ras protein Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes uncontrolled proliferation, altered metabolism, and loss of genome integrity in a cell-intrinsic manner. Here, we demonstrate that CD4+ T cells when incubated with tumor-derived exosomes from mutant (MT) KRAS non-small-cell lung cancer (NSCLC) cells, patient sera, or a mouse xenograft model, induce phenotypic conversion to FOXP3+ Treg-like cells that are immune-suppressive. Furthermore, transfecting T cells with MT KRAS cDNA alone induced phenotypic switching and mathematical modeling supported this conclusion. Single-cell sequencing identified the interferon pathway as the mechanism underlying the phenotypic switch. These observations highlight a novel cytokine-independent, cell-extrinsic role for KRAS in T cell phenotypic switching. Thus, targeting this new class of Tregs represents a unique therapeutic approach for NSCLC. Since KRAS is the most frequently mutated oncogene in a wide variety of cancers, the findings of this investigation are likely to be of broad interest and have a large scientific impact.
Collapse
|
32
|
Lim EL, Okkenhaug K. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019; 157:210-218. [PMID: 31107985 PMCID: PMC6587315 DOI: 10.1111/imm.13082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Ee Lyn Lim
- Laboratory of Experimental ImmunologyImmunology Frontier Research CentreOsaka UniversitySuitaJapan
| | - Klaus Okkenhaug
- Division of ImmunologyDepartment of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
33
|
Zhou Y, Ji Y, Wang H, Zhang H, Zhou H. IL-33 Promotes the Development of Colorectal Cancer Through Inducing Tumor-Infiltrating ST2L + Regulatory T Cells in Mice. Technol Cancer Res Treat 2018; 17:1533033818780091. [PMID: 29950152 PMCID: PMC6048617 DOI: 10.1177/1533033818780091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer, one of the most commonly diagnosed and lethal cancers worldwide, is accompanied by the disorders of immune system. However, the underlying mechanism is still not fully understood. In this study, our goal was to determine whether interleukin 33 promotes tumorigenesis and progression of colorectal cancer through increased recruitment of tumor-infiltrating ST2+ regulatory T cells in CT26 tumor-bearing mice. We found that the mRNA or protein levels of interleukin 33, soluble ST2, and membrane ST2 were elevated in the serum of tumor-bearing mice when compared to WT mice. The mRNA levels of interleukin 33, soluble ST2, and membrane ST2 were also elevated in the tissue of tumor-bearing mice when compared to surrounding nontumor muscular tissues. In addition, the frequency of ST2L+ regulatory T cells was significantly increased in both tumor tissue and spleen of tumor-bearing mice. Higher protein levels of interleukin-4, -10, and -13 were also observed in the serum or the tumor homogenates of tumor-bearing mice. We found exogenously administered recombinant mouse interleukin 33 promoted tumor size and induced tumor-infiltrating ST2L+ regulatory T cells in tumor-bearing mice while neutralizing interleukin-33 or ST2L inhibited tumor size and decreased ST2L+ regulatory T cells. Furthermore, ST2L+ regulatory T cells from tumor tissue were also able to suppress CD4+CD25-T cell proliferation and interferon γ production. Altogether, our findings demonstrate the critical roles of interleukin 33 in promoting colorectal cancer development through inducing tumor-infiltrating ST2L+ regulatory T cells, and inhibition of interleukin-33/ST2L signaling maybe a potential target for the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Yaxing Zhou
- 1 Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital of Medical School of Nantong University, Nantong, China
| | - Yong Ji
- 2 Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Honggang Wang
- 1 Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital of Medical School of Nantong University, Nantong, China
| | - Hai Zhang
- 3 Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haihua Zhou
- 1 Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital of Medical School of Nantong University, Nantong, China
| |
Collapse
|
34
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Prolonged IKKβ Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells. Cell Rep 2018; 21:578-586. [PMID: 29045828 DOI: 10.1016/j.celrep.2017.09.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-κB signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-κB signaling through IκB-kinase β (IKKβ) after thymic egress. Mice lacking IKKβ in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3+ Tregs. Also, pharmacological IKKβ inhibition reduced Treg numbers in the circulation by ∼50% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKKβ inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKKβ inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKKβ inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKKβ represents a druggable checkpoint.
Collapse
|
36
|
Shen L, Zhang LL, Li H, Liu X, Yu XX, Hu P, Hui H, Guo QL, Zhang S. Oroxylin A inhibits the generation of Tregs in non-small cell lung cancer. Oncotarget 2018; 8:49395-49408. [PMID: 28472762 PMCID: PMC5564777 DOI: 10.18632/oncotarget.17218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/22/2017] [Indexed: 01/11/2023] Open
Abstract
Oroxylin A (OA), a naturally occurring monoflavonoid isolated from Scutellariae radix, has previously been reported to inhibit the proliferation of several cancer cell lines. CD4+CD25+Foxp3+ regulatory T cells (Tregs) play an important role in maintenance of immunologic self-tolerance. Tregs also increase in cancer and take part in suppressing antitumor immune responses. Here, we explored how OA affected the Tregs in lung cancer environment and the involved underlying mechanism. It is found that OA reversed the generation of Tregs induced by H460 lung cancer cells co-culture. Furthermore, in vivo, OA reduced tumor formation rate and attenuated Foxp3 expression in tumor-infiltrating lymphocytes. We also found that transforming growth factor-β1 (TGF-β1) neutralizing antibody reversed the enhancement of Treg number and expression of p-Smad3ˎ p-p38ˎp-JNKˎp-ERK1/2 in the co-culture model. Moreover, OA reduced the secretion of TGF-β1 and down-regulated the activation of NF-κB signaling in H460 cells. OA also inhibited Treg activity by a direct inhibition of the T cells' response to TGF-β1. In conclusion, our study demonstrated that OA inhibits the generation of Tregs in lung cancer environment by inhibiting the T cells' response to TGF-β1 and decreasing the secretion of TGF-β1 in lung cancer cells via NF-κB signaling.
Collapse
Affiliation(s)
- Le Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lu-Lu Zhang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Xuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuai Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, People's Republic of China
| |
Collapse
|
37
|
Zhang Y, Liu Z, Hao X, Li A, Zhang J, Carey CD, Falo LD, You Z. Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol Immunother 2018; 67:353-366. [PMID: 29116372 PMCID: PMC11028122 DOI: 10.1007/s00262-017-2087-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Abstract
High-mobility group box 1 (HMGB1) is involved in the tumor-associated activation of regulatory T cells (Treg), but the mechanisms remain unknown. In a mouse tumor model, silencing HMGB1 in tumor cells or inhibiting tumor-derived HMGB1 not only dampened the capacity of tumor cells to produce thymic stromal lymphopoietin (TSLP), but also aborted the tumor-associated modulation of Treg-activating DC. Tumor-derived HMGB1 triggered the production of TSLP by tumor cells. Importantly, both tumor-derived HMGB1 and TSLP were necessary for modulating DC to activate Treg in a TSLP receptor (TSLPR)-dependent manner. In the therapeutic model, intratumorally inhibiting tumor-derived HMGB1 (causing downstream loss of TSLP production) attenuated Treg activation, unleashed tumor-specific CD8 T cell responses, and elicited CD8α+/CD103+DC- and T cell-dependent antitumor activity. These results suggest a new pathway for the activation of Treg involving in tumor-derived HMGB1 and TSLP, and have important implications for incorporating HMGB1 inhibitors into cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- The 3rd Affiliated Hospital of Jianghan University, Wuhan, China
| | - Zuqiang Liu
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ang Li
- Cleveland Clinic, Cole Eye Institute, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.
- W1154 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
38
|
Nahas MR, Rosenblatt J, Lazarus HM, Avigan D. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Rev 2018; 32:312-325. [PMID: 29475779 DOI: 10.1016/j.blre.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity.
Collapse
Affiliation(s)
- Myrna R Nahas
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jacalyn Rosenblatt
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
39
|
Vanamee ÉS, Faustman DL. TNFR2: A Novel Target for Cancer Immunotherapy. Trends Mol Med 2017; 23:1037-1046. [PMID: 29032004 DOI: 10.1016/j.molmed.2017.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but exhibit variable efficacy and relapse and can induce autoimmunity. Tumor necrosis factor (TNF) receptor 2 (TNFR2) is a signaling molecule found on the surface of a subset of potent regulatory T cells (Tregs) that can activate the proliferation of these cells through nuclear factor kappa B (NF-κB). TNFR2 is also abundantly expressed on the surface of many human tumors. We propose that blocking TNFR2 might target abundant TNFR2+ tumor-infiltrating Tregs and directly kill TNFR2-expressing tumors. We also posit that TNFR2 inhibitors might potentially constitute safer and more targeted alternatives to ICI cancer treatment because the expression of TNFR2 on immune cells, concentrated in the tumor microenvironment of various cancers, appears to be more selective than that of checkpoint molecules.
Collapse
Affiliation(s)
- Éva S Vanamee
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
40
|
Kormi SMA, Seghatchian J. Taming the immune system through transfusion in oncology patients. Transfus Apher Sci 2017; 56:310-316. [PMID: 28651910 DOI: 10.1016/j.transci.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood transfusion is a clinical replacement therapy with many successes with some benefit and, also, some harm. Cancer is a multifaceted disease potentially associated with the immune system's weakness where the cancerous tumor cells escape from the immune system. Allogeneic blood transfusion, through five major mechanisms including the lymphocyte-T set, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), natural killer cells (NKCs), and dendritic cells (DCs) can help the recipient's defense mechanisms. On the other hand, the role for each of the listed items includes activation of the antitumor CD8+ cytotoxic T lymphocytes (CD8+/CTL), temporal inactivation of Tregs, inactivation of the STAT3 signaling pathway, the use of bacteria to enhance the antitumor immune response and cellular immunotherapy. The above issues are concisely addressed in this manuscript based on a literature survey on this topic carried out by the first author.
Collapse
Affiliation(s)
- Seyed Mohammad Amin Kormi
- Cancer Genetics Research Unit, Reza Radiation Oncology Center, Mashhad, Iran; Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/ Safety Improvement, Audit/ Inspection and DDR Strategies, London, United Kingdom.
| |
Collapse
|
41
|
Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541:321-330. [PMID: 28102259 DOI: 10.1038/nature21349] [Citation(s) in RCA: 3547] [Impact Index Per Article: 443.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is required. Immunity is influenced by a complex set of tumour, host and environmental factors that govern the strength and timing of the anticancer response. Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy. In the context of the cancer-immunity cycle, such factors combine to represent the inherent immunological status - or 'cancer-immune set point' - of an individual.
Collapse
|
42
|
Johnson TS, McGaha T, Munn DH. Chemo-Immunotherapy: Role of Indoleamine 2,3-Dioxygenase in Defining Immunogenic Versus Tolerogenic Cell Death in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:91-104. [PMID: 29275467 PMCID: PMC6169315 DOI: 10.1007/978-3-319-67577-0_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In certain settings, chemotherapy can trigger an immunogenic form of tumor cell death. More often, however, tumor cell death after chemotherapy is not immunogenic, and may be actively tolerizing. However, even in these settings the dying tumor cells may be much more immunogenic than previously recognized, if key suppressive immune checkpoints such as indoleamine 2,3-dioxygenase (IDO) can be blocked. This is an important question, because a robust immune response to dying tumor cells could potentially augment the efficacy of conventional chemotherapy, or enhance the strength and duration of response to other immunologic therapies. Recent findings using preclinical models of self-tolerance and autoimmunity suggest that IDO and related downstream pathways may play a fundamental role in the decision between tolerance versus immune activation in response to dying cells. Thus, in the period of tumor cell death following chemotherapy or immunotherapy, the presence of IDO may help dictate the choice between dominant immunosuppression versus inflammation, antigen cross-presentation, and epitope spreading. The IDO pathway thus differs from other checkpoint-blockade strategies, in that it affects early immune responses, at the level of inflammation, activation of antigen-presenting cells, and initial cross-presentation of tumor antigens. This "up-stream" position may make IDO a potent target for therapeutic inhibition.
Collapse
Affiliation(s)
- Theodore S. Johnson
- Georgia Regents University (GRU), Medical College of Georgia Department of Pediatrics; GRU Cancer Center, Cancer immunology, Inflammation and Tolerance (CIT) Program; GRU Cancer Center, Pediatric Immunotherapy Program, , Phone: (706)-721-8735
| | - Tracy McGaha
- Georgia Regents University (GRU), Medical College of Georgia Department of Medicine; GRU Cancer Center, Cancer immunology, Inflammation and Tolerance (CIT) Program
| | - David H. Munn
- Georgia Regents University (GRU), Medical College of Georgia Department of Pediatrics; GRU Cancer Center, Cancer immunology, Inflammation and Tolerance (CIT) Program; GRU Cancer Center, Pediatric Immunotherapy Program, , Phone: (706)-721-7141
| |
Collapse
|
43
|
Jeon PH, Oh KI. IL2 is required for functional maturation of regulatory T cells. Anim Cells Syst (Seoul) 2016; 21:1-9. [PMID: 30460045 DOI: 10.1080/19768354.2016.1272489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs), specified by the expression of transcription factor Foxp3, operate Foxp3-dependent programs to maintain self-tolerance. In addition to Foxp3, other tissue-specific transcription factors are also required by Tregs to control the corresponding immune responses like follicular Tregs which express both Foxp3 and Bcl6 controlling germinal center reactions. Here, we show that Interleukin 2 (IL2) is required for the optimal expression of T helper type 1 (Th1) transcription factor T-box 21 (Tbx21, T-bet) in Tregs. The expression levels of CXCR3 and T-bet were reduced in IL2 deficient Tregs. Furthermore, IL2 deficient Treg cells failed to control the proliferation of CD4+ T cells in vitro and could not prevent the progression of colitis characterized by Th1 immune responses. Taken together, our data suggest that IL2 is essential for the functional maturation of Tregs including the optimal suppressive activity and the expression of tissue-specific transcription factors like T-bet.
Collapse
Affiliation(s)
- Phil Hyun Jeon
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Gangwon-Do, Korea
| | - Kwon Ik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Gangwon-Do, Korea
| |
Collapse
|
44
|
Immunosuppression Induced by Chronic Inflammation and the Progression to Oral Squamous Cell Carcinoma. Mediators Inflamm 2016; 2016:5715719. [PMID: 28053372 PMCID: PMC5178366 DOI: 10.1155/2016/5715719] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive, invasive malignancy of epithelial origin. The progression from premalignant lesions—oral leukoplakia (OLK) and oral lichen planus (OLP)—to OSCC involves complex inflammatory processes that have not been elucidated. We investigated the roles of inflammatory mediators and infiltrating immunocytes in the pathogenic progression of OLK and OLP to OSCC. The occurrence of regulatory T-cells (Tregs) and tumor-associated macrophages (TAMs) and the expression of anti-inflammatory cytokines and proinflammatory cytokines were investigated in OLK, OLP, and OSCC tissues. Immunohistochemical staining of CD4, FOXP3, CD68, TGF-β1, IL-10, IL-4, IFN-γ, and MCP-1 showed that the occurrence of Tregs and TAMs increased in parallel with disease progression in OLK and OSCC. IL-10 gradually increased during the early stages of OLK and in OSCC. Infiltrating IL-4+ macrophages were seen with increasing frequency in OLK tissue during the progression of oral dysplasia. Fewer TGF-β1+ macrophages were seen in OSCC than in OLK and OLP. The expression of IFN-γ decreased gradually with the OLK development and had the lowest expression in OSCC. MCP-1 expression did not change significantly during the development of OSCC. The results suggested that the immunosuppression induced by chronic inflammation promotes tumorigenesis in OSCC, rather than initiating it.
Collapse
|
45
|
Klevorn LE, Berrien-Elliott MM, Yuan J, Kuehm LM, Felock GD, Crowe SA, Teague RM. Rescue of Tolerant CD8+ T Cells during Cancer Immunotherapy with IL2:Antibody Complexes. Cancer Immunol Res 2016; 4:1016-1026. [PMID: 27803062 DOI: 10.1158/2326-6066.cir-16-0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022]
Abstract
Interleukin-2 (IL2) was among the earliest reagents used for cancer immunotherapy due to its ability to support the survival and function of tumor-reactive T cells. However, treatment with IL2 is accompanied by off-target toxicity and low response rates in patients. In mouse models, these issues are largely overcome when IL2 is administered as a cytokine/antibody complex (IL2c). The complex has a longer serum half-life and can be designed for preferential cytokine delivery to specific cells of interest. Early studies showed IL2c could boost antitumor immunity in mice by activating tumor-reactive CD8+ T cells. But such functional T cells are often limited in the tumor microenvironment, where instead unresponsive tolerant T cells are eventually eliminated by apoptosis, representing a major obstacle to the success of cancer immunotherapy. We found that IL2c treatment rescued tumor-specific CD8+ T cells from a state of established tolerance, providing effective immunotherapy in tumor-bearing mice. Expression of the transcription factor T-bet was necessary to drive intratumoral IFNγ production and effector activity by T cells rescued with IL2c. Furthermore, IL2c promoted T-bet expression in human CD4+ and CD8+ T cells in humanized tumor-bearing mice, but also increased the frequency of Foxp3+ regulatory T cells. Our study reveals a novel role for IL2c as a powerful immunotherapeutic reagent capable of reversing tolerance in tumor-reactive T cells, and provides the first evidence that IL2c influences human T cells in vivo, highlighting the translational potential to modulate human antitumor immune responses. Cancer Immunol Res; 4(12); 1016-26. ©2016 AACR.
Collapse
Affiliation(s)
- Lauryn E Klevorn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Melissa M Berrien-Elliott
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Jinyun Yuan
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gregory D Felock
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Sean A Crowe
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri. .,Alvin J. Siteman NCI Comprehensive Cancer Center, St. Louis, Missouri
| |
Collapse
|
46
|
Marshall EA, Ng KW, Kung SHY, Conway EM, Martinez VD, Halvorsen EC, Rowbotham DA, Vucic EA, Plumb AW, Becker-Santos DD, Enfield KSS, Kennett JY, Bennewith KL, Lockwood WW, Lam S, English JC, Abraham N, Lam WL. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 2016; 15:67. [PMID: 27784305 PMCID: PMC5082389 DOI: 10.1186/s12943-016-0551-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.
Collapse
Affiliation(s)
- Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin W Ng
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Sonia H Y Kung
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| | - Emma M Conway
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - David A Rowbotham
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Adam W Plumb
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Jennifer Y Kennett
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - John C English
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ninan Abraham
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| |
Collapse
|
47
|
Abstract
The critical contribution of CD4+CD25+Foxp3+ T-regulatory cells (Treg) to immune suppression in the tumor microenvironment is well-established. Whereas the mechanisms that drive the generation and accumulation of Treg in tumors have been an active area of study, the information on their origin and population dynamics remains limited. In this review, we discuss the ontogeny of tumor-associated Treg in light of the recently identified lineage markers.
Collapse
Affiliation(s)
- Qingsheng Li
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| | - Nejat K Egilmez
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| |
Collapse
|
48
|
Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, Basom RS, Lauer P, Brockstedt DG, Knoblaugh SE, Hämmerling GJ, Schell TD, Garbi N, Greenberg PD. Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity 2016; 45:389-401. [PMID: 27521269 DOI: 10.1016/j.immuni.2016.07.011] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/22/2016] [Accepted: 05/05/2016] [Indexed: 01/21/2023]
Abstract
CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA; Program of Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Mary Philip
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Varintra E Krisnawan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Edison Y Chiu
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan S Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Lauer
- Aduro BioTech, Inc., Berkeley, CA 94710, USA
| | | | - Sue E Knoblaugh
- Comparative Medicine Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Günter J Hämmerling
- Divisions of Cellular and Molecular Immunology, DKFZ, 69120 Heidelberg, Germany
| | - Todd D Schell
- Department of Microbiology & Immunology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Natalio Garbi
- Divisions of Cellular and Molecular Immunology, DKFZ, 69120 Heidelberg, Germany; Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, 53127 Bonn, Germany
| | - Philip D Greenberg
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; Program of Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Wang M, Busuttil RA, Pattison S, Neeson PJ, Boussioutas A. Immunological battlefield in gastric cancer and role of immunotherapies. World J Gastroenterol 2016; 22:6373-6384. [PMID: 27605873 PMCID: PMC4968119 DOI: 10.3748/wjg.v22.i28.6373] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Like the wars predating the First World War where human foot soldiers were deemed tools in the battlefield against an enemy, so too are the host immune cells of a patient battling a malignant gastric cancer. Indeed, the tumour microenvironment resembles a battlefield, where the patient’s immune cells are the defence against invading tumour cells. However, the relationship between different immune components of the host response to cancer is more complex than an “us against them” model. Components of the immune system inadvertently work against the interests of the host and become pro-tumourigenic while other components soldier on against the common enemy – the tumour cell.
Collapse
|
50
|
Sharbi-Yunger A, Grees M, Tzehoval E, Utikal J, Umansky V, Eisenbach L. mRNA-based dendritic cell immunization improves survival in ret transgenic mouse melanoma model. Oncoimmunology 2016; 5:e1160183. [PMID: 27471629 DOI: 10.1080/2162402x.2016.1160183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022] Open
Abstract
Malignant melanoma is characterized by a rapid progression, metastasis to distant organs and resistance to chemo and radiotherapy. Although melanoma is capable of eliciting an immune response, the disease progresses and the overall results of immunotherapeutic clinical studies are not satisfactory. Recently, we have developed a novel genetic platform for improving an induction of peptide-specific CD8(+) T cells by dendritic cell (DC) based on membrane-anchored β2-microglobulin (β2m) linked to a selected antigenic peptide at the N-terminus and to the cytosolic domain of TLR4 at the C-terminus. In vitro transcribed mRNA transfection of antigen-presenting cells (APCs) resulted in an efficient coupling of peptide presentation and cell activation. In this research, we utilize the chimeric platform to induce an immune response in ret transgenic mice that spontaneously develop malignant skin melanoma and to examine its effect on the overall survival of tumor-bearing mice. Following immunization with chimeric construct system, we observe a significantly prolonged survival of tumor-bearing mice as compared to the control group. Moreover, we see elevations in the frequency of CD62L(hi)CD44(hi) central and CD62L(lo)CD44(hi) effector memory CD8(+) T-cell subsets. Importantly, we do not observe any changes in frequencies of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the vaccinated groups. Our data suggest that this novel vaccination approach could be efficiently applied for the immunotherapy of malignant melanoma.
Collapse
Affiliation(s)
- Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Heidelberg, Germany
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Heidelberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Heidelberg, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|