1
|
Zhao R, Zhang Z, Mei S, Sun L, Zhang Q, Lv Q, Zhou F, Sun G, Zhou L, Tang X, An Y, Liu Z, Zhao X, Du H. X-linked Deficiency in ELF4 in Females with Skewed X Chromosome Inactivation. J Clin Immunol 2025; 45:76. [PMID: 39976696 PMCID: PMC11842529 DOI: 10.1007/s10875-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Deficiency in ELF4, X-linked (DEX) is a newly identified monogenic autoinflammatory disease. Most reported cases are male, leading to the recognition of DEX being primarily limited to male patients. Here we described 3 pediatric female patients with DEX from 3 unrelated families, who are all heterozygous for ELF4 mutations (c.320_c.321insA, c.329delA and c.685 A > G). Similar to reported male DEX patients, the main clinical features include recurring oral ulcers, abdominal pain and diarrhea with colonoscopy showing ulcers in the colon. Meanwhile, novel and effective treatment strategies, such as the use of the biologic vedolizumab and exclusive enteral nutrition (EEN), have provided additional options for the treatment of DEX. Finally, we observed skewed X chromosome inactivation patterns in all three female patients, with over-inactivation of the X chromosome carrying the wild-type allele confirmed in two of them.
Collapse
Affiliation(s)
- Rongtao Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zhang
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Department of Gastroenterology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, (Shanghai), China
| | - Qianlu Zhang
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qianying Lv
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, (Shanghai), China
| | - Fang Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Department of Gastroenterology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Gan Sun
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifeng Liu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaodong Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongqiang Du
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Gillespie NA, Bell TR, Hearn GC, Hess JL, Tsuang MT, Lyons MJ, Franz CE, Kremen WS, Glatt SJ. A twin analysis to estimate genetic and environmental factors contributing to variation in weighted gene co-expression network module eigengenes. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33003. [PMID: 39126209 PMCID: PMC11778624 DOI: 10.1002/ajmg.b.33003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Multivariate network-based analytic methods such as weighted gene co-expression network analysis are frequently applied to human and animal gene-expression data to estimate the first principal component of a module, or module eigengene (ME). MEs are interpreted as multivariate summaries of correlated gene-expression patterns and network connectivity across genes within a module. As such, they have the potential to elucidate the mechanisms by which molecular genomic variation contributes to individual differences in complex traits. Although increasingly used to test for associations between modules and complex traits, the genetic and environmental etiology of MEs has not been empirically established. It is unclear if, and to what degree, individual differences in blood-derived MEs reflect random variation versus familial aggregation arising from heritable or shared environmental influences. We used biometrical genetic analyses to estimate the contribution of genetic and environmental influences on MEs derived from blood lymphocytes collected on a sample of N = 661 older male twins from the Vietnam Era Twin Study of Aging (VETSA) whose mean age at assessment was 67.7 years (SD = 2.6 years, range = 62-74 years). Of the 26 detected MEs, 14 (56%) had statistically significant additive genetic variation with an average heritability of 44% (SD = 0.08, range = 35%-64%). Despite the relatively small sample size, this demonstration of significant family aggregation including estimates of heritability in 14 of the 26 MEs suggests that blood-based MEs are reliable and merit further exploration in terms of their associations with complex traits and diseases.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Virginia, USA
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Tyler R. Bell
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Gentry C. Hearn
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Jonathan L. Hess
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Stephen J. Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Tamburini B, Sheridan R, Doan T, Lucas C, Forward T, Fleming I, Uecker-Martin A, Morrison T, Hesselberth J. A specific gene expression program underlies antigen archiving by lymphatic endothelial cells in mammalian lymph nodes. RESEARCH SQUARE 2024:rs.3.rs-5493746. [PMID: 39711554 PMCID: PMC11661310 DOI: 10.21203/rs.3.rs-5493746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration. We identify, using spatial transcriptomics, antigen positive LEC-dendritic cell interactions. Using a prime-boost strategy we find increased antigen levels within LECs after a second immunization demonstrating that LEC antigen acquisition and archiving capacity can be improved over multiple exposures. Using machine learning we defined a unique transcriptional program within archiving LECs that predicted LEC archiving capacity in mouse and human independent data sets. We validated this modeling, showing we could predict lower levels of LEC antigen archiving in chikungunya virus-infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish unique properties of LECs and a defining transcriptional program for antigen archiving that can predict antigen archiving capacity in different disease states and organisms.
Collapse
Affiliation(s)
| | | | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | | | | | | | | | | |
Collapse
|
4
|
Li Y, Liu A, Wang J, Yang C, Lv K, He W, Wu J, Chen W. Suture-anchored cutaneous tension induces persistent hypertrophic scarring in a novel murine model. BURNS & TRAUMA 2024; 12:tkae051. [PMID: 39429643 PMCID: PMC11491161 DOI: 10.1093/burnst/tkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Indexed: 10/22/2024]
Abstract
Background Hypertrophic scars cause impaired skin appearance and function, seriously affecting physical and mental health. Due to medical ethics and clinical accessibility, the collection of human scar specimens is frequently restricted, and the establishment of scar experimental animal models for scientific research is urgently needed. The four most commonly used animal models of hypertrophic scars have the following drawbacks: the rabbit ear model takes a long time to construct; the immunodeficient mouse hypertrophic scar model necessitates careful feeding and experimental operations; female Duroc pigs are expensive to purchase and maintain, and their large size makes it difficult to produce a significant number of models; and mouse scar models that rely on tension require special skin stretch devices, which are often damaged and shed, resulting in unstable model establishment. Our group overcame the shortcomings of previous scar animal models and created a new mouse model of hypertrophic scarring induced by suture anchoring at the wound edge. Methods We utilized suture anchoring of incisional wounds to impose directional tension throughout the healing process, restrain wound contraction, and generate granulation tissue, thus inducing scar formation. Dorsal paired incisions were generated in mice, with wound edges on the upper back sutured to the rib cage and the wound edges on the lower back relaxed as a control. Macroscopic manifestation, microscopic histological analysis, mRNA sequencing, bioinformatics, and in vitro cell assays were also conducted to verify the reliability of this method. Results Compared with those in relaxed controls, the fibrotic changes in stretched wounds were more profound. Histologically, the stretched scars were hypercellular, hypervascular, and hyperproliferative with disorganized extracellular matrix deposition, and displayed molecular hallmarks of hypertrophic fibrosis. In addition, the stretched scars exhibited transcriptional overlap with mechanically stretched scars, and human hypertrophic and keloid scars. Phosphatidylinositol 3-kinase-serine/threonine-protein kinase B signaling was implicated as a profibrotic mediator of apoptosis resistance under suture-induced tension. Conclusions This straightforward murine model successfully induces cardinal molecular and histological features of pathological hypertrophic scarring through localized suture tension to inhibit wound contraction. The model enables us to interrogate the mechanisms of tension-induced fibrosis and evaluate anti-scarring therapies.
Collapse
Affiliation(s)
- Yashu Li
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Anqi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jingyan Wang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Changsheng Yang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Kaiyang Lv
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan main Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Road, Futian District, Shenzhen 518035, People's Republic of China
| | - Wenbin Chen
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| |
Collapse
|
5
|
Sheridan RM, Doan TA, Lucas C, Forward TS, Uecker-Martin A, Morrison TE, Hesselberth JR, Tamburini BAJ. A specific and portable gene expression program underlies antigen archiving by lymphatic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587647. [PMID: 38617225 PMCID: PMC11014631 DOI: 10.1101/2024.04.01.587647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antigens from protein subunit vaccination traffic from the tissue to the draining lymph node, either passively via the lymph or carried by dendritic cells at the local injection site. Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens, and archived antigen can be released during subsequent inflammatory stimulus to improve immune responses. Here, we answer questions about how LECs achieve durable antigen archiving and whether there are transcriptional signatures associated with LECs containing high levels of antigen. We used single cell sequencing in dissociated LN tissue to quantify antigen levels in LEC and dendritic cell populations at multiple timepoints after immunization, and used machine learning to define a unique transcriptional program within archiving LECs that can predict LEC archiving capacity in independent data sets. Finally, we validated this modeling, showing we could predict antigen archiving from a transcriptional dataset of CHIKV infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish a unique transcriptional program in LECs that promotes antigen archiving that can be translated to other systems.
Collapse
Affiliation(s)
- Ryan M. Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Thu A. Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
| | - Cormac Lucas
- Department of Immunology and Microbiology, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
| | - Aspen Uecker-Martin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Beth A. Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
- Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|
6
|
Weerakoon H, Mohamed A, Wong Y, Chen J, Senadheera B, Haigh O, Watkins TS, Kazakoff S, Mukhopadhyay P, Mulvenna J, Miles JJ, Hill MM, Lepletier A. Integrative temporal multi-omics reveals uncoupling of transcriptome and proteome during human T cell activation. NPJ Syst Biol Appl 2024; 10:21. [PMID: 38418561 PMCID: PMC10901835 DOI: 10.1038/s41540-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024] Open
Abstract
Engagement of the T cell receptor (TCR) triggers molecular reprogramming leading to the acquisition of specialized effector functions by CD4 helper and CD8 cytotoxic T cells. While transcription factors, chemokines, and cytokines are known drivers in this process, the temporal proteomic and transcriptomic changes that regulate different stages of human primary T cell activation remain to be elucidated. Here, we report an integrative temporal proteomic and transcriptomic analysis of primary human CD4 and CD8 T cells following ex vivo stimulation with anti-CD3/CD28 beads, which revealed major transcriptome-proteome uncoupling. The early activation phase in both CD4 and CD8 T cells was associated with transient downregulation of the mRNA transcripts and protein of the central glucose transport GLUT1. In the proliferation phase, CD4 and CD8 T cells became transcriptionally more divergent while their proteome became more similar. In addition to the kinetics of proteome-transcriptome correlation, this study unveils selective transcriptional and translational metabolic reprogramming governing CD4 and CD8 T cell responses to TCR stimulation. This temporal transcriptome/proteome map of human T cell activation provides a reference map exploitable for future discovery of biomarkers and candidates targeting T cell responses.
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Yide Wong
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jinjin Chen
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | | - Oscar Haigh
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Thomas S Watkins
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - John J Miles
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
- Institute for Glycomics, Griffith Univeristy, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Hu Y, Recouvreux MS, Haro M, Taylan E, Taylor-Harding B, Walts AE, Karlan BY, Orsulic S. INHBA(+) cancer-associated fibroblasts generate an immunosuppressive tumor microenvironment in ovarian cancer. NPJ Precis Oncol 2024; 8:35. [PMID: 38360876 PMCID: PMC10869703 DOI: 10.1038/s41698-024-00523-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Effective targeting of cancer-associated fibroblasts (CAFs) is hindered by the lack of specific biomarkers and a poor understanding of the mechanisms by which different populations of CAFs contribute to cancer progression. While the role of TGFβ in CAFs is well-studied, less attention has been focused on a structurally and functionally similar protein, Activin A (encoded by INHBA). Here, we identified INHBA(+) CAFs as key players in tumor promotion and immunosuppression. Spatiotemporal analyses of patient-matched primary, metastatic, and recurrent ovarian carcinomas revealed that aggressive metastatic tumors enriched in INHBA(+) CAFs were also enriched in regulatory T cells (Tregs). In ovarian cancer mouse models, intraperitoneal injection of the Activin A neutralizing antibody attenuated tumor progression and infiltration with pro-tumorigenic subsets of myofibroblasts and macrophages. Downregulation of INHBA in human ovarian CAFs inhibited pro-tumorigenic CAF functions. Co-culture of human ovarian CAFs and T cells revealed the dependence of Treg differentiation on direct contact with INHBA(+) CAFs. Mechanistically, INHBA/recombinant Activin A in CAFs induced the autocrine expression of PD-L1 through SMAD2-dependent signaling, which promoted Treg differentiation. Collectively, our study identified an INHBA(+) subset of immunomodulatory pro-tumoral CAFs as a potential therapeutic target in advanced ovarian cancers which typically show a poor response to immunotherapy.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcela Haro
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- United States Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
8
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Nobs SP, Kolodziejczyk AA, Adler L, Horesh N, Botscharnikow C, Herzog E, Mohapatra G, Hejndorf S, Hodgetts RJ, Spivak I, Schorr L, Fluhr L, Kviatcovsky D, Zacharia A, Njuki S, Barasch D, Stettner N, Dori-Bachash M, Harmelin A, Brandis A, Mehlman T, Erez A, He Y, Ferrini S, Puschhof J, Shapiro H, Kopf M, Moussaieff A, Abdeen SK, Elinav E. Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes. Nature 2023; 624:645-652. [PMID: 38093014 PMCID: PMC10733144 DOI: 10.1038/s41586-023-06803-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/31/2023] [Indexed: 12/22/2023]
Abstract
People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksandra A Kolodziejczyk
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- International Institute of Molecular and Cellular Biology, Warsaw, Poland
| | - Lital Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Horesh
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of General Surgery and Transplantations, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ella Herzog
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sophia Hejndorf
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ryan-James Hodgetts
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Lena Schorr
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Leviel Fluhr
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Denise Kviatcovsky
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Anish Zacharia
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzanne Njuki
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dinorah Barasch
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Mally Dori-Bachash
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yiming He
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Ferrini
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Hagit Shapiro
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Arieh Moussaieff
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
10
|
Freshour SL, Chen THP, Fisk B, Shen H, Mosior M, Skidmore ZL, Fronick C, Bolzenius JK, Griffith OL, Arora VK, Griffith M. Endothelial cells are a key target of IFN-g during response to combined PD-1/CTLA-4 ICB treatment in a mouse model of bladder cancer. iScience 2023; 26:107937. [PMID: 37810214 PMCID: PMC10558731 DOI: 10.1016/j.isci.2023.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.
Collapse
Affiliation(s)
- Sharon L. Freshour
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy H.-P. Chen
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bryan Fisk
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Haolin Shen
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Mosior
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Skidmore
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer K. Bolzenius
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Obi L. Griffith
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vivek K. Arora
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Malachi Griffith
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Wright M, Smed MK, Nelson JL, Olsen J, Hetland ML, Jewell NP, Zoffmann V, Jawaheer D. Pre-pregnancy gene expression signatures are associated with subsequent improvement/worsening of rheumatoid arthritis during pregnancy. Arthritis Res Ther 2023; 25:191. [PMID: 37794420 PMCID: PMC10548620 DOI: 10.1186/s13075-023-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND While many women with rheumatoid arthritis (RA) improve during pregnancy and others worsen, there are no biomarkers to predict this improvement or worsening. In our unique RA pregnancy cohort that includes a pre-pregnancy baseline, we have examined pre-pregnancy gene co-expression networks to identify differences between women with RA who subsequently improve during pregnancy and those who worsen. METHODS Blood samples were collected before pregnancy (T0) from 19 women with RA and 13 healthy women enrolled in our prospective pregnancy cohort. RA improvement/worsening between T0 and 3rd trimester was assessed by changes in the Clinical Disease Activity Index (CDAI). Pre-pregnancy expression profiles were examined by RNA sequencing and differential gene expression analysis. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules correlated with the improvement/worsening of RA during pregnancy and to assess their functional relevance. RESULTS Of the 19 women with RA, 14 improved during pregnancy (RAimproved) while 5 worsened (RAworsened). At the T0 baseline, however, the mean CDAI was similar between the two groups. WGCNA identified one co-expression module related to B cell function that was significantly correlated with the worsening of RA during pregnancy and was significantly enriched in genes differentially expressed between the RAimproved and RAworsened groups. A neutrophil-related expression signature was also identified in the RAimproved group at the T0 baseline. CONCLUSION The pre-pregnancy gene expression signatures identified represent potential biomarkers to predict the subsequent improvement/worsening of RA during pregnancy, which has important implications for the personalized treatment of RA during pregnancy.
Collapse
Affiliation(s)
- Matthew Wright
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - J Lee Nelson
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Jørn Olsen
- University of California Los Angeles, Los Angeles, CA, USA
- Aarhus University Hospital, Aarhus, Denmark
| | - Merete Lund Hetland
- DANBIO Registry and Copenhagen Centre for Arthritis Research, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Vibeke Zoffmann
- Juliane Marie Centeret, Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Damini Jawaheer
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
- Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Abstract
Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
- Current affiliation: Department of Medicine, Department of Pathology, Microbiology, and Immunology, and Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Alexey Sergushichev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
| |
Collapse
|
13
|
Freshour SL, Chen THP, Fisk B, Shen H, Mosior M, Skidmore ZL, Fronick C, Bolzenius JK, Griffith OL, Arora VK, Griffith M. Endothelial cells are a key target of IFN-g during response to combined PD-1/CTLA-4 ICB treatment in a mouse model of bladder cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534561. [PMID: 37034778 PMCID: PMC10081275 DOI: 10.1101/2023.03.28.534561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.
Collapse
Affiliation(s)
- Sharon L. Freshour
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy H.-P. Chen
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bryan Fisk
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Haolin Shen
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Mosior
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Skidmore
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer K. Bolzenius
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Obi L. Griffith
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vivek K. Arora
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Malachi Griffith
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Lead Contact
| |
Collapse
|
14
|
Tang K, Tang J, Zeng J, Shen W, Zou M, Zhang C, Sun Q, Ye X, Li C, Sun C, Liu S, Jiang G, Du X. A network view of human immune system and virus-human interaction. Front Immunol 2022; 13:997851. [PMID: 36389817 PMCID: PMC9643829 DOI: 10.3389/fimmu.2022.997851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system is highly networked and complex, which is continuously changing as encountering old and new pathogens. However, reductionism-based researches do not give a systematic understanding of the molecular mechanism of the immune response and viral pathogenesis. Here, we present HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network, containing > 11,000 protein-coding genes with > 78,000 interactions. The network topology and functional characteristics analyses of the immune-related genes (IRGs) reveal that IRGs are mostly located in the center of the network and link genes of diverse biological processes, which may reflect the gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal that pan-viral targets are mostly hubs, located in the center of the network and enriched in fundamental biological processes, but not for coronavirus. Finally, gene age effect was analyzed from the view of the host network for IRGs and virally-targeted genes (VTGs) during evolution, with IRGs gradually became hubs and integrated into host network through bridging functionally differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource for gaining a better understanding of the composition and evolution of human immune system, as well as the pathogenesis of viruses.
Collapse
Affiliation(s)
- Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jing Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wei Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiangjun Du,
| |
Collapse
|
15
|
Che JLC, Bode D, Kucinski I, Cull AH, Bain F, Becker HJ, Jassinskaja M, Barile M, Boyd G, Belmonte M, Zeng AGX, Igarashi KJ, Rubio‐Lara J, Shepherd MS, Clay A, Dick JE, Wilkinson AC, Nakauchi H, Yamazaki S, Göttgens B, Kent DG. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep 2022; 23:e55502. [PMID: 35971894 PMCID: PMC9535767 DOI: 10.15252/embr.202255502] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.
Collapse
Affiliation(s)
- James L C Che
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Iwo Kucinski
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Alyssa H Cull
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Fiona Bain
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Hans J Becker
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Melania Barile
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Grace Boyd
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Andy G X Zeng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyomi J Igarashi
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Juan Rubio‐Lara
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - John E Dick
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hiromitsu Nakauchi
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Laboratory of Stem Cell Therapy, Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
16
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
17
|
Primary Infection by E. multilocularis Induces Distinct Patterns of Cross Talk between Hepatic Natural Killer T Cells and Regulatory T Cells in Mice. Infect Immun 2022; 90:e0017422. [PMID: 35862712 PMCID: PMC9387288 DOI: 10.1128/iai.00174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans, with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models, indicating that an appropriate adaptive immune response is required for the control of the disease. However, cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients, the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points, downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
Collapse
|
18
|
Wang L, Yang Y, Ma H, Xie Y, Xu J, Near D, Wang H, Garbutt T, Li Y, Liu J, Qian L. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc Res 2022; 118:1548-1563. [PMID: 33839759 PMCID: PMC9074971 DOI: 10.1093/cvr/cvab134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS The precise cellular identity and molecular features of non-myocytes (non-CMs) in a mammalian heart at a single-cell level remain elusive. Depiction of epigenetic landscape with transcriptomic signatures using the latest single-cell multi-omics has the potential to unravel the molecular programs underlying the cellular diversity of cardiac non-myocytes. Here, we characterized the molecular and cellular features of cardiac non-CM populations in the adult murine heart at the single-cell level. METHODS AND RESULTS Through single-cell dual omics analysis, we mapped the epigenetic landscapes, characterized the transcriptomic profiles and delineated the molecular signatures of cardiac non-CMs in the adult murine heart. Distinct cis-regulatory elements and trans-acting factors for the individual major non-CM cell types (endothelial cells, fibroblast, pericytes, and immune cells) were identified. In particular, unbiased sub-clustering and functional annotation of cardiac fibroblasts (FBs) revealed extensive FB heterogeneity and identified FB sub-types with functional states related to the cellular response to stimuli, cytoskeleton organization, and immune regulation, respectively. We further explored the function of marker genes Hsd11b1 and Gfpt2 that label major FB subpopulations and determined the distribution of Hsd11b1+ and Gfp2+ FBs in murine healthy and diseased hearts. CONCLUSIONS In summary, we characterized the non-CM cellular identity at the transcriptome and epigenome levels using single-cell omics approaches and discovered previously unrecognized cardiac fibroblast subpopulations with unique functional states.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Ma
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jun Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Near
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tiffany Garbutt
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Rd, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Prendergast CT, Benson RA, Scales HE, Bonilha CS, Cole JJ, McInnes I, Brewer JM, Garside P. Dissecting the molecular control of immune cell accumulation in the inflamed joint. JCI Insight 2022; 7:e151281. [PMID: 35192549 PMCID: PMC9057592 DOI: 10.1172/jci.insight.151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mechanisms governing entry and exit of immune cells into and out of inflamed joints remain poorly understood. We sought herein to identify the key molecular pathways regulating such migration. Using murine models of inflammation in conjunction with mice expressing a photoconvertible fluorescent protein, we characterized the migration of cells from joints to draining lymph nodes and performed RNA-Seq analysis on isolated cells, identifying genes associated with migration and retention. We further refined the gene list to those specific for joint inflammation. RNA-Seq data revealed pathways and genes previously highlighted as characteristic of rheumatoid arthritis in patient studies, validating the methodology. Focusing on pathways associated with cell migration, adhesion, and movement, we identified genes involved in the retention of immune cells in the inflamed joint, namely junctional adhesion molecule A (JAM-A), and identified a role for such molecules in T cell differentiation in vivo. Thus, using a combination of cell-tracking approaches and murine models of inflammatory arthritis, we identified genes, pathways, and anatomically specific tissue signatures regulating cell migration in a variety of inflamed sites. This skin- and joint-specific data set will be an invaluable resource for the identification of therapeutic targets for arthritis and other inflammatory disorders.
Collapse
|
20
|
Field MA. Bioinformatic Challenges Detecting Genetic Variation in Precision Medicine Programs. Front Med (Lausanne) 2022; 9:806696. [PMID: 35463004 PMCID: PMC9024231 DOI: 10.3389/fmed.2022.806696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Precision medicine programs to identify clinically relevant genetic variation have been revolutionized by access to increasingly affordable high-throughput sequencing technologies. A decade of continual drops in per-base sequencing costs means it is now feasible to sequence an individual patient genome and interrogate all classes of genetic variation for < $1,000 USD. However, while advances in these technologies have greatly simplified the ability to obtain patient sequence information, the timely analysis and interpretation of variant information remains a challenge for the rollout of large-scale precision medicine programs. This review will examine the challenges and potential solutions that exist in identifying predictive genetic biomarkers and pharmacogenetic variants in a patient and discuss the larger bioinformatic challenges likely to emerge in the future. It will examine how both software and hardware development are aiming to overcome issues in short read mapping, variant detection and variant interpretation. It will discuss the current state of the art for genetic disease and the remaining challenges to overcome for complex disease. Success across all types of disease will require novel statistical models and software in order to ensure precision medicine programs realize their full potential now and into the future.
Collapse
Affiliation(s)
- Matt A. Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- *Correspondence: Matt A. Field
| |
Collapse
|
21
|
Deng N, Wu C, Yaseen A, Wu H. ImmuneData: an integrated data discovery system for immunology data repositories. Database (Oxford) 2022; 2022:6545458. [PMID: 35262674 DOI: 10.1093/database/baac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 11/14/2022]
Abstract
To meet the increasing demand for data sharing, data reuse and meta-analysis in the immunology research community, we have developed the data discovery system ImmuneData. The system provides integrated access to five immunology data repositories funded by the National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplantation, including ImmPort, ImmuneSpace, ITN TrialShare, ImmGen and IEDB. ImmuneData restructures the data repositories' metadata into a uniform schema using domain experts' knowledge and state-of-the-art Natural Language Processing (NLP) technologies. It comes with a user-friendly web interface, accessible at http://www.immunedata.org/, and a Google-like search engine for biological researchers to find and access data easily. The vast quantity of synonyms used in biomedical research increase the likelihood of incomplete search results. Thus, our search engine converts queries submitted by users into ontology terms, which are then expended by NLP technologies to ensure that the search results will include all synonyms for a particular concept. The system also includes an advanced search function to build customized queries to meet higher-level users' needs. ImmuneData ensures the FAIR principle (Findability, Accessibility, Interoperability and Reusability) of the five data repositories to benefit data reuse in the immunology research community. The data pipeline constructing our system can be extended to other data repositories to build a more comprehensive biological data discovery system. DATABASE URL http://www.immunedata.org/.
Collapse
Affiliation(s)
- Nan Deng
- Clinical Cancer Prevention Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Canglin Wu
- TechWave International, Inc., Houston, TX 77077, USA
| | - Ashraf Yaseen
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Single-cell analysis of skin immune cells reveals an Angptl4-ifi20b axis that regulates monocyte differentiation during wound healing. Cell Death Dis 2022; 13:180. [PMID: 35210411 PMCID: PMC8873364 DOI: 10.1038/s41419-022-04638-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023]
Abstract
AbstractThe persistent inflammatory response at the wound site is a cardinal feature of nonhealing wounds. Prolonged neutrophil presence in the wound site due to failed clearance by reduced monocyte-derived macrophages delays the transition from the inflammatory to the proliferative phase of wound healing. Angiopoietin-like 4 protein (Angptl4) is a matricellular protein that has been implicated in many inflammatory diseases. However, its precise role in the immune cell response during wound healing remains unclear. Therefore, we performed flow cytometry and single-cell RNA sequencing to examine the immune cell landscape of excisional wounds from Angptl4+/+ and Angptl4−/− mice. Chemotactic immune cell recruitment and infiltration were not compromised due to Angptl4 deficiency. However, as wound healing progresses, Angptl4−/− wounds have a prolonged neutrophil presence and fewer monocyte-derived macrophages than Angptl4+/+ and Angptl4LysM−/− wounds. The underlying mechanism involves a novel Angptl4-interferon activated gene 202B (ifi202b) axis that regulates monocyte differentiation to macrophages, coordinating neutrophil removal and inflammation resolution. An unbiased kinase inhibitor screen revealed an Angptl4-mediated kinome signaling network involving S6K, JAK, and CDK, among others, that modulates the expression of ifi202b. Silencing ifi202b in Angptl4−/− monocytes, whose endogenous expression was elevated, rescued the impaired monocyte-to-macrophage transition in the in vitro reconstituted wound microenvironment using wound exudate. GSEA and IPA functional analyses revealed that ifi202b-associated canonical pathways and functions involved in the inflammatory response and monocyte cell fate were enriched. Together, we identified ifi202b as a key gatekeeper of monocyte differentiation. By modulating ifi202b expression, Angptl4 orchestrates the inflammatory state, innate immune landscape, and wound healing process.
Collapse
|
23
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
24
|
Bolis M, Bossi D, Vallerga A, Ceserani V, Cavalli M, Impellizzieri D, Di Rito L, Zoni E, Mosole S, Elia AR, Rinaldi A, Pereira Mestre R, D’Antonio E, Ferrari M, Stoffel F, Jermini F, Gillessen S, Bubendorf L, Schraml P, Calcinotto A, Corey E, Moch H, Spahn M, Thalmann G, Kruithof-de Julio M, Rubin MA, Theurillat JPP. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun 2021; 12:7033. [PMID: 34857732 PMCID: PMC8640014 DOI: 10.1038/s41467-021-26840-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.
Collapse
Affiliation(s)
- Marco Bolis
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI, 6500, Switzerland. .,Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156, Milano, Italy. .,Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, 6500, Bellinzona, Switzerland.
| | - Daniela Bossi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Arianna Vallerga
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI 6500 Bellinzona, Switzerland
| | - Valentina Ceserani
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Manuela Cavalli
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Daniela Impellizzieri
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Laura Di Rito
- grid.4527.40000000106678902Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche ‘Mario Negri’ IRCCS, 20156 Milano, Italy
| | - Eugenio Zoni
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Simone Mosole
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Angela Rita Elia
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Andrea Rinaldi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Ricardo Pereira Mestre
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Eugenia D’Antonio
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Matteo Ferrari
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Flavio Stoffel
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Fernando Jermini
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Silke Gillessen
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, University of Southern Switzerland (USI), TI 6900 Lugano, Switzerland
| | - Lukas Bubendorf
- grid.410567.1Institute of Surgical Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Peter Schraml
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Arianna Calcinotto
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA 98195 USA
| | - Holger Moch
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martin Spahn
- grid.415941.c0000 0004 0509 4333Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland
| | - George Thalmann
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Bern Center for Precision Medicine, University of Bern and Inselspital, 3012 Bern, Switzerland
| | - Jean-Philippe P. Theurillat
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| |
Collapse
|
25
|
Hong T, Parameswaran S, Donmez OA, Miller D, Forney C, Lape M, Saint Just Ribeiro M, Liang J, Edsall LE, Magnusen AF, Miller W, Chepelev I, Harley JB, Zhao B, Kottyan LC, Weirauch MT. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res 2021; 31:2185-2198. [PMID: 34799401 PMCID: PMC8647835 DOI: 10.1101/gr.264705.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Collapse
Affiliation(s)
- Ted Hong
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Michael Lape
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Albert F Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - William Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio 45229, USA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
26
|
George TB, Strawn NK, Leviyang S. Tree-Based Co-Clustering Identifies Chromatin Accessibility Patterns Associated With Hematopoietic Lineage Structure. Front Genet 2021; 12:707117. [PMID: 34659332 PMCID: PMC8517275 DOI: 10.3389/fgene.2021.707117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
Chromatin accessibility, as measured by ATACseq, varies between hematopoietic cell types in different lineages of the hematopoietic differentiation tree, e.g. T cells vs. B cells, but methods that associate variation in chromatin accessibility to the lineage structure of the differentiation tree are lacking. Using an ATACseq dataset recently published by the ImmGen consortium, we construct associations between chromatin accessibility and hematopoietic cell types using a novel co-clustering approach that accounts for the structure of the hematopoietic, differentiation tree. Under a model in which all loci and cell types within a co-cluster have a shared accessibility state, we show that roughly 80% of cell type associated accessibility variation can be captured through 12 cell type clusters and 20 genomic locus clusters, with the cell type clusters reflecting coherent components of the differentiation tree. Using publicly available ChIPseq datasets, we show that our clustering reflects transcription factor binding patterns with implications for regulation across cell types. We show that traditional methods such as hierarchical and kmeans clusterings lead to cell type clusters that are more dispersed on the tree than our tree-based algorithm. We provide a python package, chromcocluster, that implements the algorithms presented.
Collapse
Affiliation(s)
| | | | - Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| |
Collapse
|
27
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
28
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
29
|
Defective Epstein-Barr Virus Genomes and Atypical Viral Gene Expression in B-Cell Lines Derived from Multiple Myeloma Patients. J Virol 2021; 95:e0008821. [PMID: 33883224 DOI: 10.1128/jvi.00088-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus that is causally associated with various lymphomas and carcinomas. Although EBV is not typically associated with multiple myeloma (MM), it can be found in some B-cell lines derived from MM patients. Here, we analyzed two EBV-positive MM-patient-derived cell lines, IM9 and ARH77, and found defective viral genomes and atypical viral gene expression patterns. We performed transcriptome sequencing to characterize the viral and cellular properties of the two EBV-positive cell lines, compared to the canonical MM cell line 8226. Principal-component analyses indicated that IM9 and ARH77 clustered together and distinct from 8226. Immunological Genome Project analysis designated these cells as stem cell and bone marrow derived. IM9 and ARH77 displayed atypical viral gene expression, including leaky lytic cycle gene expression with an absence of lytic DNA amplification. Genome sequencing revealed that the EBV genomes in ARH77 contain large deletions, while IM9 has copy number losses in multiple EBV loci. Both IM9 and ARH77 showed EBV genome heterogeneity, suggesting cells harboring multiple and variant viral genomes. We identified atypical high-level expression of lytic genes BLRF1 and BLRF2. We demonstrated that short hairpin RNA (shRNA) depletion of BLRF2 altered viral and host gene expression, including a reduction in lytic gene activation and DNA amplification. These findings demonstrate that aberrant viral genomes and lytic gene expression persist in rare B cells derived from MM tumors, and they suggest that EBV may contribute to the etiology of MM. IMPORTANCE EBV is an oncogenic herpesvirus, but its mechanisms of oncogenesis are not fully understood. A role for EBV in MM has not yet been established. We analyzed EBV-positive B-cell lines derived from MM patients and found that the cells harbored defective viral genomes with aberrant viral gene expression patterns and cell gene signatures for bone marrow-derived lymphoid stem cells. These findings suggest that aberrant EBV latent infection may contribute to the etiology of MM.
Collapse
|
30
|
Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. ACTA ACUST UNITED AC 2021; 2:723-740. [DOI: 10.1038/s43018-021-00201-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
AbstractThe dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response. We define the IDH-dependent tumor education of infiltrating macrophages to be causally related to a complex re-orchestration of tryptophan metabolism, resulting in activation of the aryl hydrocarbon receptor. We further show that the altered metabolism of IDH-mutant gliomas maintains this axis in bystander cells and that pharmacological inhibition of tryptophan metabolism can reverse immunosuppression. In conclusion, we provide evidence of a glioma genotype-dependent intratumoral network of resident and recruited myeloid cells and identify tryptophan metabolism as a target for immunotherapy of IDH-mutant tumors.
Collapse
|
31
|
Goods BA, Askenase MH, Markarian E, Beatty HE, Drake RS, Fleming I, DeLong JH, Philip NH, Matouk CC, Awad IA, Zuccarello M, Hanley DF, Love JC, Shalek AK, Sansing LH. Leukocyte dynamics after intracerebral hemorrhage in a living patient reveal rapid adaptations to tissue milieu. JCI Insight 2021; 6:145857. [PMID: 33749664 PMCID: PMC8026179 DOI: 10.1172/jci.insight.145857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here, we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Hemorrhage Evacuation trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-Seq (scRNA-Seq), this is the first report to our knowledge that characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution. Our analysis revealed shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic rebleed that our transcriptional data indicated occurred prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods such as scRNA-Seq would enable greater understanding of complex intracerebral events.
Collapse
Affiliation(s)
- Brittany A. Goods
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael H. Askenase
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erica Markarian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hannah E. Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Riley S. Drake
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ira Fleming
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan H. DeLong
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Charles C. Matouk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Issam A. Awad
- Department of Neurosurgery, University of Chicago, Chicago, Illinois, USA
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel F. Hanley
- Brain Injury Outcomes Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - J. Christopher Love
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alex K. Shalek
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Ragon Institute, Harvard University, Massachusetts Institute of Technology, and Massachusetts General Hospital, Cambridge, Massachusetts, USA
- Division of Health Science and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology and
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
32
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Nikolai BC, Jain P, Cardenas DL, York B, Feng Q, McKenna NJ, Dasgupta S, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 (SRC-3/AIB1) is enriched and functional in mouse and human Tregs. Sci Rep 2021; 11:3441. [PMID: 33564037 PMCID: PMC7873281 DOI: 10.1038/s41598-021-82945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of CD4 + lymphocytes, regulatory T cells (Tregs), are necessary for central tolerance and function as suppressors of autoimmunity against self-antigens. The SRC-3 coactivator is an oncogene in multiple cancers and is capable of potentiating numerous transcription factors in a wide variety of cell types. Src-3 knockout mice display broad lymphoproliferation and hypersensitivity to systemic inflammation. Using publicly available bioinformatics data and directed cellular approaches, we show that SRC-3 also is highly enriched in Tregs in mice and humans. Human Tregs lose phenotypic characteristics when SRC-3 is depleted or pharmacologically inhibited, including failure of induction from resting T cells and loss of the ability to suppress proliferation of stimulated T cells. These data support a model for SRC-3 as a coactivator that actively participates in protection from autoimmunity and may support immune evasion of cancers by contributing to the biology of Tregs.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Prashi Jain
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David L Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
35
|
Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun Biol 2020; 3:524. [PMID: 32963283 PMCID: PMC7508838 DOI: 10.1038/s42003-020-01246-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
The omentum is the most common site of ovarian cancer metastasis. Immune cell clusters called milky spots are found throughout the omentum. It is however unknown if these immune cells contribute to ovarian cancer metastasis. Here we report that omental macrophages promote the migration and colonization of ovarian cancer cells to the omentum through the secretion of chemokine ligands that interact with chemokine receptor 1 (CCR1). We found that depletion of macrophages reduces ovarian cancer colonization of the omentum. RNA-sequencing of macrophages isolated from mouse omentum and mesenteric adipose tissue revealed a specific enrichment of chemokine ligand CCL6 in omental macrophages. CCL6 and the human homolog CCL23 were both necessary and sufficient to promote ovarian cancer migration by activating ERK1/2 and PI3K pathways. Importantly, inhibition of CCR1 reduced ovarian cancer colonization. These findings demonstrate a critical mechanism of omental macrophage induced colonization by ovarian cancer cells via CCR1 signaling. Krishnan et al. find that CCR1 ligands CCL6 and CCL23 secreted by murine and human macrophages, respectively, enhance metastatic colonization of ovarian cancer cells to the omentum in manner dependent on chemokine receptor 1 (CCR1). This study suggests that targeting CCR1 or CCL23 in ovarian cancer may be a therapeutic strategy.
Collapse
|
36
|
Olson WJ, Jakic B, Labi V, Schoeler K, Kind M, Klepsch V, Baier G, Hermann-Kleiter N. Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation through Regulation of IL-21. Cell Rep 2020; 28:2878-2891.e5. [PMID: 31509749 PMCID: PMC6791812 DOI: 10.1016/j.celrep.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are specialized in helping B cells during the germinal center (GC) reaction and ultimately promote long-term humoral immunity. Here we report that loss of the nuclear orphan receptor NR2F6 causes enhanced survival and accumulation of Tfh cells, GC B cells, and plasma cells (PCs) following T cell-dependent immunization. Nr2f6-deficient CD4 T cell dysfunction is the primary cause of cell accumulation. Cytokine expression in Nr2f6-deficient Tfh cells is dysregulated, and Il21 expression is enhanced. Mechanistically, NR2F6 binds directly to the interleukin 21 (IL-21) promoter and a conserved noncoding sequence (CNS) near the Il21 gene in resting CD4+ T cells. During Tfh cell differentiation, this direct NR2F6 DNA interaction is abolished. Enhanced Tfh cell accumulation in Nr2f6-deficient mice can be reverted by blocking IL-21R signaling. Thus, NR2F6 is a critical negative regulator of IL-21 cytokine production in Tfh cells and prevents excessive Tfh cell accumulation. Loss of NR2F6 results in accumulation of Tfh, GC B, and plasma cells after immunization Increased GC populations depend on Nr2f6 loss within the CD4 compartment NR2F6 directly binds to several sites within the Il21 promoter and CNS −36 NR2F6 restrains Il21 expression in CD4 cells; IL-21R blockade reduces Tfh accumulation
Collapse
Affiliation(s)
- William J Olson
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Michaela Kind
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Victoria Klepsch
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Hao Shi, Yan KK, Ding L, Qian C, Chi H, Yu J. Network Approaches for Dissecting the Immune System. iScience 2020; 23:101354. [PMID: 32717640 PMCID: PMC7390880 DOI: 10.1016/j.isci.2020.101354] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
The immune system is a complex biological network composed of hierarchically organized genes, proteins, and cellular components that combat external pathogens and monitor the onset of internal disease. To meet and ultimately defeat these challenges, the immune system orchestrates an exquisitely complex interplay of numerous cells, often with highly specialized functions, in a tissue-specific manner. One of the major methodologies of systems immunology is to measure quantitatively the components and interaction levels in the immunologic networks to construct a computational network and predict the response of the components to perturbations. The recent advances in high-throughput sequencing techniques have provided us with a powerful approach to dissecting the complexity of the immune system. Here we summarize the latest progress in integrating omics data and network approaches to construct networks and to infer the underlying signaling and transcriptional landscape, as well as cell-cell communication, in the immune system, with a focus on hematopoiesis, adaptive immunity, and tumor immunology. Understanding the network regulation of immune cells has provided new insights into immune homeostasis and disease, with important therapeutic implications for inflammation, cancer, and other immune-mediated disorders.
Collapse
Affiliation(s)
- Hao Shi
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Koon-Kiu Yan
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chenxi Qian
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
38
|
Guo X, Pan Y, Gutmann DH. Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol 2020; 21:1250-1262. [PMID: 31111915 DOI: 10.1093/neuonc/noz080] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the clinical hallmarks of low-grade gliomas (LGGs) arising in children with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is significant clinical variability with respect to tumor growth, associated neurologic deficits, and response to therapy. Numerous factors could contribute to this clinical heterogeneity, including the tumor cell of origin, the specific germline NF1 gene mutation, and the coexistence of additional genomic alterations. Since human specimens are rarely acquired, and have proven difficult to maintain in vitro or as xenografts in vivo, we have developed a series of Nf1 mutant optic glioma mouse strains representing each of these contributing factors. METHODS Optic glioma stem cells (o-GSCs) were generated from this collection of Nf1 genetically engineered mice, and analyzed for their intrinsic growth properties, as well as the production of chemokines that could differentially attract T cells and microglia. RESULTS The observed differences in Nf1 optic glioma growth are not the result of cell autonomous growth properties of o-GSCs, but rather the unique patterns of o-GSC chemokine expression, which differentially attract T cells and microglia. This immune profile collectively dictates the levels of chemokine C-C ligand 5 (Ccl5) expression, the key stromal factor that drives murine Nf1 optic glioma growth. CONCLUSIONS These findings reveal that genetic and genomic alterations create murine LGG biological heterogeneity through the differential recruitment of T cells and microglia by o-GSC-produced chemokines, which ultimately determine the expression of stromal factors that drive tumor growth.
Collapse
Affiliation(s)
- Xiaofan Guo
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yuan Pan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
39
|
Dhillon BK, Smith M, Baghela A, Lee AHY, Hancock REW. Systems Biology Approaches to Understanding the Human Immune System. Front Immunol 2020; 11:1683. [PMID: 32849587 PMCID: PMC7406790 DOI: 10.3389/fimmu.2020.01683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Systems biology is an approach to interrogate complex biological systems through large-scale quantification of numerous biomolecules. The immune system involves >1,500 genes/proteins in many interconnected pathways and processes, and a systems-level approach is critical in broadening our understanding of the immune response to vaccination. Changes in molecular pathways can be detected using high-throughput omics datasets (e.g., transcriptomics, proteomics, and metabolomics) by using methods such as pathway enrichment, network analysis, machine learning, etc. Importantly, integration of multiple omic datasets is becoming key to revealing novel biological insights. In this perspective article, we highlight the use of protein-protein interaction (PPI) networks as a multi-omics integration approach to unravel information flow and mechanisms during complex biological events, with a focus on the immune system. This involves a combination of tools, including: InnateDB, a database of curated interactions between genes and protein products involved in the innate immunity; NetworkAnalyst, a visualization and analysis platform for InnateDB interactions; and MetaBridge, a tool to integrate metabolite data into PPI networks. The application of these systems techniques is demonstrated for a variety of biological questions, including: the developmental trajectory of neonates during the first week of life, mechanisms in host-pathogen interaction, disease prognosis, biomarker discovery, and drug discovery and repurposing. Overall, systems biology analyses of omics data have been applied to a variety of immunology-related questions, and here we demonstrate the numerous ways in which PPI network analysis can be a powerful tool in contributing to our understanding of the immune system and the study of vaccines.
Collapse
Affiliation(s)
- Bhavjinder K. Dhillon
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Maren Smith
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Y. Lee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Field MA. Detecting pathogenic variants in autoimmune diseases using high-throughput sequencing. Immunol Cell Biol 2020; 99:146-156. [PMID: 32623783 PMCID: PMC7891608 DOI: 10.1111/imcb.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Sequencing the first human genome in 2003 took 15 years and cost $2.7 billion. Advances in sequencing technologies have since decreased costs to the point where it is now feasible to resequence a whole human genome for $1000 in a single day. These advances have allowed the generation of huge volumes of high‐quality human sequence data used to construct increasingly large catalogs of both population‐level and disease‐causing variation. The existence of such databases, coupled with a high‐quality human reference genome, means we are able to interrogate and annotate all types of genetic variation and identify pathogenic variants for many diseases. Increasingly, sequencing‐based approaches are being used to elucidate the underlying genetic cause of autoimmune diseases, a group of roughly 80 polygenic diseases characterized by abnormal immune responses where healthy tissue is attacked. Although sequence data generation has become routine and affordable, significant challenges remain with no gold‐standard methodology to identify pathogenic variants currently available. This review examines the latest methodologies used to identify pathogenic variants in autoimmune diseases and considers available sequencing options and subsequent bioinformatic methodologies and strategies. The development of reliable and robust sequencing and analytic workflows to detect pathogenic variants is critical to realize the potential of precision medicine programs where patient variant information is used to inform clinical practice.
Collapse
Affiliation(s)
- Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
41
|
Ahad A, Smita S, Mishra GP, Biswas VK, Sen K, Gupta B, Garcin D, Acha‐Orbea H, Raghav SK. NCoR1 fine‐tunes type‐I IFN response in cDC1 dendritic cells by directly regulating Myd88‐IRF7 axis under TLR9. Eur J Immunol 2020; 50:1959-1975. [DOI: 10.1002/eji.202048566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Abdul Ahad
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- Manipal Academy of Higher Education Manipal India
| | - Shuchi Smita
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- Manipal Academy of Higher Education Manipal India
| | - Gyan Prakash Mishra
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT) Bhubaneswar India
| | - Viplov Kumar Biswas
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT) Bhubaneswar India
| | - Kaushik Sen
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- Regional Centre for Biotechnology NCR Biotech Science Cluster Faridabad India
| | - Bhawna Gupta
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT) Bhubaneswar India
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine University of Geneva (UNIGE) Geneva Switzerland
| | - Hans Acha‐Orbea
- Department of Biochemistry CIIL University of Lausanne (UNIL) Epalinges Switzerland
| | - Sunil K. Raghav
- Immuno‐genomics & Systems Biology Laboratory Institute of Life Sciences (ILS) Bhubaneswar India
- Manipal Academy of Higher Education Manipal India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT) Bhubaneswar India
- Regional Centre for Biotechnology NCR Biotech Science Cluster Faridabad India
| |
Collapse
|
42
|
Chen GM, Azzam A, Ding YY, Barrett DM, Grupp SA, Tan K. Dissecting the Tumor-Immune Landscape in Chimeric Antigen Receptor T-cell Therapy: Key Challenges and Opportunities for a Systems Immunology Approach. Clin Cancer Res 2020; 26:3505-3513. [PMID: 32127393 PMCID: PMC7367708 DOI: 10.1158/1078-0432.ccr-19-3888] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/15/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
The adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells has opened a new frontier in cancer therapy. Unlike the paradigm of targeted therapies, the efficacy of CAR T-cell therapy depends not only on the choice of target but also on a complex interplay of tumor, immune, and stromal cell communication. This presents both challenges and opportunities from a discovery standpoint. Whereas cancer consortia have traditionally focused on the genomic, transcriptomic, epigenomic, and proteomic landscape of cancer cells, there is an increasing need to expand studies to analyze the interactions between tumor, immune, and stromal cell populations in their relevant anatomical and functional compartments. Here, we focus on the promising application of systems biology to address key challenges in CAR T-cell therapy, from understanding the mechanisms of therapeutic resistance in hematologic and solid tumors to addressing important clinical challenges in biomarker discovery and therapeutic toxicity. We propose a systems biology view of key clinical objectives in CAR T-cell therapy and suggest a path forward for a biomedical discovery process that leverages modern technological approaches in systems biology.
Collapse
Affiliation(s)
- Gregory M Chen
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Azzam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yang-Yang Ding
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David M Barrett
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Oncology, Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
44
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Wietecha MS, Pensalfini M, Cangkrama M, Müller B, Jin J, Brinckmann J, Mazza E, Werner S. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat Commun 2020; 11:2604. [PMID: 32451392 PMCID: PMC7248062 DOI: 10.1038/s41467-020-16409-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Matrix deposition is essential for wound repair, but when excessive, leads to hypertrophic scars and fibrosis. The factors that control matrix deposition in skin wounds have only partially been identified and the consequences of matrix alterations for the mechanical properties of wounds are largely unknown. Here, we report how a single diffusible factor, activin A, affects the healing process across scales. Bioinformatics analysis of wound fibroblast transcriptome data combined with biochemical and histopathological analyses of wounds and functional in vitro studies identify that activin promotes pro-fibrotic gene expression signatures and processes, including glycoprotein and proteoglycan biosynthesis, collagen deposition, and altered collagen cross-linking. As a consequence, activin strongly reduces the wound and scar deformability, as identified by a non-invasive in vivo method for biomechanical analysis. These results provide mechanistic insight into the roles of activin in wound repair and fibrosis and identify the functional consequences of alterations in the wound matrisome at the biomechanical level. The relationship between histopathology, gene expression, and biochemical and mechanical properties of wounds is largely unknown. Here, the authors show that activin A alters wound healing at multiple levels by promoting pro-fibrotic gene expression and matrix deposition, thereby affecting biomechanical properties of skin wounds.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Marco Pensalfini
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Michael Cangkrama
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Bettina Müller
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Juyoung Jin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany.,Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
46
|
Li C, Liu B, Kang B, Liu Z, Liu Y, Chen C, Ren X, Zhang Z. SciBet as a portable and fast single cell type identifier. Nat Commun 2020; 11:1818. [PMID: 32286268 PMCID: PMC7156687 DOI: 10.1038/s41467-020-15523-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Fast, robust and technology-independent computational methods are needed for supervised cell type annotation of single-cell RNA sequencing data. We present SciBet, a supervised cell type identifier that accurately predicts cell identity for newly sequenced cells with order-of-magnitude speed advantage. We enable web client deployment of SciBet for rapid local computation without uploading local data to the server. Facing the exponential growth in the size of single cell RNA datasets, this user-friendly and cross-platform tool can be widely useful for single cell type identification.
Collapse
Affiliation(s)
- Chenwei Li
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China
- Analytical Biosciences Limited, Beijing, China
| | - Baolin Liu
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Boxi Kang
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China
- Analytical Biosciences Limited, Beijing, China
- Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Zedao Liu
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China
- Analytical Biosciences Limited, Beijing, China
| | - Yedan Liu
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xianwen Ren
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China.
| | - Zemin Zhang
- Peking-Tsinghua Center for Life Sciences, BIOPIC and School of Life Sciences, Peking University, Beijing, China.
- Analytical Biosciences Limited, Beijing, China.
- Beijing Advanced Innovation Centre for Genomics, Peking University, Beijing, China.
| |
Collapse
|
47
|
Akula S, Paivandy A, Fu Z, Thorpe M, Pejler G, Hellman L. Quantitative In-Depth Analysis of the Mouse Mast Cell Transcriptome Reveals Organ-Specific Mast Cell Heterogeneity. Cells 2020; 9:cells9010211. [PMID: 31947690 PMCID: PMC7016716 DOI: 10.3390/cells9010211] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are primarily resident hematopoietic tissue cells that are localized at external and internal surfaces of the body where they act in the first line of defense. MCs are found in all studied vertebrates and have also been identified in tunicates, an early chordate. To obtain a detailed insight into the biology of MCs, here we analyzed the transcriptome of MCs from different mouse organs by RNA-seq and PCR-based transcriptomics. We show that MCs at different tissue locations differ substantially in their levels of transcripts coding for the most abundant MC granule proteins, even within the connective tissue type, or mucosal MC niches. We also demonstrate that transcript levels for the major granule proteins, including the various MC-restricted proteases and the heparin core protein, can be several orders of magnitude higher than those coding for various surface receptors and enzymes involved in protease activation, as well as enzymes involved in the synthesis of heparin, histamine, leukotrienes, and prostaglandins. Interestingly, our analyses revealed an almost complete absence in MCs of transcripts coding for cytokines at baseline conditions, indicating that cytokines are primarily produced by activated MCs. Bone marrow-derived MCs (BMMCs) are often used as equivalents of tissue MCs. Here, we show that these cells differ substantially from tissue MCs with regard to their transcriptome. Notably, they showed a transcriptome indicative of relatively immature cells, both with respect to the expression of granule proteases and of various enzymes involved in the processing/synthesis of granule compounds, indicating that care should be taken when extrapolating findings from BMMCs to the in vivo function of tissue-resident MCs. Furthermore, the latter finding indicates that the development of fully mature tissue-resident MCs requires a cytokine milieu beyond what is needed for in vitro differentiation of BMMCs. Altogether, this study provides a comprehensive quantitative view of the transcriptome profile of MCs resident at different tissue locations that builds nicely on previous studies of both the mouse and human transcriptome, and form a solid base for future evolutionary studies of the role of MCs in vertebrate immunity.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
48
|
Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 2020; 22:38-48. [PMID: 31871321 PMCID: PMC7610809 DOI: 10.1038/s41556-019-0439-6] [Citation(s) in RCA: 544] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches. This allowed us to transcriptionally profile all major bone-marrow-resident cell types, determine their localization and clarify sources of pro-haematopoietic factors. Our data demonstrate that Cxcl12-abundant-reticular (CAR) cell subsets (Adipo-CAR and Osteo-CAR) differentially localize to sinusoidal and arteriolar surfaces, act locally as 'professional cytokine-secreting cells' and thereby establish peri-vascular micro-niches. Importantly, the three-dimensional bone-marrow organization can be accurately inferred from single-cell transcriptome data using the RNA-Magnet algorithm described here. Together, our study reveals the cellular and spatial organization of bone marrow niches and offers a systematic approach to dissect the complex organization of whole organs.
Collapse
Affiliation(s)
- Chiara Baccin
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Faculty of Biosciences, Joint PhD degree from EMBL and Heidelberg University, Heidelberg, Germany
| | - Jude Al-Sabah
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lars Velten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Patrick M Helbling
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Florian Grünschläger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Pablo Hernández-Malmierca
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Genome Technology Center, Palo Alto, CA, USA.
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
49
|
Chenery AL, Alhallaf R, Agha Z, Ajendra J, Parkinson JE, Cooper MM, Chan BHK, Eichenberger RM, Dent LA, Robertson AAB, Kupz A, Brough D, Loukas A, Sutherland TE, Allen JE, Giacomin PR. Inflammasome-Independent Role for NLRP3 in Controlling Innate Antihelminth Immunity and Tissue Repair in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2724-2734. [PMID: 31586037 PMCID: PMC6826118 DOI: 10.4049/jimmunol.1900640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.
Collapse
MESH Headings
- Animals
- Caspase 1/physiology
- Chemotaxis, Leukocyte
- Eosinophilia/etiology
- Eosinophilia/immunology
- Furans/pharmacology
- Heterocyclic Compounds, 4 or More Rings
- Immunity, Innate
- Indenes
- Inflammasomes/physiology
- Interleukin-4/pharmacology
- Lectins/biosynthesis
- Lectins/genetics
- Lung/pathology
- Lung/physiology
- Lung Diseases, Parasitic/complications
- Lung Diseases, Parasitic/immunology
- Lung Diseases, Parasitic/pathology
- Lung Diseases, Parasitic/physiopathology
- Macrophages, Alveolar/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/physiology
- Neutrophils/immunology
- Nippostrongylus/immunology
- Regeneration
- Strongylida Infections/complications
- Strongylida Infections/immunology
- Strongylida Infections/pathology
- Strongylida Infections/physiopathology
- Sulfonamides/pharmacology
- Sulfones
- Transcription, Genetic
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
Collapse
Affiliation(s)
- Alistair L Chenery
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rafid Alhallaf
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Zainab Agha
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Jesuthas Ajendra
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - James E Parkinson
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Brian H K Chan
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ramon M Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Lindsay A Dent
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; and
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - David Brough
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom;
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia;
| |
Collapse
|
50
|
Persistent Toll-like receptor 7 stimulation induces behavioral and molecular innate immune tolerance. Brain Behav Immun 2019; 82:338-353. [PMID: 31499172 PMCID: PMC6956569 DOI: 10.1016/j.bbi.2019.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors 7 and 8 (TLR7 and TLR8) are endosomal pattern recognition receptors that detect a variety of single-stranded RNA species. While TLR7/8 agonists have robust therapeutic potential, clinical utility of these agents is limited by sickness responses associated with treatment induction. To understand the kinetics and mechanism of these responses, we characterized the acute and chronic effects of TLR7 stimulation. Single-cell RNA-sequencing studies, RNAscope, and radiolabeled in situ hybridization demonstrate that central nervous system gene expression of TLR7 is exclusive to microglia. In vitro studies demonstrate that microglia are highly sensitive to TLR7 stimulation, and respond in a dose-dependent manner to the imidazoquinoline R848. In vivo, both intraperitoneal (IP) and intracerebroventricular (ICV) R848 induce acute sickness responses including hypophagia, weight loss, and decreased voluntary locomotor activity, associated with increased CNS pro-inflammatory gene expression and changes to glial morphology. However, chronic daily IP R848 resulted in rapid tachyphylaxis of behavioral and molecular manifestations of illness. In microglial in vitro assays, pro-inflammatory transcriptional responses rapidly diminished in the context of repeated R848. In addition to TLR7 desensitization, we found that microglia become partially refractory to lipopolysaccharide (LPS) following R848 pretreatment, associated with induction of negative regulators A20 and Irak3. Similarly, mice pre-treated with R848 demonstrate reduced sickness responses, hypothalamic inflammation, and hepatic inflammation in response to LPS. These data combined demonstrate that TLR7 stimulation induces acute behavioral and molecular evidence of sickness responses. Following prolonged dosing, R848 induces a refractory state to both TLR7 and TLR4 activation, consistent with induced immune tolerance.
Collapse
|