1
|
Latayan J, Akkenapally SV, Madala SK. Emerging Concepts in Cytokine Regulation of Airway Remodeling in Asthma. Immunol Rev 2025; 330:e70020. [PMID: 40116139 PMCID: PMC11926778 DOI: 10.1111/imr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Asthma, a chronic respiratory condition that has seen a dramatic rise in prevalence over the past few decades, now affects more than 300 million people globally and imposes a significant burden on healthcare systems. The key pathological features of asthma include inflammation, airway hyperresponsiveness, mucus cell metaplasia, smooth muscle hypertrophy, and subepithelial fibrosis. Cytokines released by lung epithelial cells, stromal cells, and immune cells during asthma are critical to pathological tissue remodeling in asthma. Over the past few decades, researchers have made great strides in understanding key cells involved in asthma and the cytokines that they produce. Epithelial cells as well as many adaptive and innate immune cells are activated by environmental signals to produce cytokines, namely, type 2 cytokines (IL-4, IL-5, IL-13), IFN-γ, IL-17, TGF-β, and multiple IL-6 family members. However, the precise mechanisms through which these cytokines contribute to airway remodeling remain elusive. Additionally, multiple cell types can produce the same cytokines, making it challenging to decipher how specific cell types and cytokines uniquely contribute to asthma pathogenesis. This review highlights recent advances and provides a comprehensive overview of the key cells involved in the production of cytokines and how these cytokines modulate airway remodeling in asthma.
Collapse
Affiliation(s)
- Jana Latayan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
- Immunology Graduate ProgramUniversity of CincinnatiCincinnatiOhioUSA
| | - Santhoshi V. Akkenapally
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
| | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
2
|
Drake LY, Roos BB, Wicher SA, Khalfaoui L, Nesbitt LL, Fang YH, Pabelick CM, Prakash YS. Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice. Am J Physiol Lung Cell Mol Physiol 2025; 328:L290-L300. [PMID: 39437757 DOI: 10.1152/ajplung.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it becomes important to understand the impact of aging-associated airway structure and functional changes toward pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors [including neurotrophins such as brain-derived neurotrophic factor (BDNF)] and proinflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wild-type mice or smooth muscle-specific BDNF knockout mice at 4, 18, and 24 mo of age were intranasally exposed to mixed allergens (MAs, ovalbumin, Aspergillus, Alternaria, and house dust mite) over 4 wk. Assessing lung function by flexiVent, we found that compared with 4-mo-old mice, 18- and 24-mo-old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53, and phospho-γH2A.X. Our data suggest that aging-associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.NEW & NOTEWORTHY The pathogenesis of asthma in elderly is not well understood. Using a mouse model of asthma, we show that aging results in decreased lung function and less responsiveness to allergen exposure, impacted by locally produced brain-derived neurotrophic factor. Aging also decreases allergen-induced inflammation but increases airway remodeling and senescence. Our results suggest that senescence pathways may contribute to asthma pathogenesis in elderly.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa L Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Yuan L, Qin Q, Yao Y, Chen L, Liu H, Du X, Ji M, Wu X, Wang W, Qin Q, Xiang Y, Qing B, Qu X, Yang M, Qin X, Xia Z, Liu C. Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma. JCI Insight 2024; 9:e181219. [PMID: 39436705 PMCID: PMC11601913 DOI: 10.1172/jci.insight.181219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Long Chen
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Ji
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qiuyan Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Bei Qing
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Zhenkun Xia
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| |
Collapse
|
4
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
5
|
Liu YB, Tan XH, Yang HH, Yang JT, Zhang CY, Jin L, Yang NSY, Guan CX, Zhou Y, Liu SK, Xiong JB. Wnt5a-mediated autophagy contributes to the epithelial-mesenchymal transition of human bronchial epithelial cells during asthma. Mol Med 2024; 30:93. [PMID: 38898476 PMCID: PMC11188189 DOI: 10.1186/s10020-024-00862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Xiao-Hua Tan
- Experimental Center of Medical Morphology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Jin-Tong Yang
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Shao-Kun Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, 410011, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
| | - Jian-Bing Xiong
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
6
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Michalaki C, Albers GJ, Byrne AJ. Itaconate as a key regulator of respiratory disease. Clin Exp Immunol 2024; 215:120-125. [PMID: 38018224 PMCID: PMC10847819 DOI: 10.1093/cei/uxad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Macrophage activation results in the accumulation of endogenous metabolites capable of adopting immunomodulatory roles; one such bioactive metabolite is itaconate. After macrophage stimulation, the TCA-cycle intermediate cis-aconitate is converted to itaconate (by aconitate decarboxylase-1, ACOD1) in the mitochondrial matrix. Recent studies have highlighted the potential of targeting itaconate as a therapeutic strategy for lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and respiratory infections. This review aims to bring together evidence which highlights a role for itaconate in chronic lung diseases (such as asthma and pulmonary fibrosis) and respiratory infections (such as SARS-CoV-2, influenza and Mycobacterium tuberculosis infection). A better understanding of the role of itaconate in lung disease could pave the way for novel therapeutic interventions and improve patient outcomes in respiratory disorders.
Collapse
Affiliation(s)
- Christina Michalaki
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- School of Medicine and Conway Institute of Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
10
|
Ricciardolo FLM, Guida G, Bertolini F, Di Stefano A, Carriero V. Phenotype overlap in the natural history of asthma. Eur Respir Rev 2023; 32:32/168/220201. [PMID: 37197769 DOI: 10.1183/16000617.0201-2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/23/2023] [Indexed: 05/19/2023] Open
Abstract
The heterogeneity of asthma makes it challenging to unravel the pathophysiologic mechanisms of the disease. Despite the wealth of research identifying diverse phenotypes, many gaps still remain in our knowledge of the disease's complexity. A crucial aspect is the impact of airborne factors over a lifetime, which often results in a complex overlap of phenotypes associated with type 2 (T2), non-T2 and mixed inflammation. Evidence now shows overlaps between the phenotypes associated with T2, non-T2 and mixed T2/non-T2 inflammation. These interconnections could be induced by different determinants such as recurrent infections, environmental factors, T-helper plasticity and comorbidities, collectively resulting in a complex network of distinct pathways generally considered as mutually exclusive. In this scenario, we need to abandon the concept of asthma as a disease characterised by distinct traits grouped into static segregated categories. It is now evident that there are multiple interplays between the various physiologic, cellular and molecular features of asthma, and the overlap of phenotypes cannot be ignored.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), section of Palermo, Palermo, Italy
| | - Giuseppe Guida
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| | - Antonino Di Stefano
- Department of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA, IRCCS, Novara, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Association between ADAM33 Single-Nucleotide Polymorphisms and Treatment Response to Inhaled Corticosteroids and a Long-Acting Beta-Agonist in Asthma. Diagnostics (Basel) 2023; 13:diagnostics13030405. [PMID: 36766510 PMCID: PMC9914414 DOI: 10.3390/diagnostics13030405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
ADAM33 has been linked to airway structural changes in patients with asthma, leading to airway hyperresponsiveness, narrowing, and ultimately poor treatment responsiveness. This study aimed to evaluate the genetic association of ADAM33 SNPs with asthma, disease severity, and treatment responsiveness to ICS+LABA in the South Indian population. In this case-control study (486 controls and 503 cases), we performed genotyping using MassArray for six SNPs of ADAM33, namely rs2280091, rs2787094, rs3918396, rs67044, rs2853209, and rs3918392. We studied the association with asthma and treatment responsiveness to ICS+LABA, using genotype, allele frequency distribution, and haplotype analysis. A significant clinical finding of the study was that certain patients in the disease severity group (moderate and mild) showed poor or no improvement after a three-month follow-up of regular ICS+LABA therapy. Of the studied ADAM33 SNPs, rs2853209 showed an association with asthma. The further analysis of asthma patients according to disease severity suggested an association between moderate disease and the minor allele "T" for rs2853209. The homozygous minor allele of SNP rs2787094 was found to be associated with poorer lung function and the least lung-function improvement after three months of ICS+LABA therapy. The haplotype analysis of six SNPs showed a significant association between the rs2853209 and rs3918396 blocks and asthma. ADAM33 gene polymorphism has clinical relevance in terms of disease association and response to treatment. SNP rs2853209 seemed most relevant to asthma, and SNP rs2787094 could be a genetic marker for predicting response to ICS+LABA therapy in the study population.
Collapse
|
13
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Ozseker ZF, Aksu K, Mutlu LC, Mutlu P, Ozturk C. Expert Opinion on Practice Patterns in Mild Asthma After the GINA 2019 Updates: A Major Shift in Treatment Paradigms from a Long-Standing SABA-Only Approach to a Risk Reduction-Based Strategy with the Use of Symptom-Driven (As-Needed) Low-Dose ICS/LABA. Curr Allergy Asthma Rep 2022; 22:123-134. [PMID: 35689764 DOI: 10.1007/s11882-022-01038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This expert opinion, prepared by a panel of chest disease specialists, aims to review the current knowledge on practice patterns in real-life management of mild asthma and to address the relevant updates in asthma treatment by The Global Initiative for Asthma (GINA) to guide clinicians for the best clinical practice in applying these new treatment paradigms. RECENT FINDINGS On the basis of the emerging body of evidence suggesting the non-safety of short-acting β2-agonists (SABA)-only therapy and comparable efficacy of the as-needed inhaled corticosteroids (ICS)-formoterol combinations with maintenance ICS regimens, GINA recently released their updated Global Strategy for Asthma Management and Prevention Guide (2019). The new GINA 2019 recommendations no longer support the SABA-only therapy in mild asthma but instead includes new off-label recommendations such as symptom-driven (as-needed) low-dose ICS-formoterol and "low dose ICS taken whenever SABA is taken." The GINA 2019 asthma treatment recommendations include a major shift from long-standing approach of clinical practice regarding the use of symptom-driven SABA treatment alone in the management of mild asthma. This expert opinion supports the transition from a long-standing SABA-only approach to a risk reduction-based strategy, with the use of symptom-driven (as-needed) low-dose ICS/LABA in mild asthma patients, particularly in those with poor adherence to controller medications. The thoughtful and comprehensive approach of clinicians to these strategies is important, given that the exact far-reaching impact of this major change in management of mild asthma in the real-world settings will only be clarified over time.
Collapse
Affiliation(s)
- Zeynep Ferhan Ozseker
- Department of Chest Diseases, Division of Immunology and Allergic Diseases,, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Kurtulus Aksu
- Department of Chest Diseases, Division of Immunology and Allergy, University of Health Sciences Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Levent Cem Mutlu
- Department of Chest Diseases, Namık Kemal University Faculty of Medicine, Tekirdag, Turkey
| | - Pinar Mutlu
- Department of Chest Diseases, Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Can Ozturk
- Department of Chest Diseases, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Current Limitations and Recent Advances in the Management of Asthma. Dis Mon 2022:101483. [DOI: 10.1016/j.disamonth.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022; 13:945063. [PMID: 36016937 PMCID: PMC9395650 DOI: 10.3389/fimmu.2022.945063] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.
Collapse
Affiliation(s)
- Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| |
Collapse
|
17
|
Stephen NM, Maradagi T, Kavalappa YP, Sharma H, Ponesakki G. Seafood nutraceuticals: Health benefits and functional properties. RESEARCH AND TECHNOLOGICAL ADVANCES IN FOOD SCIENCE 2022:109-139. [DOI: 10.1016/b978-0-12-824369-5.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Novosad J, Krčmová I. Evolution of our view on the IgE molecule role in bronchial asthma and the clinical effect of its modulation by omalizumab: Where do we stand today? Int J Immunopathol Pharmacol 2021; 34:2058738420942386. [PMID: 32689848 PMCID: PMC7375718 DOI: 10.1177/2058738420942386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bronchial asthma is a heterogeneous disease whose definition and treatment are based on evidence of variable airway obstruction and airway inflammation. Despite the enormous increase in the amount of information on the pathogenesis of this disease, diagnosis is still an unresolved problem, as we still lack sensitive and specific biomarkers. On the other hand, at the turn of the 20th and 21st century, there was a rapid development of therapeutic modalities based on the principle of biological therapy. The first authorized drug matching these characteristics was omalizumab – a monoclonal antibody directed against immunoglobulin E (IgE). It has been used for the treatment of severe forms of bronchial asthma for more than 15 years, which is a sufficient time to acquire ways of its effective use and to assess whether the treatment with omalizumab has met our expectations. However, we continue to discover new and surprising facts about the effects of omalizumab treatment which leads to widening of therapeutic indications. In this work, a basic overview of the very complex role of the IgE molecule in the organism (with a special emphasis on allergic asthma) is discussed, and the most important practical and clinical consequences resulting from its modulation by targeted therapy with omalizumab are summarized.
Collapse
Affiliation(s)
- Jakub Novosad
- Institute of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic.,Faculty of Medicine in Hradec Králové, Charles University in Prague, Prague, Czech Republic
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic.,Faculty of Medicine in Hradec Králové, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
19
|
Izadi N, Baraghoshi D, Curran-Everett D, Zeiger RS, Szefler SJ, Covar RA. Factors Associated with Persistence of Severe Asthma from Late Adolescence to Early Adulthood. Am J Respir Crit Care Med 2021; 204:776-787. [PMID: 34029510 PMCID: PMC8528529 DOI: 10.1164/rccm.202010-3763oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Asthma severity in children generally starts mild but may progress and stay severe for unknown reasons. OBJECTIVES Identify factors in childhood that predict persistence of severe asthma in late adolescence and early adulthood. METHODS The Childhood Asthma Management Program is the largest and longest asthma trial in 1041 children aged 5-12 years with mild to moderate asthma. We evaluated 682 participants from the program with analyzable data in late adolescence (age 17-19) and early adulthood (age 21-23). MEASUREMENTS Severe asthma was defined using criteria from the American Thoracic Society and the National Asthma Education and Prevention Program to best capture severe asthma. Logistic regression with stepwise elimination was used to analyze clinical features, biomarkers, and lung function predictive of persistence of severe asthma. MAIN RESULTS In late adolescence and early adulthood 12% and 19% of the patents had severe asthma, respectively; only 6% were severe at both time periods. For every 5% decrease in post bronchodilator FEV1/FVC in childhood, the odds of persistence of severe asthma increased 2.36-fold (95% CI: 1.70-3.28; p <0.0001), for participants with maternal smoking during pregnancy odds of persistence of severe asthma increased 3.17-fold (95% CI: 1.18-8.53, p=0.02). Reduced growth lung function trajectory was significantly associated with persistence of severe asthma compared to normal growth. CONCLUSIONS Lung function and maternal smoking during pregnancy were significant predictors of severe asthma from late adolescence to early adulthood. Interventions to preserve lung function early may prevent disease progression.
Collapse
Affiliation(s)
- Neema Izadi
- Children's Hospital Los Angeles Department of Pediatrics, 337885, Division of Clinical Immunology & Allergy, Los Angeles, California, United States;
| | | | | | | | - Stanley J Szefler
- University of Colorado Denver School of Medicine, 12225, Pediatrics, Aurora, Colorado, United States
| | - Ronina A Covar
- National Jewish Health, 2930, Pediatrics, Denver, Colorado, United States
| |
Collapse
|
20
|
Šutovská M, Kocmálová M, Kazimierová I, Forsberg CIN, Jošková M, Adamkov M, Fraňová S. Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1335:87-101. [PMID: 33742420 DOI: 10.1007/5584_2021_633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Airway remodeling (AR) consists of wall thickening and hyperreactivity. STIM (stromal interaction molecule) and Orai protein pathways mediate extracellular Ca2+ signals involved in AR. This study aims to define the effects on AR of the STIM-Orai antagonist SKF 96365 given by inhalation in three increasing doses in ovalbumin-induced AR. In the control group, the antiasthmatic budesonide and salbutamol were given in the same model. The airway structure was evaluated by histological and immunohistochemistry and reactivity by specific airway resistance, contraction strength of isolated airway smooth muscles, and mucociliary clearance expressed by ciliary beating frequency. The immuno-biochemical markers of chronic inflammation were evaluated by BioPlex and ELISA assays. The AR was mediated by inflammatory cytokines and growth factors. The findings show significant anti-remodeling effects of SKF 96365, which were associated with a decrease in airway hyperreactivity. The anti-remodeling effect of SKF 96365 was mediated via the suppression of IL-4, IL-5, and IL-13 synthesis, and IL-12-INF-γ-TGF-β pathway. The budesonide-related AR suppression had to do with a decrease in proinflammatory cytokines and an increase in the anti-inflammatory IL-10, with negligible influence on growth factors synthesis and mucous glands activity.
Collapse
Affiliation(s)
- Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| | - Michaela Kocmálová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia. .,Martin's Biomedical Center (BioMed), Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | - Ivana Kazimierová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia.,Martin's Biomedical Center (BioMed), Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | | | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| | - Marian Adamkov
- Institute of Histology and Embryology Jessenius Faculty of Medicine Comenius University, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| |
Collapse
|
21
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
22
|
Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis 2020; 12:6090-6101. [PMID: 33209441 PMCID: PMC7656354 DOI: 10.21037/jtd-20-1024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway remodeling, as a major characteristic of bronchial asthma, is critical to the progression of this disease, whereas it is of less importance in clinical management. Complying with the current stepwise treatment standard for asthma, the choice of intervention on the clinical status is primarily determined by the patient’s treatment response to airway inflammation. However, a considerable number of asthmatic patients, especially severe asthmatic subjects, remain uncontrolled though they have undergone fortified anti-inflammation treatment. In the past few years, a growing number of biologics specific to asthma phenotypes have emerged, bringing new hope for patients with refractory asthma and severe asthma. While at the same time, the effect of airway remodeling on asthma treatment has become progressively prominent. In the era of personalized treatment, it has become one of the development directions for asthma treatment to find reliable airway remodeling biomarkers to assist in asthma phenotypes classification, and to further combine multiple phenotypes to accurately treat patients. In the present study, the research status of airway remodeling in asthma is reviewed to show the basis for classifying and treating such disease. Besides, several selected airway remodeling biomarkers and possibility to use them in individual treatment are discussed as well. This study considers that continuously optimized mechanisms and emerging biomarkers for airway remodeling in the future may further support individual therapy for asthma patients.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Wu CT, Lee YT, Ku MS, Lue KH. Role of biomarkers and effect of FIP-fve in acute and chronic animal asthma models. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:996-1007. [PMID: 32778497 DOI: 10.1016/j.jmii.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/08/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Asthma is a consequence of complex gene-environment interactions. Exploring the heterogeneity of asthma in different stages is contributing to our understanding of its pathogenesis and the development of new therapeutic strategies, especially in severe cases. OBJECTIVE This study aimed to further understand the relationship between manifestations of acute and chronic asthma and various endotypes, and explore the severity of lung inflammation, cell types, cytokine/chemokine differences, and the effects of FIP-fve. MATERIALS AND METHODS Acute and chronic OVA-sensitization mouse asthma models, based on our previously published method, were used and FIP-fve was used to evaluate the effect on these two models. BALF cytokines/chemokines were detected according to the manufacturer's protocol. RESULTS Seventeen cytokine/chemokine secretions were higher in the chronic stage than in the acute stage. Whether in acute stage or chronic stage, the FIP-fve treatment groups had reduced airway hyperresponsiveness, infiltration of airway inflammatory cells, secretion of cytokines, chemokines by Th2 cells, and TNF-α, IL-8, IL-17, CXCL-1, CXCL-10, CCL-17, and CCL-22, and it was also found that the Treg cell cytokine IL-10 had increased significantly. PCA (Principal Component Analysis) was also used to compare statistics and laboratory data to find the important biomarkers in different stages and after treatment with FIP-fve. CONCLUSIONS There are many different immune responses in the different stages of the asthma process. Drug treatment at the appropriate times might help reduce the worsening of asthma.
Collapse
Affiliation(s)
- Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Yu-Tzu Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Sho Ku
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
24
|
Halim NSS, Ch'ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev Rep 2020; 15:112-125. [PMID: 30178289 DOI: 10.1007/s12015-018-9844-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model. METHODS Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments. RESULT(S) Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p < 0.001), as reflected by improved of structural changes such as thickness of the basement membrane, epithelium, mucosa and sub-mucosa regions. The airway inflammation score of both treatment groups revealed a significant reduction of inflammation and granulocyte infiltration at the peribronchiale and perivascular regions (p < 0.05). Administration of aerosolised MSCs alone was resulted in significant reduction in the levels of pro-inflammatory genes (IL-4 and TGF-β) while treatment with aerosolised MSC-pANGPT1 led to further reduction of various pro-inflammatory genes to the base-line values (IL4, TNF, MMP9 and TGF-β). Treatment with both aerosolised MSCs and MSC-pANGPT1 cells was also alleviated the number of airway inflammatory cells in the bronchoalveolar lavage (BAL) fluid and goblet cell hyperplasia. CONCLUSION(S) Our findings suggest that treatment with MSCs alone attenuated airway inflammation and structural changes of the airway. Treatment with MSC-pANGPT1 provided an additional effect in reducing the expression levels of various pro-inflammatory genes. Both of these treatment enhancing airway repair and therefore may provide a basis for the development of an innovative approach for the treatment and prevention of airway inflammatory diseases.
Collapse
Affiliation(s)
- N S S Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E S Ch'ng
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - S A Ali
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - R Radzi
- Animal Research Facilities, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | - B H Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| |
Collapse
|
25
|
Asthma and Obesity in Children. Biomedicines 2020; 8:biomedicines8070231. [PMID: 32708186 PMCID: PMC7400413 DOI: 10.3390/biomedicines8070231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma and obesity are two major chronic diseases in children and adolescents. Recent scientific evidence points out a causative role of obesity in asthma predisposition. However, studies assessing the real impact of excessive weight gain on lung function in children have shown heterogeneous results. In this review, the pathological mechanisms linking obesity and development of asthma in children are summarized and factors influencing this relationship are evaluated. Common disease modifying factors including age, sex, ethnicity, development of atopic conditions, and metabolic alterations significantly affect the onset and phenotypic characteristics of asthma. Given this, the impact of these several factors on the obesity–asthma link were considered, and from revision of the literature we suggest the possibility to define three main clinical subtypes on the basis of epidemiological data and physiological–molecular pathways: obese-asthmatic and atopy, obese-asthmatic and insulin-resistance, and obese-asthmatic and dyslipidemia. The hypothesis of the different clinical subtypes characterizing a unique phenotype might have an important impact for both future clinical management and research priorities. This might imply the necessity to study the obese asthmatic child with a “multidisciplinary approach”, evaluating the endocrinological and pneumological aspects simultaneously. This different approach might also make it possible to intervene earlier in a specific manner, possibly with a personalized and tailored treatment. Surely this hypothesis needs longitudinal and well-conducted future studies to be validated.
Collapse
|
26
|
Jing X, Yan W, Zeng H, Cheng W. Qingfei oral liquid alleviates airway hyperresponsiveness and mucus hypersecretion via TRPV1 signaling in RSV-infected asthmatic mice. Biomed Pharmacother 2020; 128:110340. [PMID: 32521453 DOI: 10.1016/j.biopha.2020.110340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pediatric asthma is exacerbated by Respiratory Syncytial Virus (RSV) infection, and Transient Receptor Potential Vanilloid 1 (TRPV1) promotes production of inflammatory cytokines and mucus hypersecretion in the pathology of this disease. Our previous research revealed that Qingfei oral liquid (QF) inhibited airway inflammation and mucus hypersecretion in RSV-infected asthmatic mice models and that this may be associated with the TRPV1-regulation of NF-κB and Mucin 5AC (MUC5AC) expression, but the exact mechanism is unknown. In the present study, LC-MS was used for analyzing the chemicals in QF, ovalbumin (OVA)-induced asthmatic mice inhaled RSV three consecutive times to create an RSV-infected asthmatic model. We found treatment from QF alleviated airway hyperresponsiveness (AHR) and reduced congestion, edema, and infiltration of inflammatory cells into pulmonary tissues. Additionally, QF was found to decrease expression of NF-κB and its downstream inflammatory cytokines IL-1β, IL-4, IL-5, and IL-13, as well as a decrease in MUC5AC and pro-inflammatory cytokines in PKC via a reduction in Protein Kinase C-dependent signaling. These findings suggest that QF can alleviate AHR and mucus hypersecretion caused by RSV infection in asthmatic mice, and its mechanism may be associated with the regulation of the TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Wuning Yan
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hairong Zeng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Weiwei Cheng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| |
Collapse
|
27
|
Ramakrishnan RK, Bajbouj K, Al Heialy S, Mahboub B, Ansari AW, Hachim IY, Rawat S, Salameh L, Hachim MY, Olivenstein R, Halwani R, Hamoudi R, Hamid Q. IL-17 Induced Autophagy Regulates Mitochondrial Dysfunction and Fibrosis in Severe Asthmatic Bronchial Fibroblasts. Front Immunol 2020; 11:1002. [PMID: 32670268 PMCID: PMC7326148 DOI: 10.3389/fimmu.2020.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
The accumulation of fibroblasts, their synthesis of extracellular matrix (ECM) proteins and their innate resistance to apoptosis are characteristics of subepithelial fibrosis observed in severe asthma. Interleukin-17 (IL-17) is an important regulator of airway remodeling in asthma. However, the contribution of IL-17 to the pro-fibrotic phenotype of bronchial fibroblasts is not well-characterized. In this study, we investigated whether IL-17 induced autophagy regulates mitochondrial and pro-fibrotic function in bronchial fibroblasts. The primary cultured bronchial fibroblasts isolated from non-asthmatic (NHBF) and severe asthmatic (DHBF) subjects were treated with IL-17 in order to ascertain its effect on mitochondrial function, mitochondrial quality control, and apoptosis using immunoblotting and flow cytometric analyses. At baseline, DHBF exhibited higher levels of mitophagy and mitochondrial biogenesis compared to NHBF. Immunohistochemical evaluation of bronchial biopsies showed intense PINK1 immunoreactivity in severe asthma than in control. IL-17 intensified the mitochondrial dysfunction and impaired the mitochondrial quality control machinery in NHBF and DHBF. Moreover, IL-17 augmented a pro-fibrotic and anti-apoptotic response in both group of fibroblasts. Inhibition of autophagy using bafilomycin-A1 reduced PINK1 expression in NHBF and restored the IL-17 mediated changes in PINK1 to their basal levels in DHBF. Bafilomycin-A1 also reversed the IL-17 associated fibrotic response in these fibroblasts, suggesting a role for IL-17 induced autophagy in the induction of fibrosis in bronchial fibroblasts. Taken together, our findings suggest that IL-17 induced autophagy promotes mitochondrial dysfunction and fibrosis in bronchial fibroblasts from both non-asthmatic and severe asthmatic subjects. Our study provides insights into the therapeutic potential of targeting autophagy in ameliorating fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Bassam Mahboub
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Abdul Wahid Ansari
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Surendra Rawat
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Kumarathas I, Harsløf T, Andersen CU, Langdahl B, Hilberg O, Bjermer L, Løkke A. The risk of osteoporosis in patients with asthma. Eur Clin Respir J 2020; 7:1763612. [PMID: 32595917 PMCID: PMC7301699 DOI: 10.1080/20018525.2020.1763612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
It is well-known that use of continuous systemic corticosteroids (SG) affects bone metabolism, bone mineral density (BMD), and ultimately increases the risk of osteoporosis. In patients with asthma, on the other hand, the effects of long-term high-dose inhaled corticosteroids (ICS) on BMD and risk of osteoporotic fractures is controversial. The reasons for this inconsistency could be explained by the fact that only few long-term studies investigating the effect of ICS in patients with asthma exist. The studies are characterized by different study designs and duration of ICS exposure, small study populations, and differences between the used ICS. The aim of this article is to unravel which factors, if any, that contribute to an increased risk of osteoporosis in patients with asthma and to summarize the evidence regarding adverse effects of ICS on bone metabolism, BMD and osteoporotic fractures in patients with asthma.
Collapse
Affiliation(s)
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Institute for Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Hilberg
- Department of Medicine, Vejle Hospital, Vejle, Denmark
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skaane University Hospital, Lund, Sweden
| | - Anders Løkke
- Department of Medicine, Vejle Hospital, Vejle, Denmark
| |
Collapse
|
29
|
Rajan S, Gogtay NJ, Konwar M, Thatte UM. The global initiative for asthma guidelines (2019): change in the recommendation for the management of mild asthma based on the SYGMA-2 trial - A critical appraisal. Lung India 2020; 37:169-173. [PMID: 32108606 PMCID: PMC7065541 DOI: 10.4103/lungindia.lungindia_308_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/29/2019] [Accepted: 12/01/2019] [Indexed: 12/02/2022] Open
Abstract
The Global Initiative for Asthma (GINA) recently released their updated Global Strategy for Asthma Management and Prevention Guide (2019). The pocket guide for practicing clinicians states that "the 2019 GINA strategy report represents the most important change in asthma management in 30 years." An important recommendation is the change in treatment strategy for the management of mild asthma where the guideline recommends that" all adults and adolescents with asthma should receive either symptom driven (in mild asthma) or daily low dose inhaled corticosteroid (ICS) containing controller treatment to reduce the risk of serious exacerbations." Our study critically appraises the SYGMA-2 trial, a key trial that largely formed the basis of this recommendation and discusses the potential consequences of using only long-acting beta-2-agonist + ICS as needed as against regular, daily low-dose ICS with as-needed short-acting beta-2-agonist. Our critique covers airway inflammation, disease heterogeneity, understanding the noninferiority margin and its consequences, the Hawthorne effect, and conflict of interest. It is our view that statement of this magnitude will have far-reaching implications for clinical practice which will be in the interests of some patients but also against the interests of others.
Collapse
Affiliation(s)
- Sujeet Rajan
- Department of Chest Medicine, Bombay Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Nithya J Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Mahanjit Konwar
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Urmila Mukund Thatte
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
30
|
Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway. Respir Physiol Neurobiol 2020; 276:103412. [PMID: 32044448 DOI: 10.1016/j.resp.2020.103412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023]
Abstract
Allergic asthma is a chronic inflammatory disease characterized by airflow obstruction, airway hyperresponsiveness (AHR), airway inflammation, and mucus overproduction. Cordyceps polysaccharide (CPS) is one of the main bioactive compounds of Cordyceps militarisis, a traditional Chinese medicine. In this study, we established a mouse model of asthma using ovalbumin (OVA) challenge and evaluated the potential regulatory effect of CPS (25, 50, and 100 mg/kg) on asthmatic mice. These results showed that the asthmatic mice treated with CPS suppressed the secretion of eotaxin, IL-4, IL-5, IL-13, and IFN-γ in the blood and bronchoalveolar lavage fluid (BALF), and decreased serum IgE levels compared to the vehicle-treated mice. CPS also alleviated inflammatory cell infiltration, goblet cell hyperplasia, and the increases of inflammatory cells in the mouse model of asthma. In addition, OVA-induced AHR was inhibited by CPS treatment. Further analyses of protein expression revealed that CPS inhibited the activation of transforming growth factor β1 (TGF-β1)/Smad pathway in mice with asthma. These findings indicated that CPS might serve as a potential therapeutic agent for the management of allergic asthma.
Collapse
|
31
|
Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O'Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 2020; 145:537-549. [PMID: 31669095 PMCID: PMC7010560 DOI: 10.1016/j.jaci.2019.09.035] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical and epidemiologic studies have shown that obesity is associated with asthma and that these associations differ by asthma subtype. Little is known about the shared genetic components between obesity and asthma. OBJECTIVE We sought to identify shared genetic associations between obesity-related traits and asthma subtypes in adults. METHODS A cross-trait genome-wide association study (GWAS) was performed using 457,822 subjects of European ancestry from the UK Biobank. Experimental evidence to support the role of genes significantly associated with both obesity-related traits and asthma through a GWAS was sought by using results from obese versus lean mouse RNA sequencing and RT-PCR experiments. RESULTS We found a substantial positive genetic correlation between body mass index and later-onset asthma defined by asthma age of onset at 16 years or greater (Rg = 0.25, P = 9.56 × 10-22). Mendelian randomization analysis provided strong evidence in support of body mass index causally increasing asthma risk. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 asthma subtypes. GWAS functional analyses identified potential causal relationships between the shared loci and Genotype-Tissue Expression (GTEx) quantitative trait loci and shared immune- and cell differentiation-related pathways between obesity and asthma. Finally, RNA sequencing data from lungs of obese versus control mice found that 2 genes (acyl-coenzyme A oxidase-like [ACOXL] and myosin light chain 6 [MYL6]) from the cross-trait meta-analysis were differentially expressed, and these findings were validated by using RT-PCR in an independent set of mice. CONCLUSIONS Our work identified shared genetic components between obesity-related traits and specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of asthma and identifying molecular pathways that might underlie both obesity and asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Yanjun Guo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ronald Allan Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Luke J O'Connor
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pa
| | - Steven Gazal
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, La
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - William O C Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
32
|
Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation. Inflammation 2019; 42:1015-1022. [PMID: 30680697 DOI: 10.1007/s10753-019-00963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-β1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-β1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-β1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.
Collapse
|
33
|
Valque H, Gouyer V, Duez C, Leboeuf C, Marquillies P, Le Bert M, Plet S, Ryffel B, Janin A, Gottrand F, Desseyn JL. Muc5b-deficient mice develop early histological lung abnormalities. Biol Open 2019; 8:8/11/bio046359. [PMID: 31699684 PMCID: PMC6899002 DOI: 10.1242/bio.046359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gel-forming mucins are the main organic component responsible for physical properties of the mucus hydrogels. While numerous biological functions of these mucins are well documented, specific physiological functions of each mucin are largely unknown. To investigate in vivo functions of the gel-forming mucin Muc5b, which is one of the major secreted airway mucins, along with Muc5ac, we generated mice in which Muc5b was disrupted and maintained in the absence of environmental stress. Adult Muc5b-deficient mice displayed bronchial hyperplasia and metaplasia, interstitial thickening, alveolar collapse, immune cell infiltrates, fragmented and disorganized elastin fibers and collagen deposits that were, for approximately one-fifth of the mice, associated with altered pulmonary function leading to respiratory failure. These lung abnormalities start early in life, as demonstrated in one-quarter of 2-day-old Muc5b-deficient pups. Thus, the mouse mucin Muc5b is essential for maintaining normal lung function.
Collapse
Affiliation(s)
- Hélène Valque
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Catherine Duez
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Christophe Leboeuf
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Philippe Marquillies
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Marc Le Bert
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France
| | - Ségolène Plet
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Bernhard Ryffel
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France.,IDM, University of Cape Town, South Africa
| | - Anne Janin
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Frédéric Gottrand
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Jean-Luc Desseyn
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| |
Collapse
|
34
|
Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol 2019; 865:172779. [PMID: 31705904 DOI: 10.1016/j.ejphar.2019.172779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix. As a second messenger, adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to contribute to ASM cell (ASMC) relaxation as well as to anti-remodelling effects in ASMC. Phosphodiesterase (PDE) inhibitors have drawn attention as an interesting new group of potential anti-inflammatory and anti-remodelling drugs. Recently, new hydrazide and amide purine-2,6-dione derivatives with anti-inflammatory properties have been synthesized by our team (compounds 1 and 2). We expanded our study of their PDE selectivity profile, ability to increase intracellular cAMP levels, metabolic stability and, above all, their capacity to modulate cell responses associated with ASMC remodelling. The results show that both compounds have subtype specificity for several PDE isoforms (including inhibition of PDE1, PDE3, PDE4 and PDE7). Interestingly, such combined PDE subtype inhibition exerts improved anti-remodelling efficacies against several ASMC-induced responses such as proliferation, contractility, extracellular matrix (ECM) protein expression and migration when compared to other non-selective and selective PDE inhibitors. Our findings open novel perspectives in the search for new chemical entities with dual anti-inflammatory and anti-remodelling profiles in the group of purine-2,6-dione derivatives as broad-spectrum PDE inhibitors.
Collapse
|
35
|
Xu Y, Qian J, Yu Z. Budesonide up-regulates vitamin D receptor expression in human bronchial fibroblasts and enhances the inhibitory effect of calcitriol on airway remodeling. Allergol Immunopathol (Madr) 2019; 47:585-590. [PMID: 31204163 DOI: 10.1016/j.aller.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION AND OBJECTIVES Transforming growth factor β1 (TGFβ1) and dysregulated microRNA-21 (miR-21) expression is associated with TGFβ/Smad signaling pathway activation and fibrosis. While calcitriol has been shown to improve airway remodeling in asthmatic mice, its mechanism remains unknown. In this study, the effect of calcitriol on the TGFβ/Smad signaling pathway and miR-21 expression in human bronchial fibroblasts was investigated to explore the mechanism of action of calcitriol and the inhaled glucocorticoid, budesonide, in airway remodeling. MATERIALS AND METHODS Human bronchial fibroblasts were pretreated with budesonide, calcitriol, or budesonide plus calcitriol, and stimulated with TGFβ1 for 48h. Quantitative real-time PCR was used to determine the expression of miR-21. Western blot was used to determine airway remodeling-related proteins, TGFβ/Smad signaling pathway-related proteins, glucocorticoid receptor, and vitamin D receptor (VDR) expression. RESULTS Both budesonide and calcitriol down-regulated miR-21 expression in human bronchial fibroblasts, up-regulated Smad7 expression, and inhibited the expression of airway remodeling-related proteins. Both budesonide and calcitriol up-regulated the low expression of VDR induced by TGFβ1 in human bronchial fibroblasts. The expression of VDR in the combined treatment group (budesonide plus calcitriol) was significantly higher than that in the calcitriol treatment group. The expression of collagen type I in the combined treatment group was significantly lower than that in the calcitriol treatment group. CONCLUSIONS Calcitriol can up-regulate the expression of VDR in human bronchial fibroblasts and exert an anti-airway remodeling effect. Budesonide can up-regulate the expression of VDR in human bronchial fibroblasts and enhance the inhibitory effect of calcitriol on airway remodeling.
Collapse
Affiliation(s)
- Yaqin Xu
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Qian
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhiwei Yu
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
36
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
37
|
Kuruvilla ME, Lee FEH, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 2019; 56:219-233. [PMID: 30206782 DOI: 10.1007/s12016-018-8712-1] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The model of asthma as a single entity has now been replaced by a much more complex biological network of distinct and interrelating inflammatory pathways. The term asthma is now considered an umbrella diagnosis for several diseases with distinct mechanistic pathways (endotypes) and variable clinical presentations (phenotypes). The precise definition of these endotypes is central to asthma management due to inherent therapeutic and prognostic implications. This review presents the molecular mechanisms behind the heterogeneity of airway inflammation in asthmatic patients. Asthma endotypes may be broadly regarded as type 2 (T2) high or T2-low. Several biologic agents have been approved for T2-high asthma, with numerous other therapeutics that are incipient and similarly targeted at specific molecular mechanisms. Collectively, these advances have shifted existing paradigms in the approach to asthma to tailor novel therapies.
Collapse
Affiliation(s)
- Merin E Kuruvilla
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA.,Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, 2015 Uppergate Dr. NE, Suite 326, Atlanta, GA, 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA.,Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, 30322, GA, USA
| | - Gerald B Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA. .,Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, 2015 Uppergate Dr. NE, Suite 326, Atlanta, GA, 30322, USA.
| |
Collapse
|
38
|
Cho SH, Jo A, Casale T, Jeong SJ, Hong SJ, Cho JK, Holbrook JT, Kumar R, Smith LJ. Soy isoflavones reduce asthma exacerbation in asthmatic patients with high PAI-1-producing genotypes. J Allergy Clin Immunol 2019; 144:109-117.e4. [PMID: 30707970 PMCID: PMC6612283 DOI: 10.1016/j.jaci.2019.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The 4G4G genotype of plasminogen activator inhibitor 1 (PAI-1) is associated with increased plasma PAI-1 levels and poor asthma control. Previous studies suggest that soy isoflavones can reduce PAI-1 levels. OBJECTIVE We sought to investigate PAI-1 genotype-specific differences of the soy isoflavone response in asthma outcomes. METHODS A PAI-1 functional polymorphism (rs1799768, 4G5G) was characterized in subjects with poorly controlled asthma enrolled in a randomized clinical trial of soy isoflavones (n = 265). Genotype-specific treatment responses on asthma outcomes were compared between soy isoflavones and placebo. Normal human bronchial epithelial cells were cultured with or without TGF-β1, genistein, or both, and PAI-1 levels were measured. RESULTS The 4G4G/4G5G genotype was associated with a greater risk for allergy-related worsened asthma symptoms and eczema at baseline compared with the 5G5G genotype. There was a significant interaction between the genotype and soy isoflavone intervention on oral corticosteroid use for asthma exacerbation (P = .005). In a subgroup analysis soy isoflavones significantly reduced the use of oral corticosteroids (number of events/person-year) by 4-fold compared with placebo in the 4G4G/4G5G genotype (0.2 vs 0.8; relative risk, 0.28; P < .001) but not in the 5G5G genotype. Soy isoflavones reduced plasma PAI-1 levels compared with placebo. Genistein treatment reduced TGF-β1-induced PAI-1 production in normal human bronchial epithelial cells. CONCLUSIONS This study demonstrates that soy isoflavone treatment provides a significant benefit in reducing the number of severe asthma exacerbations in asthmatic patients with the high PAI-1-producing genotype. PAI-1 polymorphisms can be used as a genetic biomarker for soy isoflavone-responsive patients with asthma.
Collapse
Affiliation(s)
- Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla; Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| | - Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Thomas Casale
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Su J Jeong
- Department of Statistics Support, Medical Science Research Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Joong K Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Janet T Holbrook
- Center for Clinical Trials and Evidence Synthesis Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Rajesh Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Lewis J Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| |
Collapse
|
39
|
Benedé S, Gradillas A, Villalba M, Batanero E. Allium porrum Extract Decreases Effector Cell Degranulation and Modulates Airway Epithelial Cell Function. Nutrients 2019; 11:E1303. [PMID: 31181780 PMCID: PMC6627176 DOI: 10.3390/nu11061303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
Allium genus plants, such as leek (Allium porrum), are rich sources of anti-inflammatory and anti-oxidant secondary metabolites; this is of interest because it demonstrates their suitability as pharmacological alternatives for inflammatory processes, including allergy treatment. The composition of methanolic leek extract (LE) was analyzed by GC-MS and LC-IT/MS, and the total phenolic content and antioxidant capacity were quantified by colorimetric methods. Its pharmacological potential was analyzed in human bronchial epithelial Calu-3 cells, human mast cells LAD2, and humanized rat basophiles RBL-2H3. LE exhibited a cytotoxic effect on Calu-3 cells and HumRBL-2H3 cells only at high concentrations and in a dose-dependent manner. Moreover, LE decreased the degranulation of LAD2 and HumRBL-2H3 cells. LE treatment also significantly prevented alterations in transepithelial electrical resistance values and mRNA levels of glutathione-S-transferase (GST), c-Jun, and NFκB after treatment with H2O2 in ALI-cultured Calu-3 cells. Finally, ALI-cultured Calu-3 cells treated with LE showed lower permeability to Ole e 1 compared to untreated cells. A reduction in IL-6 secretion in ALI-cultured Calu-3 cells treated with LE was also observed. In summary, the results obtained in this work suggest that A. porrum extract may have potential anti-allergic effects due to its antioxidant and anti-inflammatory properties. This study provides several important insights into how LE can protect against allergy.
Collapse
Affiliation(s)
- Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Ana Gradillas
- Cembio (Centro de Metabolómica y Bioanálisis), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, 28668 Monteprincipe, Spain.
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Eva Batanero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
40
|
Altman MC, Gill MA, Whalen E, Babineau DC, Shao B, Liu AH, Jepson B, Gruchalla RS, O'Connor GT, Pongracic JA, Kercsmar CM, Khurana Hershey GK, Zoratti EM, Johnson CC, Teach SJ, Kattan M, Bacharier LB, Beigelman A, Sigelman SM, Presnell S, Gern JE, Gergen PJ, Wheatley LM, Togias A, Busse WW, Jackson DJ. Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children. Nat Immunol 2019; 20:637-651. [PMID: 30962590 PMCID: PMC6472965 DOI: 10.1038/s41590-019-0347-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.
Collapse
Affiliation(s)
- Matthew C Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Whalen
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Baomei Shao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St. Louis, MO, USA
| | - Avraham Beigelman
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St. Louis, MO, USA
| | - Steve M Sigelman
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
41
|
Adi SD, Eiza N, Bejar J, Shefer H, Toledano S, Kessler O, Neufeld G, Toubi E, Vadasz Z. Semaphorin 3A Is Effective in Reducing Both Inflammation and Angiogenesis in a Mouse Model of Bronchial Asthma. Front Immunol 2019; 10:550. [PMID: 30967873 PMCID: PMC6439418 DOI: 10.3389/fimmu.2019.00550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/28/2019] [Indexed: 01/15/2023] Open
Abstract
Semaphorin 3A (sema3A) belongs to the sub-family of the immune semaphorins that function as regulators of immune-mediated inflammation. Sema3A is a membrane associated molecule on T regulatory cells and on B regulatory cells. Being transiently ligated to the cell surface of these cells it is suggested to be a useful marker for evaluating their functional status. In earlier studies, we found that reduced sema3A concentration in the serum of asthma patients as well as reduced expression by Treg cells correlates with asthma disease severity. Stimulation of Treg cells with recombinant sema3A induced a significant increase in FoxP3 and IL-10 expression. To find out if sema3A can be of benefit to asthma patients, we evaluated the effect of sema3A injection in a mouse model of asthma. BALB\c-mice were sensitized using ovalbumin (OVA) + adjuvant for 15 days followed by OVA aerosol inhalation over five consecutive days. Four hours following air ways sensitization on each of the above days- 15 of these mice were injected intraperitoneally with 50 μg per mouse of recombinant human sema3A-FR and the remaining 15 mice were injected with a similarly purified vehicle. Five days later the mice were sacrificed, broncheo-alveolar lavage (BAL) was collected and formalin-fixed lung biopsies taken and analyzed. In sema3A treated mice, only 20% of the bronchioles and arterioles were infiltrated by inflammatory cells as compared to 90% in the control group (p = 0.0079). In addition, eosinophil infiltration was also significantly increased in the control group as compared with the sema3A treated mice. In sema3A treated mice we noticed only a small number of mononuclear and neutrophil cells in the BAL while in the control mice, the BAL was enriched with mononuclear and neutrophil cells. Finally, in the control mice, angiogenesis was significantly increased in comparison with sema3A treated mice as evidenced by the reduced concentration of microvessels in the lungs of sema3A treated mice. To conclude, we find that in this asthma model, sema3A functions as a potent suppressor of asthma related inflammation that has the potential to be further developed as a new therapeutic for the treatment of asthma.
Collapse
Affiliation(s)
- Sabag D Adi
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Nasren Eiza
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Jacob Bejar
- The Department of Pathology, Faculty of Medicine, Bnai-Zion Medical Center, Haifa, Israel
| | - Hila Shefer
- The Department of Pathology, Faculty of Medicine, Bnai-Zion Medical Center, Haifa, Israel
| | - Shira Toledano
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Gera Neufeld
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Elias Toubi
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Zahava Vadasz
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| |
Collapse
|
42
|
Royce SG, Mao W, Lim R, Kelly K, Samuel CS. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. FASEB J 2019; 33:6402-6411. [PMID: 30768365 DOI: 10.1096/fj.201802307r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-β1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.
Collapse
Affiliation(s)
- Simon G Royce
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - WeiYi Mao
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics, Carlton, Victoria, Australia
| | - Chrishan S Samuel
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Siañez M, Highfield L, Collins T, Grineski S. Burden of Illness, Primary Care Use, and Medication Utilization among US-México Border Children with Wheezing. J Racial Ethn Health Disparities 2019; 6:594-602. [PMID: 30610568 DOI: 10.1007/s40615-018-00558-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Among high-risk, underserved populations, such as children living along the US-México border, suffering from asthma-like symptoms without an asthma diagnosis can result in a high burden of illness. We estimated the prevalence of physician-diagnosed and possible undiagnosed asthma among students with histories of wheezing in the US-México border community of El Paso, Texas, and evaluated their burden of illness, primary care use, and medication utilization. METHODS We analyzed cross-sectional survey data collected in May 2012. The survey included validated International Study of Asthma and Allergies in Childhood (ISAAC) items. We performed bivariate and logistic regression analyses on data from 307 students who wheezed. RESULTS Forty-two percent of students had possible undiagnosed asthma and 58% had physician-diagnosed asthma based on primary caretaker reports. Children of Mexican origin were more likely to report undiagnosed vs. diagnosed asthma (p < 0.05). Children with an asthma diagnosis were more likely to report any medication use for wheezing/asthma and to experience a higher burden of illness in the last year compared to students with possible undiagnosed asthma (p < 0.05). CONCLUSIONS The burden of illness among these children was high; however, children with asthma-like symptoms were not faring worse than children with asthma symptoms and a diagnosis. Undiagnosed children were being evaluated and receiving treatment for their symptoms; however, by not receiving a diagnosis, they were eliciting an ameliorative rather than preventive treatment strategy.
Collapse
Affiliation(s)
- Mónica Siañez
- Department of Management, Policy, and Community Health (MPACH), UTHealth School of Public Health, Houston, TX, USA
| | - Linda Highfield
- Department of Management, Policy, and Community Health (MPACH), UTHealth School of Public Health, Houston, TX, USA
| | - Timothy Collins
- Departments of Sociology and Geography, University of Utah, Salt Lake City, UT, USA
| | - Sara Grineski
- Departments of Sociology and Geography, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
Alharris E, Alghetaa H, Seth R, Chatterjee S, Singh NP, Nagarkatti M, Nagarkatti P. Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice. Front Immunol 2018; 9:2992. [PMID: 30619345 PMCID: PMC6306424 DOI: 10.3389/fimmu.2018.02992] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Asthma is a chronic inflammatory disease of airways mediated by T-helper 2 (Th2) cells involving complex signaling pathways. Although resveratrol has previously been shown to attenuate allergic asthma, the role of miRNA in this process has not been studied. We investigated the effect of resveratrol on ovalbumin-induced experimental allergic asthma in mice. To that end, BALB/c mice were immunized with ovalbumin (OVA) intraperitoneally followed by oral gavage of vehicle (OVA-veh) or resveratrol (100 mg/kg body) (OVA-res). On day 7, the experimental groups received intranasal challenge of OVA followed by 7 days of additional oral gavage of vehicle or resveratrol. At day 15, all mice were euthanized and bronchioalveolar fluid (BALF), serum and lung infiltrating cells were collected and analyzed. The data showed that resveratrol significantly reduced IL-5, IL-13, and TGF-β in the serum and BALF in mice with OVA-induced asthma. Also, we saw a decrease in CD3+CD4+, CD3+CD8+, and CD4+IL-4+ cells with increase in CD4+CD25+FOXP3+ cells in pulmonary inflammatory cell infiltrate in OVA-res group when compared to OVA-veh. miRNA expression arrays using lung infiltrating cells showed that resveratrol caused significant alterations in miRNA expression, specifically downregulating the expression of miR-34a. Additionally, miR-34a was found to target FOXP3, as evidenced by enhanced expression of FOXP3 in the lung tissue. Also, transfection studies showed that miR-34a inhibitor upregulated FOXP3 expression while miR-34a-mimic downregulated FOXP3 expression. The current study suggests that resveratrol attenuates allergic asthma by downregulating miR-34a that induces increased expression of FOXP3, a master regulator of Treg development and functions.
Collapse
Affiliation(s)
- Esraah Alharris
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ratanesh Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States,*Correspondence: Prakash Nagarkatti
| |
Collapse
|
45
|
Lee HY, Lee GH, Kim HK, Chae HJ. Platycodi Radix and its active compounds ameliorate against house dust mite-induced allergic airway inflammation and ER stress and ROS by enhancing anti-oxidation. Food Chem Toxicol 2018; 123:412-423. [PMID: 30399386 DOI: 10.1016/j.fct.2018.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Allergic airway inflammation is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. The endoplasmic reticulum (ER) is involved in protein synthesis and maturation, and is a susceptible to sub-organelle stress including inflammation and ROS-amplifying signaling. Here, the effects of Platycodi Radix extracts (PRE) on house dust mite (HDM) extract (Dematophagoides pteronyssius)-induced asthma were investigated. Following 50, 100, or 200 mg/kg-PRE-treatment, the infiltration of inflammatory cells, ER stress, and NF-κB signaling were controlled. The expression of inflammatory cytokines and mucin5AC was also inhibited in the presence of PRE. Consistently, in the HDM-exposed human bronchial epithelial cells, ER stress and its associated ROS were significantly increased along with NF-κB signaling, which was also attenuated by PRE and its components. This study suggests that PRE might be useful as a therapeutic/preventive agent in HDM-associated allergic airway inflammation. ER stress and its associated ROS signaling involved in inflammation provide additional mechanistic insight into the underlying molecular mechanism.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Hye-Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea.
| |
Collapse
|
46
|
Lan B, Mitchel JA, O’Sullivan MJ, Park CY, Kim JH, Cole WC, Butler JP, Park JA. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am J Physiol Lung Cell Mol Physiol 2018; 315:L645-L652. [PMID: 30070589 PMCID: PMC6295502 DOI: 10.1152/ajplung.00261.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During acute bronchoconstriction, the airway epithelium becomes mechanically compressed, as airway smooth muscle contracts and the airway narrows. This mechanical compression activates airway epithelium to promote asthmatic airway remodeling. However, whether compressed airway epithelium can feed back on the cause of bronchoconstriction has remained an open question. Here we examine the potential for epithelial compression to augment proliferation and contraction of airway smooth muscle, and thus potentiate further bronchoconstriction and epithelial compression. Well-differentiated primary human bronchial epithelial (HBE) cells maintained in air-liquid interface culture were mechanically compressed to mimic the effect of bronchoconstriction. Primary human airway smooth muscle (HASM) cells were incubated with conditioned media collected from mechanically compressed HBE cells to examine the effect of epithelial-derived mediators on HASM cell proliferation using an EdU assay and HASM cell contraction using traction microscopy. An endothelin receptor antagonist, PD-145065, was employed to probe the role of HBE cell-derived endothelin-1 on the proliferation and contraction of HASM cells. Conditioned media from compressed HBE cells increased HASM cell proliferation, independent of the endothelin-1 signaling pathway. However, conditioned media from compressed HBE cells significantly increased HASM cell basal contraction and histamine-induced contraction, both of which depended on the endothelin-1 signaling pathway. Our data demonstrate that mechanical compression of bronchial epithelial cells contributes to proliferation and basal contraction of airway smooth muscle cells and that augmented contraction depends on epithelial cell-derived endothelin-1. By means of both airway smooth muscle remodeling and contractility, our findings suggest a causal role of epithelial compression on asthma pathogenesis.
Collapse
Affiliation(s)
- Bo Lan
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts,2Smooth Muscle Research Group and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jennifer A. Mitchel
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Michael J. O’Sullivan
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Chan Young Park
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jae Hun Kim
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - William C. Cole
- 2Smooth Muscle Research Group and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - James P. Butler
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts,3Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jin-Ah Park
- 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
47
|
Krčmová I, Novosad J, Malá E, Krejsek J. Small, Prospective, Observational, Pilot Study in Patients with Severe Asthma after Discontinuation of Omalizumab Treatment. Clin Ther 2018; 40:1942-1953. [PMID: 30391022 DOI: 10.1016/j.clinthera.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/12/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Omalizumab has demonstrated clinical efficacy in severe allergic asthma by reducing exacerbation rates and increasing quality of life. However, data concerning its sustained effect after treatment discontinuation are still needed. METHODS This analysis was an observational pilot study (simple within-subjects design) of 12 patients experiencing severe asthma, treated with omalizumab, for 1 year after treatment discontinuation. We prospectively analyzed clinical measurements (pulmonary functions, inhaled corticosteroid [ICS] doses, Asthma Control Test [ACT] scores, skin prick test [SPT] positivity, fraction of exhaled nitric oxide, and exacerbation rates) and laboratory test results (eosinophils and total immunoglobulin E levels) at the time of discontinuation and 6 and 12 months thereafter. Baseline data (before the treatment period; range, 11-61 months) were collected retrospectively. The treatment effect until discontinuation was calculated. To determine its persistence, repeated measures were compared with baseline levels and analyzed by using a general linear model for repeated measures or the Friedman ANOVA, and χ2 tests in case of normality assumption violation or frequencies. Post hoc analysis was applied by using a simple or repeated contrasts analysis or Wilcoxon signed rank test with Bonferroni correction. FINDINGS We proved a significant reduction in ICS doses and SPT reactivity and an increase in ACT score during the retrospective treatment phase. Moreover, persistence of these statistically significant effects was recorded 6 months after treatment discontinuation. ACT score and ICS doses (but not SPT reactivity) remained improved for 12 months after discontinuation of omalizumab treatment. IMPLICATIONS Omalizumab treatment exhibited sustained treatment benefit after its discontinuation for patients experiencing severe allergic asthma.
Collapse
Affiliation(s)
- Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Novosad
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | - Eva Malá
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
48
|
Affiliation(s)
| | - Helen K Reddel
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
49
|
Morimoto Y, Hirahara K, Kiuchi M, Wada T, Ichikawa T, Kanno T, Okano M, Kokubo K, Onodera A, Sakurai D, Okamoto Y, Nakayama T. Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity 2018; 49:134-150.e6. [PMID: 29958800 DOI: 10.1016/j.immuni.2018.04.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 01/21/2023]
Abstract
Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.
Collapse
Affiliation(s)
- Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-PRIME, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoko Wada
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshio Kanno
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mikiko Okano
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
50
|
Debelleix S, Siao-Him Fa V, Begueret H, Berger P, Kamaev A, Ousova O, Marthan R, Fayon M. Montelukast reverses airway remodeling in actively sensitized young mice. Pediatr Pulmonol 2018; 53:701-709. [PMID: 29493871 DOI: 10.1002/ppul.23980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022]
Abstract
UNLABELLED Asthma is characterized by airway hyperresponsiveness (AHR) and inflammation leading to airway remodeling (AR). In children, AR may occur very early prior to the age of 6 years. Treatments to prevent or reverse AR are unknown. AIM We sought to determine (i) whether short allergenic sensitization at a young age in a mouse model may induce enhanced AR and inflammation compared to adults; (ii) the effect of Montelukast on such AR. METHODS Immature and adult Balb/c mice were sensitized and challenged with ovalbumin. AHR and AR were measured using cultured precision-cut lung slices and inflammation by bronchoalveolar lavage. Experiments were repeated after administration of Montelukast. RESULTS OVA-challenged mice developed AHR to methacholine regardless of age of first exposure to OVA. Young mice developed greater thickened basement membrane, increased smooth muscle mass, and increased area of bronchovascular fibrosis compared with adult mice. Cellular infiltrates in BAL differed depending upon animal age at first exposure with higher eosinophilia measured in younger animals. Montelukast decreased ASM mass, BAL cellularity. CONCLUSION We provide thus evidence for a greater degree of AR after allergenic sensitization and challenge in younger mice versus adults. This study provides proof of concept that airway remodeling can be prevented and reversed in this case by anti-asthmatic drug Montelukast in this model.
Collapse
Affiliation(s)
- Stephane Debelleix
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Valérie Siao-Him Fa
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Hugues Begueret
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Andy Kamaev
- Department of general practice, Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Olga Ousova
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Michael Fayon
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| |
Collapse
|