1
|
Zhang X, Luo S, Hao X, Liu Y, Hu J, Yang J, Qin H, Liu Z. Preclinical Development of GR2002, a Novel Anti-TSLP Bispecific Antibody With Potent TSLP Inhibitory Effects. Allergy 2025. [PMID: 40372096 DOI: 10.1111/all.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/16/2025]
Affiliation(s)
- Xueping Zhang
- Beijing Wisdomab Biotechnology Co. Ltd, Beijing, China
| | - Suya Luo
- State Key Laboratory of Chemo and Biosensing, Hunan Research Center of the Basic Discipline for Cell Signaling, College of Biology, Hunan University, Changsha, China
| | - Xiaobo Hao
- Beijing Wisdomab Biotechnology Co. Ltd, Beijing, China
| | - Yulan Liu
- Beijing Wisdomab Biotechnology Co. Ltd, Beijing, China
| | - Junjie Hu
- Beijing Wisdomab Biotechnology Co. Ltd, Beijing, China
| | - Jiaqian Yang
- Genrix (Shanghai) Biopharmaceutical Co. Ltd, Shanghai, China
| | - Hongtao Qin
- State Key Laboratory of Chemo and Biosensing, Hunan Research Center of the Basic Discipline for Cell Signaling, College of Biology, Hunan University, Changsha, China
| | - Zhigang Liu
- Beijing Wisdomab Biotechnology Co. Ltd, Beijing, China
- Chongqing Genrix Biopharmaceutical Co. Ltd., Chongqing, China
| |
Collapse
|
2
|
Chen YC, Cheng YP, Liu CY, Wang WC, Wang TM, Lai CY, Guo JW. Sakuranetin modulates IL-17A-related inflammation and enhances skin barrier function in an imiquimod-induced psoriasis model. Biomed Pharmacother 2025; 186:118035. [PMID: 40209307 DOI: 10.1016/j.biopha.2025.118035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Sakuranetin, a methoxylated flavanone with known anti-inflammatory and antioxidant properties, has yet to be explored for its therapeutic potential in psoriasis treatment. This study evaluates its efficacy in an imiquimod-induced psoriasis-like murine model, focusing on both immune modulation and skin barrier restoration. Topical administration of sakuranetin significantly attenuated psoriatic inflammation, with high-dose treatment achieving comparable efficacy to desoximetasone. RNA sequencing and qPCR validation revealed that sakuranetin modulates keratinization, cornified envelope formation, and kallikrein-related peptidase activity, suggesting its role in epidermal homeostasis. Notably, sakuranetin selectively downregulated IL-17A while maintaining IL-17F expression, supporting a targeted immunomodulatory effect. Additionally, sakuranetin upregulated KRT1, KRT16, KLK7, Sprr2f, and Wfdc18 while downregulating Sprr2k and Sprr3, indicating a refined regulation of skin barrier proteins. The observed upregulation of Tslp suggests a potential role in epidermal repair mechanisms. These findings highlight sakuranetin as a novel, plant-derived therapeutic candidate with dual anti-inflammatory and skin barrier-enhancing properties, providing a potential corticosteroid-sparing approach for long-term psoriasis management.
Collapse
Affiliation(s)
- Yung-Chuan Chen
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Yu-Ping Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, Taipei 22174, Taiwan.
| | - Wei-Chin Wang
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Tzu-Ming Wang
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chien-Yu Lai
- Department of Pediatrics, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan.
| |
Collapse
|
3
|
Jun-Ting T, Ying T, Xiang N, Dong-Jie S, Li H. Elevated Type 2 Inflammatory Factors, Th2/Th1 Balanced Status, and Exosomes as a Marker of Severity in Chronic Actinic Dermatitis. Mediators Inflamm 2025; 2025:7967853. [PMID: 39949921 PMCID: PMC11824299 DOI: 10.1155/mi/7967853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 02/16/2025] Open
Abstract
Background: Chronic actinic dermatitis (CAD) is a skin inflammation triggered by light exposure, occurring at the exposed site and potentially causing widespread inflammation throughout the body. While we hypothesize that severe CAD could progress to atopic dermatitis, the exact inflammatory mechanisms and pathogenesis remain unclear. Objective: We aimed to investigate the relationships between CAD severity and clinical and immunological parameters. Methods: CAD patients were classified into two groups based on severity: mild CAD and severe CAD. We assessed total IgE levels, eosinophil count in peripheral blood (PB), the ratio of Th2 cell percentage to Th1 cell percentages (Th2/Th1), and cytokine/chemokine levels in both PB and skin lesions. Results: In our study, eosinophil counts in patients with severe CAD and mild CAD were significantly higher than those in the control group (p < 0.05). It was exhibited a higher Th2/Th1 ratio in severe-CAD patients compared with mild-CAD patients and control group (p < 0.05). There were significant increases in the levels of IL-4, IL-5, IL-8, IL-31, and IFN-γ in the lesions of severe CAD patients compared to the control group (p < 0.05). Additionally, the level of CD63 exosomes in the PB of severe-CAD patients was significantly elevated compared to the control group (p < 0.05). Persistent elevations of CD63 exosomes in severe CAD patients were associated with the Th2/Th1 balance status in PB (p < 0.05). Conclusion: Severe CAD demonstrates a shift toward Th2 immunity from Th2/Th1, accompanied by elevated with inflammatory factors such as IL-4, IL-5, IL-31, IL-8, and IFN-γ in skin lesions, as well as increased CD63 exosomes in PB. Thus, consequently, exosomes and Th2/Th1 imbalance may contribute to the systemic manifestations observed in CAD patients.
Collapse
Affiliation(s)
- Tang Jun-Ting
- Department of Dermatology and Venerology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Tu Ying
- Department of Dermatology and Venerology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Nong Xiang
- Department of Dermatology and Venerology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Sun Dong-Jie
- Department of Dermatology and Venerology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - He Li
- Department of Dermatology and Venerology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| |
Collapse
|
4
|
Sikorska-Szaflik H, Dębińska A, Połomska J, Drabik-Chamerska A, Sozańska B. The Role of TSLP and IL-1 β and Their Genetic Variants in the Pathogenesis of Single and Multiple Atopic Diseases in Children. J Clin Med 2025; 14:598. [PMID: 39860604 PMCID: PMC11765508 DOI: 10.3390/jcm14020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Allergic diseases commonly coexist, manifesting in a sequence described as the "allergic march". Background/Objectives: This study aimed to evaluate TSLP's and IL-1β's potential as biomarkers in both single and multi-pediatric atopic diseases like atopic eczema, food allergy, and anaphylaxis and analyze specific SNPs in the TSLP and IL-1β genes to determine their associations with their occurrence and severity. Methods: This analysis included 109 atopic children diagnosed with atopic dermatitis, food allergy, or anaphylaxis alongside a control group of 57 non-atopic children. Recruitment was facilitated through the use of a comprehensive questionnaire. For the study population, the allergen profile was characterized at the molecular level by measuring specific IgE to purified natural or recombinant allergens, assessing serum levels of circulating TSLP and IL-1β, and identifying single-nucleotide polymorphisms in TSLP (rs2289277) and IL-1β (rs16944 C-511T). Results: The serum levels of TSLP and IL-1β were elevated in the study groups compared to the control group, highlighting their significance in the pathogenesis of the studied diseases. Carrying a higher number of the risk allele [C] in the TSLP SNP rs2289277 is associated with the greatest likelihood of having multiple concurrent allergic conditions, with the highest risk observed in individuals with all three conditions-atopic dermatitis, food allergy, and anaphylaxis, simultaneously. Moreover, children carrying the risk allele had a twofold increased risk of polysensitization, which rose to sixfold in those with two copies of the risk allele. Although no significant variations in genotype frequencies were detected for IL-1β rs16944, significant associations were observed for TSLP rs2289277, particularly with conditions such as atopic dermatitis, food allergy, anaphylaxis, and combinations of these diseases. Conclusions: Further research is required to elucidate these pathways and their role in the development of allergic diseases.
Collapse
|
5
|
Gurram RK, Li P, Oh J, Chen X, Spolski R, Yao X, Lin JX, Roy S, Liao MJ, Liu C, Yu ZX, Levine SJ, Zhu J, Leonard WJ. TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation. Sci Immunol 2025; 10:eadk0073. [PMID: 39792638 DOI: 10.1126/sciimmunol.adk0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (Teffs), which drive the immune response, and regulatory T cells (Tregs), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on Teffs versus Tregs to balance type 2 immunity. As expected, deletion of TSLP receptor (TSLPR) on all T cells (Cd4CreCrlf2fl/fl mice) resulted in lower numbers of T helper 2 (TH2) cells and diminished ovalbumin-induced airway inflammation, but selective deletion of TSLPR on Tregs (Foxp3YFP-Cre/YCrlf2fl/fl mice) resulted in increased interleukin-5 (IL-5)- and IL-13-secreting TH2 cells and lung eosinophilia. Moreover, TSLP augmented the expression of factors that stabilize Tregs. During type 2 immune responses, TSLPR-deficient Tregs acquired TH2-like properties, with augmented GATA3 expression and secretion of IL-13. TSLP not only is a driver of TH2 effector cells but also acts in a negative feedback loop, thus promoting the ability of Tregs to limit allergic inflammation.
Collapse
Affiliation(s)
- Rama K Gurram
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suyasha Roy
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Matthew J Liao
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Bak SG, Lim HJ, Won YS, Park SI, Cheong SH, Lee SJ. Regulatory effects of Ishige okamurae extract and Diphlorethohydroxycarmalol on skin barrier function. Heliyon 2024; 10:e40227. [PMID: 39654745 PMCID: PMC11625274 DOI: 10.1016/j.heliyon.2024.e40227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Ethnopharmacological relevance The pharmacological potential of marine organisms remains largely unexplored. Ishige Okamurae, commonly known as Pae, is extensively distributed over Asia. Its antioxidant, antibacterial, antiobesity, and anti-inflammatory properties are also being investigated. Aim of the study In most cases of atopic dermatitis, the stratum corneum, the outermost layer of the epidermis, is damaged, causing symptoms such as dryness and hyperproliferation of the epidermis. In particular, the disruption of cell junctions leads to damage of the skin barrier, exacerbating the disease and becoming a target for therapeutic development. Our study aims to investigate of Ishige okamurae extract (IOE) and a major compound derived from it, called Diphlorethohydroxycarmalol (DPHC), can help strengthen the skin barrier in animals with atopic dermatitis induced by 2,4-dinitrochlorobenzene (DNCB). Materials and methods In keratinocyte cell lines, HaCaT cells, the cytotoxicity of IOE and DPHC was assessed by MTT analysis. The gene expression of skin barrier factors and tight junctions were determined by real-time PCR in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells. In addition, JAK/STAT signaling pathway was performed to evaluating the mechanism of drugs by Western blot. Next, we studied the effects of IOE and DPHC on the skin of animals with DNCB-induced atopic dermatitis. We measured the expression of genes related of the skin barrier and tight junctions in their ear tissue. Results As a result, IOE and DPHC confirmed that the expression of skin barrier proteins (thymic stromal lymphopoietin, filaggrin, loricrin, and involucrin) was improved in the DNCB-induced atopic dermatitis model and HaCaT cells. In addition, the expression of tight junction-related proteins (claudin, occludin, and tight junction protein-1) were improved. Conclusion IOE and DPHC ameliorated the atopic dermatitis lesions through alleviating the pro-inflammatory responses and tight junction protein destruction. Our results suggest that IOE and DPHC could be promising candidates for enhancing skin barrier function.
Collapse
Affiliation(s)
- Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Hyung Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, Republic of Korea
| | - Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
7
|
Shi L, Yu M, Jin Y, Chen P, Mu G, Tam SH, Cho M, Tornetta M, Han C, Fung MC, Chiu ML, Zhang D. A novel monoclonal antibody against human thymic stromal lymphopoietin for the treatment of TSLP-mediated diseases. Front Immunol 2024; 15:1442588. [PMID: 39726595 PMCID: PMC11670205 DOI: 10.3389/fimmu.2024.1442588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases. Methods and results In this study, we discovered and characterized a novel humanized anti-TSLP antibody TAVO101 with high binding affinity to human TSLP, which blocks TSLP binding to its receptor complexes on cell surface. TAVO101 showed potent neutralization of TSLP activities in the TSLP-driven STAT5 reporter assay and cell proliferation assay. Results from ex vivo studies showed that TAVO101 neutralized TSLP-mediated CCL17 release from primary human CD1c+ dendritic cells and proliferation of activated CD4+ T cells. In addition, TAVO101 showed strong efficacy in both TSLP/OVA-induced asthma and imiquimod induced psoriasis models in hTSLP/hTSLPR double knock-in mice. We further conducted Fc engineering to optimize TAVO101 antibody with reduced affinity to Fcγ receptors and C1q protein but with increased affinity to FcRn receptor for half-life extension. Discussion By recognizing a different epitope, similarly potent neutralization of TSLP activities, and longer circulating half-life than tezepelumab, novel anti-TSLP antibody TAVO101 offers a potential best-in class therapeutics for various TSLP-mediated diseases.
Collapse
Affiliation(s)
- Lihua Shi
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mingcan Yu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Ying Jin
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Peng Chen
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Guangmao Mu
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Susan H. Tam
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Minseon Cho
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark Tornetta
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Chao Han
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Man-Cheong Fung
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark L. Chiu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Di Zhang
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| |
Collapse
|
8
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
9
|
Suleman M, Moltrasio C, Tricarico PM, Marzano AV, Crovella S. Natural Compounds Targeting Thymic Stromal Lymphopoietin (TSLP): A Promising Therapeutic Strategy for Atopic Dermatitis. Biomolecules 2024; 14:1521. [PMID: 39766227 PMCID: PMC11673240 DOI: 10.3390/biom14121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with rising prevalence, marked by eczematous lesions, itching, and a weakened skin barrier often tied to filaggrin gene mutations. This breakdown allows allergen and microbe entry, with thymic stromal lymphopoietin (TSLP) playing a crucial role by activating immune pathways that amplify the allergic response. TSLP's central role in AD pathogenesis makes it a promising therapeutic target. Consequently, in this study, we used the virtual drug screening, molecular dynamics simulation, and binding free energies calculation approaches to explore the African Natural Product Database against the TSLP protein. The molecular screening identified four compounds with high docking scores, namely SA_0090 (-7.37), EA_0131 (-7.10), NA_0018 (-7.03), and WA_0006 (-6.99 kcal/mol). Furthermore, the KD analysis showed a strong binding affinity of these compounds with TSLP, with values of -5.36, -5.36, -5.34, and -5.32 kcal/mol, respectively. Moreover, the strong binding affinity of these compounds was further validated by molecular dynamic simulation analysis, which revealed that the WA_0006-TSLP is the most stable complex with the lowest average RMSD. However, the total binding free energies were -40.5602, -41.0967, -27.3293, and -51.3496 kcal/mol, respectively, showing the strong interaction between the selected compounds and TSLP. Likewise, these compounds showed excellent pharmacokinetics characteristics. In conclusion, this integrative approach provides a foundation for the development of safe and effective treatments for AD, potentially offering relief to millions of patients worldwide.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Paola Maura Tricarico
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| |
Collapse
|
10
|
Han C, Fung I, Zhang D, Jin Y, Chen P, Tam S, Chiu ML, Fung MC. Phase 1 Safety and Pharmacokinetics Study of TAVO101, an Anti-Human Thymic Stromal Lymphopoietin Antibody for the Treatment of Allergic Inflammatory Conditions. J Clin Pharmacol 2024. [PMID: 39141432 DOI: 10.1002/jcph.6115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 08/16/2024]
Abstract
TAVO101 is a humanized anti-human thymic stromal lymphopoietin (TSLP) monoclonal antibody under clinical development for the treatment of atopic dermatitis (AD) and other allergic inflammatory conditions. The crystallizable fragment region of the antibody was engineered for half-life extension and attenuated effector functions. This Phase 1, double-blinded, randomized, placebo-controlled study assessed the safety, tolerability, pharmacokinetics, and immunogenicity of TAVO101 in healthy adult subjects in seven ascending dose cohorts. Subjects received a single intravenous administration of TAVO101 or placebo with a 195-day follow-up. TAVO101 was safe and well tolerated. The incidences and severities of treatment-emergent adverse events were mostly mild and comparable between the active and placebo groups, with no trends of dose relationship. There were no severe adverse events, deaths, or treatment-related withdrawals. TAVO101 exhibited a linear pharmacokinetic profile, low clearance, and a median elimination half-life of 67 days in healthy subjects. All TAVO101-treated subjects tested negative for anti-drug antibodies. To support development in AD, TAVO101 was studied in an oxazolone-induced AD model in hTSLP transgenic mice and demonstrated efficacy. This long-acting anti-TSLP antibody has the potential for stronger and sustained allergic inflammatory disease control. The results from this study warranted further clinical development of TAVO101 in patients.
Collapse
Affiliation(s)
- Chao Han
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Isa Fung
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Di Zhang
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Ying Jin
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Peng Chen
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Susan Tam
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Mark L Chiu
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Man-Cheong Fung
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| |
Collapse
|
11
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
12
|
Canè L, Poto R, Palestra F, Pirozzi M, Parashuraman S, Iacobucci I, Ferrara AL, La Rocca A, Mercadante E, Pucci P, Marone G, Monti M, Loffredo S, Varricchi G. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD. Eur J Intern Med 2024; 124:89-98. [PMID: 38402021 DOI: 10.1016/j.ejim.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Antonello La Rocca
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Edoardo Mercadante
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Piero Pucci
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
13
|
Bagnasco D, De Ferrari L, Bondi B, Candeliere MG, Mincarini M, Riccio AM, Braido F. Thymic Stromal Lymphopoietin and Tezepelumab in Airway Diseases: From Physiological Role to Target Therapy. Int J Mol Sci 2024; 25:5972. [PMID: 38892164 PMCID: PMC11172531 DOI: 10.3390/ijms25115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Benedetta Bondi
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Maria Giulia Candeliere
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Marcello Mincarini
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Fulvio Braido
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
14
|
Yue C, Hu Y, Yu J, Zhou H, Zhou P, Hu J, Wang X, Gu L, Li Y, Feng Y, Zeng F, Zhao F, Li G, Zhao Q, Zhang C, Zheng H, Wu W, Cui X, Huang N, Wang Z, Cui K, Li J. IL-38 Aggravates Atopic Dermatitis via Facilitating Migration of Langerhans cells. Int J Biol Sci 2024; 20:3094-3112. [PMID: 38904012 PMCID: PMC11186352 DOI: 10.7150/ijbs.93843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinai Cui
- CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, 37 Guo Xue Road, Chengdu, Sichuan 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Sakashita E, Nagatani K, Endo H, Minota S. Biomarker combination predicting imminent relapse after discontinuation of biological drugs in patients with rheumatoid arthritis in remission. PLoS One 2024; 19:e0299450. [PMID: 38512921 PMCID: PMC10956849 DOI: 10.1371/journal.pone.0299450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES Compared to conventional disease-modifying antirheumatic drugs (DMARDs), biological DMARDs demonstrate superior efficacy but come with higher costs and increased infection risks. The ability to stop and resume biological DMARD treatment while maintaining remission would significantly alleviate these barriers and anxieties. The objective of this study was to identify biomarkers that can predict an imminent relapse, hopefully enabling the timely resumption of biological DMARDs before relapse occurs. METHODS Forty patients with rheumatoid arthritis who had been in remission for more than 12 months were included in the study. The patients discontinued their biological DMARD treatment and were monitored monthly for the next 24 months. Out of the 40 patients, 14 (35%) remained in remission at the end of the 24-month period, while 26 (65%) experienced relapses at different time points. Among the relapse cases, 13 patients experienced early relapse within 6 months, and another 13 patients had late relapse between 6 months and 24 months. Seventy-three cytokines in the sera collected longitudinally from the 13 patients with late relapse were measured by multiplex immunoassay. Using cytokines at two time points, immediately after withdrawal and just before relapse, volcano plot and area under the receiver operating characteristic curves (AUC) were drawn to select cytokines that distinguished imminent relapse. Univariate and multivariate logistic regression analyses were used for the imminent relapse prediction model. RESULTS IL-6, IL-29, MMP-3, and thymic stromal lymphopoietin (TSLP) were selected as potential biomarkers for imminent relapse prediction. All four cytokines were upregulated at imminent relapse time point. Univariate and multivariate logistic regression showed that a combination model with IL-6, MMP-3, and TSLP yielded an AUC of 0.828 as top predictors of imminent relapse. CONCLUSIONS This methodology allows for the prediction of imminent relapse while patients are in remission, potentially enabling the implementation of on- and off-treatments while maintaining remission. It also helps alleviate patient anxiety regarding the high cost and infection risks associated with biological DMARDs, which are the main obstacles to benefiting from their superb efficacy.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Katsuya Nagatani
- Department of Medicine, Division of Rheumatology and Clinical Immunology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Seiji Minota
- Department of Medicine, Division of Rheumatology and Clinical Immunology, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
16
|
Wang ZY, Zheng YX, Xu F, Cui YZ, Chen XY, Chen SQ, Yan BX, Zhou Y, Zheng M, Man XY. Epidermal keratinocyte-specific STAT3 deficiency aggravated atopic dermatitis-like skin inflammation in mice through TSLP upregulation. Front Immunol 2023; 14:1273182. [PMID: 38053996 PMCID: PMC10694200 DOI: 10.3389/fimmu.2023.1273182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases with complex pathogenesis involving epidermal barrier dysfunction, skin microbiome abnormalities and type-2-skewed immune dysregulation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays critical roles in various biological processes. However, the role of STAT3 in epidermal keratinocytes in AD remains unclear. In this study, we generated an epidermal keratinocyte-specific Stat3-deficient mouse strain (termed Stat3 cKO mice). After topical 2,4-dinitrochlorobenzene (DNCB) treatment, Stat3 cKO mice developed worsened AD-like skin inflammation with increased Ki67+ cells, decreased filaggrin and loricrin expression, and downregulated S100A9 and LL37. The dominant microbial population in Stat3 cKO mice changed from Ralstonia to Staphylococcus. DNCB-treated Stat3 cKO mice displayed more infiltrating type-2 inflammatory cells, including mast cells, eosinophils, and CD4+T cells, accompanied by increased skin IL-4 and serum IgE levels. Moreover, thymic stromal lymphopoietin (TSLP), mainly produced by keratinocytes, was highly expressed in the ear skin of Stat3 cKO mice and chemoattracted more TSLPR+ cells. TSLP blockade significantly alleviated DNCB-induced AD-like skin inflammation in Stat3 cKO mice. Thus, epidermal keratinocyte-specific STAT3 deficiency can aggravate AD-like skin inflammation in mice, possibly through TSLP dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Qu H, Liu X, Jiang T, Huang G, Cai H, Xing D, Mao Y, Zheng X. Integration analysis using bioinformatics and experimental validation on the clinical and biological significance of TSLP in cancers. Cell Signal 2023; 111:110874. [PMID: 37640192 DOI: 10.1016/j.cellsig.2023.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) has significantly impacted the development and progression of various neoplastic disorders. To comprehensively evaluate the diverse significance of TSLP in malignant tumors, we first integrative analyze the TSLP expression level in paired and unpaired pan-cancer tissue and cell line, compared against the normal tissue. The correlation between TSLP expression, molecular subtypes, immune subtypes, diagnostic value, and prognostic value in pan-cancer was also investigated. We then explored the impact of TSLP expression on multifaced immune cell infiltration and subsequent clinical outcomes in lung adenocarcinoma (LUAD) patients. and conducted cellular experiments to functionally examine the effect of TSLP on cell proliferation, apoptosis, cell cycle, migration, and invasion in LUAD. The anti-neoplastic mechanism of TSLP was further investigated by qRT-PCR and western blotting. Our findings reveal that TSLP expression is abnormally low in various cancers compared to normal tissue and is associated with different molecular and immune subtypes of cancers. Moreover, ROC and survival analysis results suggest that TSLP expression is correlated with the diagnostic, prognostic, clinical features, and immune cells of LUAD patients. Cell experiments showed that overexpression of TSLP elicited a significant reduction in LUAD cell viability, promoted cell apoptosis, impeded cell cycle progression in the G2/M phase, and inhibited cell migration and invasion. In addition, TSLP inhibited LUAD progression through the JAK1/STAT3 signaling pathway. Therefore, targeting TSLP shows potential as a therapeutic strategy for pan-cancer, particularly for LUAD, and as a biomarker for predicting the prognosis of this malignancy.
Collapse
Affiliation(s)
- Honglin Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xinning Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Ting Jiang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Guodong Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Houhao Cai
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Daijun Xing
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Yuecheng Mao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China.
| |
Collapse
|
18
|
Street ME, Shulhai AM, Rotondo R, Giannì G, Caffarelli C. Current knowledge on the effects of environmental contaminants in early life nutrition. Front Nutr 2023; 10:1120293. [PMID: 37324741 PMCID: PMC10267348 DOI: 10.3389/fnut.2023.1120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Breast milk represents the optimal source of feeding for newborns, in terms of nutritional compounds and as it provides immunological, metabolic, organic, and neurological well-being. As a complex biological fluid, it consists not only of nutritional compounds but also contains environmental contaminants. Formulas through production, contact with bottles and cups, and complementary feeding can also be contaminated. The current review focuses on endocrine-disrupting chemicals, and made-man xenoestrogens present in the environment and both commonly present in food sources, agricultural practices, packaging, consumer products, industry, and medical care. These contaminants are transferred by passive diffusion to breast milk and are delivered during breastfeeding. They mainly act by activating or antagonizing hormonal receptors. We summarize the effects on the immune system, gut microbiota, and metabolism. Exposure to endocrine-disrupting chemicals and indirect food additives may induce tissue inflammation and polarize lymphocytes, increase proinflammatory cytokines, promote allergic sensitization, and microbial dysbiosis, activate nuclear receptors and increase the incidence of allergic, autoimmune, and metabolic diseases. Breast milk is the most important optimal source in early life. This mini-review summarizes current knowledge on environmental contaminants and paves the way for strategies to prevent milk contamination and limit maternal and infant exposure during pregnancy and the first months of life.
Collapse
Affiliation(s)
- Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Giuliana Giannì
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Carlo Caffarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| |
Collapse
|
19
|
Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023; 22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Collapse
Affiliation(s)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Emilia Vassilopoulou
- Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mónica Martínez Blanco
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamara Hoppenbrouwers
- Food Quality & Design, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), Campus Universitario Ecotekne, Lecce, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Ana Maria Castro
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Lin YC, Lin YC, Tsai ML, Liao WT, Hung CH. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci 2022; 12:32. [PMID: 35292112 PMCID: PMC8925056 DOI: 10.1186/s13578-022-00767-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a Th2-like cytokine involved in asthma pathogenesis. Excessive reactive oxygen species (ROS) production can lead to airway inflammation, hyperresponsiveness and remodeling. Mitophagy, followed by ROS production, is the selective degradation of mitochondria by autophagy and often occurs in defective mitochondria. In the present study, we aimed to examine the effects of TSLP on ROS production and mitophagy in human monocytes and to investigate the underlying mechanisms, including epigenetic regulation. Results TSLP induced ROS generation, and the effects were reversed by the antioxidant N-acetylcysteine (NAC) in THP-1 cells. Transmission electron microscopy images showed donut-shaped mitochondria that lost the cristae ultrastructure after TSLP stimulation. A decrease in mitochondrial membrane potential, decreased MTCO2 expression, and increased mitochondrial DNA release after TSLP stimulation were found. TSLP enhanced mitochondrial complex I and complex II/III activity and increased mitochondrial copy numbers and the expression of the complex II SHDA gene. TSLP-induced SHDA expression was inhibited by the histone acetyltransferase inhibitor anacardic acid (AA) and the histone methyltransferase inhibitor methylthioadenosine (MTA), and chromatin immunoprecipitation assays revealed that TSLP enhanced H3 acetylation, H4 acetylation, and H3K4 and H3K36 trimethylation in the SHDA promoter. Confocal laser microscopy showed that TSLP treatment increased the signals of the mitophagy-related proteins PINK1, LC3, phospho-parkin and phospho-ubiquitin, and pretreatment with AA and MTA reduced TSLP-induced PINK1 and LC3 accumulation in mitochondria. Western blot analysis showed that TSLP significantly increased phosphor-AMPK signal intensity, and the effects were inhibited by the antioxidant NAC. The increased signal intensities of the mitophagy-related proteins PINK1, Parkin and LC3 I/II were decreased by dorsomorphin, an AMPK inhibitor. TSLP decreased M1-related cytokine CXCL-10 production and increased M2-related cytokine CCL-1 and CCL-22 production, which was suppressed by the mitophagy inhibitor Mdivi-1 and PINK1 gene knockdown. Conclusions Epithelial-derived TSLP regulates ROS production and mitophagy through AMPK activation and histone modification and alters M1/M2 chemokine expression in human monocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00767-w.
Collapse
|
21
|
Zoumot Z, Al Busaidi N, Tashkandi W, Aljohaney AA, Isse S, Vidyasagar K, Ukwaja KN. Tezepelumab for Patients with Severe Uncontrolled Asthma: A Systematic Review and Meta-Analysis. J Asthma Allergy 2022; 15:1665-1679. [PMID: 36425526 PMCID: PMC9680989 DOI: 10.2147/jaa.s378062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Tezepelumab is a human monoclonal antibody that blocks thymic stromal lymphopoietin, an epithelial-cell-derived cytokine implicated in the pathogenesis of asthma. It was approved by the United States Federal Drug Administration (US FDA) as an add-on maintenance treatment for patients with severe uncontrolled asthma in December 2021. We conducted a systematic review and meta-analysis to investigate the safety and efficacy of tezepelumab on forced expiratory volume (FEV1) (L), the rate of asthma exacerbations, health-related quality of life, fractional exhaled nitric oxide (FeNO) (ppb), and blood eosinophil count (cells/mL) in patients with severe, uncontrolled asthma. Mean changes for efficacy and proportions (safety) with their corresponding 95% confidence intervals (CIs) were used to provide pooled estimates. A total of six randomized controlled trials comprising 2667 patients were included, of whom 1610 were treated with tezepelumab and 1057 received placebo. The pooled analysis showed that tezepelumab treatment resulted in an improvement in FEV1 of 0.15 L (95% CI: 0.12 to 0.17), a reduction in the asthma exacerbation rate per year of 0.60 (95% CI: 0.51 to 0.70), and a reduction in FeNO of -12.41 ppb (95% CI: -14.28 to -10.53) when compared to placebo. Improvements in FEV1 and FeNO levels were maintained at 24 and 52 weeks. As for safety, patients did not experience a higher incidence of adverse drug reactions with tezepelumab (0.79 (95% CI: 0.55 to 1.12)) as compared to placebo. As for quality of life, different doses of the tezepelumab intervention group depicted non-significant improvement in the QoL, from 0.15 (95% CI: -0.09 to 0.38) for 70 mg, 0.18 (95% CI: -0.10 to 0.46) for 210 mg, 0.08 (95% CI: -0.16 to 0.32) for 280 mg as compared to the placebo. Tezepelumab significantly reduced exacerbation rates and improved FEV1 with an acceptable safety profile.
Collapse
Affiliation(s)
- Zaid Zoumot
- Respiratory Institute Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nasser Al Busaidi
- Department of Pulmonology, Royal Hospital, Muscat, Sultanate of Oman
| | - Wail Tashkandi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Aljohaney
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Said Isse
- Respiratory Institute Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kota Vidyasagar
- Department of Pharmacy, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Kingsley Nnanna Ukwaja
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
22
|
Boieri M, Marchese E, Pham QM, Azin M, Steidl LE, Malishkevich A, Demehri S. Thymic stromal lymphopoietin-stimulated CD4+ T cells induce senescence in advanced breast cancer. Front Cell Dev Biol 2022; 10:1002692. [PMID: 36467403 PMCID: PMC9714463 DOI: 10.3389/fcell.2022.1002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) plays a prominent role in inducing type 2 immune response, commonly associated with atopic diseases. TSLP-activated CD4+ T helper 2 cells block early carcinogenesis by inducing terminal differentiation in spontaneous breast and lung cancer models. However, the impact of TSLP induction on advanced cancer with altered cellular phenotypes is unclear. Using an established MMTV-PyMttg breast cancer cell line, we demonstrate that TSLP-stimulated CD4+ T cells possess an antitumor effect in advanced breast cancer. In contrast to early breast cancer suppression, the antitumor immunity mediated by TSLP-stimulated CD4+ T cells in advanced breast cancer is mediated by the induction of a senescent-like phenotype in cancer cells. Inflammatory CD4+ T cells drive breast cancer cells into senescence by releasing interferon-gamma and tumor necrosis factor-alpha, which directly bind to their receptors on cancer cells. Our findings reveal a novel mechanism of TSLP-activated CD4+ T cell immunity against advanced breast cancer, mediated by cellular senescence as a distinct effector mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Margherita Boieri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Emanuela Marchese
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Quan Minh Pham
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren E. Steidl
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna Malishkevich
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Shadmehr Demehri,
| |
Collapse
|
23
|
Caco-2 Cell Response Induced by Peptides Released after Digestion of Heat-Treated Egg White Proteins. Foods 2022; 11:foods11223566. [PMID: 36429158 PMCID: PMC9689089 DOI: 10.3390/foods11223566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The heat treatment of food proteins induces structural modifications that influence their interaction with human fluids and cells. We aimed to evaluate the Caco-2 cell response induced by peptides produced after digestion of heat-treated egg white proteins. In vitro digestion of ovalbumin (OVA), ovomucoid (OM), and lysozyme (LYS), untreated or previously heated, was performed. The digestibility of proteins and the response of Caco-2 cells exposed to peptides (<10 kDa) generated during digestion were evaluated. Intact OVA and LYS persisted after the digestion of native proteins, whereas OM was completely hydrolysed. A heat treatment at 65 °C for 30 min did not alter the digestibility of OVA, whereas at 90 °C for 3 min, protein degradation was favoured. The digestibility of OM and LYS was not affected by heat treatment. Peptides derived from OVA and OM digestion induced IL-6 and IL-8 production. OVA and LYS digestion promoted the expression of Tslp, and Il6 and Il33, respectively. A heat treatment prior to OVA digestion reduced IL-6 production and Tslp expression. It was concluded that heat treatments can reduce the release of OVA-derived peptides, but not OM and LYS, with proinflammatory activity during digestion.
Collapse
|
24
|
Hu YQ, Zhang JZ. A Comparison for Type 2 Cytokines and Lesional Inflammatory Infiltrations in Bullous Pemphigoid and Atopic Dermatitis. Clin Cosmet Investig Dermatol 2022; 15:2313-2321. [PMID: 36325102 PMCID: PMC9620838 DOI: 10.2147/ccid.s376845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Background Bullous pemphigoid (BP) and atopic dermatitis (AD) are both type 2 inflammatory skin diseases with similar clinical features. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine which is upregulated in AD. However, the expression of TSLP in BP and the correlation between TSLP and inflammatory infiltrations have not been fully studied. Objective To characterize the serum Th2 cytokines level and Th2 inflammatory cell infiltrations in BP and AD. To study TSLP levels in serum, blister fluids and expression in lesional skin in patients with BP and AD. Methods TSLP level in serum and blister fluids was measured by enzyme-linked immunosorbent assay (ELISA). Inflammatory cells (CD4+ T cells, CD8+ T cells, CD1a+ cells, eosinophils and mast cells) were stained immunohistochemically and quantified by image analysis. Results TSLP level was significantly increased in blister fluids of BP and was highly expressed in lesional skin of BP and AD. Serum levels of IL-6, IL-4, IL-22, IFN-γ and thymic activation regulates chemokines (TARC) were significantly higher in patients with BP and AD than in healthy controls. CD4+ T cells, CD8+ T cells and CD1a+ cells were significantly more in upper dermis of BP and AD lesions. Eosinophils were found more in BP lesions while mast cells were found more in AD lesions than in healthy controls. A distinct correlation was found between TSLP levels and the intensities of CD4+ T cells, CD1a+ cells infiltrations. Conclusion TSLP was significantly higher in blister fluids and skin lesions of BP, suggesting that it might contribute to the pathogenesis of BP. BP exhibited a similar type 2 immune response and a slight difference in cells infiltrations with AD.
Collapse
Affiliation(s)
- Yu-qing Hu
- Department of Dermatology, Peking University People’s Hospital, Beijing, People’s Republic China
| | - Jian-zhong Zhang
- Department of Dermatology, Peking University People’s Hospital, Beijing, People’s Republic China,Correspondence: Jian-zhong Zhang, Tel +86-10-88325472, Fax +86-10-68318386, Email
| |
Collapse
|
25
|
Boieri M, Malishkevich A, Guennoun R, Marchese E, Kroon S, Trerice KE, Awad M, Park JH, Iyer S, Kreuzer J, Haas W, Rivera MN, Demehri S. CD4+ T helper 2 cells suppress breast cancer by inducing terminal differentiation. J Exp Med 2022; 219:213261. [PMID: 35657353 PMCID: PMC9170526 DOI: 10.1084/jem.20201963] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/18/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunology research is largely focused on the role of cytotoxic immune responses against advanced cancers. Herein, we demonstrate that CD4+ T helper (Th2) cells directly block spontaneous breast carcinogenesis by inducing the terminal differentiation of the cancer cells. Th2 cell immunity, stimulated by thymic stromal lymphopoietin, caused the epigenetic reprogramming of the tumor cells, activating mammary gland differentiation and suppressing epithelial–mesenchymal transition. Th2 polarization was required for this tumor antigen–specific immunity, which persisted in the absence of CD8+ T and B cells. Th2 cells directly blocked breast carcinogenesis by secreting IL-3, IL-5, and GM-CSF, which signaled to their common receptor expressed on breast tumor cells. Importantly, Th2 cell immunity permanently reverted high-grade breast tumors into low-grade, fibrocystic-like structures. Our findings reveal a critical role for CD4+ Th2 cells in immunity against breast cancer, which is mediated by terminal differentiation as a distinct effector mechanism for cancer immunoprevention and therapy.
Collapse
Affiliation(s)
- Margherita Boieri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anna Malishkevich
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ranya Guennoun
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Emanuela Marchese
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sanne Kroon
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kathryn E Trerice
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mary Awad
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jong Ho Park
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sowmya Iyer
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Johannes Kreuzer
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Miguel N Rivera
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Jeong H, Chong HJ, So J, Jo Y, Yune TY, Ju BG. Ghrelin Represses Thymic Stromal Lymphopoietin Gene Expression through Activation of Glucocorticoid Receptor and Protein Kinase C Delta in Inflamed Skin Keratinocytes. Int J Mol Sci 2022; 23:ijms23073977. [PMID: 35409338 PMCID: PMC8999772 DOI: 10.3390/ijms23073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Hyo-Jin Chong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Jangho So
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Yejin Jo
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Tae-Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
- Correspondence: ; Tel.: +82-2-705-8455
| |
Collapse
|
27
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Ramani K, Cormack T, Cartwright ANR, Alami A, Parameswaran P, Abdou M, Wang I, Hilliard-Barth K, Argueta S, Raghunathan D, Caffry W, Davitt CJH, Romano FB, Ng A, Kravitz V, Rommel T, Sizova M, Kiran EU, Pradeep P, Ponichtera HE, Ganguly T, Bodmer M, Itano A. Regulation of Peripheral Inflammation by a Non-Viable, Non-Colonizing Strain of Commensal Bacteria. Front Immunol 2022; 13:768076. [PMID: 35185874 PMCID: PMC8847375 DOI: 10.3389/fimmu.2022.768076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
The gastrointestinal tract represents one of the largest body surfaces that is exposed to the outside world. It is the only mucosal surface that is required to simultaneously recognize and defend against pathogens, while allowing nutrients containing foreign antigens to be tolerated and absorbed. It differentiates between these foreign substances through a complex system of pattern recognition receptors expressed on the surface of the intestinal epithelial cells as well as the underlying immune cells. These immune cells actively sample and evaluate microbes and other particles that pass through the lumen of the gut. This local sensing system is part of a broader distributed signaling system that is connected to the rest of the body through the enteric nervous system, the immune system, and the metabolic system. While local tissue homeostasis is maintained by commensal bacteria that colonize the gut, colonization itself may not be required for the activation of distributed signaling networks that can result in modulation of peripheral inflammation. Herein, we describe the ability of a gut-restricted strain of commensal bacteria to drive systemic anti-inflammatory effects in a manner that does not rely upon its ability to colonize the gastrointestinal tract or alter the mucosal microbiome. Orally administered EDP1867, a gamma-irradiated strain of Veillonella parvula, rapidly transits through the murine gut without colonization or alteration of the background microbiome flora. In murine models of inflammatory disease including delayed-type hypersensitivity (DTH), atopic dermatitis, psoriasis, and experimental autoimmune encephalomyelitis (EAE), treatment with EDP1867 resulted in significant reduction in inflammation and immunopathology. Ex vivo cytokine analyses revealed that EDP1867 treatment diminished production of pro-inflammatory cytokines involved in inflammatory cascades. Furthermore, blockade of lymphocyte migration to the gut-associated lymphoid tissues impaired the ability of EDP1867 to resolve peripheral inflammation, supporting the hypothesis that circulating immune cells are responsible for promulgating the signals from the gut to peripheral tissues. Finally, we show that adoptively transferred T cells from EDP1867-treated mice inhibit inflammation induced in recipient mice. These results demonstrate that an orally-delivered, non-viable strain of commensal bacteria can mediate potent anti-inflammatory effects in peripheral tissues through transient occupancy of the gastrointestinal tract, and support the development of non-living bacterial strains for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Aula Alami
- Evelo Biosciences, Cambridge, MA, United States
| | | | | | - Iris Wang
- Evelo Biosciences, Cambridge, MA, United States
| | | | | | | | - Will Caffry
- Evelo Biosciences, Cambridge, MA, United States
| | | | | | - Aylwin Ng
- Evelo Biosciences, Cambridge, MA, United States
| | | | | | | | | | | | | | | | - Mark Bodmer
- Evelo Biosciences, Cambridge, MA, United States
| | | |
Collapse
|
29
|
Ghezzi M, Pozzi E, Abbattista L, Lonoce L, Zuccotti GV, D’Auria E. Barrier Impairment and Type 2 Inflammation in Allergic Diseases: The Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1165. [PMID: 34943362 PMCID: PMC8700706 DOI: 10.3390/children8121165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023]
Abstract
Allergic diseases represent a global burden. Although the patho-physiological mechanisms are still poorly understood, epithelial barrier dysfunction and Th2 inflammatory response play a pivotal role. Barrier dysfunction, characterized by a loss of differentiation, reduced junctional integrity, and altered innate defence, underpins the pathogenesis of allergic diseases. Epithelial barrier impairment may be a potential therapeutic target for new treatment strategies Up now, monoclonal antibodies and new molecules targeting specific pathways of the immune response have been developed, and others are under investigation, both for adult and paediatric populations, which are affected by atopic dermatitis (AD), asthma, allergic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP), or eosinophilic esophagitis (EoE). In children affected by severe asthma biologics targeting IgE, IL-5 and against IL-4 and IL-13 receptors are already available, and they have also been applied in CRSwNP. In severe AD Dupilumab, a biologic which inhibits both IL-4 and IL-13, the most important cytokines involved in inflammation response, has been approved for treatment of patients over 12 years. While a biological approach has already shown great efficacy on the treatment of severe atopic conditions, early intervention to restore epithelial barrier integrity, and function may prevent the inflammatory response and the development of the atopic march.
Collapse
Affiliation(s)
- Michele Ghezzi
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Elena Pozzi
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Luisa Abbattista
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Luisa Lonoce
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| |
Collapse
|
30
|
Lee WJ, Shim WS. Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus. Front Immunol 2021; 12:772941. [PMID: 34925342 PMCID: PMC8674573 DOI: 10.3389/fimmu.2021.772941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dry skin is a symptom of skin barrier dysfunction that evokes pruritus; however, the cutaneous neuroimmune interactions underlying dry skin-induced pruritus remain unclear. Therefore, we aimed to elucidate the mechanisms underlying dry skin-induced pruritus. To this end, an acetone/ethanol/water (AEW)-induced mouse model of dry skin was used in this study. We observed that the production of thymic stromal lymphopoietin (TSLP) significantly increased in the keratinocytes of AEW mice. Importantly, treatment with an antagonist of transient receptor potential cation channel subfamily V member 4 (TRPV4), HC067047, ameliorated dry skin conditions in AEW mice. The symptoms of dry skin were significantly reduced in Trpv4 knockout (KO) mice following treatment with AEW. The increase in the intracellular calcium levels by TSLP in the dorsal root ganglia (DRG) of Trpv4 KO mice was also significantly attenuated. The spontaneous scratching bouts were significantly decreased in both the HC067047-treated and Trpv4 KO AEW mice. Importantly, the TSLP-dependent release of tryptase from the mast cells was significantly reduced in both the HC067047-treated mice and Trpv4 KO AEW mice. Notably, inhibition of the TSLP-induced signaling pathway in DRG selectively reduced the spontaneous scratching bouts in AEW mice. Overall, the results demonstrated that the cutaneous neuroimmune interactions of TSLP and TRPV4 play pivotal roles in dry skin-induced pruritus.
Collapse
Affiliation(s)
- Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| |
Collapse
|
31
|
Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, Yang J, Webb GR, Munoz-Erazo L, Hyde EJ, Wakelin KA, Tang SC, Chappell SC, von Daake S, Brombacher F, Mackay CR, Sher A, Tussiwand R, Connor LM, Gallego-Ortega D, Jankovic D, Le Gros G, Hepworth MR, Lamiable O, Ronchese F. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote T H2 and inhibit T H17 cell polarization. Nat Immunol 2021; 22:1538-1550. [PMID: 34795444 DOI: 10.1038/s41590-021-01067-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023]
Abstract
The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.
Collapse
Affiliation(s)
- Johannes U Mayer
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Dermatology and Allergology, Phillips University Marburg, Marburg, Germany
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David A Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rita G Domingues
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jianping Yang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town component & Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Immune Regulation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Gallego-Ortega
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Centre for Single-Cell Technology, School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
32
|
Lee JK, Seok JK, Cho I, Yang G, Kim KB, Kwack SJ, Kang HC, Cho YY, Lee HS, Lee JY. Topical application of celastrol alleviates atopic dermatitis symptoms mediated through the regulation of thymic stromal lymphopoietin and group 2 innate lymphoid cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:922-931. [PMID: 34304725 DOI: 10.1080/15287394.2021.1955785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease, of which incidence is closely related to exposure to environmental pollutants and allergens. Thymic stromal lymphopoietin (TSLP) plays an important role in the early stages of atopic dermatitis development by inducing Th2 immune responses. In addition, TSLP regulates activation of group 2 innate lymphoid cells (ILC2), promoting the pathogenesis of atopic dermatitis. The aim of this study was to investigate whether celastrol alleviated atopic dermatitis symptoms by regulating TSLP expression and ILC2 stimulation. Celastrol suppressed TSLP production in mouse keratinocyte cells by inhibiting NF-ĸB activation. Topical application of celastrol significantly improved atopic dermatitis symptoms induced by house dust mite (HDM) in NC/Nga mice as determined by dermatitis score and histological assessment. Celastrol decreased the levels of TSLP in atopic dermatitis skin lesions of HDM-stimulated NC/Nga mice. Celastrol reduced levels of Th2 cytokines including IL-4, IL-5, and IL-13 in atopic dermatitis skin lesions of NC/Nga mice. Further, celastrol significantly reduced ILC2 population in atopic dermatitis skin lesions of NC/Nga mice. These results indicate that topical application of celastrol improved atopic dermatitis symptoms by lowering TSLP levels and concomitant immune responses. Data demonstrated that reduced TSLP levels and associated lower number of ILC2 cells alleviate atopic dermatitis symptoms induced by house dust mite.
Collapse
Affiliation(s)
- Jae Kwon Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Jin Kyung Seok
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Ilyoung Cho
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korea Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, Changwon National University, Changwon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
33
|
Park J, Lee JW, Kim SH, Oh J, Roh WS, Kim SM, Park CO, Lee MG, Kim TG. Type 2 immunity plays an essential role for murine model of allergic contact dermatitis with mixed type 1/type 2 immune response. J Dermatol Sci 2021; 104:122-131. [PMID: 34763990 DOI: 10.1016/j.jdermsci.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Both human and mouse allergic contact dermatitis (ACD) frequently demonstrates a combined type 1 and type 2 immune response. However, the relative importance of type 2 immunity in this setting has been incompletely understood yet. OBJECTIVE To explore an effector function of type 2 immunity in ACD with mixed type 1/type 2 immune response. METHODS Gene expression characteristics of contact hypersensitivity (CHS) model was examined by quantitative polymerase chain reaction. Cytokine profile of T cells was analyzed by flow cytometry. The involvement of type 2 immunity was assessed by antibody-mediated cytokine neutralization and cell depletion. The role of specific subset of cutaneous dendritic cells was evaluated using diphtheria toxin-induced cell-depleting mouse strains. RESULTS Oxazolone-induced CHS revealed a combination of type 1/type 2 gene expression. The severity of oxazolone-induced CHS was ameliorated by neutralization of IL-4 but not of IFN-γ, indicating that type 2 immunity plays a dominant effector function in this mixed type 1/type 2 model. Mechanistically, type 2 effector immunity was mounted by CD301b+Langeirn- dermal dendritic cells in part through thymic stromal lymphopoietin-interleukin 7 receptor alpha signaling-dependent manner. CONCLUSION Our findings suggest the clinical rationale for targeting type 2 immunity as a relevant therapeutic strategy for the mixed immune phenotype of ACD.
Collapse
Affiliation(s)
- Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Min Kim
- Department of Dermatology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Marković I, Wolfrum T, Wohlmann A, Gautam K, Friedrich K. Functional characterisation of two receptor interaction determinants in human thymic stromal lymphopoietin. Biol Chem 2021; 403:243-249. [PMID: 34699696 DOI: 10.1515/hsz-2021-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a pro-inflammatory cytokine with important pathological roles in Asthma bronchiale, malignant tumours and other diseases. The heterodimeric human TSLP receptor (hTSLPR) consists of the TSLP-binding subunit (TSLPRα) and the IL-7Rα-subunit. We studied the properties of hTSLP variants with mutations in their bipartite interaction interface towards IL-7Rα. One mutant (T46D/K101D) showed only mild impairment in receptor affinity but a massive reduction in biological activity. To facilitate the future development of hTSLP mutants with drug properties, we have devised a eukaryontic cytokine display assay with activity read-out and intrinsic genotype-phenotype coupling.
Collapse
Affiliation(s)
- Iva Marković
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743Jena, Germany
| | - Therese Wolfrum
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743Jena, Germany
| | - Andreas Wohlmann
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743Jena, Germany
| | - Kritan Gautam
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743Jena, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743Jena, Germany
| |
Collapse
|
35
|
Bin L, Malley C, Taylor P, Preethi Boorgula M, Chavan S, Daya M, Mathias M, Shankar G, Rafaels N, Vergara C, Potee J, Campbell M, Hanifin JM, Simpson E, Schneider LC, Gallo RL, Hata T, Paller AS, De Benedetto A, Beck LA, Ong PY, Guttman‐Yassky E, Richers B, Baraghoshi D, Ruczinski I, Barnes KC, Leung DYM, Mathias RA. Whole genome sequencing identifies novel genetic mutations in patients with eczema herpeticum. Allergy 2021; 76:2510-2523. [PMID: 33548076 DOI: 10.1111/all.14762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Eczema herpeticum (EH) is a rare complication of atopic dermatitis (AD) caused by disseminated herpes simplex virus (HSV) infection. The role of rare and/or deleterious genetic variants in disease etiology is largely unknown. This study aimed to identify genes that harbor damaging genetic variants associated with HSV infection in AD with a history of recurrent eczema herpeticum (ADEH+). METHODS Whole genome sequencing (WGS) was performed on 49 recurrent ADEH+ (≥3 EH episodes), 491 AD without a history of eczema herpeticum (ADEH-) and 237 non-atopic control (NA) subjects. Variants were annotated, and a gene-based approach (SKAT-O) was used to identify genes harboring damaging genetic variants associated with ADEH+. Genes identified through WGS were studied for effects on HSV responses and keratinocyte differentiation. RESULTS Eight genes were identified in the comparison of recurrent ADEH+to ADEH-and NA subjects: SIDT2, CLEC7A, GSTZ1, TPSG1, SP110, RBBP8NL, TRIM15, and FRMD3. Silencing SIDT2 and RBBP8NL in normal human primary keratinocytes (NHPKs) led to significantly increased HSV-1 replication. SIDT2-silenced NHPKs had decreased gene expression of IFNk and IL1b in response to HSV-1 infection. RBBP8NL-silenced NHPKs had decreased gene expression of IFNk, but increased IL1b. Additionally, silencing SIDT2 and RBBP8NL also inhibited gene expression of keratinocyte differentiation markers keratin 10 (KRT10) and loricrin (LOR). CONCLUSION SIDT2 and RBBP8NL participate in keratinocyte's response to HSV-1 infection. SIDT2 and RBBP8NL also regulate expression of keratinocyte differentiation genes of KRT10 and LOR.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics National Jewish Health Denver CO USA
| | - Claire Malley
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | - Patricia Taylor
- Department of Pediatrics National Jewish Health Denver CO USA
| | | | - Sameer Chavan
- Department of Medicine University of Colorado Aurora CO USA
| | - Michelle Daya
- Department of Medicine University of Colorado Aurora CO USA
| | - Malaika Mathias
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | - Gautam Shankar
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | | | | | | | | | | | - Eric Simpson
- Oregon Health & Science University Portland OR USA
| | | | - Richard L. Gallo
- Department of Dermatology University of California San Diego CA USA
| | - Tissa Hata
- Department of Dermatology University of California San Diego CA USA
| | - Amy S. Paller
- Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | - Lisa A. Beck
- University of Rochester Medical Center Rochester NY USA
| | - Peck Y. Ong
- Children’s Hospital Los Angeles University of Southern California Los Angeles CA USA
| | | | | | | | - Ingo Ruczinski
- Department of Biostatistics Bloomberg School of Public Health Johns Hopkins University Baltimore MD USA
| | | | | | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| |
Collapse
|
36
|
Xu-Chen X, Weinstock J, Rastogi D, Koumbourlis A, Nino G. The airway epithelium during infancy and childhood: A complex multicellular immune barrier. Basic review for clinicians. Paediatr Respir Rev 2021; 38:9-15. [PMID: 34030977 PMCID: PMC8859843 DOI: 10.1016/j.prrv.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
The airway epithelium is a complex multicellular layer that extends from the nasopharynx to the small airways. It functions as an immune respiratory barrier during early life that develops, matures, and regenerates to adapt to the changes in the environment. While airway epithelial abnormalities have been identified in several clinical disorders, there is increasing interest in understanding its basic regulation and structure in humans. Indeed, recent advances in technology (e.g. single-cell analysis and new human airway epithelial cell models) have allowed us to identify additional cellular subtypes and functions that overall have greatly improved our understanding of the airway epithelium during health and disease. In this review we summarize key features of the airway epithelium including: 1) multilayer structure and cell heterogeneity; 2) adaptability to different environmental and developmental stimuli; 3) innate recognition; and 4) orchestration of immune responses. We discuss these features with a translational and clinical prospective focusing on the development of human respiratory immunity, particularly during early life.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, D.C, USA.
| |
Collapse
|
37
|
Wang WR, Chen NT, Hsu NY, Kuo IY, Chang HW, Wang JY, Su HJ. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy. Clin Epigenetics 2021; 13:76. [PMID: 33836808 PMCID: PMC8035749 DOI: 10.1186/s13148-021-01061-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. RESULTS Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children's respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (β = - 1.75, p = 0.015) after adjustment for child's sex, age, BMI, parents' smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65-0.99). CONCLUSIONS Exposure to BBzP in settled dust might increase children's respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.
Collapse
Affiliation(s)
- Wan-Ru Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Wen Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
38
|
Li H, Wang H, Sokulsky L, Liu S, Yang R, Liu X, Zhou L, Li J, Huang C, Li F, Lei X, Jia H, Cheng J, Li F, Yang M, Zhang G. Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation. J Allergy Clin Immunol 2021; 147:941-954. [PMID: 33039479 DOI: 10.1016/j.jaci.2020.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma exacerbations are associated with heightened asthma symptoms, which can result in hospitalization in severe cases. However, the molecular immunologic processes that determine the course of an exacerbation remain poorly understood, impeding the progression of development of effective therapies. OBJECTIVE Our aim was to identify candidate genes that are strongly associated with asthma exacerbation at a cellular level. METHODS Subjects with asthma exacerbation and healthy control subjects were recruited, and bronchoalveolar lavage fluid was isolated from these subjects via bronchoscopy. Cells were isolated through fluorescence-activated cell sorting, and single-cell RNA sequencing was performed on enriched cell populations. RESULTS We showed that the levels of monocytes, CD8+ T cells, and macrophages are significantly elevated in the bronchoalveolar lavage fluid of patients. A set of cytokines and intracellular transduction regulators are associated with asthma exacerbations and are shared across multiple cell clusters, forming a complicated molecular framework. An additional group of core exacerbation-associated modules is activated, including eukaryotic initiation factor 2 signaling, ephrin receptor signaling, and C-X-C chemokine receptor type 4 signaling in the subpopulations of CD8+ T cells (C1-a) and monocyte clusters (C7 clusters), which are associated with infection. CONCLUSION Our study identified a significant number of severe asthma-associated genes that are differentially expressed by multiple cell clusters.
Collapse
Affiliation(s)
- Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leon Sokulsky
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Shaoxia Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojie Liu
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lujia Zhou
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Lei
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxia Jia
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia; Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
39
|
Chan LKY, Lau TS, Chung KY, Tam C, Cheung TH, Yim SF, Lee JHS, Leung RWT, Qin J, Or YYY, Lo KW, Kwong J. Short-Form Thymic Stromal Lymphopoietin (sfTSLP) Is the Predominant Isoform Expressed by Gynaecologic Cancers and Promotes Tumour Growth. Cancers (Basel) 2021; 13:cancers13050980. [PMID: 33652749 PMCID: PMC7956741 DOI: 10.3390/cancers13050980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Cytokines are a group of small proteins in the body that play an important part in boosting the immune system. Thymic stromal lymphopoietin (TSLP) is a cytokine that plays an important role in the maturation of T cells. Two variants of TSLP, long-form (lfTSLP) and short-form (sfTSLP), have been found, however their roles in cancers are not known. In this study, we discovered that sfTSLP, but not lfTSLP, is predominantly expressed in ovarian and endometrial cancers. The switch that turns the sfTSLP gene on or off is controlled by external modifications of DNA. Our results also found that sfTSLP promotes tumour growth through activating several signal pathways in cancer cells. Abstract Thymic stromal lymphopoietin (TSLP) is an epithelial cell derived cytokine belonging to the IL-7 family and a key initiator of allergic inflammation. Two main isoforms of TSLP, classified as long- (lfTSLP) and short-form (sfTSLP), have been reported in human, but their expression patterns and role(s) in cancers are not yet clear. mRNA expression was examined by isoform-specific RT-PCR and RNA in situ hybridisation. Epigenetic regulation was investigated by chromatin immunoprecipitation-PCR and bisulfite sequencing. Tumour progression was investigated by gene overexpression, cell viability assay, cancer organoid culture and transwell invasion. Signals were investigated by proteome profiler protein array and RNA-sequencing. With the use of isoform-specific primers and probes, we uncovered that only sfTSLP was expressed in the cell lines and tumour tissues of human ovarian and endometrial cancers. We also showed the epigenetic regulation of sfTSLP: sfTSLP transcription was regulated by histone acetylation at promoters in ovarian cancer cells, whereas silencing of the sfTSLP transcripts was regulated by promoter DNA methylation in endometrial cancer cells. In vitro study showed that ectopically overexpressing sfTSLP promoted tumour growth but not invasion. Human phosphokinase array application demonstrated that the sfTSLP overexpression activated phosphorylation of multiple intracellular kinases (including GSK3α/β, AMPKα1, p53, AKT1/2, ERK1/2 and Src) in ovarian cancer cells in a context-dependent manner. We further investigated the impact of sfTSLP overexpression on transcriptome by RNA-sequencing and found that EFNB2 and PBX1 were downregulated in ovarian and endometrial cancer cells, suggesting their role in sfTSLP-mediated tumour growth. In conclusion, sfTSLP is predominantly expressed in ovarian and endometrial cancers and promotes tumour growth.
Collapse
Affiliation(s)
- Loucia Kit Ying Chan
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Tat San Lau
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Kit Ying Chung
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Chit Tam
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Tak Hong Cheung
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - So Fan Yim
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Jacqueline Ho Sze Lee
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Ricky Wai Tak Leung
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 510006, China; (R.W.T.L.); (J.Q.)
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 510006, China; (R.W.T.L.); (J.Q.)
| | - Yvonne Yan Yan Or
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (Y.Y.Y.O.); (K.W.L.)
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (Y.Y.Y.O.); (K.W.L.)
| | - Joseph Kwong
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
- Correspondence: ; Tel.: +852-3505-2801
| |
Collapse
|
40
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
41
|
Babina M, Wang Z, Franke K, Zuberbier T. Thymic Stromal Lymphopoietin Promotes MRGPRX2-Triggered Degranulation of Skin Mast Cells in a STAT5-Dependent Manner with Further Support from JNK. Cells 2021; 10:cells10010102. [PMID: 33429916 PMCID: PMC7826995 DOI: 10.3390/cells10010102] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is released by epithelial cells following disturbed homeostasis to act as “alarmin” and driver of Th2-immunity. Aberrant TSLP expression is a hallmark of atopic diseases, including atopic dermatitis (AD). Mast cells (MCs) are overabundant in AD lesions and show signs of degranulation, but it remains unknown whether TSLP contributes to granule discharge. Degranulation of skin MCs proceeds via two major routes, i.e., FcεRI-dependent (allergic) and MRGPRX2-mediated (pseudo-allergic/neurogenic). Evidence is accumulating that MRGPRX2 may be crucial in the context of skin diseases, including eczema. The current study reveals TSLP as a novel priming factor of human skin MCs. Interestingly, TSLP selectively cooperates with MRGPRX2 to support granule discharge, while it does not impact spontaneous or FcεRI-driven exocytosis. TSLP-assisted histamine liberation triggered by compound 48/80 or Substance P, two canonical MRGPRX2 agonists, was accompanied by an increase in CD107a+ cells (a MC activation marker). The latter process was less potent, however, and detectable only at the later of two time points, suggesting TSLP may prolong opening of the granules. Mechanistically, TSLP elicited phosphorylation of STAT5 and JNK in skin MCs and the reinforced degranulation critically depended on STAT5 activity, while JNK had a contributory role. Results from pharmacological inhibition were confirmed by RNA-interference, whereby silencing of STAT5 completely abolished the priming effect of TSLP on MRGPRX2-mediated degranulation. Collectively, TSLP is the first factor to favor MRGPRX2- over FcεRI-triggered MC activation. The relevance of TSLP, MCs and MRGPRX2 to pruritis and atopic skin pathology indicates broad repercussions of the identified connection.
Collapse
Affiliation(s)
- Magda Babina
- Correspondence: ; Tel.: +49-30-1751649539; Fax: +49-30-450518900
| | | | | | | |
Collapse
|
42
|
Abstract
Thymic stromal lymphopoietin (TSLP) is an allarmin cytokine whose importance in human asthma has been repeatedly documented. Accordingly, targeting of TSLP and TSLP-mediated signalling is considered as an attractive therapeutic strategy to asthma. Tezepelumab, which is the first-in-class anti-TSLP monoclonal antibodies (mAb), is a fully human IgG2λ mAb that binds human TSLP, prevents interaction with its receptor and, consequently, inhibits multiple downstream inflammatory pathways. Because of the excellent results of Phase II trials, the Food and Drug Administration granted tezepelumab as a 'breakthrough' biological drug for the treatment of severe asthma. Several studies with this mAb are ongoing. CSJ117 is an Ab fragment that binds to TSLP and is delivered by inhalation but there is no published information on this biologic agent. Since new information suggests that targeting TSLP may be more likely to improve day-to-day asthma symptoms, in contrast to targeting mediators of the adaptive immune system, approaches that primarily act to ameliorate asthma exacerbations, novel approaches capable of blocking TSLP (for example, fully human single-chain fragment variables against TSLP, bifunctional drugs such as the one that combines an anti-IL-13 mAb with an anti-TSLP mAb, a fusion protein consisting of the ectodomains of TSLPR and IL-7Ra that extend into the extracellular space, also known as a TSLP-trap, fragments capable of disrupting the TSLP:TSLPR complex) are under preclinical investigation. However, some critical aspects remain to be clarified before being able to define this approach as the one that will probably better help patients suffering from severe asthma because of its holistic effects.
Collapse
|
43
|
Wei L, Ren D, Zhao G, Zhao L. Protective effect of corynoline in a murine allergic rhinitis model via inhibition of caspase-1/NF-κB. Arch Pharm (Weinheim) 2020; 354:e2000231. [PMID: 33124097 DOI: 10.1002/ardp.202000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/06/2022]
Abstract
Allergic rhinitis (AR) is a serious public health concern worldwide. Therefore, the present study was conducted to scrutinize the protective effect of corynoline (COR) against ovalbumin (OVA)-induced AR in BALB/c mice. The effect of COR was investigated on various parameters, such as nose-rub score, histamine intensity, level of cytokines, and NF-κB binding activity. It was found that COR causes a significant reduction in the nose-rub score with a reduction in histamine intensity. It also causes reductions in cytokines, such as TNF-α, IL-1β, and MIP-2, in comparison to OVA-challenged mice. COR reduces the gene expression of active caspase-1 in Western blot analysis, together with inhibition of NF-κB binding activity. The inhibitory effect on NF-κB binding was further substantiated by docking analysis, where COR excellently docked into the active site of NF-κB via the creation of H-bond and π-cation interactions with Lys145. Taken altogether, our results demonstrated that COR could be used as a potential therapeutic agent against AR.
Collapse
Affiliation(s)
- Li Wei
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dan Ren
- Department of Oral & Maxillofacial-Head & Neck Oncology, School of Stomatology, The Third Affiliated Hospital of PLA Air Force Military Medical University, Xi'an, China
| | - Guna Zhao
- Department of Pediatrics, The Fourth People's Hospital of Shaanxi, Xi'an, China
| | - Lin Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
44
|
TSLP and IL-7R Variants Are Associated with Persistent Atopic Dermatitis. J Invest Dermatol 2020; 141:446-450.e2. [PMID: 32712161 DOI: 10.1016/j.jid.2020.05.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
|
45
|
Marković I, Savvides SN. Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 2020; 11:1557. [PMID: 32849527 PMCID: PMC7396566 DOI: 10.3389/fimmu.2020.01557] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) and Interleukin-7 (IL-7) are widely studied cytokines within distinct branches of immunology. On one hand, TSLP is crucially important for mediating type 2 immunity at barrier surfaces and has been linked to widespread allergic and inflammatory diseases of the airways, skin, and gut. On the other hand, IL-7 operates at the foundations of T-cell and innate lymphoid cell (ILC) development and homeostasis and has been associated with cancer. Yet, TSLP and IL-7 are united by key commonalities in their structure and the structural basis of the receptor assemblies they mediate to initiate cellular signaling, in particular their cross-utilization of IL-7Rα. As therapeutic targeting of TSLP and IL-7 via diverse approaches is reaching advanced stages and in light of the plethora of mechanistic and structural data on receptor signaling mediated by the two cytokines, the time is ripe to provide integrated views of such knowledge. Here, we first discuss the major pathophysiological roles of TSLP and IL-7 in autoimmune diseases, inflammation and cancer. Subsequently, we curate structural and mechanistic knowledge about receptor assemblies mediated by the two cytokines. Finally, we review therapeutic avenues targeting TSLP and IL-7 signaling. We envision that such integrated view of the mechanism, structure, and modulation of signaling assemblies mediated by TSLP and IL-7 will enhance and fine-tune the development of more effective and selective approaches to further interrogate the role of TSLP and IL-7 in physiology and disease.
Collapse
Affiliation(s)
- Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
47
|
Kitajima M, Kubo M, Ziegler SF, Suzuki H. Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:27-35. [PMID: 32444388 DOI: 10.4049/jimmunol.1900758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key cytokine that initiates and promotes allergic inflammation both in humans and mice. It is well known that TSLP is important in initial step of inflammation by stimulating dendritic cells to promote Th2 differentiation of naive T cells. However, TSLP is abundantly produced in the late phase of inflammation, as well; therefore, we focused on the function of TSLP in chronic Th2-type inflammation. By establishing a novel (to our knowledge) chronic allergic skin inflammation mouse model with repetitive challenges of hapten after sensitization, we demonstrated that CD4 T cell-specific deletion of TSLP receptor (TSLPR) resulted in near-complete ablation of ear swelling and infiltration of CD4 T cells and eosinophils, but after second challenge. Of note, TSLPR deletion on CD4 T cells did not affect acute inflammation. As expected, transfer of Ag-sensitized wild-type CD4T cells, but not of TSLPR-deficient CD4T cells, increased skin inflammation in the model upon challenge. Furthermore, production of IL-4 from TSLPR-deficient CD4T cells in inflamed ear lesions was markedly diminished, demonstrating that TSLP-dependent IL-4 production from CD4T cells was critical for the exacerbation of skin inflammation. Similar results were obtained in Th2-type allergic skin inflammation model using MC903. Collectively, these results indicate that TSLP acts directly on CD4 T cells to elicit pathogenesis of Th2 cells, thereby having a critical role in exacerbation of skin inflammation in the chronic phase.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101-2795; and.,Department of Immunology, University of Washington Medicine, Seattle, WA 98109
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan;
| |
Collapse
|
48
|
Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T H2-cell differentiation in lungs. J Allergy Clin Immunol 2020; 146:1406-1418.e7. [PMID: 32304753 DOI: 10.1016/j.jaci.2020.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that is important for the development of type 2 inflammatory responses at mucosal surfaces. OBJECTIVE In humans, TSLP level has been found to be elevated in the lungs of patients with asthma, and in mouse models, TSLP can promote type 2 airway inflammation, primarily through the activation of dendritic cells. However, the mechanisms underlying its role remain unclear. The objective of this study was to provide a mechanistic analysis of TSLP-mediated type 2 airway inflammation METHODS: To dissect the mechanisms of TSLP-mediated type 2 responses, mice were treated with TSLP and antigen to evaluate cellular immune responses. Flow cytometric analyses were used to follow responses in the airways, and conditional deletion of TSLP receptor and adoptive transfer were used to identify the cellular subsets involved in this inflammatory response. RESULTS We showed that TSLP can directly promote TH2-cell differentiation in the lung, independent of the draining lymph nodes. We also identified a population of patrolling monocytes/interstitial macrophages (IMs) (CD11c-expressing IMs) that are both necessary and sufficient for TSLP-mediated TH2-cell differentiation and airway inflammation. TH2-cell-driven airway eosinophilia is attenuated by ablation of CD11c-expressing IMs or by selective deficiency of TSLP receptor signaling in these cells. More importantly, CD11c-expressing IMs are sufficient for the induction of acute TH2-cell responses in the lungs that is independent of dendritic cells and T-cell priming in the draining lymph nodes. CONCLUSION These findings indicate a novel mechanistic role for TSLP and CD11c-expressing IMs in the development of acute TH2-cell-dependent allergic airway inflammation. This work also demonstrates a new role for TSLP in promoting type 2 responses directly in the lung.
Collapse
Affiliation(s)
- Jen-Feng Lai
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | | |
Collapse
|
49
|
Para-phenylenediamine, an oxidative hair dye ingredient, increases thymic stromal lymphopoietin and proinflammatory cytokines causing acute dermatitis. Toxicol Res 2020; 36:329-336. [PMID: 33005592 DOI: 10.1007/s43188-020-00041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
Due to high consumption of cosmetics in modern society, people are always exposed to the risk of skin damage and complications. Para-phenylenediamine (P-PD), an ingredient of hair dye, has been reported to cause allergic contact dermatitis. However, the mechanism has not been well elucidated. Here, we identify that P-PD causes dermatitis by increasing thymic stromal lymphopoietin (TSLP) and inflammatory cytokines. Topical application of P-PD to mouse ear skin in consecutive 5 days resulted in dermatitis symptoms and increased ear thickness. TSLP production in skin was upregulated by P-PD treatment alone. In addition, P-PD-induced TSLP production was potentiated by MC903, which is an in vivo TSLP inducer. P-PD increased TSLP production in keratinocytes (KCMH-1 cells and phorbol 12-myristate 13-acetate-stimulated PAM212 cells). The production of proinflammatory cytokines such as IL-1β, IL-6, IFN-γ, and CCL2, was upregulated by P-PD treatment together with MC903. The results show that repeated exposure to P-PD causes acute contact dermatitis mediated by increasing the expression of TSLP and proinflammatory cytokines.
Collapse
|
50
|
Schaper‐Gerhardt K, Rossbach K, Nikolouli E, Werfel T, Gutzmer R, Mommert S. The role of the histamine H 4 receptor in atopic dermatitis and psoriasis. Br J Pharmacol 2020; 177:490-502. [PMID: 30460986 PMCID: PMC7012951 DOI: 10.1111/bph.14550] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are common skin diseases with a high negative impact on patients' quality of life. Both diseases are mediated by a pro-inflammatory infiltrate consisting of several cell types, such as T-cells, antigen-presenting cells and granulocytes and display disturbed keratinocyte differentiation. Given the fact that histamine levels are also highly elevated in inflamed skin, it is likely that histamine plays a relevant role in disease pathology. However, antagonists blocking histamine H1 receptor or H2 receptors are largely ineffective in reducing chronic symptoms in AD and psoriasis. Over the last years, much research has been undertaken to shed light into the mode of action of the most recently discovered histamine H4 receptor. This research has shown that H4 receptor antagonists display antipruritic and anti-inflammatory effects not only in mouse models but also in first human clinical trials, and therefore, H4 receptors might present a novel therapeutic target. In this review, we summarize the effects of the H4 receptors on different cell types, mouse models and clinical studies in regard to AD and psoriasis respectively. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Katrin Schaper‐Gerhardt
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and PharmacyVeterinary School HannoverHannoverGermany
| | - Eirini Nikolouli
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Ralf Gutzmer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Susanne Mommert
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| |
Collapse
|